A Mapping and State-of-the-Art Survey on Multi-Objective Optimization Methods for Multi-Agent Systems
Over the last decades, researchers have studied the Multi-Objective Optimization problem (MOO) for Multi-Agent Systems (MASs). However, most of them consider the problem formulation to be an unprioritized sum of objective functions, and no work has reviewed problems with the formulation of the prior...
Saved in:
Published in | IEEE access Vol. 11; p. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the last decades, researchers have studied the Multi-Objective Optimization problem (MOO) for Multi-Agent Systems (MASs). However, most of them consider the problem formulation to be an unprioritized sum of objective functions, and no work has reviewed problems with the formulation of the prioritized sum of objective functions to facilitate the study of the subject and identify the needs arising from it. In the context of Multi-Robot Systems (MRSs), most studies only focus on the mathematical development of their proposed MOO algorithm without paying attention to the application. In practice, there is not a comprehensive review to identify the reliable algorithms already applied to real platforms. Using a mapping and state-of-the-art review, this paper aims to fill these gaps by first offering a detailed overview of the discrete-time MOO methods for MASs. More specifically, we classify existing MOO methods based on the formulation of the problem into the sum of objective functions and the prioritized sum of objective functions. Secondly, we review the applications of these methods in MRSs and the practical implementation of MOO algorithms on real MRS. Finally, we suggest future research directions to extend the existing methods to more realistic approaches, including open problems in the new research area of the prioritized sum of objective functions and practical challenges for the implementation of the existing methods in robotics. This work introduces the field of MAS to researchers and enables them to position themselves in the current research trends. |
---|---|
AbstractList | Over the last decades, researchers have studied the Multi-Objective Optimization (MOO) problem for Multi-Agent Systems (MASs). However, most of them consider the problem formulation to be the sum of objective functions, and no work has reviewed problems with the formulation of the prioritized sum of objective functions to facilitate the study of the subject and identify the needs arising from it. In the context of Multi-Robot Systems (MRSs), most studies only focus on the mathematical development of their proposed MOO algorithm without paying attention to the real application. There is no comprehensive review to identify the reliable algorithms already applied to real platforms. Using a mapping and state-of-the-art review, this paper aims to fill these gaps by first offering a detailed overview of the discrete-time MOO methods for MASs. More specifically, we classify existing MOO methods based on the formulation of the problem into the sum of objective functions and the prioritized sum of objective functions. Secondly, we review the applications of these methods in MRSs and the practical implementation of MOO algorithms on real MRSs. Finally, we suggest future research directions to extend the existing methods to more realistic approaches, including open problems in the new research area of the prioritized sum of objective functions and practical challenges for implementing the existing methods in robotics. This work introduces the field of MAS to researchers and enables them to position themselves in the current research trends. Over the last decades, researchers have studied the Multi-Objective Optimization problem (MOO) for Multi-Agent Systems (MASs). However, most of them consider the problem formulation to be an unprioritized sum of objective functions, and no work has reviewed problems with the formulation of the prioritized sum of objective functions to facilitate the study of the subject and identify the needs arising from it. In the context of Multi-Robot Systems (MRSs), most studies only focus on the mathematical development of their proposed MOO algorithm without paying attention to the application. In practice, there is not a comprehensive review to identify the reliable algorithms already applied to real platforms. Using a mapping and state-of-the-art review, this paper aims to fill these gaps by first offering a detailed overview of the discrete-time MOO methods for MASs. More specifically, we classify existing MOO methods based on the formulation of the problem into the sum of objective functions and the prioritized sum of objective functions. Secondly, we review the applications of these methods in MRSs and the practical implementation of MOO algorithms on real MRS. Finally, we suggest future research directions to extend the existing methods to more realistic approaches, including open problems in the new research area of the prioritized sum of objective functions and practical challenges for the implementation of the existing methods in robotics. This work introduces the field of MAS to researchers and enables them to position themselves in the current research trends. |
Author | Naderi, Shokoufeh Blondin, Maude J. |
Author_xml | – sequence: 1 givenname: Shokoufeh orcidid: 0000-0002-7785-4552 surname: Naderi fullname: Naderi, Shokoufeh organization: Département Génie Électrique & Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada – sequence: 2 givenname: Maude J. surname: Blondin fullname: Blondin, Maude J. organization: Département Génie Électrique & Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada |
BookMark | eNqFkU9r3DAQxUVIIWmaT5AcDD17q_-2j2ZJ20DCHrY9i7E83mjZtVxJG9h--mrjpYReqovE6L03w_w-ksvRj0jIHaMLxmjzpV0uH9brBadcLISQjDfqglxzpptSKKEv372vyG2MW5pPnUuquibYFs8wTW7cFDD2xTpBwtIPZXrBsg2pWB_CKx4LPxbPh11y5arbok3uFYvVlNze_YbkTp-YXnwfi8GHs7Dd4Jjtx5hwHz-RDwPsIt6e7xvy8-vDj-X38mn17XHZPpVW0iaVmmusOyZQ676SAhRF2quKagWIrGMKKYDgtqt6CwqYEFWlkUuKveqg1uKGPM65vYetmYLbQzgaD868FXzYGAjJ2R0aaKwUvKuYrlHKvqkVrcEOCJ2sGB-qnPV5zpqC_3XAmMzWH8KYxze8oVLmddciq8SsssHHGHD425VRc8JjZjzmhMec8WRX84_LuvS2yRTA7f7jvZ-9DhHfdRMqY5biD6XnnyA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_en17153620 |
Cites_doi | 10.23919/ICCAS50221.2020.9268217 10.1109/TPWRS.2013.2271640 10.1109/ACC.2015.7171976 10.1007/s10107-017-1160-5 10.1109/TAC.2010.2041686 10.1109/TIE.2016.2636810 10.1109/TAC.2017.2662019 10.1016/j.rser.2020.110202 10.1109/ITA50056.2020.9244951 10.1109/TAC.2016.2529285 10.1109/SFCS.2003.1238221 10.1109/TSP.2020.3011640 10.1016/j.swevo.2020.100733 10.1109/tac.2011.2167817 10.1016/j.automatica.2019.04.004 10.1109/TAC.2008.2009515 10.1007/s11432-017-9367-6 10.1109/isit.2010.5513273 10.1109/TSIPN.2017.2695121 10.1109/TCST.2022.3211130 10.1016/j.swevo.2019.100565 10.1109/LCSYS.2018.2851375 10.1007/978-3-642-14435-6_1 10.1007/s40305-021-00368-3 10.1109/TAC.2010.2079650 10.1109/TAC.2020.3011358 10.1109/TSP.2016.2537271 10.1109/TII.2012.2219061 10.1109/IROS.2015.7354094 10.1109/TAC.2017.2713046 10.1109/RISSP.2003.1285656 10.1109/CDC.2012.6425904 10.1109/cdc.1984.272358 10.1109/TAC.2017.2677879 10.1109/SSCI50451.2021.9660023 10.1109/ISDEA.2012.316 10.1016/j.conb.2018.08.003 10.1109/JPROC.2020.3007395 10.1109/ACCESS.2021.3082537 10.1016/j.ifacol.2017.08.434 10.1007/s10589-018-0022-2 10.1016/j.engappai.2020.103905 10.1016/j.enconman.2020.113324 10.1109/IEEECONF51394.2020.9443280 10.1109/TAC.2018.2816104 10.1109/ICASSP.2016.7472585 10.3390/su141912790 10.1016/j.procs.2018.07.060 10.1109/ACCESS.2019.2914461 10.1137/14096668X 10.1137/090770102 10.1038/sj.jors.2600425 10.1109/tcst.2022.3211130 10.23919/ACC.2018.8431382 10.1109/TSP.2014.2304432 10.1109/AGENTS.2019.8929171 10.1007/s10957-018-1338-x 10.1137/16M1084316 10.1007/978-94-017-9054-3_4 10.1109/ICIST52614.2021.9440630 10.1016/j.amc.2021.126794 10.1016/j.energy.2017.02.174 10.1109/WSC.2009.5429562 10.1109/TAC.2018.2800760 10.15607/RSS.2014.X.052 10.1109/ACCESS.2020.2999157 10.1109/COMST.2017.2698366 10.1109/TSP.2016.2548989 10.1002/nme.6013 10.23919/ECC54610.2021.9654953 10.1007/s10458-019-09433-x 10.1109/JPROC.2018.2817461 10.1007/s10915-018-0757-z 10.1007/s10957-021-01840-z 10.1016/j.automatica.2014.10.022 10.1007/978-3-0348-0439-4_15 10.1137/120897547 10.1016/j.arcontrol.2019.05.006 10.1109/CDC.2015.7402311 10.1137/S0895479897326432 10.1109/TSIPN.2017.2672403 10.1109/ICASSP.2019.8682575 10.23919/ECC54610.2021.9654976 10.1017/S0269888918000292 10.1016/j.neucom.2021.06.097 10.1007/s10514-018-9783-9 10.1155/2019/8030792 10.23919/ECC.2018.8550178 10.1109/TAC.2014.2363299 10.1007/978-3-662-08883-8 10.1109/TAC.2014.2364096 10.3389/frobt.2022.890385 10.1109/TSP.2021.3083981 10.1016/j.oceaneng.2022.111585 10.3390/pr10010133 10.9746/jcmsi.10.495 10.1109/JSTSP.2011.2120593 10.1016/j.automatica.2018.07.020 10.1137/19M1242276 10.1109/TSP.2016.2537261 10.3390/pr8050508 10.1109/TAC.2018.2849616 10.1007/3-540-36970-8_27 10.23919/ACC45564.2020.9147544 10.1109/COMST.2016.2610578 10.1109/IROS45743.2020.9340747 10.1007/978-3-030-95459-8_3 10.1109/CDC.2011.6160462 10.1287/moor.1100.0449 10.1109/TSP.2017.2673815 10.1109/CDC.2014.7040430 10.1109/ACCESS.2018.2831228 10.1007/978-3-030-33274-7_6 10.1007/978-1-4613-0163-9 10.1109/TAC.2018.2884998 10.1109/TSP.2019.2926022 10.1109/CDC.2017.8264538 10.1109/TAC.2020.3014095 10.1109/IROS45743.2020.9341680 10.1109/CDC45484.2021.9683229 10.1561/2200000016 10.1016/j.apenergy.2021.117391 10.1109/ICRA40945.2020.9197241 10.1109/CDC42340.2020.9304003 10.3389/frobt.2020.00036 10.1109/JAS.2021.1003904 10.1109/ACCESS.2019.2952235 10.1007/978-3-319-61007-8 10.1007/s10107-015-0861-x 10.1109/CDC42340.2020.9304086 10.1007/BF00927673 10.1109/UR49135.2020.9144944 10.1016/j.solener.2017.01.009 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3341295 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_a9c432b7168e44d98508acfeab4712f7 10_1109_ACCESS_2023_3341295 10352164 |
Genre | orig-research |
GrantInformation_xml | – fundername: NSERC Discovery grant |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-626e8b13e66d743a50e0d57065aee1b15e0aa32cb7dca5a133776e240ed5ba863 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:20:36 EDT 2025 Mon Jun 30 03:31:41 EDT 2025 Thu Apr 24 23:01:20 EDT 2025 Tue Jul 01 04:14:12 EDT 2025 Wed Aug 27 02:37:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-626e8b13e66d743a50e0d57065aee1b15e0aa32cb7dca5a133776e240ed5ba863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7785-4552 0000-0001-7844-8874 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10352164 |
PQID | 2904402383 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | ieee_primary_10352164 crossref_citationtrail_10_1109_ACCESS_2023_3341295 crossref_primary_10_1109_ACCESS_2023_3341295 doaj_primary_oai_doaj_org_article_a9c432b7168e44d98508acfeab4712f7 proquest_journals_2904402383 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 Collette (ref39) 2004 Sy Mai (ref64) 2021 Mokhtari (ref70) 2016; 17 ref51 ref50 Li (ref63) 2021 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Ma (ref135) 2017 ref49 ref8 ref7 Mondada (ref148) ref9 Lian (ref19); 30 ref4 ref3 ref6 ref5 ref101 ref40 Eckstein (ref125) 2015; 11 ref35 ref34 ref37 ref31 ref30 ref149 ref33 ref32 ref147 Scaman (ref87) 2019; 20 ref38 Uzawa (ref72) 1958; 6 ref151 ref150 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Scaman (ref86); 31 ref29 Jubril (ref128) 2012; 27 Seeja (ref36) 2018; 133 ref13 ref12 ref15 Bahceci (ref146) 2003 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 Halsted (ref18) 2021 Zhang (ref109) ref17 ref16 ref93 ref133 ref92 ref134 ref95 ref94 ref132 ref130 ref91 ref90 ref89 ref139 ref137 ref138 ref88 ref136 Liu (ref100) 2021 ref82 ref144 ref81 ref145 ref84 ref142 ref83 ref143 ref140 ref141 ref80 ref79 ref108 ref78 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 Scaman (ref85) ref71 ref111 ref112 ref73 ref110 Karimian (ref152) 2020 ref68 ref119 ref67 ref117 ref69 ref118 ref115 ref116 ref66 ref113 ref65 ref114 Masubuchi (ref131) ref60 Xu (ref121) ref122 ref123 ref62 ref120 ref61 |
References_xml | – ident: ref147 doi: 10.23919/ICCAS50221.2020.9268217 – ident: ref21 doi: 10.1109/TPWRS.2013.2271640 – ident: ref140 doi: 10.1109/ACC.2015.7171976 – ident: ref93 doi: 10.1007/s10107-017-1160-5 – ident: ref44 doi: 10.1109/TAC.2010.2041686 – ident: ref30 doi: 10.1109/TIE.2016.2636810 – ident: ref77 doi: 10.1109/TAC.2017.2662019 – ident: ref26 doi: 10.1016/j.rser.2020.110202 – ident: ref82 doi: 10.1109/ITA50056.2020.9244951 – ident: ref51 doi: 10.1109/TAC.2016.2529285 – ident: ref68 doi: 10.1109/SFCS.2003.1238221 – ident: ref69 doi: 10.1109/TSP.2020.3011640 – ident: ref8 doi: 10.1016/j.swevo.2020.100733 – start-page: 3027 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref85 article-title: Optimal algorithms for smooth and strongly convex distributed optimization in networks – ident: ref65 doi: 10.1109/tac.2011.2167817 – ident: ref90 doi: 10.1016/j.automatica.2019.04.004 – volume: 30 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref19 article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent – ident: ref43 doi: 10.1109/TAC.2008.2009515 – ident: ref105 doi: 10.1007/s11432-017-9367-6 – year: 2021 ident: ref63 article-title: Convergence properties of the distributed projected subgradient algorithm over general graphs publication-title: arXiv:2103.16993 – ident: ref66 doi: 10.1109/isit.2010.5513273 – ident: ref113 doi: 10.1109/TSIPN.2017.2695121 – ident: ref149 doi: 10.1109/TCST.2022.3211130 – ident: ref34 doi: 10.1016/j.swevo.2019.100565 – ident: ref80 doi: 10.1109/LCSYS.2018.2851375 – ident: ref1 doi: 10.1007/978-3-642-14435-6_1 – ident: ref95 doi: 10.1007/s40305-021-00368-3 – ident: ref48 doi: 10.1109/TAC.2010.2079650 – ident: ref94 doi: 10.1109/TAC.2020.3011358 – ident: ref111 doi: 10.1109/TSP.2016.2537271 – year: 2017 ident: ref135 article-title: Overview: Generalizations of multi-agent path finding to real-world scenarios publication-title: arXiv:1702.05515 – ident: ref32 doi: 10.1109/TII.2012.2219061 – ident: ref16 doi: 10.1109/IROS.2015.7354094 – ident: ref122 doi: 10.1109/TAC.2017.2713046 – ident: ref150 doi: 10.1109/RISSP.2003.1285656 – ident: ref96 doi: 10.1109/CDC.2012.6425904 – ident: ref40 doi: 10.1109/cdc.1984.272358 – ident: ref98 doi: 10.1109/TAC.2017.2677879 – ident: ref120 doi: 10.1109/SSCI50451.2021.9660023 – ident: ref145 doi: 10.1109/ISDEA.2012.316 – ident: ref78 doi: 10.1016/j.conb.2018.08.003 – ident: ref71 doi: 10.1109/JPROC.2020.3007395 – ident: ref83 doi: 10.1109/ACCESS.2021.3082537 – year: 2021 ident: ref100 article-title: A distributed parallel optimization algorithm via alternating direction method of multipliers publication-title: arXiv:2111.10494 – ident: ref130 doi: 10.1016/j.ifacol.2017.08.434 – ident: ref101 doi: 10.1007/s10589-018-0022-2 – start-page: 447 volume-title: Proc. 23rd Int. Symp. Math. theory Netw. Syst. ident: ref131 article-title: Distributed multi-agent optimization for Pareto optimal problem over unbalanced networks via exact penalty methods with equality and inequality constraints – start-page: 7 volume-title: Proc. Exp. Mini-Robot Khepera, 1st Int. Khepera Workshop ident: ref148 article-title: The development of Khepera – ident: ref5 doi: 10.1016/j.engappai.2020.103905 – ident: ref25 doi: 10.1016/j.enconman.2020.113324 – volume: 6 start-page: 154 year: 1958 ident: ref72 article-title: Iterative methods for concave programming publication-title: Stud. Linear Nonlinear Program. – ident: ref115 doi: 10.1109/IEEECONF51394.2020.9443280 – ident: ref133 doi: 10.1109/TAC.2018.2816104 – ident: ref110 doi: 10.1109/ICASSP.2016.7472585 – ident: ref4 doi: 10.3390/su141912790 – volume: 133 start-page: 478 year: 2018 ident: ref36 article-title: A survey on swarm robotic modeling, analysis and hardware architecture publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2018.07.060 – ident: ref106 doi: 10.1109/ACCESS.2019.2914461 – ident: ref60 doi: 10.1137/14096668X – ident: ref79 doi: 10.1137/090770102 – ident: ref132 doi: 10.1038/sj.jors.2600425 – ident: ref151 doi: 10.1109/tcst.2022.3211130 – volume: 20 start-page: 1 issue: 159 year: 2019 ident: ref87 article-title: Optimal convergence rates for convex distributed optimization in networks publication-title: J. Mach. Learn. Res. – ident: ref54 doi: 10.23919/ACC.2018.8431382 – ident: ref97 doi: 10.1109/TSP.2014.2304432 – ident: ref2 doi: 10.1109/AGENTS.2019.8929171 – year: 2021 ident: ref18 article-title: A survey of distributed optimization methods for multi-robot systems publication-title: arXiv:2103.12840 – ident: ref99 doi: 10.1007/s10957-018-1338-x – volume: 27 start-page: 357 issue: 3 year: 2012 ident: ref128 article-title: A nonlinear weights selection in weighted sum for convex multiobjective optimization publication-title: Facta Universitatis – ident: ref59 doi: 10.1137/16M1084316 – ident: ref124 doi: 10.1007/978-94-017-9054-3_4 – ident: ref47 doi: 10.1109/ICIST52614.2021.9440630 – ident: ref55 doi: 10.1016/j.amc.2021.126794 – ident: ref27 doi: 10.1016/j.energy.2017.02.174 – ident: ref127 doi: 10.1109/WSC.2009.5429562 – ident: ref46 doi: 10.1109/TAC.2018.2800760 – ident: ref138 doi: 10.15607/RSS.2014.X.052 – year: 2020 ident: ref152 article-title: Statistical outlier identification in multi-robot visual SLAM using expectation maximization publication-title: arXiv:2002.02638 – ident: ref11 doi: 10.1109/ACCESS.2020.2999157 – ident: ref12 doi: 10.1109/COMST.2017.2698366 – ident: ref103 doi: 10.1109/TSP.2016.2548989 – ident: ref41 doi: 10.1002/nme.6013 – ident: ref58 doi: 10.23919/ECC54610.2021.9654953 – ident: ref3 doi: 10.1007/s10458-019-09433-x – ident: ref126 doi: 10.1109/JPROC.2018.2817461 – ident: ref104 doi: 10.1007/s10915-018-0757-z – ident: ref6 doi: 10.1007/s10957-021-01840-z – ident: ref31 doi: 10.1016/j.automatica.2014.10.022 – ident: ref73 doi: 10.1007/978-3-0348-0439-4_15 – ident: ref92 doi: 10.1137/120897547 – ident: ref17 doi: 10.1016/j.arcontrol.2019.05.006 – year: 2021 ident: ref64 article-title: Distributed optimization with global constraints using noisy measurements publication-title: arXiv:2106.07703 – ident: ref75 doi: 10.1109/CDC.2015.7402311 – ident: ref76 doi: 10.1137/S0895479897326432 – ident: ref22 doi: 10.1109/TSIPN.2017.2672403 – ident: ref102 doi: 10.1109/ICASSP.2019.8682575 – ident: ref116 doi: 10.23919/ECC54610.2021.9654976 – ident: ref9 doi: 10.1017/S0269888918000292 – ident: ref28 doi: 10.1016/j.neucom.2021.06.097 – ident: ref15 doi: 10.1007/s10514-018-9783-9 – ident: ref62 doi: 10.1155/2019/8030792 – ident: ref143 doi: 10.23919/ECC.2018.8550178 – year: 2003 ident: ref146 article-title: A review: Pattern formation and adaptation in multi-robot systems – ident: ref91 doi: 10.1109/TAC.2014.2363299 – volume-title: Multiobjective Optimization: Principles and Case Studies year: 2004 ident: ref39 doi: 10.1007/978-3-662-08883-8 – ident: ref50 doi: 10.1109/TAC.2014.2364096 – start-page: 1701 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref109 article-title: Asynchronous distributed ADMM for consensus optimization – ident: ref141 doi: 10.3389/frobt.2022.890385 – ident: ref89 doi: 10.1109/TSP.2021.3083981 – ident: ref144 doi: 10.1016/j.oceaneng.2022.111585 – ident: ref7 doi: 10.3390/pr10010133 – ident: ref33 doi: 10.9746/jcmsi.10.495 – ident: ref45 doi: 10.1109/JSTSP.2011.2120593 – ident: ref53 doi: 10.1016/j.automatica.2018.07.020 – ident: ref107 doi: 10.1137/19M1242276 – ident: ref112 doi: 10.1109/TSP.2016.2537261 – ident: ref24 doi: 10.3390/pr8050508 – ident: ref52 doi: 10.1109/TAC.2018.2849616 – ident: ref42 doi: 10.1007/3-540-36970-8_27 – ident: ref118 doi: 10.23919/ACC45564.2020.9147544 – ident: ref23 doi: 10.1109/COMST.2016.2610578 – ident: ref139 doi: 10.1109/IROS45743.2020.9340747 – ident: ref13 doi: 10.1007/978-3-030-95459-8_3 – ident: ref67 doi: 10.1109/CDC.2011.6160462 – ident: ref108 doi: 10.1287/moor.1100.0449 – ident: ref114 doi: 10.1109/TSP.2017.2673815 – ident: ref74 doi: 10.1109/CDC.2014.7040430 – ident: ref29 doi: 10.1109/ACCESS.2018.2831228 – ident: ref134 doi: 10.1007/978-3-030-33274-7_6 – ident: ref37 doi: 10.1007/978-1-4613-0163-9 – ident: ref56 doi: 10.1109/TAC.2018.2884998 – ident: ref61 doi: 10.1109/TSP.2019.2926022 – ident: ref136 doi: 10.1109/CDC.2017.8264538 – ident: ref57 doi: 10.1109/TAC.2020.3014095 – volume: 11 start-page: 619 issue: 4 year: 2015 ident: ref125 article-title: Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives publication-title: Pac. J. Optim. – volume: 17 start-page: 2165 issue: 1 year: 2016 ident: ref70 article-title: DSA: Decentralized double stochastic averaging gradient algorithm publication-title: J. Mach. Learn. Res. – ident: ref20 doi: 10.1109/IROS45743.2020.9341680 – ident: ref119 doi: 10.1109/CDC45484.2021.9683229 – ident: ref123 doi: 10.1561/2200000016 – ident: ref10 doi: 10.1016/j.apenergy.2021.117391 – ident: ref142 doi: 10.1109/ICRA40945.2020.9197241 – ident: ref81 doi: 10.1109/CDC42340.2020.9304003 – ident: ref35 doi: 10.3389/frobt.2020.00036 – ident: ref49 doi: 10.1109/JAS.2021.1003904 – volume: 31 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref86 article-title: Optimal algorithms for non-smooth distributed optimization in networks – start-page: 3841 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref121 article-title: Adaptive consensus admm for distributed optimization – ident: ref137 doi: 10.1109/ACCESS.2019.2952235 – ident: ref38 doi: 10.1007/978-3-319-61007-8 – ident: ref88 doi: 10.1007/s10107-015-0861-x – ident: ref117 doi: 10.1109/CDC42340.2020.9304086 – ident: ref84 doi: 10.1007/BF00927673 – ident: ref14 doi: 10.1109/UR49135.2020.9144944 – ident: ref129 doi: 10.1016/j.solener.2017.01.009 |
SSID | ssj0000816957 |
Score | 2.2787204 |
Snippet | Over the last decades, researchers have studied the Multi-Objective Optimization problem (MOO) for Multi-Agent Systems (MASs). However, most of them consider... Over the last decades, researchers have studied the Multi-Objective Optimization (MOO) problem for Multi-Agent Systems (MASs). However, most of them consider... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Classification algorithms Linear programming Mapping Multi-agent systems multi-objective optimization multi-robot systems Multiagent systems Multiple objective analysis Multiple robots Optimization Optimization methods prioritized sum of objective functions Robot kinematics Robotics State-of-the-art reviews Surveys Task analysis |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXg0a9Kmr-O6KIuw7kGFvYU8poJoV9xV8N87SbNLQdCL15KQZmY6-abtfB8h5yW3MpcgWJ1agwVKXTEDUrCkkjqTrrRC-0bh8V0-epS302zakfry_4S19MCt4S51ZWWaGIT1JUjpqhIRhbY1aINpNalDHzmeeZ1iKuTgUuRVVkSaIcGry8FwiDvqe7XwfoqpO_GKEp2jKDD2R4mVH3k5HDY322QrokQ6aO9uh6xBs0s2O9yBewQGdKw9ucIT1Y2jATSyWc0Q0DGcR-8_3j_hi84aGnps2cQ8t7mNTjBLvMb2SzoOCtJzitg1Dhz4Zisamcz3yePN9cNwxKJmArNYqS0Y1idQGpFCnjsEBzrjwF3mv2VqAGFEBlzrNLGmcFZnGivUosgBj3VwmdFlnh6Q9WbWwCGhnmnNcY4JEP0pvEJHnZtaS-uwZEy47JFkaT5lI6G417V4UaGw4JVqba68zVW0eY9crCa9tXwavw-_8n5ZDfVk2OEChoiKIaL-CpEe2fde7ayHqBPLxB45WbpZxSd3rpLKi3AjkEmP_mPtY7Lh99O-tDkh64v3DzhFGLMwZyFivwH7hOt7 priority: 102 providerName: Directory of Open Access Journals |
Title | A Mapping and State-of-the-Art Survey on Multi-Objective Optimization Methods for Multi-Agent Systems |
URI | https://ieeexplore.ieee.org/document/10352164 https://www.proquest.com/docview/2904402383 https://doaj.org/article/a9c432b7168e44d98508acfeab4712f7 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SnNJDnyndNA069Fi5si2_jtulIRQ2OSSB3IQe40Af3pDsBtpf3xlZuywpLb0ZI2GZGY2-kTTfB_C-VV7XGnPZl95RgtJ30qHOZdFpW-nQ-txyofD8rD690l-uq-tUrB5rYRAxXj7DjB_jWX5Y-BVvldEMJ7hA-H4XdilzG4u1NhsqrCDRVU1iFspV93E6m9FPZCwQnpUUrQsWkdhafSJJf1JV-SMUx_Xl5BmcrUc2Xiv5lq2WLvO_HpE2_vfQn8PThDTFdHSNF7CDw0t4ssU_-ApwKuaWCRpuhB2CiMBTLnpJoFBSP3GxunvAn2IxiFinK8_d1zE-inOKND9SCaeYRxXqe0H4NzWccsGWSGzoB3B18vlydiqT7oL0lO0tJeU42Lq8xLoOBDBspVCFis9DLWLu8gqVtWXhXRO8rSxluU1TI0EDDJWzbV2-hr1hMeAbEMzWFpSiIEo-kbPKR1-73mofKO0slJ5AsbaH8YmUnLUxvpuYnKjOjEY0bESTjDiBD5tOtyMnx7-bf2JDb5oyoXZ8QQYyaX4a23ldFo6yxxa1Dl1LwNX6Hq2j1bvomwkcsFG3vjfacwJHa78xafbfm6JjIW8CQ-XhX7q9hX0e4riXcwR7y7sVviN0s3THcVfgOPr2b9ul9jw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BOQCH8ipqSgEfOOLF6_W-jiGiCtCkB1qpN8uP2UpAN6hNkOiv79jrRBEIxG21srVezXj8je35PoA3jXCqUpjzrnCWEpSu5RZVzmWrTKl843ITCoVn82p6pj6dl-epWD3WwiBivHyGWXiMZ_l-4VZhq4xmOMEFwvd34R4t_KUcyrU2WypBQ6It68QtlIv23Xgyod_IgkR4VlC8lkFGYmv9iTT9SVflj2AcV5ijRzBfj224WPItWy1t5m5-o23878E_ht2ENdl4cI4ncAf7p_Bwi4HwGeCYzUygaLhgpvcsQk--6DjBQk792JfV1U_8xRY9i5W6_MR-HSIkO6FYc5mKONks6lBfM0LAqeE4lGyxxIe-B2dHH04nU56UF7ijfG_JKcvBxuYFVpUniGFKgcKX4UTUIOY2L1EYU0hna-9MaSjPresKCRygL61pquI57PSLHveBBb42LwSFUfKKPOh8dJXtjHKeEk8p1Ajk2h7aJVryoI7xXcf0RLR6MKIORtTJiCN4u-n0Y2Dl-Hfz98HQm6aBUju-IAPpNEO1aZ0qpKX8sUGlfNsQdDWuQ2Np_ZZdPYK9YNSt7w32HMHh2m90mv_XWrZBypvgUHHwl26v4f70dHasjz_OP7-AB2G4w87OIewsr1b4krDO0r6KHn4LDC_4kQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mapping+and+State-of-the-Art+Survey+on+Multi-Objective+Optimization+Methods+for+Multi-Agent+Systems&rft.jtitle=IEEE+access&rft.au=Naderi%2C+Shokoufeh&rft.au=Blondin%2C+Maude+J&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=139728&rft_id=info:doi/10.1109%2FACCESS.2023.3341295&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |