Remote Sensing-based Change Detection using Change Vector Analysis in Posterior Probability Space: A Context-Sensitive Bayesian Network Approach
Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used change-detection methods. However, CVA requires sound radiometric correction to achieve optimal performance, and PCC is susceptible to accumulated classification errors. Although change vector...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 16; pp. 1 - 21 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used change-detection methods. However, CVA requires sound radiometric correction to achieve optimal performance, and PCC is susceptible to accumulated classification errors. Although change vector analysis in the posterior probability space (CVAPS) was developed to resolve the limitations of PCC and CVA, the uncertainty of remote sensing imagery limits the performance of CVAPS owing to three major problems: 1) mixed pixels, 2) identical ground cover type with different spectra, and 3) different ground cover types with the same spectrum. To address this problem, this study proposes the FCM-CSBN-CVAPS approach under the CVAPS framework. The proposed approach decomposes the mixed pixels into multiple signal classes using the fuzzy C means (FCM) algorithm. Although the mixed pixel problem is less severe in the high-resolution image, the change detection performance is still enhanced because, as a soft clustering algorithm, FCM is less susceptible to cumulative clustering error. Then, a context-sensitive Bayesian network (CSBN) is constructed to establish multiple-to-multiple stochastic linkages between signal pairs and ground cover types by incorporating spatial information to resolve problems 2 and 3 discussed above. Finally, change detection is performed using CVAPS in the posterior probability space. The effectiveness of the proposed approach is evaluated on three bi-temporal remote sensing datasets with different spatial sizes and resolutions. The experimental results confirm the effectiveness of FCM-CSBN-CVAPS in addressing the uncertainty problems of change detection and its superiority over other relevant change-detection techniques. |
---|---|
AbstractList | Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used change detection methods. However, CVA requires sound radiometric correction to achieve optimal performance, and PCC is susceptible to accumulated classification errors. Although change vector analysis in the posterior probability space (CVAPS) was developed to resolve the limitations of PCC and CVA, the uncertainty of remote sensing imagery limits the performance of CVAPS owing to three major problems: 1) mixed pixels; 2) identical ground cover type with different spectra; and 3) different ground cover types with the same spectrum. To address this problem, this article proposes the FCM-CSBN-CVAPS approach under the CVAPS framework. The proposed approach decomposes the mixed pixels into multiple signal classes using the fuzzy C means (FCM) algorithm. Although the mixed pixel problem is less severe in the high-resolution image, the change detection performance is still enhanced because, as a soft clustering algorithm, FCM is less susceptible to cumulative clustering error. Then, a context-sensitive Bayesian network (CSBN) is constructed to establish multiple-to-multiple stochastic linkages between signal pairs and ground cover types by incorporating spatial information to resolve problems 2) and 3) discussed above. Finally, change detection is performed using CVAPS in the posterior probability space. The effectiveness of the proposed approach is evaluated on three bitemporal remote sensing datasets with different spatial sizes and resolutions. The experimental results confirm the effectiveness of FCM-CSBN-CVAPS in addressing the uncertainty problems of change detection and its superiority over other relevant change detection techniques. Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used change-detection methods. However, CVA requires sound radiometric correction to achieve optimal performance, and PCC is susceptible to accumulated classification errors. Although change vector analysis in the posterior probability space (CVAPS) was developed to resolve the limitations of PCC and CVA, the uncertainty of remote sensing imagery limits the performance of CVAPS owing to three major problems: 1) mixed pixels, 2) identical ground cover type with different spectra, and 3) different ground cover types with the same spectrum. To address this problem, this study proposes the FCM-CSBN-CVAPS approach under the CVAPS framework. The proposed approach decomposes the mixed pixels into multiple signal classes using the fuzzy C means (FCM) algorithm. Although the mixed pixel problem is less severe in the high-resolution image, the change detection performance is still enhanced because, as a soft clustering algorithm, FCM is less susceptible to cumulative clustering error. Then, a context-sensitive Bayesian network (CSBN) is constructed to establish multiple-to-multiple stochastic linkages between signal pairs and ground cover types by incorporating spatial information to resolve problems 2 and 3 discussed above. Finally, change detection is performed using CVAPS in the posterior probability space. The effectiveness of the proposed approach is evaluated on three bi-temporal remote sensing datasets with different spatial sizes and resolutions. The experimental results confirm the effectiveness of FCM-CSBN-CVAPS in addressing the uncertainty problems of change detection and its superiority over other relevant change-detection techniques. |
Author | Wang, Zihao He, Yi Li, Yikun Li, Xiaojun Yang, Shuwen Song, Jiaxin |
Author_xml | – sequence: 1 givenname: Yikun orcidid: 0000-0001-7096-1788 surname: Li fullname: Li, Yikun organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China – sequence: 2 givenname: Xiaojun surname: Li fullname: Li, Xiaojun organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China – sequence: 3 givenname: Jiaxin surname: Song fullname: Song, Jiaxin organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China – sequence: 4 givenname: Zihao surname: Wang fullname: Wang, Zihao organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China – sequence: 5 givenname: Yi orcidid: 0000-0003-4017-0488 surname: He fullname: He, Yi organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China – sequence: 6 givenname: Shuwen surname: Yang fullname: Yang, Shuwen organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China |
BookMark | eNqFUcFuEzEUtFCRSAtfAAdLnDfYXq-9y20JUIoqqJrC1fI6z6nD1k5th5K_4JNxugUhLpyeNO_NjN7MMTrywQNCzymZU0q6Vx-XV_3lcs4Iq-c1E4RS9gjNGG1oRZu6OUIz2tVdRTnhT9BxShtCBJNdPUM_L-EmZMBL8Mn5dTXoBCu8uNZ-DfgtZDDZBY93h-Vv-GsBQ8S91-M-uYSdxxchZYiuoBcxDHpwo8t7vNxqA69xjxfBZ_iRq3uX7L4DfqP3kJz2-BPkuxC_4X67jUGb66fosdVjgmcP8wR9ef_uavGhOv98erbozyvDSZcr0cDKtmLVtppKxqxprREaDOVMt9waKg3hjR2aRlrSmNoCs9QYMnA9rFrC6xN0Numugt6obXQ3Ou5V0E7dAyGulY7ZmREUYSVSxkCQlnJNi_4gW0lMxxkXtrZF6-WkVV643UHKahN2scSTVElZslZIIcpVPV2ZGFKKYP-4UqIONaqpRnWoUT3UWFjdPyzjsj6UkqN243-4LyauA4C_3IiUkvH6FztKrwc |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_3390_rs16244656 crossref_primary_10_1080_01431161_2023_2261153 crossref_primary_10_1109_JSTARS_2024_3508692 crossref_primary_10_1109_JSTARS_2024_3476131 crossref_primary_10_3390_rs16173209 crossref_primary_10_1109_TGRS_2024_3476992 crossref_primary_10_3390_rs16224223 crossref_primary_10_1016_j_acags_2024_100210 crossref_primary_10_1080_22797254_2024_2372854 crossref_primary_10_1016_j_jag_2023_103586 |
Cites_doi | 10.1109/lgrs.2021.3059461 10.1109/JSTARS.2021.3115481 10.1007/s41651-021-00085-8 10.1109/IGARSS.2001.978219 10.1109/TGRS.2004.831865 10.1109/JSTARS.2017.2712119 10.1109/TGRS.2014.2321277 10.1109/LGRS.2017.2763182 10.1109/TGRS.2007.892008 10.1016/j.isprsjprs.2012.05.006 10.1007/s41651-022-00110-4 10.1080/13658816.2011.585138 10.1109/TGRS.2018.2819367 10.1109/LGRS.2016.2536058 10.1109/36.602528 10.1109/TGRS.2016.2580321 10.1109/jstars.2020.2990481 10.1109/36.763299 10.1109/tgrs.2022.3157671 10.1109/TIP.2013.2259833 10.1016/j.jag.2011.10.013 10.1109/TGRS.2006.888861 10.1109/TGRS.2020.3017937 10.3390/rs3112473 10.1109/TGRS.2011.2168230 10.1109/TGRS.2019.2927659 10.4236/ars.2012.13008 10.1007/978-3-540-77046-6_10 10.1109/TGRS.2015.2396686 10.1109/LGRS.2019.2892432 10.1109/LGRS.2010.2068537 10.1109/TGRS.2006.885408 10.1109/tgrs.2003.817197 10.1109/TGRS.2018.2886643 10.1109/TGRS.2011.2171493 10.1080/01431160512331314083 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2023.3260112 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_0226022e60814a1a84b7870c94246f3f 10_1109_JSTARS_2023_3260112 10077724 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41861055 – fundername: National Natural Science Foundation of China grantid: 42161069 – fundername: LZJTU EP Program grantid: 201806 – fundername: China Postdoctoral Science Foundation grantid: 2019M653795 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX AETIX AGSQL CITATION EJD RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c409t-65edf86d88a1722fc8fc6aec142a84fc17c045fb557f05c3fe2f1cc0b4abd8043 |
IEDL.DBID | DOA |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:31:27 EDT 2025 Fri Jul 25 22:47:40 EDT 2025 Tue Jul 01 03:16:25 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Wed Aug 27 02:18:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-65edf86d88a1722fc8fc6aec142a84fc17c045fb557f05c3fe2f1cc0b4abd8043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7096-1788 0000-0003-4017-0488 |
OpenAccessLink | https://doaj.org/article/0226022e60814a1a84b7870c94246f3f |
PQID | 2797286766 |
PQPubID | 75722 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0226022e60814a1a84b7870c94246f3f proquest_journals_2797286766 ieee_primary_10077724 crossref_primary_10_1109_JSTARS_2023_3260112 crossref_citationtrail_10_1109_JSTARS_2023_3260112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 Yang (ref37) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref3 doi: 10.1109/lgrs.2021.3059461 – ident: ref1 doi: 10.1109/JSTARS.2021.3115481 – ident: ref36 doi: 10.1007/s41651-021-00085-8 – ident: ref17 doi: 10.1109/IGARSS.2001.978219 – ident: ref24 doi: 10.1109/TGRS.2004.831865 – ident: ref10 doi: 10.1109/JSTARS.2017.2712119 – start-page: 712 volume-title: Proc. 9th Acad. Conf. Geol. Resour. Manage. Sustain. Develop. ident: ref37 article-title: A comparative study of remote sensing image change detection based on bayesian networks and different spatial fuzzy C-means clustering – ident: ref8 doi: 10.1109/TGRS.2014.2321277 – ident: ref34 doi: 10.1109/LGRS.2017.2763182 – ident: ref32 doi: 10.1109/TGRS.2007.892008 – ident: ref23 doi: 10.1016/j.isprsjprs.2012.05.006 – ident: ref35 doi: 10.1007/s41651-022-00110-4 – ident: ref31 doi: 10.1080/13658816.2011.585138 – ident: ref5 doi: 10.1109/TGRS.2018.2819367 – ident: ref12 doi: 10.1109/LGRS.2016.2536058 – ident: ref20 doi: 10.1109/36.602528 – ident: ref18 doi: 10.1109/TGRS.2016.2580321 – ident: ref21 doi: 10.1109/jstars.2020.2990481 – ident: ref14 doi: 10.1109/36.763299 – ident: ref38 doi: 10.1109/tgrs.2022.3157671 – ident: ref4 doi: 10.1109/TIP.2013.2259833 – ident: ref16 doi: 10.1016/j.jag.2011.10.013 – ident: ref27 doi: 10.1109/TGRS.2006.888861 – ident: ref26 doi: 10.1109/TGRS.2020.3017937 – ident: ref11 doi: 10.3390/rs3112473 – ident: ref29 doi: 10.1109/TGRS.2011.2168230 – ident: ref28 doi: 10.1109/TGRS.2019.2927659 – ident: ref15 doi: 10.4236/ars.2012.13008 – ident: ref6 doi: 10.1007/978-3-540-77046-6_10 – ident: ref9 doi: 10.1109/TGRS.2015.2396686 – ident: ref19 doi: 10.1109/LGRS.2019.2892432 – ident: ref22 doi: 10.1109/LGRS.2010.2068537 – ident: ref2 doi: 10.1109/TGRS.2006.885408 – ident: ref30 doi: 10.1109/tgrs.2003.817197 – ident: ref13 doi: 10.1109/TGRS.2018.2886643 – ident: ref7 doi: 10.1109/TGRS.2011.2171493 – ident: ref25 doi: 10.1080/01431160512331314083 |
SSID | ssj0062793 |
Score | 2.3788815 |
Snippet | Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used change-detection methods. However, CVA requires... Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used change detection methods. However, CVA requires... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Analysis Bayes methods Bayesian analysis Bayesian theory Change detection Change vector analysis Change vector analysis (CVA) Change vector analysis in posterior probability space change vector analysis in posterior probability space (CVAPS) Classification Clustering Clustering algorithms Conditional probability Context Context-sensitive Bayesian network context-sensitive bayesian network (CSBN) Detection Effectiveness Fuzzy C means fuzzy C means (FCM) Ground cover Image enhancement Image resolution Pixels Post-classification change detection post-classification change detection (PCC) Probability theory Radiometric correction Radiometry Remote sensing Spatial data Spatial resolution Support vector machines Uncertainty Vector analysis |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NaxUxEA-2IHjxs-LTKjl4NNvsbjabeHtVaxF8SJ-V3kKSTYooW6n7Ds-_wj_ZmSRb_EDxsLCELJswk8lvkpnfEPKU-2hBbTXTveVMDJozrbhgcWjx1kk5lyrPvV3J41Px5qw7K8nqKRcmhJCCz0KFr-kuf7jwGzwqO8AbfUCDYofsgOeWk7VmsyubPjHsAiDRDDljCsVQzfUB6PjyZF1hpfCqRQ6tuvllG0ps_aW8yh82OW00R7fIah5iji_5VG0mV_lvv7E3_vccbpObBXLSZdaRO-RaGO-S669TSd_tPfL9JIC4Al1jKPt4znBfG2jOOqAvw5RitUaKAfLnc_OHdNZPZ0YT-nGkWPUXtBla312CjUgxt1u6Bpc8PKdLmliwwMlOf0ETSw_tNmAGJ13lSHS6LPTme-T06NX7F8es1GlgHrzDickuDFHJQSkLcKiJXkUvbfC1aKwS0de9B-AYXdf1kXe-jaGJtffcCesGUIz2PtkdL8bwgFDfchVbcNeFVkLJ1lqne6_rILQDrKkWpJnFZnwhMcdaGp9Ncma4NlnWBmVtiqwX5NnVR18yh8e_ux-iPlx1RQLu1AByNGU9G4A-Ep4gAVIJW8M8HZo-r2HoMrZxQfZQ9j_9L4t9QfZn9TLFWnw1oLp9o2Qv5cO_fPaI3MAh5rOffbI7XW7CY0BDk3uSVsEP1uoElA priority: 102 providerName: IEEE |
Title | Remote Sensing-based Change Detection using Change Vector Analysis in Posterior Probability Space: A Context-Sensitive Bayesian Network Approach |
URI | https://ieeexplore.ieee.org/document/10077724 https://www.proquest.com/docview/2797286766 https://doaj.org/article/0226022e60814a1a84b7870c94246f3f |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NixMxFA-yIHgRVytb7ZYcPJo2M5PJJN5atRbBIq1degtJJhFhGaV2D_0v_JP35WNKRdCLh7mEGTLz3i_vI_Pyewi9otZrgK0kstGUsFZSIgVlxLdV-OskjImd5z6t-HLLPu7q3Vmrr1ATluiBk-Cm4GM4XI6D72K60IKZgDErWcm4r3ywvuDz-mQq2WBeAuwyx1BB5RRAPltvJqFV-KQKJFpF-ZsfinT9ub_KH0Y5eprFE_Q4h4h4ll7tEj1w3VP08ENswXt8hn6tHYjXkU0oPe--kjn4oRanUwL4nTvE2qoOx1qAfvgm7s3jnoEEf-tw6NIL6IPRz3tY07FG9og3kEK7N3iGI2sVJMVxlmAS8VwfXThxiVepchzPMh35AG0X77-8XZLcV4FYyOYOhNeu9YK3QmgIX0pvhbdcO1uwEsTrbdFYCPS8qevG09pW3pW-sJYapk0Liqyeo4vue-euELYVFb6C9JpJwQSvtDaysbJwTBqIDcUQlb2Ulc2k46H3xa2KyQeVKqlGBdWorJohen166Efi3Pj77fOgvtOtgTA7DgCMVIaR-heMhmgQlH82H20g8WBDNOrRoPLq_qkAXU0peMP5i_8x90v0KHxP2tgZoYvD_s5dQ6hzMOOI6nE8lXgPhcv3lg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCNELz6IuFPCBI0nzcByb2xYoC7Qr1G1Rb5bt2BVqlaKSPWx_RX8yM7ZT8RCIQ6TIchRbMx5_Y898Q8jLwnoNaisz2eoiY50sMikKlvmuxlsnYUyoPLc_57Mj9vG4OU7J6iEXxjkXgs9cjq_hLr87t0s8KtvGG31Ag-wmuQUbf1PGdK3R8PKqDRy7AElkhqwxiWSoLOQ2aPn0YJFjrfC8RhatsvplIwp8_anAyh9WOWw1u_fIfBxkjDA5zZeDye3lb_yN_z2L--RuAp10GrXkAbnh-ofk9vtQ1Hf1iFwdOBCYowsMZu9PMtzZOhrzDuhbN4RorZ5iiPzJ2PwlnPbTkdOEfu0p1v0FfYbWzxdgJULU7YouwCl3r-mUBh4scLPDX9DI0h29cpjDSecxFp1OE8H5BjnafXf4ZpalSg2ZBf9wyHjjOi94J4QGQFR5K7zl2tmSVVowb8vWAnT0pmlaXzS29q7ypbWFYdp0oBr1Y7LWn_duk1BbF8LX4LAzKZjgtdZGtlaWjkkDaFNMSDWKTdlEY47VNM5UcGcKqaKsFcpaJVlPyKvrj75FFo9_d99BfbjuihTcoQHkqNKKVgB-ODyOA6hiuoR5GjR-VsLQua_9hGyg7H_6XxT7hGyN6qWSvfiuQHXbSvCW8yd_-ewFuTM73N9Tex_mn56SdRxuPAnaImvDxdI9A2w0mOdhRfwAjhYH3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote-Sensing-Based+Change+Detection+Using+Change+Vector+Analysis+in+Posterior+Probability+Space%3A+A+Context-Sensitive+Bayesian+Network+Approach&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Li%2C+Yikun&rft.au=Li%2C+Xiaojun&rft.au=Song%2C+Jiaxin&rft.au=Wang%2C+Zihao&rft.date=2023-01-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=16&rft.spage=3198&rft.epage=3217&rft_id=info:doi/10.1109%2FJSTARS.2023.3260112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2023_3260112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |