CP-CNN: Computational Parallelization of CNN-Based Object Detectors in Heterogeneous Embedded Systems for Autonomous Driving
The success of research using convolutional neural network (CNN)-based camera sensor processing for autonomous driving has accelerated the development of autonomous driving vehicles. Since autonomous driving algorithms require high-performance computing for fast and accurate perception, a heterogene...
Saved in:
Published in | IEEE access Vol. 11; pp. 52812 - 52823 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The success of research using convolutional neural network (CNN)-based camera sensor processing for autonomous driving has accelerated the development of autonomous driving vehicles. Since autonomous driving algorithms require high-performance computing for fast and accurate perception, a heterogeneous embedded platform consisting of a graphics processing unit (GPU) and a power-efficient dedicated deep learning accelerator (DLA) has been developed to efficiently implement deep learning algorithms in limited hardware environments. However, because the hardware utilization of these platforms remains low, performance differences such as processing speed and power efficiency between the heterogeneous platform and an embedded platform with only GPUs remain insignificant. To address this problem, this paper proposes an optimization technique that fully utilizes the available hardware resources in heterogeneous embedded platforms using parallel processing on DLA and GPU. Our proposed power-efficient network inference method improves processing speed without losing accuracy based on analyzing the problems encountered when dividing the networks between DLA and GPU for parallel processing. Moreover, the high compatibility of the proposed method is demonstrated by applying the proposed method to various CNN-based object detectors. The experimental results show that the proposed method increases the processing speed by 77.8%, 75.6%, and 55.2% and improves the power efficiency by 84%, 75.9%, and 62.3% on YOLOv3, SSD, and YOLOv5 networks, respectively, without an accuracy penalty. |
---|---|
AbstractList | The success of research using convolutional neural network (CNN)-based camera sensor processing for autonomous driving has accelerated the development of autonomous driving vehicles. Since autonomous driving algorithms require high-performance computing for fast and accurate perception, a heterogeneous embedded platform consisting of a graphics processing unit (GPU) and a power-efficient dedicated deep learning accelerator (DLA) has been developed to efficiently implement deep learning algorithms in limited hardware environments. However, because the hardware utilization of these platforms remains low, performance differences such as processing speed and power efficiency between the heterogeneous platform and an embedded platform with only GPUs remain insignificant. To address this problem, this paper proposes an optimization technique that fully utilizes the available hardware resources in heterogeneous embedded platforms using parallel processing on DLA and GPU. Our proposed power-efficient network inference method improves processing speed without losing accuracy based on analyzing the problems encountered when dividing the networks between DLA and GPU for parallel processing. Moreover, the high compatibility of the proposed method is demonstrated by applying the proposed method to various CNN-based object detectors. The experimental results show that the proposed method increases the processing speed by 77.8%, 75.6%, and 55.2% and improves the power efficiency by 84%, 75.9%, and 62.3% on YOLOv3, SSD, and YOLOv5 networks, respectively, without an accuracy penalty. |
Author | Lee, Hyuk-Jae Kim, Hyun Choi, Jiwoong Chun, Dayoung |
Author_xml | – sequence: 1 givenname: Dayoung surname: Chun fullname: Chun, Dayoung organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea – sequence: 2 givenname: Jiwoong surname: Choi fullname: Choi, Jiwoong organization: NVIDIA, Santa Clara, CA, USA – sequence: 3 givenname: Hyuk-Jae orcidid: 0000-0001-6811-9647 surname: Lee fullname: Lee, Hyuk-Jae organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea – sequence: 4 givenname: Hyun orcidid: 0000-0002-7962-657X surname: Kim fullname: Kim, Hyun email: hyunkim@seoultech.ac.kr organization: Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, Seoul, South Korea |
BookMark | eNpNUU1P3DAUtCoqlVJ-QTlY6jlbx44_wm0btgUJAdJyt5z4eeVVEm_tBAnEj6-XoAq_w_Mbz4xlz1d0MoYREPpeklVZkvrnumk22-2KEspWjCrCOf2ETmkp6oJxJk4-7L-g85T2JC-VIS5P0WvzUDR3d5e4CcNhnszkw2h6_GCi6Xvo_csbgoPDmVX8Mgksvm_30E34CqbcQkzYj_g6DzHsYIQwJ7wZWrA2U7fPaYIhYRciXs9TGMNwPL-K_smPu2_oszN9gvP3foYef28em-vi9v7PTbO-LbqK1FPBwUlla0olk6YSrDVWgrMdd4oqYZliljrSmipX26paCGaYtELwjre8ZGfoZrG1wez1IfrBxGcdjNdvQIg7beLkux50ZZxxXEGlalWVypkapCSirWUlrOQse_1YvA4x_J0hTXof5pi_LGmqKCuV4IJnFltYXQwpRXD_by2JPoaml9D0MTT9HlpWXSwqDwAfFCWTMj_jH-iUlSw |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3356604 |
Cites_doi | 10.1109/WF-IoT48130.2020.9221150 10.1016/j.sysarc.2019.01.011 10.1109/CRV.2018.00023 10.1109/IPSN.2016.7460664 10.3390/s19153371 10.1016/j.sysarc.2021.101991 10.1145/2906388.2906396 10.1109/CVPR.2016.90 10.1109/ICCAD51958.2021.9643491 10.1609/aaai.v35i2.16179 10.1109/TMM.2022.3189496 10.1109/SC.2016.72 10.1109/TMM.2020.2993943 10.1109/TMM.2019.2950523 10.1109/CVPR.2019.01152 10.1609/aaai.v33i01.33019259 10.1109/ACCESS.2020.2970728 10.1109/CVPR.2018.00474 10.1109/TVLSI.2019.2905242 10.1109/WACV48630.2021.00157 10.1117/1.JRS.14.014521 10.1109/TCSVT.2020.3020569 10.1109/CVPR46437.2021.00017 10.1109/TMM.2018.2845667 10.1007/978-3-030-58580-8_38 10.23919/DATE.2018.8342102 10.1109/CVPRW.2017.60 10.1109/ACCESS.2021.3108776 10.1007/978-3-031-20077-9_1 10.1109/ACCESS.2019.2912627 10.1109/TCSVT.2016.2618753 10.1109/ICCV48922.2021.00447 10.1109/IROS45743.2020.9341791 10.1109/ASAP52443.2021.00023 10.1109/JSEN.2020.3020626 10.1007/s11036-020-01723-z 10.1109/TCC.2019.2894621 10.1109/CVPR.2017.690 10.1109/TMM.2019.2949857 10.1109/AICAS48895.2020.9073907 10.1109/CVPR42600.2020.00208 10.1109/ICCV.2019.00059 10.1109/CVPR42600.2020.00271 10.1109/ACCESS.2021.3054879 10.1109/TCSVT.2019.2895304 10.1109/CVPR.2018.00958 10.1109/ICCV.2019.00925 10.1109/TMM.2017.2772796 10.1109/CVPR.2017.106 10.1109/ISCAS.2018.8351021 10.1109/ICCMC48092.2020.ICCMC-00088 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3280552 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEL CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 52823 |
ExternalDocumentID | oai_doaj_org_article_4afaf58e4898418fa9e7706b9746d753 10_1109_ACCESS_2023_3280552 10137751 |
Genre | orig-research |
GrantInformation_xml | – fundername: Seoul National University of Science and Technology (SeoulTech) funderid: 10.13039/501100002553 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-5ef78d922737a463bad7efdc5f8286d383d2f0ba4a4abb89663a37d665c5b513 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:16:09 EDT 2024 Thu Oct 10 19:36:56 EDT 2024 Fri Aug 23 03:12:56 EDT 2024 Mon Nov 04 11:48:19 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-5ef78d922737a463bad7efdc5f8286d383d2f0ba4a4abb89663a37d665c5b513 |
ORCID | 0000-0001-6811-9647 0000-0002-7962-657X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10137751 |
PQID | 2823186565 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2023_3280552 ieee_primary_10137751 doaj_primary_oai_doaj_org_article_4afaf58e4898418fa9e7706b9746d753 proquest_journals_2823186565 |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref59 ref14 ref58 kim (ref45) 2015 ref53 ref52 ref11 ref55 ref10 ref54 ref17 yang (ref56) 2018 ref16 ref19 liu (ref37) 2016 luitjens (ref57) 2015 iandola (ref43) 2016 ref51 ref50 ref46 ref47 paszke (ref28) 2016 ref42 ref44 han (ref24) 2015 ref49 (ref68) 2019 ref8 ref9 ref4 ref3 oh (ref41) 2020 ref5 ref40 (ref48) 2020 ref35 ref34 ref31 ref30 ref33 ref32 ref2 ref1 ref39 (ref7) 2020 jocher (ref38) 2022 ref23 ref26 ref25 kim (ref18) 2019 ref20 ref64 ref63 redmon (ref36) 2018 ref22 ref66 ref21 (ref69) 2020 ref27 (ref6) 2018 ref29 franklin (ref65) 2020 (ref67) 2016 ref60 ref62 ref61 gupta (ref70) 2015 |
References_xml | – ident: ref8 doi: 10.1109/WF-IoT48130.2020.9221150 – ident: ref31 doi: 10.1016/j.sysarc.2019.01.011 – start-page: 21 year: 2016 ident: ref37 article-title: SSD: Single shot multibox detector publication-title: Proc Eur Conf Comput Vis contributor: fullname: liu – ident: ref46 doi: 10.1109/CRV.2018.00023 – ident: ref17 doi: 10.1109/IPSN.2016.7460664 – ident: ref20 doi: 10.3390/s19153371 – ident: ref9 doi: 10.1016/j.sysarc.2021.101991 – ident: ref16 doi: 10.1145/2906388.2906396 – year: 2018 ident: ref6 publication-title: NVIDIA Deep Learning Accelerator – year: 2018 ident: ref36 article-title: YOLOv3: An incremental improvement publication-title: arXiv 1804 02767 contributor: fullname: redmon – ident: ref42 doi: 10.1109/CVPR.2016.90 – start-page: 1 year: 2019 ident: ref18 article-title: ?Layer: Low latency on-device inference using cooperative single-layer acceleration and processor-friendly quantization publication-title: Proc 14th EuroSys Conf contributor: fullname: kim – ident: ref55 doi: 10.1109/ICCAD51958.2021.9643491 – ident: ref21 doi: 10.1609/aaai.v35i2.16179 – year: 2015 ident: ref24 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding publication-title: arXiv 1510 00149 [cs] contributor: fullname: han – ident: ref26 doi: 10.1109/TMM.2022.3189496 – ident: ref19 doi: 10.1109/SC.2016.72 – year: 2016 ident: ref43 article-title: SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and < 0.5 MB model size publication-title: arXiv 1602 07360 contributor: fullname: iandola – start-page: 1 year: 2015 ident: ref57 article-title: CUDA streams: Best practices and common pitfalls publication-title: Proc GPU Techonology Conf contributor: fullname: luitjens – ident: ref15 doi: 10.1109/TMM.2020.2993943 – ident: ref27 doi: 10.1109/TMM.2019.2950523 – ident: ref64 doi: 10.1109/CVPR.2019.01152 – ident: ref63 doi: 10.1609/aaai.v33i01.33019259 – ident: ref11 doi: 10.1109/ACCESS.2020.2970728 – year: 2016 ident: ref28 article-title: ENet: A deep neural network architecture for real-time semantic segmentation publication-title: ArXiv 1606 02147 contributor: fullname: paszke – ident: ref30 doi: 10.1109/CVPR.2018.00474 – ident: ref12 doi: 10.1109/TVLSI.2019.2905242 – ident: ref3 doi: 10.1109/WACV48630.2021.00157 – ident: ref32 doi: 10.1117/1.JRS.14.014521 – year: 2020 ident: ref65 publication-title: Jetson AGX Xavier and the New Era of Autonomous Machines Webinar contributor: fullname: franklin – ident: ref14 doi: 10.1109/TCSVT.2020.3020569 – year: 2019 ident: ref68 publication-title: NVIDIA Jetson Linux Driver Package Software Features – ident: ref54 doi: 10.1109/CVPR46437.2021.00017 – ident: ref39 doi: 10.1109/TMM.2018.2845667 – ident: ref35 doi: 10.1007/978-3-030-58580-8_38 – ident: ref29 doi: 10.23919/DATE.2018.8342102 – ident: ref34 doi: 10.1109/CVPRW.2017.60 – year: 2020 ident: ref41 article-title: FRDet: Balanced and lightweight object detector based on fire-residual modules for embedded processor of autonomous driving publication-title: arXiv 2011 08061 contributor: fullname: oh – ident: ref49 doi: 10.1109/ACCESS.2021.3108776 – year: 2022 ident: ref38 publication-title: ultralytics/yolov5 v7 0 - YOLOv5 SOTA Realtime Instance Segmentation contributor: fullname: jocher – ident: ref58 doi: 10.1007/978-3-031-20077-9_1 – ident: ref47 doi: 10.1109/ACCESS.2019.2912627 – year: 2020 ident: ref48 publication-title: TENSORRT Developer Guide – ident: ref52 doi: 10.1109/TCSVT.2016.2618753 – ident: ref53 doi: 10.1109/ICCV48922.2021.00447 – ident: ref2 doi: 10.1109/IROS45743.2020.9341791 – year: 2020 ident: ref69 publication-title: Profiler User's Guide – ident: ref22 doi: 10.1109/ASAP52443.2021.00023 – ident: ref4 doi: 10.1109/JSEN.2020.3020626 – ident: ref33 doi: 10.1007/s11036-020-01723-z – ident: ref23 doi: 10.1109/TCC.2019.2894621 – ident: ref44 doi: 10.1109/CVPR.2017.690 – ident: ref50 doi: 10.1109/TMM.2019.2949857 – ident: ref5 doi: 10.1109/AICAS48895.2020.9073907 – start-page: 1 year: 2018 ident: ref56 article-title: Avoiding pitfalls when using NVIDIA GPUS for real-time tasks in autonomous systems publication-title: Proc Euromicro Conf Real-Time Systems (ECRTS) contributor: fullname: yang – ident: ref59 doi: 10.1109/CVPR42600.2020.00208 – ident: ref1 doi: 10.1109/ICCV.2019.00059 – ident: ref66 doi: 10.1109/CVPR42600.2020.00271 – ident: ref25 doi: 10.1109/ACCESS.2021.3054879 – ident: ref51 doi: 10.1109/TCSVT.2019.2895304 – year: 2020 ident: ref7 publication-title: Evolution of the Eye – start-page: 1737 year: 2015 ident: ref70 article-title: Deep learning with limited numerical precision publication-title: Proc Int Conf Mach Learn contributor: fullname: gupta – year: 2016 ident: ref67 publication-title: NVIDIA System Management Interfacei – ident: ref60 doi: 10.1109/CVPR.2018.00958 – ident: ref61 doi: 10.1109/ICCV.2019.00925 – year: 2015 ident: ref45 article-title: Compression of deep convolutional neural networks for fast and low power mobile applications publication-title: arXiv 1511 06530 contributor: fullname: kim – ident: ref40 doi: 10.1109/TMM.2017.2772796 – ident: ref62 doi: 10.1109/CVPR.2017.106 – ident: ref13 doi: 10.1109/ISCAS.2018.8351021 – ident: ref10 doi: 10.1109/ICCMC48092.2020.ICCMC-00088 |
SSID | ssj0000816957 |
Score | 2.3460855 |
Snippet | The success of research using convolutional neural network (CNN)-based camera sensor processing for autonomous driving has accelerated the development of... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 52812 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Autonomous vehicle Autonomous vehicles convolutional neural network Convolutional neural networks Deep learning Detectors embedded platform Embedded systems Graphics processing units Hardware Low power electronics low-power design Machine learning Object recognition Optimization Optimization techniques Parallel processing Platforms Power efficiency Processing speed real-time system Real-time systems |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp3Ko-qDqtlD50GMNWb_DbQmgVaUuHEDiZvkpIbW7aDd764_vTGLQoh56qXKLrTj2TMbfTDzfEPI1ypIA9QumPRdMxqZlQXHLYghCxcbAjoLJyT8Wen4nv9-r-51SX3gmbKQHHhfuVPrii7JZ2tbKqS2-zcY0OgAO1gmw9mB9m3bHmRpssJ3qVplKMwTtp7OugxmdYLXwE8FtoxR_sRUNjP21xMpfdnnYbK7ekNcVJdLZ-HZvyV5eviMHO9yB78nv7oZ1i8UZHesy1JgevfFrrI7ys6ZX0lWh0Iudw2aV6HXAqAu9yP0Qq9_QhyWd43mYFahRXm039PJXyGCKEq1M5hQwLZ1te0x9wPaL9QNGIA7J7dXlbTdntZQCi-DA9UzlYmxqOYAV46UWwSeTS4qqYBp5Ajc18dIEL-EKwYIPJLwwSWsVVVBT8YHsL1fL_JFQr7QNpVE8CysDt0HDU2WRreUimRgn5NvTorrHkTDDDY5G07pRBg5l4KoMJuQcF_65K7JdDzdAB1zVAfcvHZiQQxTbznjIo6imE3L0JEdXP82N4_jj0wKMVZ_-x9ifySuczxiVOSL7_XqbjwGn9OHLoJJ_ANvl4lQ priority: 102 providerName: Directory of Open Access Journals |
Title | CP-CNN: Computational Parallelization of CNN-Based Object Detectors in Heterogeneous Embedded Systems for Autonomous Driving |
URI | https://ieeexplore.ieee.org/document/10137751 https://www.proquest.com/docview/2823186565 https://doaj.org/article/4afaf58e4898418fa9e7706b9746d753 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJzjwLGKhVD5wxCHxI7a5bdNWKySWHorUW-SnVEE3aDe5IH48Y8dbFRASyiVKnMTRN7ZnxjPfIPTW8ehB62ekNZQR7mpNrKCKOGuZcLWEFSUlJ39at6sv_OOVuCrJ6jkXJoSQg89ClU7zXr4f3JRcZTDCEz9eSpi-L7Wek7VuHSqpgoQWsjALNbV-v-w6-IkqFQivGFW1EPS31SeT9JeqKn9NxXl9OX-M1vuezWElX6tptJX78Qdp4393_Ql6VDRNvJxF4ym6FzbP0MM7_IPP0c_ugnTr9Qc813YofkF8Ybapwsq3kqKJh4ihFTmBBc_jzzZ5bvBpGLO_f4evN3iVYmoGEMUwTDt8dmMDTGceFzZ0DHoxXk5jSp9I90-318mLcYguz88uuxUp5RiIAyNwJCJEqbymoPBIw1tmjZcheidiSkX3YOp6GmtrOBzWKrCjmGHSt61wwoqGvUAHm2ETXiJsRKtsrAUNTHFLlW3hrTxyrSjz0rkFerdHqf8-k2702VipdT-D2idQ-wLqAp0kJG-bJsbsfAEQ6MsA7LmJJgoVuNKKNyoaHaSsWwv2VOvBZlugw4Tane_NgC3Q0V4w-jK8dz1Nm6cKVGHx6h-PvUYPaIp-aShpxBE6GLdTeAPqy2iPs9l_nIX3F5xg7a0 |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOQAHnkUsFPCBIwlZPxKH2zZttUAbelik3iw_paqwQbvJBfHjmUm8VQEhoVyixEkczdjzsL9vCHnjRPTg9fOsNIxnwhV1ZiVTmbOWS1dUYFEQnHzWlssv4uOFvEhg9RELE0IYN5-FHE_HtXzfuQFTZTDCkR8PAdO3wbFW5QTXuk6pYA2JWlaJW2he1O8WTQO_kWOJ8JwzVUjJfrM_I01_qqvy12Q8WpiTB6Td9W3aWHKVD73N3Y8_aBv_u_MPyf3ka9LFpByPyK2wfkzu3WAgfEJ-NudZ07bv6VTdIWUG6bnZYI2VrwmkSbtIoVV2CCbP088Wczf0KPRjxn9LL9d0ibtqOlDG0A1bevzNBpjQPE186BQ8Y7oYegRQ4P2jzSXmMfbJ6uR41SyzVJAhcxAG9pkMsVK-ZuDyVEaU3BpfheidjAhG9xDsehYLawQc1iqIpLjhlS9L6aSVc_6U7K27dXhGqJGlsrGQLHAlLFO2hLeKKGrFuK-cm5G3Oynp7xPthh7DlaLWk1A1ClUnoc7IIUryuilyZo8XQAI6DUEtTDRRqiBUrcRcRVOHqipKCxFV6SFqm5F9lNqN700Cm5GDnWLoNMC3muHyqQJnWD7_x2OvyZ3l6uxUn35oP70gd7G7U-rmgOz1myG8BGemt69GFf4Fj0jv_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CP-CNN%3A+Computational+Parallelization+of+CNN-based+Object+Detectors+in+Heterogeneous+Embedded+Systems+for+Autonomous+Driving&rft.jtitle=IEEE+access&rft.au=Chun%2C+Dayoung&rft.au=Choi%2C+Jiwoong&rft.au=Lee%2C+Hyuk-Jae&rft.au=Kim%2C+Hyun&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2023.3280552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3280552 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |