CP-CNN: Computational Parallelization of CNN-Based Object Detectors in Heterogeneous Embedded Systems for Autonomous Driving

The success of research using convolutional neural network (CNN)-based camera sensor processing for autonomous driving has accelerated the development of autonomous driving vehicles. Since autonomous driving algorithms require high-performance computing for fast and accurate perception, a heterogene...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 52812 - 52823
Main Authors Chun, Dayoung, Choi, Jiwoong, Lee, Hyuk-Jae, Kim, Hyun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The success of research using convolutional neural network (CNN)-based camera sensor processing for autonomous driving has accelerated the development of autonomous driving vehicles. Since autonomous driving algorithms require high-performance computing for fast and accurate perception, a heterogeneous embedded platform consisting of a graphics processing unit (GPU) and a power-efficient dedicated deep learning accelerator (DLA) has been developed to efficiently implement deep learning algorithms in limited hardware environments. However, because the hardware utilization of these platforms remains low, performance differences such as processing speed and power efficiency between the heterogeneous platform and an embedded platform with only GPUs remain insignificant. To address this problem, this paper proposes an optimization technique that fully utilizes the available hardware resources in heterogeneous embedded platforms using parallel processing on DLA and GPU. Our proposed power-efficient network inference method improves processing speed without losing accuracy based on analyzing the problems encountered when dividing the networks between DLA and GPU for parallel processing. Moreover, the high compatibility of the proposed method is demonstrated by applying the proposed method to various CNN-based object detectors. The experimental results show that the proposed method increases the processing speed by 77.8%, 75.6%, and 55.2% and improves the power efficiency by 84%, 75.9%, and 62.3% on YOLOv3, SSD, and YOLOv5 networks, respectively, without an accuracy penalty.
AbstractList The success of research using convolutional neural network (CNN)-based camera sensor processing for autonomous driving has accelerated the development of autonomous driving vehicles. Since autonomous driving algorithms require high-performance computing for fast and accurate perception, a heterogeneous embedded platform consisting of a graphics processing unit (GPU) and a power-efficient dedicated deep learning accelerator (DLA) has been developed to efficiently implement deep learning algorithms in limited hardware environments. However, because the hardware utilization of these platforms remains low, performance differences such as processing speed and power efficiency between the heterogeneous platform and an embedded platform with only GPUs remain insignificant. To address this problem, this paper proposes an optimization technique that fully utilizes the available hardware resources in heterogeneous embedded platforms using parallel processing on DLA and GPU. Our proposed power-efficient network inference method improves processing speed without losing accuracy based on analyzing the problems encountered when dividing the networks between DLA and GPU for parallel processing. Moreover, the high compatibility of the proposed method is demonstrated by applying the proposed method to various CNN-based object detectors. The experimental results show that the proposed method increases the processing speed by 77.8%, 75.6%, and 55.2% and improves the power efficiency by 84%, 75.9%, and 62.3% on YOLOv3, SSD, and YOLOv5 networks, respectively, without an accuracy penalty.
Author Lee, Hyuk-Jae
Kim, Hyun
Choi, Jiwoong
Chun, Dayoung
Author_xml – sequence: 1
  givenname: Dayoung
  surname: Chun
  fullname: Chun, Dayoung
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea
– sequence: 2
  givenname: Jiwoong
  surname: Choi
  fullname: Choi, Jiwoong
  organization: NVIDIA, Santa Clara, CA, USA
– sequence: 3
  givenname: Hyuk-Jae
  orcidid: 0000-0001-6811-9647
  surname: Lee
  fullname: Lee, Hyuk-Jae
  organization: Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea
– sequence: 4
  givenname: Hyun
  orcidid: 0000-0002-7962-657X
  surname: Kim
  fullname: Kim, Hyun
  email: hyunkim@seoultech.ac.kr
  organization: Department of Electrical and Information Engineering, Research Center for Electrical and Information Technology, Seoul National University of Science and Technology, Seoul, South Korea
BookMark eNpNUU1P3DAUtCoqlVJ-QTlY6jlbx44_wm0btgUJAdJyt5z4eeVVEm_tBAnEj6-XoAq_w_Mbz4xlz1d0MoYREPpeklVZkvrnumk22-2KEspWjCrCOf2ETmkp6oJxJk4-7L-g85T2JC-VIS5P0WvzUDR3d5e4CcNhnszkw2h6_GCi6Xvo_csbgoPDmVX8Mgksvm_30E34CqbcQkzYj_g6DzHsYIQwJ7wZWrA2U7fPaYIhYRciXs9TGMNwPL-K_smPu2_oszN9gvP3foYef28em-vi9v7PTbO-LbqK1FPBwUlla0olk6YSrDVWgrMdd4oqYZliljrSmipX26paCGaYtELwjre8ZGfoZrG1wez1IfrBxGcdjNdvQIg7beLkux50ZZxxXEGlalWVypkapCSirWUlrOQse_1YvA4x_J0hTXof5pi_LGmqKCuV4IJnFltYXQwpRXD_by2JPoaml9D0MTT9HlpWXSwqDwAfFCWTMj_jH-iUlSw
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3356604
Cites_doi 10.1109/WF-IoT48130.2020.9221150
10.1016/j.sysarc.2019.01.011
10.1109/CRV.2018.00023
10.1109/IPSN.2016.7460664
10.3390/s19153371
10.1016/j.sysarc.2021.101991
10.1145/2906388.2906396
10.1109/CVPR.2016.90
10.1109/ICCAD51958.2021.9643491
10.1609/aaai.v35i2.16179
10.1109/TMM.2022.3189496
10.1109/SC.2016.72
10.1109/TMM.2020.2993943
10.1109/TMM.2019.2950523
10.1109/CVPR.2019.01152
10.1609/aaai.v33i01.33019259
10.1109/ACCESS.2020.2970728
10.1109/CVPR.2018.00474
10.1109/TVLSI.2019.2905242
10.1109/WACV48630.2021.00157
10.1117/1.JRS.14.014521
10.1109/TCSVT.2020.3020569
10.1109/CVPR46437.2021.00017
10.1109/TMM.2018.2845667
10.1007/978-3-030-58580-8_38
10.23919/DATE.2018.8342102
10.1109/CVPRW.2017.60
10.1109/ACCESS.2021.3108776
10.1007/978-3-031-20077-9_1
10.1109/ACCESS.2019.2912627
10.1109/TCSVT.2016.2618753
10.1109/ICCV48922.2021.00447
10.1109/IROS45743.2020.9341791
10.1109/ASAP52443.2021.00023
10.1109/JSEN.2020.3020626
10.1007/s11036-020-01723-z
10.1109/TCC.2019.2894621
10.1109/CVPR.2017.690
10.1109/TMM.2019.2949857
10.1109/AICAS48895.2020.9073907
10.1109/CVPR42600.2020.00208
10.1109/ICCV.2019.00059
10.1109/CVPR42600.2020.00271
10.1109/ACCESS.2021.3054879
10.1109/TCSVT.2019.2895304
10.1109/CVPR.2018.00958
10.1109/ICCV.2019.00925
10.1109/TMM.2017.2772796
10.1109/CVPR.2017.106
10.1109/ISCAS.2018.8351021
10.1109/ICCMC48092.2020.ICCMC-00088
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3280552
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 52823
ExternalDocumentID oai_doaj_org_article_4afaf58e4898418fa9e7706b9746d753
10_1109_ACCESS_2023_3280552
10137751
Genre orig-research
GrantInformation_xml – fundername: Seoul National University of Science and Technology (SeoulTech)
  funderid: 10.13039/501100002553
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-5ef78d922737a463bad7efdc5f8286d383d2f0ba4a4abb89663a37d665c5b513
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 15:16:09 EDT 2024
Thu Oct 10 19:36:56 EDT 2024
Fri Aug 23 03:12:56 EDT 2024
Mon Nov 04 11:48:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-5ef78d922737a463bad7efdc5f8286d383d2f0ba4a4abb89663a37d665c5b513
ORCID 0000-0001-6811-9647
0000-0002-7962-657X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10137751
PQID 2823186565
PQPubID 4845423
PageCount 12
ParticipantIDs crossref_primary_10_1109_ACCESS_2023_3280552
ieee_primary_10137751
doaj_primary_oai_doaj_org_article_4afaf58e4898418fa9e7706b9746d753
proquest_journals_2823186565
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref59
ref14
ref58
kim (ref45) 2015
ref53
ref52
ref11
ref55
ref10
ref54
ref17
yang (ref56) 2018
ref16
ref19
liu (ref37) 2016
luitjens (ref57) 2015
iandola (ref43) 2016
ref51
ref50
ref46
ref47
paszke (ref28) 2016
ref42
ref44
han (ref24) 2015
ref49
(ref68) 2019
ref8
ref9
ref4
ref3
oh (ref41) 2020
ref5
ref40
(ref48) 2020
ref35
ref34
ref31
ref30
ref33
ref32
ref2
ref1
ref39
(ref7) 2020
jocher (ref38) 2022
ref23
ref26
ref25
kim (ref18) 2019
ref20
ref64
ref63
redmon (ref36) 2018
ref22
ref66
ref21
(ref69) 2020
ref27
(ref6) 2018
ref29
franklin (ref65) 2020
(ref67) 2016
ref60
ref62
ref61
gupta (ref70) 2015
References_xml – ident: ref8
  doi: 10.1109/WF-IoT48130.2020.9221150
– ident: ref31
  doi: 10.1016/j.sysarc.2019.01.011
– start-page: 21
  year: 2016
  ident: ref37
  article-title: SSD: Single shot multibox detector
  publication-title: Proc Eur Conf Comput Vis
  contributor:
    fullname: liu
– ident: ref46
  doi: 10.1109/CRV.2018.00023
– ident: ref17
  doi: 10.1109/IPSN.2016.7460664
– ident: ref20
  doi: 10.3390/s19153371
– ident: ref9
  doi: 10.1016/j.sysarc.2021.101991
– ident: ref16
  doi: 10.1145/2906388.2906396
– year: 2018
  ident: ref6
  publication-title: NVIDIA Deep Learning Accelerator
– year: 2018
  ident: ref36
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv 1804 02767
  contributor:
    fullname: redmon
– ident: ref42
  doi: 10.1109/CVPR.2016.90
– start-page: 1
  year: 2019
  ident: ref18
  article-title: ?Layer: Low latency on-device inference using cooperative single-layer acceleration and processor-friendly quantization
  publication-title: Proc 14th EuroSys Conf
  contributor:
    fullname: kim
– ident: ref55
  doi: 10.1109/ICCAD51958.2021.9643491
– ident: ref21
  doi: 10.1609/aaai.v35i2.16179
– year: 2015
  ident: ref24
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: arXiv 1510 00149 [cs]
  contributor:
    fullname: han
– ident: ref26
  doi: 10.1109/TMM.2022.3189496
– ident: ref19
  doi: 10.1109/SC.2016.72
– year: 2016
  ident: ref43
  article-title: SqueezeNet: AlexNet-level accuracy with 50× fewer parameters and < 0.5 MB model size
  publication-title: arXiv 1602 07360
  contributor:
    fullname: iandola
– start-page: 1
  year: 2015
  ident: ref57
  article-title: CUDA streams: Best practices and common pitfalls
  publication-title: Proc GPU Techonology Conf
  contributor:
    fullname: luitjens
– ident: ref15
  doi: 10.1109/TMM.2020.2993943
– ident: ref27
  doi: 10.1109/TMM.2019.2950523
– ident: ref64
  doi: 10.1109/CVPR.2019.01152
– ident: ref63
  doi: 10.1609/aaai.v33i01.33019259
– ident: ref11
  doi: 10.1109/ACCESS.2020.2970728
– year: 2016
  ident: ref28
  article-title: ENet: A deep neural network architecture for real-time semantic segmentation
  publication-title: ArXiv 1606 02147
  contributor:
    fullname: paszke
– ident: ref30
  doi: 10.1109/CVPR.2018.00474
– ident: ref12
  doi: 10.1109/TVLSI.2019.2905242
– ident: ref3
  doi: 10.1109/WACV48630.2021.00157
– ident: ref32
  doi: 10.1117/1.JRS.14.014521
– year: 2020
  ident: ref65
  publication-title: Jetson AGX Xavier and the New Era of Autonomous Machines Webinar
  contributor:
    fullname: franklin
– ident: ref14
  doi: 10.1109/TCSVT.2020.3020569
– year: 2019
  ident: ref68
  publication-title: NVIDIA Jetson Linux Driver Package Software Features
– ident: ref54
  doi: 10.1109/CVPR46437.2021.00017
– ident: ref39
  doi: 10.1109/TMM.2018.2845667
– ident: ref35
  doi: 10.1007/978-3-030-58580-8_38
– ident: ref29
  doi: 10.23919/DATE.2018.8342102
– ident: ref34
  doi: 10.1109/CVPRW.2017.60
– year: 2020
  ident: ref41
  article-title: FRDet: Balanced and lightweight object detector based on fire-residual modules for embedded processor of autonomous driving
  publication-title: arXiv 2011 08061
  contributor:
    fullname: oh
– ident: ref49
  doi: 10.1109/ACCESS.2021.3108776
– year: 2022
  ident: ref38
  publication-title: ultralytics/yolov5 v7 0 - YOLOv5 SOTA Realtime Instance Segmentation
  contributor:
    fullname: jocher
– ident: ref58
  doi: 10.1007/978-3-031-20077-9_1
– ident: ref47
  doi: 10.1109/ACCESS.2019.2912627
– year: 2020
  ident: ref48
  publication-title: TENSORRT Developer Guide
– ident: ref52
  doi: 10.1109/TCSVT.2016.2618753
– ident: ref53
  doi: 10.1109/ICCV48922.2021.00447
– ident: ref2
  doi: 10.1109/IROS45743.2020.9341791
– year: 2020
  ident: ref69
  publication-title: Profiler User's Guide
– ident: ref22
  doi: 10.1109/ASAP52443.2021.00023
– ident: ref4
  doi: 10.1109/JSEN.2020.3020626
– ident: ref33
  doi: 10.1007/s11036-020-01723-z
– ident: ref23
  doi: 10.1109/TCC.2019.2894621
– ident: ref44
  doi: 10.1109/CVPR.2017.690
– ident: ref50
  doi: 10.1109/TMM.2019.2949857
– ident: ref5
  doi: 10.1109/AICAS48895.2020.9073907
– start-page: 1
  year: 2018
  ident: ref56
  article-title: Avoiding pitfalls when using NVIDIA GPUS for real-time tasks in autonomous systems
  publication-title: Proc Euromicro Conf Real-Time Systems (ECRTS)
  contributor:
    fullname: yang
– ident: ref59
  doi: 10.1109/CVPR42600.2020.00208
– ident: ref1
  doi: 10.1109/ICCV.2019.00059
– ident: ref66
  doi: 10.1109/CVPR42600.2020.00271
– ident: ref25
  doi: 10.1109/ACCESS.2021.3054879
– ident: ref51
  doi: 10.1109/TCSVT.2019.2895304
– year: 2020
  ident: ref7
  publication-title: Evolution of the Eye
– start-page: 1737
  year: 2015
  ident: ref70
  article-title: Deep learning with limited numerical precision
  publication-title: Proc Int Conf Mach Learn
  contributor:
    fullname: gupta
– year: 2016
  ident: ref67
  publication-title: NVIDIA System Management Interfacei
– ident: ref60
  doi: 10.1109/CVPR.2018.00958
– ident: ref61
  doi: 10.1109/ICCV.2019.00925
– year: 2015
  ident: ref45
  article-title: Compression of deep convolutional neural networks for fast and low power mobile applications
  publication-title: arXiv 1511 06530
  contributor:
    fullname: kim
– ident: ref40
  doi: 10.1109/TMM.2017.2772796
– ident: ref62
  doi: 10.1109/CVPR.2017.106
– ident: ref13
  doi: 10.1109/ISCAS.2018.8351021
– ident: ref10
  doi: 10.1109/ICCMC48092.2020.ICCMC-00088
SSID ssj0000816957
Score 2.3460855
Snippet The success of research using convolutional neural network (CNN)-based camera sensor processing for autonomous driving has accelerated the development of...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 52812
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Autonomous vehicle
Autonomous vehicles
convolutional neural network
Convolutional neural networks
Deep learning
Detectors
embedded platform
Embedded systems
Graphics processing units
Hardware
Low power electronics
low-power design
Machine learning
Object recognition
Optimization
Optimization techniques
Parallel processing
Platforms
Power efficiency
Processing speed
real-time system
Real-time systems
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQp3Ko-qDqtlD50GMNWb_DbQmgVaUuHEDiZvkpIbW7aDd764_vTGLQoh56qXKLrTj2TMbfTDzfEPI1ypIA9QumPRdMxqZlQXHLYghCxcbAjoLJyT8Wen4nv9-r-51SX3gmbKQHHhfuVPrii7JZ2tbKqS2-zcY0OgAO1gmw9mB9m3bHmRpssJ3qVplKMwTtp7OugxmdYLXwE8FtoxR_sRUNjP21xMpfdnnYbK7ekNcVJdLZ-HZvyV5eviMHO9yB78nv7oZ1i8UZHesy1JgevfFrrI7ys6ZX0lWh0Iudw2aV6HXAqAu9yP0Qq9_QhyWd43mYFahRXm039PJXyGCKEq1M5hQwLZ1te0x9wPaL9QNGIA7J7dXlbTdntZQCi-DA9UzlYmxqOYAV46UWwSeTS4qqYBp5Ajc18dIEL-EKwYIPJLwwSWsVVVBT8YHsL1fL_JFQr7QNpVE8CysDt0HDU2WRreUimRgn5NvTorrHkTDDDY5G07pRBg5l4KoMJuQcF_65K7JdDzdAB1zVAfcvHZiQQxTbznjIo6imE3L0JEdXP82N4_jj0wKMVZ_-x9ifySuczxiVOSL7_XqbjwGn9OHLoJJ_ANvl4lQ
  priority: 102
  providerName: Directory of Open Access Journals
Title CP-CNN: Computational Parallelization of CNN-Based Object Detectors in Heterogeneous Embedded Systems for Autonomous Driving
URI https://ieeexplore.ieee.org/document/10137751
https://www.proquest.com/docview/2823186565
https://doaj.org/article/4afaf58e4898418fa9e7706b9746d753
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJzjwLGKhVD5wxCHxI7a5bdNWKySWHorUW-SnVEE3aDe5IH48Y8dbFRASyiVKnMTRN7ZnxjPfIPTW8ehB62ekNZQR7mpNrKCKOGuZcLWEFSUlJ39at6sv_OOVuCrJ6jkXJoSQg89ClU7zXr4f3JRcZTDCEz9eSpi-L7Wek7VuHSqpgoQWsjALNbV-v-w6-IkqFQivGFW1EPS31SeT9JeqKn9NxXl9OX-M1vuezWElX6tptJX78Qdp4393_Ql6VDRNvJxF4ym6FzbP0MM7_IPP0c_ugnTr9Qc813YofkF8Ybapwsq3kqKJh4ihFTmBBc_jzzZ5bvBpGLO_f4evN3iVYmoGEMUwTDt8dmMDTGceFzZ0DHoxXk5jSp9I90-318mLcYguz88uuxUp5RiIAyNwJCJEqbymoPBIw1tmjZcheidiSkX3YOp6GmtrOBzWKrCjmGHSt61wwoqGvUAHm2ETXiJsRKtsrAUNTHFLlW3hrTxyrSjz0rkFerdHqf8-k2702VipdT-D2idQ-wLqAp0kJG-bJsbsfAEQ6MsA7LmJJgoVuNKKNyoaHaSsWwv2VOvBZlugw4Tane_NgC3Q0V4w-jK8dz1Nm6cKVGHx6h-PvUYPaIp-aShpxBE6GLdTeAPqy2iPs9l_nIX3F5xg7a0
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOQAHnkUsFPCBIwlZPxKH2zZttUAbelik3iw_paqwQbvJBfHjmUm8VQEhoVyixEkczdjzsL9vCHnjRPTg9fOsNIxnwhV1ZiVTmbOWS1dUYFEQnHzWlssv4uOFvEhg9RELE0IYN5-FHE_HtXzfuQFTZTDCkR8PAdO3wbFW5QTXuk6pYA2JWlaJW2he1O8WTQO_kWOJ8JwzVUjJfrM_I01_qqvy12Q8WpiTB6Td9W3aWHKVD73N3Y8_aBv_u_MPyf3ka9LFpByPyK2wfkzu3WAgfEJ-NudZ07bv6VTdIWUG6bnZYI2VrwmkSbtIoVV2CCbP088Wczf0KPRjxn9LL9d0ibtqOlDG0A1bevzNBpjQPE186BQ8Y7oYegRQ4P2jzSXmMfbJ6uR41SyzVJAhcxAG9pkMsVK-ZuDyVEaU3BpfheidjAhG9xDsehYLawQc1iqIpLjhlS9L6aSVc_6U7K27dXhGqJGlsrGQLHAlLFO2hLeKKGrFuK-cm5G3Oynp7xPthh7DlaLWk1A1ClUnoc7IIUryuilyZo8XQAI6DUEtTDRRqiBUrcRcRVOHqipKCxFV6SFqm5F9lNqN700Cm5GDnWLoNMC3muHyqQJnWD7_x2OvyZ3l6uxUn35oP70gd7G7U-rmgOz1myG8BGemt69GFf4Fj0jv_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CP-CNN%3A+Computational+Parallelization+of+CNN-based+Object+Detectors+in+Heterogeneous+Embedded+Systems+for+Autonomous+Driving&rft.jtitle=IEEE+access&rft.au=Chun%2C+Dayoung&rft.au=Choi%2C+Jiwoong&rft.au=Lee%2C+Hyuk-Jae&rft.au=Kim%2C+Hyun&rft.date=2023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2023.3280552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3280552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon