A Mapping and State-of-the-Art Survey on Multi-Objective Optimization Methods for Multi-Agent Systems

Over the last decades, researchers have studied the Multi-Objective Optimization problem (MOO) for Multi-Agent Systems (MASs). However, most of them consider the problem formulation to be an unprioritized sum of objective functions, and no work has reviewed problems with the formulation of the prior...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; p. 1
Main Authors Naderi, Shokoufeh, Blondin, Maude J.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the last decades, researchers have studied the Multi-Objective Optimization problem (MOO) for Multi-Agent Systems (MASs). However, most of them consider the problem formulation to be an unprioritized sum of objective functions, and no work has reviewed problems with the formulation of the prioritized sum of objective functions to facilitate the study of the subject and identify the needs arising from it. In the context of Multi-Robot Systems (MRSs), most studies only focus on the mathematical development of their proposed MOO algorithm without paying attention to the application. In practice, there is not a comprehensive review to identify the reliable algorithms already applied to real platforms. Using a mapping and state-of-the-art review, this paper aims to fill these gaps by first offering a detailed overview of the discrete-time MOO methods for MASs. More specifically, we classify existing MOO methods based on the formulation of the problem into the sum of objective functions and the prioritized sum of objective functions. Secondly, we review the applications of these methods in MRSs and the practical implementation of MOO algorithms on real MRS. Finally, we suggest future research directions to extend the existing methods to more realistic approaches, including open problems in the new research area of the prioritized sum of objective functions and practical challenges for the implementation of the existing methods in robotics. This work introduces the field of MAS to researchers and enables them to position themselves in the current research trends.
AbstractList Over the last decades, researchers have studied the Multi-Objective Optimization (MOO) problem for Multi-Agent Systems (MASs). However, most of them consider the problem formulation to be the sum of objective functions, and no work has reviewed problems with the formulation of the prioritized sum of objective functions to facilitate the study of the subject and identify the needs arising from it. In the context of Multi-Robot Systems (MRSs), most studies only focus on the mathematical development of their proposed MOO algorithm without paying attention to the real application. There is no comprehensive review to identify the reliable algorithms already applied to real platforms. Using a mapping and state-of-the-art review, this paper aims to fill these gaps by first offering a detailed overview of the discrete-time MOO methods for MASs. More specifically, we classify existing MOO methods based on the formulation of the problem into the sum of objective functions and the prioritized sum of objective functions. Secondly, we review the applications of these methods in MRSs and the practical implementation of MOO algorithms on real MRSs. Finally, we suggest future research directions to extend the existing methods to more realistic approaches, including open problems in the new research area of the prioritized sum of objective functions and practical challenges for implementing the existing methods in robotics. This work introduces the field of MAS to researchers and enables them to position themselves in the current research trends.
Over the last decades, researchers have studied the Multi-Objective Optimization problem (MOO) for Multi-Agent Systems (MASs). However, most of them consider the problem formulation to be an unprioritized sum of objective functions, and no work has reviewed problems with the formulation of the prioritized sum of objective functions to facilitate the study of the subject and identify the needs arising from it. In the context of Multi-Robot Systems (MRSs), most studies only focus on the mathematical development of their proposed MOO algorithm without paying attention to the application. In practice, there is not a comprehensive review to identify the reliable algorithms already applied to real platforms. Using a mapping and state-of-the-art review, this paper aims to fill these gaps by first offering a detailed overview of the discrete-time MOO methods for MASs. More specifically, we classify existing MOO methods based on the formulation of the problem into the sum of objective functions and the prioritized sum of objective functions. Secondly, we review the applications of these methods in MRSs and the practical implementation of MOO algorithms on real MRS. Finally, we suggest future research directions to extend the existing methods to more realistic approaches, including open problems in the new research area of the prioritized sum of objective functions and practical challenges for the implementation of the existing methods in robotics. This work introduces the field of MAS to researchers and enables them to position themselves in the current research trends.
Author Naderi, Shokoufeh
Blondin, Maude J.
Author_xml – sequence: 1
  givenname: Shokoufeh
  orcidid: 0000-0002-7785-4552
  surname: Naderi
  fullname: Naderi, Shokoufeh
  organization: Département Génie Électrique & Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
– sequence: 2
  givenname: Maude J.
  surname: Blondin
  fullname: Blondin, Maude J.
  organization: Département Génie Électrique & Génie Informatique, Université de Sherbrooke, Sherbrooke, QC, Canada
BookMark eNqFkU9r3DAQxUVIIWmaT5AcDD17q_-2j2ZJ20DCHrY9i7E83mjZtVxJG9h--mrjpYReqovE6L03w_w-ksvRj0jIHaMLxmjzpV0uH9brBadcLISQjDfqglxzpptSKKEv372vyG2MW5pPnUuquibYFs8wTW7cFDD2xTpBwtIPZXrBsg2pWB_CKx4LPxbPh11y5arbok3uFYvVlNze_YbkTp-YXnwfi8GHs7Dd4Jjtx5hwHz-RDwPsIt6e7xvy8-vDj-X38mn17XHZPpVW0iaVmmusOyZQ676SAhRF2quKagWIrGMKKYDgtqt6CwqYEFWlkUuKveqg1uKGPM65vYetmYLbQzgaD868FXzYGAjJ2R0aaKwUvKuYrlHKvqkVrcEOCJ2sGB-qnPV5zpqC_3XAmMzWH8KYxze8oVLmddciq8SsssHHGHD425VRc8JjZjzmhMec8WRX84_LuvS2yRTA7f7jvZ-9DhHfdRMqY5biD6XnnyA
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_en17153620
Cites_doi 10.23919/ICCAS50221.2020.9268217
10.1109/TPWRS.2013.2271640
10.1109/ACC.2015.7171976
10.1007/s10107-017-1160-5
10.1109/TAC.2010.2041686
10.1109/TIE.2016.2636810
10.1109/TAC.2017.2662019
10.1016/j.rser.2020.110202
10.1109/ITA50056.2020.9244951
10.1109/TAC.2016.2529285
10.1109/SFCS.2003.1238221
10.1109/TSP.2020.3011640
10.1016/j.swevo.2020.100733
10.1109/tac.2011.2167817
10.1016/j.automatica.2019.04.004
10.1109/TAC.2008.2009515
10.1007/s11432-017-9367-6
10.1109/isit.2010.5513273
10.1109/TSIPN.2017.2695121
10.1109/TCST.2022.3211130
10.1016/j.swevo.2019.100565
10.1109/LCSYS.2018.2851375
10.1007/978-3-642-14435-6_1
10.1007/s40305-021-00368-3
10.1109/TAC.2010.2079650
10.1109/TAC.2020.3011358
10.1109/TSP.2016.2537271
10.1109/TII.2012.2219061
10.1109/IROS.2015.7354094
10.1109/TAC.2017.2713046
10.1109/RISSP.2003.1285656
10.1109/CDC.2012.6425904
10.1109/cdc.1984.272358
10.1109/TAC.2017.2677879
10.1109/SSCI50451.2021.9660023
10.1109/ISDEA.2012.316
10.1016/j.conb.2018.08.003
10.1109/JPROC.2020.3007395
10.1109/ACCESS.2021.3082537
10.1016/j.ifacol.2017.08.434
10.1007/s10589-018-0022-2
10.1016/j.engappai.2020.103905
10.1016/j.enconman.2020.113324
10.1109/IEEECONF51394.2020.9443280
10.1109/TAC.2018.2816104
10.1109/ICASSP.2016.7472585
10.3390/su141912790
10.1016/j.procs.2018.07.060
10.1109/ACCESS.2019.2914461
10.1137/14096668X
10.1137/090770102
10.1038/sj.jors.2600425
10.1109/tcst.2022.3211130
10.23919/ACC.2018.8431382
10.1109/TSP.2014.2304432
10.1109/AGENTS.2019.8929171
10.1007/s10957-018-1338-x
10.1137/16M1084316
10.1007/978-94-017-9054-3_4
10.1109/ICIST52614.2021.9440630
10.1016/j.amc.2021.126794
10.1016/j.energy.2017.02.174
10.1109/WSC.2009.5429562
10.1109/TAC.2018.2800760
10.15607/RSS.2014.X.052
10.1109/ACCESS.2020.2999157
10.1109/COMST.2017.2698366
10.1109/TSP.2016.2548989
10.1002/nme.6013
10.23919/ECC54610.2021.9654953
10.1007/s10458-019-09433-x
10.1109/JPROC.2018.2817461
10.1007/s10915-018-0757-z
10.1007/s10957-021-01840-z
10.1016/j.automatica.2014.10.022
10.1007/978-3-0348-0439-4_15
10.1137/120897547
10.1016/j.arcontrol.2019.05.006
10.1109/CDC.2015.7402311
10.1137/S0895479897326432
10.1109/TSIPN.2017.2672403
10.1109/ICASSP.2019.8682575
10.23919/ECC54610.2021.9654976
10.1017/S0269888918000292
10.1016/j.neucom.2021.06.097
10.1007/s10514-018-9783-9
10.1155/2019/8030792
10.23919/ECC.2018.8550178
10.1109/TAC.2014.2363299
10.1007/978-3-662-08883-8
10.1109/TAC.2014.2364096
10.3389/frobt.2022.890385
10.1109/TSP.2021.3083981
10.1016/j.oceaneng.2022.111585
10.3390/pr10010133
10.9746/jcmsi.10.495
10.1109/JSTSP.2011.2120593
10.1016/j.automatica.2018.07.020
10.1137/19M1242276
10.1109/TSP.2016.2537261
10.3390/pr8050508
10.1109/TAC.2018.2849616
10.1007/3-540-36970-8_27
10.23919/ACC45564.2020.9147544
10.1109/COMST.2016.2610578
10.1109/IROS45743.2020.9340747
10.1007/978-3-030-95459-8_3
10.1109/CDC.2011.6160462
10.1287/moor.1100.0449
10.1109/TSP.2017.2673815
10.1109/CDC.2014.7040430
10.1109/ACCESS.2018.2831228
10.1007/978-3-030-33274-7_6
10.1007/978-1-4613-0163-9
10.1109/TAC.2018.2884998
10.1109/TSP.2019.2926022
10.1109/CDC.2017.8264538
10.1109/TAC.2020.3014095
10.1109/IROS45743.2020.9341680
10.1109/CDC45484.2021.9683229
10.1561/2200000016
10.1016/j.apenergy.2021.117391
10.1109/ICRA40945.2020.9197241
10.1109/CDC42340.2020.9304003
10.3389/frobt.2020.00036
10.1109/JAS.2021.1003904
10.1109/ACCESS.2019.2952235
10.1007/978-3-319-61007-8
10.1007/s10107-015-0861-x
10.1109/CDC42340.2020.9304086
10.1007/BF00927673
10.1109/UR49135.2020.9144944
10.1016/j.solener.2017.01.009
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3341295
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_a9c432b7168e44d98508acfeab4712f7
10_1109_ACCESS_2023_3341295
10352164
Genre orig-research
GrantInformation_xml – fundername: NSERC Discovery grant
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-626e8b13e66d743a50e0d57065aee1b15e0aa32cb7dca5a133776e240ed5ba863
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:20:36 EDT 2025
Mon Jun 30 03:31:41 EDT 2025
Thu Apr 24 23:01:20 EDT 2025
Tue Jul 01 04:14:12 EDT 2025
Wed Aug 27 02:37:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-626e8b13e66d743a50e0d57065aee1b15e0aa32cb7dca5a133776e240ed5ba863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7785-4552
0000-0001-7844-8874
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10352164
PQID 2904402383
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_10352164
crossref_citationtrail_10_1109_ACCESS_2023_3341295
crossref_primary_10_1109_ACCESS_2023_3341295
doaj_primary_oai_doaj_org_article_a9c432b7168e44d98508acfeab4712f7
proquest_journals_2904402383
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
Collette (ref39) 2004
Sy Mai (ref64) 2021
Mokhtari (ref70) 2016; 17
ref51
ref50
Li (ref63) 2021
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Ma (ref135) 2017
ref49
ref8
ref7
Mondada (ref148)
ref9
Lian (ref19); 30
ref4
ref3
ref6
ref5
ref101
ref40
Eckstein (ref125) 2015; 11
ref35
ref34
ref37
ref31
ref30
ref149
ref33
ref32
ref147
Scaman (ref87) 2019; 20
ref38
Uzawa (ref72) 1958; 6
ref151
ref150
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Scaman (ref86); 31
ref29
Jubril (ref128) 2012; 27
Seeja (ref36) 2018; 133
ref13
ref12
ref15
Bahceci (ref146) 2003
ref14
ref129
ref97
ref126
ref96
ref127
ref11
ref99
ref124
ref10
ref98
Halsted (ref18) 2021
Zhang (ref109)
ref17
ref16
ref93
ref133
ref92
ref134
ref95
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref137
ref138
ref88
ref136
Liu (ref100) 2021
ref82
ref144
ref81
ref145
ref84
ref142
ref83
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
Scaman (ref85)
ref71
ref111
ref112
ref73
ref110
Karimian (ref152) 2020
ref68
ref119
ref67
ref117
ref69
ref118
ref115
ref116
ref66
ref113
ref65
ref114
Masubuchi (ref131)
ref60
Xu (ref121)
ref122
ref123
ref62
ref120
ref61
References_xml – ident: ref147
  doi: 10.23919/ICCAS50221.2020.9268217
– ident: ref21
  doi: 10.1109/TPWRS.2013.2271640
– ident: ref140
  doi: 10.1109/ACC.2015.7171976
– ident: ref93
  doi: 10.1007/s10107-017-1160-5
– ident: ref44
  doi: 10.1109/TAC.2010.2041686
– ident: ref30
  doi: 10.1109/TIE.2016.2636810
– ident: ref77
  doi: 10.1109/TAC.2017.2662019
– ident: ref26
  doi: 10.1016/j.rser.2020.110202
– ident: ref82
  doi: 10.1109/ITA50056.2020.9244951
– ident: ref51
  doi: 10.1109/TAC.2016.2529285
– ident: ref68
  doi: 10.1109/SFCS.2003.1238221
– ident: ref69
  doi: 10.1109/TSP.2020.3011640
– ident: ref8
  doi: 10.1016/j.swevo.2020.100733
– start-page: 3027
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref85
  article-title: Optimal algorithms for smooth and strongly convex distributed optimization in networks
– ident: ref65
  doi: 10.1109/tac.2011.2167817
– ident: ref90
  doi: 10.1016/j.automatica.2019.04.004
– volume: 30
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref19
  article-title: Can decentralized algorithms outperform centralized algorithms? A case study for decentralized parallel stochastic gradient descent
– ident: ref43
  doi: 10.1109/TAC.2008.2009515
– ident: ref105
  doi: 10.1007/s11432-017-9367-6
– year: 2021
  ident: ref63
  article-title: Convergence properties of the distributed projected subgradient algorithm over general graphs
  publication-title: arXiv:2103.16993
– ident: ref66
  doi: 10.1109/isit.2010.5513273
– ident: ref113
  doi: 10.1109/TSIPN.2017.2695121
– ident: ref149
  doi: 10.1109/TCST.2022.3211130
– ident: ref34
  doi: 10.1016/j.swevo.2019.100565
– ident: ref80
  doi: 10.1109/LCSYS.2018.2851375
– ident: ref1
  doi: 10.1007/978-3-642-14435-6_1
– ident: ref95
  doi: 10.1007/s40305-021-00368-3
– ident: ref48
  doi: 10.1109/TAC.2010.2079650
– ident: ref94
  doi: 10.1109/TAC.2020.3011358
– ident: ref111
  doi: 10.1109/TSP.2016.2537271
– year: 2017
  ident: ref135
  article-title: Overview: Generalizations of multi-agent path finding to real-world scenarios
  publication-title: arXiv:1702.05515
– ident: ref32
  doi: 10.1109/TII.2012.2219061
– ident: ref16
  doi: 10.1109/IROS.2015.7354094
– ident: ref122
  doi: 10.1109/TAC.2017.2713046
– ident: ref150
  doi: 10.1109/RISSP.2003.1285656
– ident: ref96
  doi: 10.1109/CDC.2012.6425904
– ident: ref40
  doi: 10.1109/cdc.1984.272358
– ident: ref98
  doi: 10.1109/TAC.2017.2677879
– ident: ref120
  doi: 10.1109/SSCI50451.2021.9660023
– ident: ref145
  doi: 10.1109/ISDEA.2012.316
– ident: ref78
  doi: 10.1016/j.conb.2018.08.003
– ident: ref71
  doi: 10.1109/JPROC.2020.3007395
– ident: ref83
  doi: 10.1109/ACCESS.2021.3082537
– year: 2021
  ident: ref100
  article-title: A distributed parallel optimization algorithm via alternating direction method of multipliers
  publication-title: arXiv:2111.10494
– ident: ref130
  doi: 10.1016/j.ifacol.2017.08.434
– ident: ref101
  doi: 10.1007/s10589-018-0022-2
– start-page: 447
  volume-title: Proc. 23rd Int. Symp. Math. theory Netw. Syst.
  ident: ref131
  article-title: Distributed multi-agent optimization for Pareto optimal problem over unbalanced networks via exact penalty methods with equality and inequality constraints
– start-page: 7
  volume-title: Proc. Exp. Mini-Robot Khepera, 1st Int. Khepera Workshop
  ident: ref148
  article-title: The development of Khepera
– ident: ref5
  doi: 10.1016/j.engappai.2020.103905
– ident: ref25
  doi: 10.1016/j.enconman.2020.113324
– volume: 6
  start-page: 154
  year: 1958
  ident: ref72
  article-title: Iterative methods for concave programming
  publication-title: Stud. Linear Nonlinear Program.
– ident: ref115
  doi: 10.1109/IEEECONF51394.2020.9443280
– ident: ref133
  doi: 10.1109/TAC.2018.2816104
– ident: ref110
  doi: 10.1109/ICASSP.2016.7472585
– ident: ref4
  doi: 10.3390/su141912790
– volume: 133
  start-page: 478
  year: 2018
  ident: ref36
  article-title: A survey on swarm robotic modeling, analysis and hardware architecture
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2018.07.060
– ident: ref106
  doi: 10.1109/ACCESS.2019.2914461
– ident: ref60
  doi: 10.1137/14096668X
– ident: ref79
  doi: 10.1137/090770102
– ident: ref132
  doi: 10.1038/sj.jors.2600425
– ident: ref151
  doi: 10.1109/tcst.2022.3211130
– volume: 20
  start-page: 1
  issue: 159
  year: 2019
  ident: ref87
  article-title: Optimal convergence rates for convex distributed optimization in networks
  publication-title: J. Mach. Learn. Res.
– ident: ref54
  doi: 10.23919/ACC.2018.8431382
– ident: ref97
  doi: 10.1109/TSP.2014.2304432
– ident: ref2
  doi: 10.1109/AGENTS.2019.8929171
– year: 2021
  ident: ref18
  article-title: A survey of distributed optimization methods for multi-robot systems
  publication-title: arXiv:2103.12840
– ident: ref99
  doi: 10.1007/s10957-018-1338-x
– volume: 27
  start-page: 357
  issue: 3
  year: 2012
  ident: ref128
  article-title: A nonlinear weights selection in weighted sum for convex multiobjective optimization
  publication-title: Facta Universitatis
– ident: ref59
  doi: 10.1137/16M1084316
– ident: ref124
  doi: 10.1007/978-94-017-9054-3_4
– ident: ref47
  doi: 10.1109/ICIST52614.2021.9440630
– ident: ref55
  doi: 10.1016/j.amc.2021.126794
– ident: ref27
  doi: 10.1016/j.energy.2017.02.174
– ident: ref127
  doi: 10.1109/WSC.2009.5429562
– ident: ref46
  doi: 10.1109/TAC.2018.2800760
– ident: ref138
  doi: 10.15607/RSS.2014.X.052
– year: 2020
  ident: ref152
  article-title: Statistical outlier identification in multi-robot visual SLAM using expectation maximization
  publication-title: arXiv:2002.02638
– ident: ref11
  doi: 10.1109/ACCESS.2020.2999157
– ident: ref12
  doi: 10.1109/COMST.2017.2698366
– ident: ref103
  doi: 10.1109/TSP.2016.2548989
– ident: ref41
  doi: 10.1002/nme.6013
– ident: ref58
  doi: 10.23919/ECC54610.2021.9654953
– ident: ref3
  doi: 10.1007/s10458-019-09433-x
– ident: ref126
  doi: 10.1109/JPROC.2018.2817461
– ident: ref104
  doi: 10.1007/s10915-018-0757-z
– ident: ref6
  doi: 10.1007/s10957-021-01840-z
– ident: ref31
  doi: 10.1016/j.automatica.2014.10.022
– ident: ref73
  doi: 10.1007/978-3-0348-0439-4_15
– ident: ref92
  doi: 10.1137/120897547
– ident: ref17
  doi: 10.1016/j.arcontrol.2019.05.006
– year: 2021
  ident: ref64
  article-title: Distributed optimization with global constraints using noisy measurements
  publication-title: arXiv:2106.07703
– ident: ref75
  doi: 10.1109/CDC.2015.7402311
– ident: ref76
  doi: 10.1137/S0895479897326432
– ident: ref22
  doi: 10.1109/TSIPN.2017.2672403
– ident: ref102
  doi: 10.1109/ICASSP.2019.8682575
– ident: ref116
  doi: 10.23919/ECC54610.2021.9654976
– ident: ref9
  doi: 10.1017/S0269888918000292
– ident: ref28
  doi: 10.1016/j.neucom.2021.06.097
– ident: ref15
  doi: 10.1007/s10514-018-9783-9
– ident: ref62
  doi: 10.1155/2019/8030792
– ident: ref143
  doi: 10.23919/ECC.2018.8550178
– year: 2003
  ident: ref146
  article-title: A review: Pattern formation and adaptation in multi-robot systems
– ident: ref91
  doi: 10.1109/TAC.2014.2363299
– volume-title: Multiobjective Optimization: Principles and Case Studies
  year: 2004
  ident: ref39
  doi: 10.1007/978-3-662-08883-8
– ident: ref50
  doi: 10.1109/TAC.2014.2364096
– start-page: 1701
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref109
  article-title: Asynchronous distributed ADMM for consensus optimization
– ident: ref141
  doi: 10.3389/frobt.2022.890385
– ident: ref89
  doi: 10.1109/TSP.2021.3083981
– ident: ref144
  doi: 10.1016/j.oceaneng.2022.111585
– ident: ref7
  doi: 10.3390/pr10010133
– ident: ref33
  doi: 10.9746/jcmsi.10.495
– ident: ref45
  doi: 10.1109/JSTSP.2011.2120593
– ident: ref53
  doi: 10.1016/j.automatica.2018.07.020
– ident: ref107
  doi: 10.1137/19M1242276
– ident: ref112
  doi: 10.1109/TSP.2016.2537261
– ident: ref24
  doi: 10.3390/pr8050508
– ident: ref52
  doi: 10.1109/TAC.2018.2849616
– ident: ref42
  doi: 10.1007/3-540-36970-8_27
– ident: ref118
  doi: 10.23919/ACC45564.2020.9147544
– ident: ref23
  doi: 10.1109/COMST.2016.2610578
– ident: ref139
  doi: 10.1109/IROS45743.2020.9340747
– ident: ref13
  doi: 10.1007/978-3-030-95459-8_3
– ident: ref67
  doi: 10.1109/CDC.2011.6160462
– ident: ref108
  doi: 10.1287/moor.1100.0449
– ident: ref114
  doi: 10.1109/TSP.2017.2673815
– ident: ref74
  doi: 10.1109/CDC.2014.7040430
– ident: ref29
  doi: 10.1109/ACCESS.2018.2831228
– ident: ref134
  doi: 10.1007/978-3-030-33274-7_6
– ident: ref37
  doi: 10.1007/978-1-4613-0163-9
– ident: ref56
  doi: 10.1109/TAC.2018.2884998
– ident: ref61
  doi: 10.1109/TSP.2019.2926022
– ident: ref136
  doi: 10.1109/CDC.2017.8264538
– ident: ref57
  doi: 10.1109/TAC.2020.3014095
– volume: 11
  start-page: 619
  issue: 4
  year: 2015
  ident: ref125
  article-title: Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives
  publication-title: Pac. J. Optim.
– volume: 17
  start-page: 2165
  issue: 1
  year: 2016
  ident: ref70
  article-title: DSA: Decentralized double stochastic averaging gradient algorithm
  publication-title: J. Mach. Learn. Res.
– ident: ref20
  doi: 10.1109/IROS45743.2020.9341680
– ident: ref119
  doi: 10.1109/CDC45484.2021.9683229
– ident: ref123
  doi: 10.1561/2200000016
– ident: ref10
  doi: 10.1016/j.apenergy.2021.117391
– ident: ref142
  doi: 10.1109/ICRA40945.2020.9197241
– ident: ref81
  doi: 10.1109/CDC42340.2020.9304003
– ident: ref35
  doi: 10.3389/frobt.2020.00036
– ident: ref49
  doi: 10.1109/JAS.2021.1003904
– volume: 31
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref86
  article-title: Optimal algorithms for non-smooth distributed optimization in networks
– start-page: 3841
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref121
  article-title: Adaptive consensus admm for distributed optimization
– ident: ref137
  doi: 10.1109/ACCESS.2019.2952235
– ident: ref38
  doi: 10.1007/978-3-319-61007-8
– ident: ref88
  doi: 10.1007/s10107-015-0861-x
– ident: ref117
  doi: 10.1109/CDC42340.2020.9304086
– ident: ref84
  doi: 10.1007/BF00927673
– ident: ref14
  doi: 10.1109/UR49135.2020.9144944
– ident: ref129
  doi: 10.1016/j.solener.2017.01.009
SSID ssj0000816957
Score 2.2787204
Snippet Over the last decades, researchers have studied the Multi-Objective Optimization problem (MOO) for Multi-Agent Systems (MASs). However, most of them consider...
Over the last decades, researchers have studied the Multi-Objective Optimization (MOO) problem for Multi-Agent Systems (MASs). However, most of them consider...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Classification algorithms
Linear programming
Mapping
Multi-agent systems
multi-objective optimization
multi-robot systems
Multiagent systems
Multiple objective analysis
Multiple robots
Optimization
Optimization methods
prioritized sum of objective functions
Robot kinematics
Robotics
State-of-the-art reviews
Surveys
Task analysis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXg0a9Kmr-O6KIuw7kGFvYU8poJoV9xV8N87SbNLQdCL15KQZmY6-abtfB8h5yW3MpcgWJ1agwVKXTEDUrCkkjqTrrRC-0bh8V0-epS302zakfry_4S19MCt4S51ZWWaGIT1JUjpqhIRhbY1aINpNalDHzmeeZ1iKuTgUuRVVkSaIcGry8FwiDvqe7XwfoqpO_GKEp2jKDD2R4mVH3k5HDY322QrokQ6aO9uh6xBs0s2O9yBewQGdKw9ucIT1Y2jATSyWc0Q0DGcR-8_3j_hi84aGnps2cQ8t7mNTjBLvMb2SzoOCtJzitg1Dhz4Zisamcz3yePN9cNwxKJmArNYqS0Y1idQGpFCnjsEBzrjwF3mv2VqAGFEBlzrNLGmcFZnGivUosgBj3VwmdFlnh6Q9WbWwCGhnmnNcY4JEP0pvEJHnZtaS-uwZEy47JFkaT5lI6G417V4UaGw4JVqba68zVW0eY9crCa9tXwavw-_8n5ZDfVk2OEChoiKIaL-CpEe2fde7ayHqBPLxB45WbpZxSd3rpLKi3AjkEmP_mPtY7Lh99O-tDkh64v3DzhFGLMwZyFivwH7hOt7
  priority: 102
  providerName: Directory of Open Access Journals
Title A Mapping and State-of-the-Art Survey on Multi-Objective Optimization Methods for Multi-Agent Systems
URI https://ieeexplore.ieee.org/document/10352164
https://www.proquest.com/docview/2904402383
https://doaj.org/article/a9c432b7168e44d98508acfeab4712f7
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SnNJDnyndNA069Fi5si2_jtulIRQ2OSSB3IQe40Af3pDsBtpf3xlZuywpLb0ZI2GZGY2-kTTfB_C-VV7XGnPZl95RgtJ30qHOZdFpW-nQ-txyofD8rD690l-uq-tUrB5rYRAxXj7DjB_jWX5Y-BVvldEMJ7hA-H4XdilzG4u1NhsqrCDRVU1iFspV93E6m9FPZCwQnpUUrQsWkdhafSJJf1JV-SMUx_Xl5BmcrUc2Xiv5lq2WLvO_HpE2_vfQn8PThDTFdHSNF7CDw0t4ssU_-ApwKuaWCRpuhB2CiMBTLnpJoFBSP3GxunvAn2IxiFinK8_d1zE-inOKND9SCaeYRxXqe0H4NzWccsGWSGzoB3B18vlydiqT7oL0lO0tJeU42Lq8xLoOBDBspVCFis9DLWLu8gqVtWXhXRO8rSxluU1TI0EDDJWzbV2-hr1hMeAbEMzWFpSiIEo-kbPKR1-73mofKO0slJ5AsbaH8YmUnLUxvpuYnKjOjEY0bESTjDiBD5tOtyMnx7-bf2JDb5oyoXZ8QQYyaX4a23ldFo6yxxa1Dl1LwNX6Hq2j1bvomwkcsFG3vjfacwJHa78xafbfm6JjIW8CQ-XhX7q9hX0e4riXcwR7y7sVviN0s3THcVfgOPr2b9ul9jw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB5BOQCH8ipqSgEfOOLF6_W-jiGiCtCkB1qpN8uP2UpAN6hNkOiv79jrRBEIxG21srVezXj8je35PoA3jXCqUpjzrnCWEpSu5RZVzmWrTKl843ITCoVn82p6pj6dl-epWD3WwiBivHyGWXiMZ_l-4VZhq4xmOMEFwvd34R4t_KUcyrU2WypBQ6It68QtlIv23Xgyod_IgkR4VlC8lkFGYmv9iTT9SVflj2AcV5ijRzBfj224WPItWy1t5m5-o23878E_ht2ENdl4cI4ncAf7p_Bwi4HwGeCYzUygaLhgpvcsQk--6DjBQk792JfV1U_8xRY9i5W6_MR-HSIkO6FYc5mKONks6lBfM0LAqeE4lGyxxIe-B2dHH04nU56UF7ijfG_JKcvBxuYFVpUniGFKgcKX4UTUIOY2L1EYU0hna-9MaSjPresKCRygL61pquI57PSLHveBBb42LwSFUfKKPOh8dJXtjHKeEk8p1Ajk2h7aJVryoI7xXcf0RLR6MKIORtTJiCN4u-n0Y2Dl-Hfz98HQm6aBUju-IAPpNEO1aZ0qpKX8sUGlfNsQdDWuQ2Np_ZZdPYK9YNSt7w32HMHh2m90mv_XWrZBypvgUHHwl26v4f70dHasjz_OP7-AB2G4w87OIewsr1b4krDO0r6KHn4LDC_4kQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mapping+and+State-of-the-Art+Survey+on+Multi-Objective+Optimization+Methods+for+Multi-Agent+Systems&rft.jtitle=IEEE+access&rft.au=Naderi%2C+Shokoufeh&rft.au=Blondin%2C+Maude+J&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=139728&rft_id=info:doi/10.1109%2FACCESS.2023.3341295&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon