Research on Super-Resolution Enhancement Technology Using Improved Transformer Network and 3D Reconstruction of Wheat Grains
Three-dimensional reconstruction plays a crucial role in capturing plant phenotypes and expediting the process of agricultural informatization. However, the reconstruction of small objects such as plant specimens and grains often faces challenges like low two-dimensional image resolution and sparse...
Saved in:
Published in | IEEE access Vol. 12; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2024.3396148 |
Cover
Abstract | Three-dimensional reconstruction plays a crucial role in capturing plant phenotypes and expediting the process of agricultural informatization. However, the reconstruction of small objects such as plant specimens and grains often faces challenges like low two-dimensional image resolution and sparse textures. To enhance the three-dimensional reconstruction of plant specimens like wheat grains for comprehensive phenotypic characterization, this study proposes a novel super-resolution reconstruction network called T-transformer net. The network leverages the self-attention mechanism of Transformers to extract extensive global information from spatial sequences. By employing a hourglass block structure to construct spatial attention units and combining channel attention with window-based self-attention schemes, it effectively harnesses their complementary advantages. This encompasses utilizing global statistical data while capitalizing on potent local fitting capabilities. Evaluation of the model on publicly available datasets Set5, Set14, and Manga109 demonstrates superior overall performance of T-transformer net compared to mainstream super-resolution algorithms at upscaling factors of 2x, 3x, and 4x. In the context of super-resolution tasks involving wheat grain datasets, the peak signal-to-noise ratio reaches 42.89 dB, and the structural similarity index attains 0.9643. Subsequently, we subject the super-resolved wheat grain images to three-dimensional reconstruction. Through comprehensive extraction of high-level semantic information by neural networks, the reconstruction accuracy is improved by 38.96% compared with the unprocessed image, effectively mitigating challenges arising from sparse textures and repetitive patterns in wheat grain structures. This study contributes valuable methodology and insights to the realm of three-dimensional reconstruction in botany, holding significant implications for advancing agricultural informatization. |
---|---|
AbstractList | Three-dimensional reconstruction plays a crucial role in capturing plant phenotypes and expediting the process of agricultural informatization. However, the reconstruction of small objects such as plant specimens and grains often faces challenges like low two-dimensional image resolution and sparse textures. To enhance the three-dimensional reconstruction of plant specimens like wheat grains for comprehensive phenotypic characterization, this study proposes a novel super-resolution reconstruction network called T-transformer net. The network leverages the self-attention mechanism of Transformers to extract extensive global information from spatial sequences. By employing a hourglass block structure to construct spatial attention units and combining channel attention with window-based self-attention schemes, it effectively harnesses their complementary advantages. This encompasses utilizing global statistical data while capitalizing on potent local fitting capabilities. Evaluation of the model on publicly available datasets Set5, Set14, and Manga109 demonstrates superior overall performance of T-transformer net compared to mainstream super-resolution algorithms at upscaling factors of 2x, 3x, and 4x. In the context of super-resolution tasks involving wheat grain datasets, the peak signal-to-noise ratio reaches 42.89 dB, and the structural similarity index attains 0.9643. Subsequently, we subject the super-resolved wheat grain images to three-dimensional reconstruction. Through comprehensive extraction of high-level semantic information by neural networks, the reconstruction accuracy is improved by 38.96% compared with the unprocessed image, effectively mitigating challenges arising from sparse textures and repetitive patterns in wheat grain structures. This study contributes valuable methodology and insights to the realm of three-dimensional reconstruction in botany, holding significant implications for advancing agricultural informatization. |
Author | Tian, Yijun Wu, Jianjun Zhang, Jinning Zhang, Zhongjie |
Author_xml | – sequence: 1 givenname: Yijun orcidid: 0000-0001-6793-4981 surname: Tian fullname: Tian, Yijun organization: College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China – sequence: 2 givenname: Jinning orcidid: 0000-0002-1363-784X surname: Zhang fullname: Zhang, Jinning organization: Academy of National Food and Strategic Reserves Administration, Beijing, China – sequence: 3 givenname: Zhongjie orcidid: 0009-0000-9953-160X surname: Zhang fullname: Zhang, Zhongjie organization: Academy of National Food and Strategic Reserves Administration, Beijing, China – sequence: 4 givenname: Jianjun orcidid: 0000-0003-1326-2598 surname: Wu fullname: Wu, Jianjun organization: College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China |
BookMark | eNqFUU1vEzEQXaEiUUp_ARwscU6w1x_rPVYhtJEqkJpUHC3bO042bOxge0GV-PF1uhWquDAXj57mvTee97Y688FDVb0neE4Ibj9dLRbL9Xpe45rNKW0FYfJVdV4T0c4op-LsRf-mukxpj0vJAvHmvPpzBwl0tDsUPFqPR4izgoRhzH0Bln6nvYUD-Iw2YHc-DGH7gO5T77dodTjG8As6tInaJxfiASL6Cvl3iD-Q9h2in9Ed2OBTjqN90gsOfd-Bzug66t6nd9Vrp4cEl8_vRXX_ZblZ3Mxuv12vFle3M8twm2fctK4G3RgnHZCOmsYwTLnQ3HFjWy0Y6bhuaykEloJjZrvGdKzDhjHQVtKLajXpdkHv1TH2Bx0fVNC9egJC3Codc28HUFy2RBYLZphgQhsNHTHSCudM7bisi9bHSat8_ucIKat9GKMv6yuKeU1a1jBWpug0ZWNIKYL760qwOqWmptTUKTX1nFphtf-wbJ_16XK53Gv4D_fDxO0B4IUbJw1vJH0Epb6pmg |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_agriculture14081279 |
Cites_doi | 10.1109/CVPR42600.2020.00257 10.1016/S0924-2716(98)00009-4 10.1007/978-3-642-37447-0_20 10.1007/978-3-319-10593-2_13 10.1016/j.cag.2020.12.004 10.1007/s11042-023-17660-4 10.1109/CVPR42600.2020.00260 10.1007/978-3-030-01237-3_47 10.1080/01431161.2016.1264027 10.1109/ICCVW54120.2021.00210 10.1186/s13007-019-0490-0 10.1109/TMI.1983.4307610 10.1007/978-3-642-27413-8_47 10.1007/978-3-540-31865-1_25 10.1561/0600000052 10.1109/CVPR42600.2020.00493 10.1109/ACCESS.2019.2895653 10.1007/s11042-016-4020-z 10.1038/nphoton.2010.148 10.1109/CVPR.2019.00563 10.1109/ICCV.2019.00162 10.1111/1467-8659.00522 10.1109/CVPR.2012.6247992 10.1007/s11263-022-01697-3 10.1109/CVPR.2017.19 10.1007/978-3-030-01234-2_18 10.5244/C.26.135 10.1007/978-3-319-46487-9_31 10.1016/j.displa.2021.102102 10.1109/CVPR.2019.01132 10.48550/ARXIV.1706.03762 10.1109/CVPR.2016.445 10.1109/ICCV48922.2021.00062 10.1126/science.1183700 10.1109/TMM.2019.2960586 10.1145/3503161.3547760 10.1109/CVPRW.2017.151 10.1109/DICTA.2011.99 10.1016/j.pbi.2009.12.011 10.1109/ICCV.2015.50 10.1016/j.patrec.2011.12.013 10.1007/s11263-016-0902-9 10.1109/CVPR.2016.207 10.1109/ICCV.2011.6126423 10.1109/CVPRW.2017.150 10.1016/j.patcog.2020.107475 10.1145/3065386 10.1038/nmeth989 10.3390/s120201437 10.1109/tcsvt.2023.3312321 10.1186/s13007-018-0303-x 10.1145/3072959.3073599 10.1109/3DV.2013.25 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3396148 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users] url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Botany |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_58918d3b4b4646abaed1b8c6ffb2f582 10_1109_ACCESS_2024_3396148 10517578 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key R&D Program of China under Grant grantid: 2018YFD0401404 – fundername: Academy of National Food and Strategic Reserves Administration's Scientific Research Institute grantid: JY2202 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-5b9f2ea7bf8fe1d3b7b40356a5f5bc9a641d5a92866086504cd7bd4d0b44eac83 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:18:01 EDT 2025 Sun Jun 29 12:35:17 EDT 2025 Tue Jul 01 04:14:33 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Wed Aug 27 02:05:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-5b9f2ea7bf8fe1d3b7b40356a5f5bc9a641d5a92866086504cd7bd4d0b44eac83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6793-4981 0009-0000-9953-160X 0000-0003-1326-2598 0000-0002-1363-784X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10517578 |
PQID | 3052194744 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | proquest_journals_3052194744 crossref_primary_10_1109_ACCESS_2024_3396148 crossref_citationtrail_10_1109_ACCESS_2024_3396148 ieee_primary_10517578 doaj_primary_oai_doaj_org_article_58918d3b4b4646abaed1b8c6ffb2f582 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | Zhou (ref4) 2018; 41 ref13 Zhu (ref26) 2021 ref57 ref12 ref56 Chi (ref46) 2020 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref18 Lao (ref7) 2019; 50 ref51 Liu (ref21) 2014; 45 ref45 ref48 ref42 ref41 ref44 ref49 Hendrycks (ref50) 2016 ref8 Huang (ref3) 2021; 52 ref9 ref6 ref5 Li (ref19) 2018; 41 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Zhang (ref17) 2015; 31 Chenxi (ref16) 2022; 4 Wang (ref20) 2017; 10 Xiao (ref47); 34 Taixiong (ref15) 2020; 46 ref24 ref68 ref23 Jiang (ref43) 2023 ref67 ref25 ref69 ref64 ref63 ref22 ref66 ref65 ref27 ref29 ref60 ref62 ref61 Eigen (ref28); 27 Jiang (ref37) 2002; 10 |
References_xml | – ident: ref67 doi: 10.1109/CVPR42600.2020.00257 – ident: ref8 doi: 10.1016/S0924-2716(98)00009-4 – ident: ref22 doi: 10.1007/978-3-642-37447-0_20 – volume-title: Research on grain moisture and temperature detection technology integrating microwave and sound wave year: 2020 ident: ref46 – ident: ref39 doi: 10.1007/978-3-319-10593-2_13 – volume: 4 start-page: 150 issue: 2 year: 2022 ident: ref16 article-title: Phenotypic traits extraction of wheat plants using 3D digitization publication-title: Smart Agricult. – ident: ref31 doi: 10.1016/j.cag.2020.12.004 – volume: 46 start-page: 631 issue: 4 year: 2020 ident: ref15 article-title: Key techniques for vision based 3D reconstruction: A review publication-title: Acta Automatica Sinica – ident: ref32 doi: 10.1007/s11042-023-17660-4 – ident: ref66 doi: 10.1109/CVPR42600.2020.00260 – ident: ref29 doi: 10.1007/978-3-030-01237-3_47 – ident: ref34 doi: 10.1080/01431161.2016.1264027 – ident: ref57 doi: 10.1109/ICCVW54120.2021.00210 – ident: ref5 doi: 10.1186/s13007-019-0490-0 – ident: ref36 doi: 10.1109/TMI.1983.4307610 – ident: ref59 doi: 10.1007/978-3-642-27413-8_47 – ident: ref61 doi: 10.1007/978-3-540-31865-1_25 – volume: 41 start-page: 580 issue: 4 year: 2018 ident: ref4 article-title: Plant phenomics: History, present status and challenges publication-title: J. Nanjing Agricult. Univ. – ident: ref62 doi: 10.1561/0600000052 – ident: ref65 doi: 10.1109/CVPR42600.2020.00493 – ident: ref33 doi: 10.1109/ACCESS.2019.2895653 – ident: ref54 doi: 10.1007/s11042-016-4020-z – ident: ref13 doi: 10.1038/nphoton.2010.148 – ident: ref68 doi: 10.1109/CVPR.2019.00563 – volume: 27 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref28 article-title: Depth map prediction from a single image using a multi-scale deep network – volume: 41 start-page: 742 issue: 4 year: 2018 ident: ref19 article-title: Counting method of grain number based on wheatear spikelet image segmentation publication-title: J. Nanjing Agricult. Univ. – ident: ref64 doi: 10.1109/ICCV.2019.00162 – volume: 34 start-page: 30392 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref47 article-title: Early convolutions help transformers see better – ident: ref10 doi: 10.1111/1467-8659.00522 – year: 2023 ident: ref43 article-title: Dynamic association learning of self-attention and convolution in image restoration publication-title: arXiv:2311.05147 – ident: ref23 doi: 10.1109/CVPR.2012.6247992 – ident: ref30 doi: 10.1007/s11263-022-01697-3 – ident: ref41 doi: 10.1109/CVPR.2017.19 – ident: ref51 doi: 10.1007/978-3-030-01234-2_18 – ident: ref58 doi: 10.5244/C.26.135 – ident: ref63 doi: 10.1007/978-3-319-46487-9_31 – ident: ref27 doi: 10.1016/j.displa.2021.102102 – volume: 31 start-page: 172 issue: 14 year: 2015 ident: ref17 article-title: Matching method of green crops based on SURF feature extraction publication-title: Trans. Chin. Soc. Agricult. Eng. – ident: ref56 doi: 10.1109/CVPR.2019.01132 – ident: ref49 doi: 10.48550/ARXIV.1706.03762 – ident: ref25 doi: 10.1109/CVPR.2016.445 – ident: ref48 doi: 10.1109/ICCV48922.2021.00062 – year: 2016 ident: ref50 article-title: Gaussian error linear units (GELUs) publication-title: arXiv:1606.08415 – ident: ref1 doi: 10.1126/science.1183700 – ident: ref35 doi: 10.1109/TMM.2019.2960586 – volume: 10 start-page: 77 issue: 1 year: 2002 ident: ref37 article-title: Development of iterative algorithms for image reconstruction publication-title: J. X-Ray Sci. Technol. – ident: ref42 doi: 10.1145/3503161.3547760 – ident: ref55 doi: 10.1109/CVPRW.2017.151 – ident: ref18 doi: 10.1109/DICTA.2011.99 – ident: ref2 doi: 10.1016/j.pbi.2009.12.011 – ident: ref38 doi: 10.1109/ICCV.2015.50 – ident: ref11 doi: 10.1016/j.patrec.2011.12.013 – ident: ref69 doi: 10.1007/s11263-016-0902-9 – ident: ref52 doi: 10.1109/CVPR.2016.207 – ident: ref12 doi: 10.1109/ICCV.2011.6126423 – volume: 50 start-page: 222 issue: 7 year: 2019 ident: ref7 article-title: 3D reconstruction of maize plants based on consumer depth camera publication-title: Trans. Chin. Soc. Agricult. Machinery – ident: ref53 doi: 10.1109/CVPRW.2017.150 – ident: ref45 doi: 10.1016/j.patcog.2020.107475 – ident: ref40 doi: 10.1145/3065386 – year: 2021 ident: ref26 article-title: Deep learning for multi-view stereo via plane sweep: A survey publication-title: arXiv:2106.15328 – volume: 52 start-page: 186 issue: 9 year: 2021 ident: ref3 article-title: Segmentation and registration of lettuce multispectral image based on convolutional neural network publication-title: Trans. Chin. Soc. Agricult. Machinery – ident: ref9 doi: 10.1038/nmeth989 – ident: ref14 doi: 10.3390/s120201437 – ident: ref44 doi: 10.1109/tcsvt.2023.3312321 – ident: ref6 doi: 10.1186/s13007-018-0303-x – ident: ref60 doi: 10.1145/3072959.3073599 – volume: 45 start-page: 282 issue: 2 year: 2014 ident: ref21 article-title: In-field wheatear counting based on image processing technology publication-title: Trans. Chin. Soc. Agricult. Machinery – volume: 10 start-page: 219 year: 2017 ident: ref20 article-title: Counting grains per wheat spike base in fractal segmentation of image publication-title: Comput. Syst. Appl. – ident: ref24 doi: 10.1109/3DV.2013.25 |
SSID | ssj0000816957 |
Score | 2.3128688 |
Snippet | Three-dimensional reconstruction plays a crucial role in capturing plant phenotypes and expediting the process of agricultural informatization. However, the... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Botany Channel attention Crops Datasets Flowers & plants Grain Harnesses Image enhancement Image reconstruction Image resolution Moisture Neural networks Phenotypes Signal to noise ratio Solid modeling Super-resolution reconstruction Superresolution Three-dimensional displays Three-dimensional reconstruction Transformer Transformers Wheat Wheat grains |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09TxwxELUiKlJECR_KBYhcULLBux5_lXDhQEjQBCQ6y17bShHtIQ46fnw89t5xKFJoaFdeee03O543Gr8h5DAqBs63pumUSA2IpBvHg29Cjl77FGJyCW8jX13Li1u4vBN3a62-sCasygPXjTvGrnc6cA8eJEjnXQyt171MyXdJ6OJ9mWFrZKr4YN1KI9QoM9Qyc3wyneYVZULYwQ_ODepfvjqKimL_2GLlH79cDpvZZ_JpjBLpSf26L-RDHLbIxzXtwG3yvKyZo_OB_nq6jw8NpuKrIdGz4TfCiak_-pI9p6VAgNZEQgz0Zhm1xgd6XevBqRsC5T8p0tIXcVk6T7S4bXqOLSUWO-R2dnYzvWjGVgpNnwncYyO8SV10yiedYpu3U3lgXEgnkvC9cRLaIJzptJSZ4wgGfVA-QGAeILtmzXfJxjAf4ldCo8kElkelfKYiMkWXQwAWICWpIYjYTki33FXbjzrj2O7ijy18gxlbobAIhR2hmJCj1Uv3VWbj_8NPEa7VUNTILg-y5djRcuxbljMhOwj22nyiRXX_Cdlfom_HH3phOV5yNqAAvr3H3HtkE9dTczn7ZCPDGQ9ydPPovxdD_gvwbveq priority: 102 providerName: Directory of Open Access Journals |
Title | Research on Super-Resolution Enhancement Technology Using Improved Transformer Network and 3D Reconstruction of Wheat Grains |
URI | https://ieeexplore.ieee.org/document/10517578 https://www.proquest.com/docview/3052194744 https://doaj.org/article/58918d3b4b4646abaed1b8c6ffb2f582 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3CgPIpYKJUPHMmSx9iOj2VpqZDYC63Um2XHYyGBslW7e6n48fXYzraAQNyiKE5sfePxzGTmG8beoqrBukZXrRKhAhH6ynbeVT5ar0PwGGygauQvS3l6Dp8vxEUpVk-1MIiYks9wTpfpX75fDRsKlcUdLhriX99hO1HOcrHWNqBCHSS0UIVZqKn1-6PFIi4i-oAtzLtOE-XlL6dPIukvXVX-UMXpfDnZY8tpZjmt5Pt8s3bz4eY30sb_nvoT9rhYmvwoi8ZT9gDHZ-zRPf7B5-znlHfHVyP_urnEq4rC-VkY-fH4jUSCXszvIvA8JRnwHIxAz88myxev-DLnlHM7et595OTa3hHU8lXgSfXzT9SW4nqfnZ8cny1Oq9KOoRqiE7iuhNOhRatc6AM2vnPKQd0JaUUQbtBWQuOF1W0vZfSTRA2DV86Drx1AVO9994LtjqsRXzKOOjrBHSrlojsjA9poRtQeQpA9eIHNjLUTTGYoXOXUMuOHST5LrU3G1hC2pmA7Y--2gy4zVce_H_9A-G8fJZ7tdCPiZsq2NdRzsY9LBQcSpHUWfeP6QYbg2iD6dsb2Cet738swz9jBJE6mKIVr01GhtAYF8Oovw16zhzTFHOI5YLsRIXwTjZ61O0zBgsMk8re-HAHi |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHIADn0UsFPCBI1mSeOzEx7K0LNDuha3Um2XHY1UCZat294L48XjsZFtAIG5RFCe23ng8M5l5w9hrbEqwrtJF3chQgAxtYYV3hY_Waxc8BhuoGvl4oeYn8OlUng7F6qkWBhFT8hlO6TL9y_erbkOhsrjDZUX86zfZrXjwg8zlWtuQCvWQ0LIZuIWqUr_dn83iMqIXWMNUCE2kl7-cP4mmf-ir8ocyTifM4X22GOeWE0u-TjdrN-2-_0bb-N-Tf8DuDbYm38_C8ZDdwP4Ru3uNgfAx-zFm3vFVz79szvGioIB-Fkd-0J-RUNCL-VUMnqc0A57DEej5crR98YIvclY5t73n4j0n5_aKopavAk_Kn3-gxhSXu-zk8GA5mxdDQ4aii27gupBOhxpt40IbsPLCNQ5KIZWVQbpOWwWVl1bXrVLRU5IldL5xHnzpAKKCb8UTttOvenzKOOroBgtsGhcdGhXQRkOi9BCCasFLrCasHmEy3cBWTk0zvpnktZTaZGwNYWsGbCfszXbQeSbr-Pfj7wj_7aPEtJ1uRNzMsHENdV1s41LBgQJlnUVfubZTIbg6yLaesF3C-tr3MswTtjeKkxnUwqURVCqtoQF49pdhr9jt-fL4yBx9XHx-zu7QdHPAZ4_tRLTwRTSB1u5lEvyfR3kEOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Super-Resolution+Enhancement+Technology+Using+Improved+Transformer+Network+and+3D+Reconstruction+of+Wheat+Grains&rft.jtitle=IEEE+access&rft.au=Tian%2C+Yijun&rft.au=Zhang%2C+Jinning&rft.au=Zhang%2C+Zhongjie&rft.au=Wu%2C+Jianjun&rft.date=2024-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=62882&rft.epage=62898&rft_id=info:doi/10.1109%2FACCESS.2024.3396148&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3396148 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |