Remote Sensing-based Change Detection using Change Vector Analysis in Posterior Probability Space: A Context-Sensitive Bayesian Network Approach

Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used change-detection methods. However, CVA requires sound radiometric correction to achieve optimal performance, and PCC is susceptible to accumulated classification errors. Although change vector...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 16; pp. 1 - 21
Main Authors Li, Yikun, Li, Xiaojun, Song, Jiaxin, Wang, Zihao, He, Yi, Yang, Shuwen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used change-detection methods. However, CVA requires sound radiometric correction to achieve optimal performance, and PCC is susceptible to accumulated classification errors. Although change vector analysis in the posterior probability space (CVAPS) was developed to resolve the limitations of PCC and CVA, the uncertainty of remote sensing imagery limits the performance of CVAPS owing to three major problems: 1) mixed pixels, 2) identical ground cover type with different spectra, and 3) different ground cover types with the same spectrum. To address this problem, this study proposes the FCM-CSBN-CVAPS approach under the CVAPS framework. The proposed approach decomposes the mixed pixels into multiple signal classes using the fuzzy C means (FCM) algorithm. Although the mixed pixel problem is less severe in the high-resolution image, the change detection performance is still enhanced because, as a soft clustering algorithm, FCM is less susceptible to cumulative clustering error. Then, a context-sensitive Bayesian network (CSBN) is constructed to establish multiple-to-multiple stochastic linkages between signal pairs and ground cover types by incorporating spatial information to resolve problems 2 and 3 discussed above. Finally, change detection is performed using CVAPS in the posterior probability space. The effectiveness of the proposed approach is evaluated on three bi-temporal remote sensing datasets with different spatial sizes and resolutions. The experimental results confirm the effectiveness of FCM-CSBN-CVAPS in addressing the uncertainty problems of change detection and its superiority over other relevant change-detection techniques.
AbstractList Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used change detection methods. However, CVA requires sound radiometric correction to achieve optimal performance, and PCC is susceptible to accumulated classification errors. Although change vector analysis in the posterior probability space (CVAPS) was developed to resolve the limitations of PCC and CVA, the uncertainty of remote sensing imagery limits the performance of CVAPS owing to three major problems: 1) mixed pixels; 2) identical ground cover type with different spectra; and 3) different ground cover types with the same spectrum. To address this problem, this article proposes the FCM-CSBN-CVAPS approach under the CVAPS framework. The proposed approach decomposes the mixed pixels into multiple signal classes using the fuzzy C means (FCM) algorithm. Although the mixed pixel problem is less severe in the high-resolution image, the change detection performance is still enhanced because, as a soft clustering algorithm, FCM is less susceptible to cumulative clustering error. Then, a context-sensitive Bayesian network (CSBN) is constructed to establish multiple-to-multiple stochastic linkages between signal pairs and ground cover types by incorporating spatial information to resolve problems 2) and 3) discussed above. Finally, change detection is performed using CVAPS in the posterior probability space. The effectiveness of the proposed approach is evaluated on three bitemporal remote sensing datasets with different spatial sizes and resolutions. The experimental results confirm the effectiveness of FCM-CSBN-CVAPS in addressing the uncertainty problems of change detection and its superiority over other relevant change detection techniques.
Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used change-detection methods. However, CVA requires sound radiometric correction to achieve optimal performance, and PCC is susceptible to accumulated classification errors. Although change vector analysis in the posterior probability space (CVAPS) was developed to resolve the limitations of PCC and CVA, the uncertainty of remote sensing imagery limits the performance of CVAPS owing to three major problems: 1) mixed pixels, 2) identical ground cover type with different spectra, and 3) different ground cover types with the same spectrum. To address this problem, this study proposes the FCM-CSBN-CVAPS approach under the CVAPS framework. The proposed approach decomposes the mixed pixels into multiple signal classes using the fuzzy C means (FCM) algorithm. Although the mixed pixel problem is less severe in the high-resolution image, the change detection performance is still enhanced because, as a soft clustering algorithm, FCM is less susceptible to cumulative clustering error. Then, a context-sensitive Bayesian network (CSBN) is constructed to establish multiple-to-multiple stochastic linkages between signal pairs and ground cover types by incorporating spatial information to resolve problems 2 and 3 discussed above. Finally, change detection is performed using CVAPS in the posterior probability space. The effectiveness of the proposed approach is evaluated on three bi-temporal remote sensing datasets with different spatial sizes and resolutions. The experimental results confirm the effectiveness of FCM-CSBN-CVAPS in addressing the uncertainty problems of change detection and its superiority over other relevant change-detection techniques.
Author Wang, Zihao
He, Yi
Li, Yikun
Li, Xiaojun
Yang, Shuwen
Song, Jiaxin
Author_xml – sequence: 1
  givenname: Yikun
  orcidid: 0000-0001-7096-1788
  surname: Li
  fullname: Li, Yikun
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China
– sequence: 2
  givenname: Xiaojun
  surname: Li
  fullname: Li, Xiaojun
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China
– sequence: 3
  givenname: Jiaxin
  surname: Song
  fullname: Song, Jiaxin
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China
– sequence: 4
  givenname: Zihao
  surname: Wang
  fullname: Wang, Zihao
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China
– sequence: 5
  givenname: Yi
  orcidid: 0000-0003-4017-0488
  surname: He
  fullname: He, Yi
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China
– sequence: 6
  givenname: Shuwen
  surname: Yang
  fullname: Yang, Shuwen
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou, China
BookMark eNqFUcFuEzEUtFCRSAtfAAdLnDfYXq-9y20JUIoqqJrC1fI6z6nD1k5th5K_4JNxugUhLpyeNO_NjN7MMTrywQNCzymZU0q6Vx-XV_3lcs4Iq-c1E4RS9gjNGG1oRZu6OUIz2tVdRTnhT9BxShtCBJNdPUM_L-EmZMBL8Mn5dTXoBCu8uNZ-DfgtZDDZBY93h-Vv-GsBQ8S91-M-uYSdxxchZYiuoBcxDHpwo8t7vNxqA69xjxfBZ_iRq3uX7L4DfqP3kJz2-BPkuxC_4X67jUGb66fosdVjgmcP8wR9ef_uavGhOv98erbozyvDSZcr0cDKtmLVtppKxqxprREaDOVMt9waKg3hjR2aRlrSmNoCs9QYMnA9rFrC6xN0Numugt6obXQ3Ou5V0E7dAyGulY7ZmREUYSVSxkCQlnJNi_4gW0lMxxkXtrZF6-WkVV643UHKahN2scSTVElZslZIIcpVPV2ZGFKKYP-4UqIONaqpRnWoUT3UWFjdPyzjsj6UkqN243-4LyauA4C_3IiUkvH6FztKrwc
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_rs16244656
crossref_primary_10_1080_01431161_2023_2261153
crossref_primary_10_1109_JSTARS_2024_3508692
crossref_primary_10_1109_JSTARS_2024_3476131
crossref_primary_10_3390_rs16173209
crossref_primary_10_1109_TGRS_2024_3476992
crossref_primary_10_3390_rs16224223
crossref_primary_10_1016_j_acags_2024_100210
crossref_primary_10_1080_22797254_2024_2372854
crossref_primary_10_1016_j_jag_2023_103586
Cites_doi 10.1109/lgrs.2021.3059461
10.1109/JSTARS.2021.3115481
10.1007/s41651-021-00085-8
10.1109/IGARSS.2001.978219
10.1109/TGRS.2004.831865
10.1109/JSTARS.2017.2712119
10.1109/TGRS.2014.2321277
10.1109/LGRS.2017.2763182
10.1109/TGRS.2007.892008
10.1016/j.isprsjprs.2012.05.006
10.1007/s41651-022-00110-4
10.1080/13658816.2011.585138
10.1109/TGRS.2018.2819367
10.1109/LGRS.2016.2536058
10.1109/36.602528
10.1109/TGRS.2016.2580321
10.1109/jstars.2020.2990481
10.1109/36.763299
10.1109/tgrs.2022.3157671
10.1109/TIP.2013.2259833
10.1016/j.jag.2011.10.013
10.1109/TGRS.2006.888861
10.1109/TGRS.2020.3017937
10.3390/rs3112473
10.1109/TGRS.2011.2168230
10.1109/TGRS.2019.2927659
10.4236/ars.2012.13008
10.1007/978-3-540-77046-6_10
10.1109/TGRS.2015.2396686
10.1109/LGRS.2019.2892432
10.1109/LGRS.2010.2068537
10.1109/TGRS.2006.885408
10.1109/tgrs.2003.817197
10.1109/TGRS.2018.2886643
10.1109/TGRS.2011.2171493
10.1080/01431160512331314083
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2023.3260112
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 21
ExternalDocumentID oai_doaj_org_article_0226022e60814a1a84b7870c94246f3f
10_1109_JSTARS_2023_3260112
10077724
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41861055
– fundername: National Natural Science Foundation of China
  grantid: 42161069
– fundername: LZJTU EP Program
  grantid: 201806
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M653795
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
CITATION
EJD
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-65edf86d88a1722fc8fc6aec142a84fc17c045fb557f05c3fe2f1cc0b4abd8043
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Wed Aug 27 01:31:27 EDT 2025
Fri Jul 25 22:47:40 EDT 2025
Tue Jul 01 03:16:25 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Wed Aug 27 02:18:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-65edf86d88a1722fc8fc6aec142a84fc17c045fb557f05c3fe2f1cc0b4abd8043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7096-1788
0000-0003-4017-0488
OpenAccessLink https://doaj.org/article/0226022e60814a1a84b7870c94246f3f
PQID 2797286766
PQPubID 75722
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_0226022e60814a1a84b7870c94246f3f
proquest_journals_2797286766
ieee_primary_10077724
crossref_primary_10_1109_JSTARS_2023_3260112
crossref_citationtrail_10_1109_JSTARS_2023_3260112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Yang (ref37)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/lgrs.2021.3059461
– ident: ref1
  doi: 10.1109/JSTARS.2021.3115481
– ident: ref36
  doi: 10.1007/s41651-021-00085-8
– ident: ref17
  doi: 10.1109/IGARSS.2001.978219
– ident: ref24
  doi: 10.1109/TGRS.2004.831865
– ident: ref10
  doi: 10.1109/JSTARS.2017.2712119
– start-page: 712
  volume-title: Proc. 9th Acad. Conf. Geol. Resour. Manage. Sustain. Develop.
  ident: ref37
  article-title: A comparative study of remote sensing image change detection based on bayesian networks and different spatial fuzzy C-means clustering
– ident: ref8
  doi: 10.1109/TGRS.2014.2321277
– ident: ref34
  doi: 10.1109/LGRS.2017.2763182
– ident: ref32
  doi: 10.1109/TGRS.2007.892008
– ident: ref23
  doi: 10.1016/j.isprsjprs.2012.05.006
– ident: ref35
  doi: 10.1007/s41651-022-00110-4
– ident: ref31
  doi: 10.1080/13658816.2011.585138
– ident: ref5
  doi: 10.1109/TGRS.2018.2819367
– ident: ref12
  doi: 10.1109/LGRS.2016.2536058
– ident: ref20
  doi: 10.1109/36.602528
– ident: ref18
  doi: 10.1109/TGRS.2016.2580321
– ident: ref21
  doi: 10.1109/jstars.2020.2990481
– ident: ref14
  doi: 10.1109/36.763299
– ident: ref38
  doi: 10.1109/tgrs.2022.3157671
– ident: ref4
  doi: 10.1109/TIP.2013.2259833
– ident: ref16
  doi: 10.1016/j.jag.2011.10.013
– ident: ref27
  doi: 10.1109/TGRS.2006.888861
– ident: ref26
  doi: 10.1109/TGRS.2020.3017937
– ident: ref11
  doi: 10.3390/rs3112473
– ident: ref29
  doi: 10.1109/TGRS.2011.2168230
– ident: ref28
  doi: 10.1109/TGRS.2019.2927659
– ident: ref15
  doi: 10.4236/ars.2012.13008
– ident: ref6
  doi: 10.1007/978-3-540-77046-6_10
– ident: ref9
  doi: 10.1109/TGRS.2015.2396686
– ident: ref19
  doi: 10.1109/LGRS.2019.2892432
– ident: ref22
  doi: 10.1109/LGRS.2010.2068537
– ident: ref2
  doi: 10.1109/TGRS.2006.885408
– ident: ref30
  doi: 10.1109/tgrs.2003.817197
– ident: ref13
  doi: 10.1109/TGRS.2018.2886643
– ident: ref7
  doi: 10.1109/TGRS.2011.2171493
– ident: ref25
  doi: 10.1080/01431160512331314083
SSID ssj0062793
Score 2.3788815
Snippet Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used change-detection methods. However, CVA requires...
Change vector analysis (CVA) and post-classification change detection (PCC) have been the most widely used change detection methods. However, CVA requires...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Bayes methods
Bayesian analysis
Bayesian theory
Change detection
Change vector analysis
Change vector analysis (CVA)
Change vector analysis in posterior probability space
change vector analysis in posterior probability space (CVAPS)
Classification
Clustering
Clustering algorithms
Conditional probability
Context
Context-sensitive Bayesian network
context-sensitive bayesian network (CSBN)
Detection
Effectiveness
Fuzzy C means
fuzzy C means (FCM)
Ground cover
Image enhancement
Image resolution
Pixels
Post-classification change detection
post-classification change detection (PCC)
Probability theory
Radiometric correction
Radiometry
Remote sensing
Spatial data
Spatial resolution
Support vector machines
Uncertainty
Vector analysis
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NaxUxEA-2IHjxs-LTKjl4NNvsbjabeHtVaxF8SJ-V3kKSTYooW6n7Ds-_wj_ZmSRb_EDxsLCELJswk8lvkpnfEPKU-2hBbTXTveVMDJozrbhgcWjx1kk5lyrPvV3J41Px5qw7K8nqKRcmhJCCz0KFr-kuf7jwGzwqO8AbfUCDYofsgOeWk7VmsyubPjHsAiDRDDljCsVQzfUB6PjyZF1hpfCqRQ6tuvllG0ps_aW8yh82OW00R7fIah5iji_5VG0mV_lvv7E3_vccbpObBXLSZdaRO-RaGO-S669TSd_tPfL9JIC4Al1jKPt4znBfG2jOOqAvw5RitUaKAfLnc_OHdNZPZ0YT-nGkWPUXtBla312CjUgxt1u6Bpc8PKdLmliwwMlOf0ETSw_tNmAGJ13lSHS6LPTme-T06NX7F8es1GlgHrzDickuDFHJQSkLcKiJXkUvbfC1aKwS0de9B-AYXdf1kXe-jaGJtffcCesGUIz2PtkdL8bwgFDfchVbcNeFVkLJ1lqne6_rILQDrKkWpJnFZnwhMcdaGp9Ncma4NlnWBmVtiqwX5NnVR18yh8e_ux-iPlx1RQLu1AByNGU9G4A-Ep4gAVIJW8M8HZo-r2HoMrZxQfZQ9j_9L4t9QfZn9TLFWnw1oLp9o2Qv5cO_fPaI3MAh5rOffbI7XW7CY0BDk3uSVsEP1uoElA
  priority: 102
  providerName: IEEE
Title Remote Sensing-based Change Detection using Change Vector Analysis in Posterior Probability Space: A Context-Sensitive Bayesian Network Approach
URI https://ieeexplore.ieee.org/document/10077724
https://www.proquest.com/docview/2797286766
https://doaj.org/article/0226022e60814a1a84b7870c94246f3f
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NixMxFA-yIHgRVytb7ZYcPJo2M5PJJN5atRbBIq1degtJJhFhGaV2D_0v_JP35WNKRdCLh7mEGTLz3i_vI_Pyewi9otZrgK0kstGUsFZSIgVlxLdV-OskjImd5z6t-HLLPu7q3Vmrr1ATluiBk-Cm4GM4XI6D72K60IKZgDErWcm4r3ywvuDz-mQq2WBeAuwyx1BB5RRAPltvJqFV-KQKJFpF-ZsfinT9ub_KH0Y5eprFE_Q4h4h4ll7tEj1w3VP08ENswXt8hn6tHYjXkU0oPe--kjn4oRanUwL4nTvE2qoOx1qAfvgm7s3jnoEEf-tw6NIL6IPRz3tY07FG9og3kEK7N3iGI2sVJMVxlmAS8VwfXThxiVepchzPMh35AG0X77-8XZLcV4FYyOYOhNeu9YK3QmgIX0pvhbdcO1uwEsTrbdFYCPS8qevG09pW3pW-sJYapk0Liqyeo4vue-euELYVFb6C9JpJwQSvtDaysbJwTBqIDcUQlb2Ulc2k46H3xa2KyQeVKqlGBdWorJohen166Efi3Pj77fOgvtOtgTA7DgCMVIaR-heMhmgQlH82H20g8WBDNOrRoPLq_qkAXU0peMP5i_8x90v0KHxP2tgZoYvD_s5dQ6hzMOOI6nE8lXgPhcv3lg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCNELz6IuFPCBI0nzcByb2xYoC7Qr1G1Rb5bt2BVqlaKSPWx_RX8yM7ZT8RCIQ6TIchRbMx5_Y898Q8jLwnoNaisz2eoiY50sMikKlvmuxlsnYUyoPLc_57Mj9vG4OU7J6iEXxjkXgs9cjq_hLr87t0s8KtvGG31Ag-wmuQUbf1PGdK3R8PKqDRy7AElkhqwxiWSoLOQ2aPn0YJFjrfC8RhatsvplIwp8_anAyh9WOWw1u_fIfBxkjDA5zZeDye3lb_yN_z2L--RuAp10GrXkAbnh-ofk9vtQ1Hf1iFwdOBCYowsMZu9PMtzZOhrzDuhbN4RorZ5iiPzJ2PwlnPbTkdOEfu0p1v0FfYbWzxdgJULU7YouwCl3r-mUBh4scLPDX9DI0h29cpjDSecxFp1OE8H5BjnafXf4ZpalSg2ZBf9wyHjjOi94J4QGQFR5K7zl2tmSVVowb8vWAnT0pmlaXzS29q7ypbWFYdp0oBr1Y7LWn_duk1BbF8LX4LAzKZjgtdZGtlaWjkkDaFNMSDWKTdlEY47VNM5UcGcKqaKsFcpaJVlPyKvrj75FFo9_d99BfbjuihTcoQHkqNKKVgB-ODyOA6hiuoR5GjR-VsLQua_9hGyg7H_6XxT7hGyN6qWSvfiuQHXbSvCW8yd_-ewFuTM73N9Tex_mn56SdRxuPAnaImvDxdI9A2w0mOdhRfwAjhYH3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remote-Sensing-Based+Change+Detection+Using+Change+Vector+Analysis+in+Posterior+Probability+Space%3A+A+Context-Sensitive+Bayesian+Network+Approach&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Li%2C+Yikun&rft.au=Li%2C+Xiaojun&rft.au=Song%2C+Jiaxin&rft.au=Wang%2C+Zihao&rft.date=2023-01-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=16&rft.spage=3198&rft.epage=3217&rft_id=info:doi/10.1109%2FJSTARS.2023.3260112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2023_3260112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon