Research on Super-Resolution Enhancement Technology Using Improved Transformer Network and 3D Reconstruction of Wheat Grains

Three-dimensional reconstruction plays a crucial role in capturing plant phenotypes and expediting the process of agricultural informatization. However, the reconstruction of small objects such as plant specimens and grains often faces challenges like low two-dimensional image resolution and sparse...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; p. 1
Main Authors Tian, Yijun, Zhang, Jinning, Zhang, Zhongjie, Wu, Jianjun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2024.3396148

Cover

Abstract Three-dimensional reconstruction plays a crucial role in capturing plant phenotypes and expediting the process of agricultural informatization. However, the reconstruction of small objects such as plant specimens and grains often faces challenges like low two-dimensional image resolution and sparse textures. To enhance the three-dimensional reconstruction of plant specimens like wheat grains for comprehensive phenotypic characterization, this study proposes a novel super-resolution reconstruction network called T-transformer net. The network leverages the self-attention mechanism of Transformers to extract extensive global information from spatial sequences. By employing a hourglass block structure to construct spatial attention units and combining channel attention with window-based self-attention schemes, it effectively harnesses their complementary advantages. This encompasses utilizing global statistical data while capitalizing on potent local fitting capabilities. Evaluation of the model on publicly available datasets Set5, Set14, and Manga109 demonstrates superior overall performance of T-transformer net compared to mainstream super-resolution algorithms at upscaling factors of 2x, 3x, and 4x. In the context of super-resolution tasks involving wheat grain datasets, the peak signal-to-noise ratio reaches 42.89 dB, and the structural similarity index attains 0.9643. Subsequently, we subject the super-resolved wheat grain images to three-dimensional reconstruction. Through comprehensive extraction of high-level semantic information by neural networks, the reconstruction accuracy is improved by 38.96% compared with the unprocessed image, effectively mitigating challenges arising from sparse textures and repetitive patterns in wheat grain structures. This study contributes valuable methodology and insights to the realm of three-dimensional reconstruction in botany, holding significant implications for advancing agricultural informatization.
AbstractList Three-dimensional reconstruction plays a crucial role in capturing plant phenotypes and expediting the process of agricultural informatization. However, the reconstruction of small objects such as plant specimens and grains often faces challenges like low two-dimensional image resolution and sparse textures. To enhance the three-dimensional reconstruction of plant specimens like wheat grains for comprehensive phenotypic characterization, this study proposes a novel super-resolution reconstruction network called T-transformer net. The network leverages the self-attention mechanism of Transformers to extract extensive global information from spatial sequences. By employing a hourglass block structure to construct spatial attention units and combining channel attention with window-based self-attention schemes, it effectively harnesses their complementary advantages. This encompasses utilizing global statistical data while capitalizing on potent local fitting capabilities. Evaluation of the model on publicly available datasets Set5, Set14, and Manga109 demonstrates superior overall performance of T-transformer net compared to mainstream super-resolution algorithms at upscaling factors of 2x, 3x, and 4x. In the context of super-resolution tasks involving wheat grain datasets, the peak signal-to-noise ratio reaches 42.89 dB, and the structural similarity index attains 0.9643. Subsequently, we subject the super-resolved wheat grain images to three-dimensional reconstruction. Through comprehensive extraction of high-level semantic information by neural networks, the reconstruction accuracy is improved by 38.96% compared with the unprocessed image, effectively mitigating challenges arising from sparse textures and repetitive patterns in wheat grain structures. This study contributes valuable methodology and insights to the realm of three-dimensional reconstruction in botany, holding significant implications for advancing agricultural informatization.
Author Tian, Yijun
Wu, Jianjun
Zhang, Jinning
Zhang, Zhongjie
Author_xml – sequence: 1
  givenname: Yijun
  orcidid: 0000-0001-6793-4981
  surname: Tian
  fullname: Tian, Yijun
  organization: College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
– sequence: 2
  givenname: Jinning
  orcidid: 0000-0002-1363-784X
  surname: Zhang
  fullname: Zhang, Jinning
  organization: Academy of National Food and Strategic Reserves Administration, Beijing, China
– sequence: 3
  givenname: Zhongjie
  orcidid: 0009-0000-9953-160X
  surname: Zhang
  fullname: Zhang, Zhongjie
  organization: Academy of National Food and Strategic Reserves Administration, Beijing, China
– sequence: 4
  givenname: Jianjun
  orcidid: 0000-0003-1326-2598
  surname: Wu
  fullname: Wu, Jianjun
  organization: College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
BookMark eNqFUU1vEzEQXaEiUUp_ARwscU6w1x_rPVYhtJEqkJpUHC3bO042bOxge0GV-PF1uhWquDAXj57mvTee97Y688FDVb0neE4Ibj9dLRbL9Xpe45rNKW0FYfJVdV4T0c4op-LsRf-mukxpj0vJAvHmvPpzBwl0tDsUPFqPR4izgoRhzH0Bln6nvYUD-Iw2YHc-DGH7gO5T77dodTjG8As6tInaJxfiASL6Cvl3iD-Q9h2in9Ed2OBTjqN90gsOfd-Bzug66t6nd9Vrp4cEl8_vRXX_ZblZ3Mxuv12vFle3M8twm2fctK4G3RgnHZCOmsYwTLnQ3HFjWy0Y6bhuaykEloJjZrvGdKzDhjHQVtKLajXpdkHv1TH2Bx0fVNC9egJC3Codc28HUFy2RBYLZphgQhsNHTHSCudM7bisi9bHSat8_ucIKat9GKMv6yuKeU1a1jBWpug0ZWNIKYL760qwOqWmptTUKTX1nFphtf-wbJ_16XK53Gv4D_fDxO0B4IUbJw1vJH0Epb6pmg
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_agriculture14081279
Cites_doi 10.1109/CVPR42600.2020.00257
10.1016/S0924-2716(98)00009-4
10.1007/978-3-642-37447-0_20
10.1007/978-3-319-10593-2_13
10.1016/j.cag.2020.12.004
10.1007/s11042-023-17660-4
10.1109/CVPR42600.2020.00260
10.1007/978-3-030-01237-3_47
10.1080/01431161.2016.1264027
10.1109/ICCVW54120.2021.00210
10.1186/s13007-019-0490-0
10.1109/TMI.1983.4307610
10.1007/978-3-642-27413-8_47
10.1007/978-3-540-31865-1_25
10.1561/0600000052
10.1109/CVPR42600.2020.00493
10.1109/ACCESS.2019.2895653
10.1007/s11042-016-4020-z
10.1038/nphoton.2010.148
10.1109/CVPR.2019.00563
10.1109/ICCV.2019.00162
10.1111/1467-8659.00522
10.1109/CVPR.2012.6247992
10.1007/s11263-022-01697-3
10.1109/CVPR.2017.19
10.1007/978-3-030-01234-2_18
10.5244/C.26.135
10.1007/978-3-319-46487-9_31
10.1016/j.displa.2021.102102
10.1109/CVPR.2019.01132
10.48550/ARXIV.1706.03762
10.1109/CVPR.2016.445
10.1109/ICCV48922.2021.00062
10.1126/science.1183700
10.1109/TMM.2019.2960586
10.1145/3503161.3547760
10.1109/CVPRW.2017.151
10.1109/DICTA.2011.99
10.1016/j.pbi.2009.12.011
10.1109/ICCV.2015.50
10.1016/j.patrec.2011.12.013
10.1007/s11263-016-0902-9
10.1109/CVPR.2016.207
10.1109/ICCV.2011.6126423
10.1109/CVPRW.2017.150
10.1016/j.patcog.2020.107475
10.1145/3065386
10.1038/nmeth989
10.3390/s120201437
10.1109/tcsvt.2023.3312321
10.1186/s13007-018-0303-x
10.1145/3072959.3073599
10.1109/3DV.2013.25
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3396148
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore : IEEE Electronic Library (IEL) [unlimited simultaenous users]
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Botany
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_58918d3b4b4646abaed1b8c6ffb2f582
10_1109_ACCESS_2024_3396148
10517578
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China under Grant
  grantid: 2018YFD0401404
– fundername: Academy of National Food and Strategic Reserves Administration's Scientific Research Institute
  grantid: JY2202
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-5b9f2ea7bf8fe1d3b7b40356a5f5bc9a641d5a92866086504cd7bd4d0b44eac83
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:18:01 EDT 2025
Sun Jun 29 12:35:17 EDT 2025
Tue Jul 01 04:14:33 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
Wed Aug 27 02:05:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-5b9f2ea7bf8fe1d3b7b40356a5f5bc9a641d5a92866086504cd7bd4d0b44eac83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6793-4981
0009-0000-9953-160X
0000-0003-1326-2598
0000-0002-1363-784X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10517578
PQID 3052194744
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_3052194744
crossref_primary_10_1109_ACCESS_2024_3396148
crossref_citationtrail_10_1109_ACCESS_2024_3396148
ieee_primary_10517578
doaj_primary_oai_doaj_org_article_58918d3b4b4646abaed1b8c6ffb2f582
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Zhou (ref4) 2018; 41
ref13
Zhu (ref26) 2021
ref57
ref12
ref56
Chi (ref46) 2020
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref18
Lao (ref7) 2019; 50
ref51
Liu (ref21) 2014; 45
ref45
ref48
ref42
ref41
ref44
ref49
Hendrycks (ref50) 2016
ref8
Huang (ref3) 2021; 52
ref9
ref6
ref5
Li (ref19) 2018; 41
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Zhang (ref17) 2015; 31
Chenxi (ref16) 2022; 4
Wang (ref20) 2017; 10
Xiao (ref47); 34
Taixiong (ref15) 2020; 46
ref24
ref68
ref23
Jiang (ref43) 2023
ref67
ref25
ref69
ref64
ref63
ref22
ref66
ref65
ref27
ref29
ref60
ref62
ref61
Eigen (ref28); 27
Jiang (ref37) 2002; 10
References_xml – ident: ref67
  doi: 10.1109/CVPR42600.2020.00257
– ident: ref8
  doi: 10.1016/S0924-2716(98)00009-4
– ident: ref22
  doi: 10.1007/978-3-642-37447-0_20
– volume-title: Research on grain moisture and temperature detection technology integrating microwave and sound wave
  year: 2020
  ident: ref46
– ident: ref39
  doi: 10.1007/978-3-319-10593-2_13
– volume: 4
  start-page: 150
  issue: 2
  year: 2022
  ident: ref16
  article-title: Phenotypic traits extraction of wheat plants using 3D digitization
  publication-title: Smart Agricult.
– ident: ref31
  doi: 10.1016/j.cag.2020.12.004
– volume: 46
  start-page: 631
  issue: 4
  year: 2020
  ident: ref15
  article-title: Key techniques for vision based 3D reconstruction: A review
  publication-title: Acta Automatica Sinica
– ident: ref32
  doi: 10.1007/s11042-023-17660-4
– ident: ref66
  doi: 10.1109/CVPR42600.2020.00260
– ident: ref29
  doi: 10.1007/978-3-030-01237-3_47
– ident: ref34
  doi: 10.1080/01431161.2016.1264027
– ident: ref57
  doi: 10.1109/ICCVW54120.2021.00210
– ident: ref5
  doi: 10.1186/s13007-019-0490-0
– ident: ref36
  doi: 10.1109/TMI.1983.4307610
– ident: ref59
  doi: 10.1007/978-3-642-27413-8_47
– ident: ref61
  doi: 10.1007/978-3-540-31865-1_25
– volume: 41
  start-page: 580
  issue: 4
  year: 2018
  ident: ref4
  article-title: Plant phenomics: History, present status and challenges
  publication-title: J. Nanjing Agricult. Univ.
– ident: ref62
  doi: 10.1561/0600000052
– ident: ref65
  doi: 10.1109/CVPR42600.2020.00493
– ident: ref33
  doi: 10.1109/ACCESS.2019.2895653
– ident: ref54
  doi: 10.1007/s11042-016-4020-z
– ident: ref13
  doi: 10.1038/nphoton.2010.148
– ident: ref68
  doi: 10.1109/CVPR.2019.00563
– volume: 27
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref28
  article-title: Depth map prediction from a single image using a multi-scale deep network
– volume: 41
  start-page: 742
  issue: 4
  year: 2018
  ident: ref19
  article-title: Counting method of grain number based on wheatear spikelet image segmentation
  publication-title: J. Nanjing Agricult. Univ.
– ident: ref64
  doi: 10.1109/ICCV.2019.00162
– volume: 34
  start-page: 30392
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref47
  article-title: Early convolutions help transformers see better
– ident: ref10
  doi: 10.1111/1467-8659.00522
– year: 2023
  ident: ref43
  article-title: Dynamic association learning of self-attention and convolution in image restoration
  publication-title: arXiv:2311.05147
– ident: ref23
  doi: 10.1109/CVPR.2012.6247992
– ident: ref30
  doi: 10.1007/s11263-022-01697-3
– ident: ref41
  doi: 10.1109/CVPR.2017.19
– ident: ref51
  doi: 10.1007/978-3-030-01234-2_18
– ident: ref58
  doi: 10.5244/C.26.135
– ident: ref63
  doi: 10.1007/978-3-319-46487-9_31
– ident: ref27
  doi: 10.1016/j.displa.2021.102102
– volume: 31
  start-page: 172
  issue: 14
  year: 2015
  ident: ref17
  article-title: Matching method of green crops based on SURF feature extraction
  publication-title: Trans. Chin. Soc. Agricult. Eng.
– ident: ref56
  doi: 10.1109/CVPR.2019.01132
– ident: ref49
  doi: 10.48550/ARXIV.1706.03762
– ident: ref25
  doi: 10.1109/CVPR.2016.445
– ident: ref48
  doi: 10.1109/ICCV48922.2021.00062
– year: 2016
  ident: ref50
  article-title: Gaussian error linear units (GELUs)
  publication-title: arXiv:1606.08415
– ident: ref1
  doi: 10.1126/science.1183700
– ident: ref35
  doi: 10.1109/TMM.2019.2960586
– volume: 10
  start-page: 77
  issue: 1
  year: 2002
  ident: ref37
  article-title: Development of iterative algorithms for image reconstruction
  publication-title: J. X-Ray Sci. Technol.
– ident: ref42
  doi: 10.1145/3503161.3547760
– ident: ref55
  doi: 10.1109/CVPRW.2017.151
– ident: ref18
  doi: 10.1109/DICTA.2011.99
– ident: ref2
  doi: 10.1016/j.pbi.2009.12.011
– ident: ref38
  doi: 10.1109/ICCV.2015.50
– ident: ref11
  doi: 10.1016/j.patrec.2011.12.013
– ident: ref69
  doi: 10.1007/s11263-016-0902-9
– ident: ref52
  doi: 10.1109/CVPR.2016.207
– ident: ref12
  doi: 10.1109/ICCV.2011.6126423
– volume: 50
  start-page: 222
  issue: 7
  year: 2019
  ident: ref7
  article-title: 3D reconstruction of maize plants based on consumer depth camera
  publication-title: Trans. Chin. Soc. Agricult. Machinery
– ident: ref53
  doi: 10.1109/CVPRW.2017.150
– ident: ref45
  doi: 10.1016/j.patcog.2020.107475
– ident: ref40
  doi: 10.1145/3065386
– year: 2021
  ident: ref26
  article-title: Deep learning for multi-view stereo via plane sweep: A survey
  publication-title: arXiv:2106.15328
– volume: 52
  start-page: 186
  issue: 9
  year: 2021
  ident: ref3
  article-title: Segmentation and registration of lettuce multispectral image based on convolutional neural network
  publication-title: Trans. Chin. Soc. Agricult. Machinery
– ident: ref9
  doi: 10.1038/nmeth989
– ident: ref14
  doi: 10.3390/s120201437
– ident: ref44
  doi: 10.1109/tcsvt.2023.3312321
– ident: ref6
  doi: 10.1186/s13007-018-0303-x
– ident: ref60
  doi: 10.1145/3072959.3073599
– volume: 45
  start-page: 282
  issue: 2
  year: 2014
  ident: ref21
  article-title: In-field wheatear counting based on image processing technology
  publication-title: Trans. Chin. Soc. Agricult. Machinery
– volume: 10
  start-page: 219
  year: 2017
  ident: ref20
  article-title: Counting grains per wheat spike base in fractal segmentation of image
  publication-title: Comput. Syst. Appl.
– ident: ref24
  doi: 10.1109/3DV.2013.25
SSID ssj0000816957
Score 2.3128688
Snippet Three-dimensional reconstruction plays a crucial role in capturing plant phenotypes and expediting the process of agricultural informatization. However, the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Botany
Channel attention
Crops
Datasets
Flowers & plants
Grain
Harnesses
Image enhancement
Image reconstruction
Image resolution
Moisture
Neural networks
Phenotypes
Signal to noise ratio
Solid modeling
Super-resolution reconstruction
Superresolution
Three-dimensional displays
Three-dimensional reconstruction
Transformer
Transformers
Wheat
Wheat grains
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09TxwxELUiKlJECR_KBYhcULLBux5_lXDhQEjQBCQ6y17bShHtIQ46fnw89t5xKFJoaFdeee03O543Gr8h5DAqBs63pumUSA2IpBvHg29Cjl77FGJyCW8jX13Li1u4vBN3a62-sCasygPXjTvGrnc6cA8eJEjnXQyt171MyXdJ6OJ9mWFrZKr4YN1KI9QoM9Qyc3wyneYVZULYwQ_ODepfvjqKimL_2GLlH79cDpvZZ_JpjBLpSf26L-RDHLbIxzXtwG3yvKyZo_OB_nq6jw8NpuKrIdGz4TfCiak_-pI9p6VAgNZEQgz0Zhm1xgd6XevBqRsC5T8p0tIXcVk6T7S4bXqOLSUWO-R2dnYzvWjGVgpNnwncYyO8SV10yiedYpu3U3lgXEgnkvC9cRLaIJzptJSZ4wgGfVA-QGAeILtmzXfJxjAf4ldCo8kElkelfKYiMkWXQwAWICWpIYjYTki33FXbjzrj2O7ijy18gxlbobAIhR2hmJCj1Uv3VWbj_8NPEa7VUNTILg-y5djRcuxbljMhOwj22nyiRXX_Cdlfom_HH3phOV5yNqAAvr3H3HtkE9dTczn7ZCPDGQ9ydPPovxdD_gvwbveq
  priority: 102
  providerName: Directory of Open Access Journals
Title Research on Super-Resolution Enhancement Technology Using Improved Transformer Network and 3D Reconstruction of Wheat Grains
URI https://ieeexplore.ieee.org/document/10517578
https://www.proquest.com/docview/3052194744
https://doaj.org/article/58918d3b4b4646abaed1b8c6ffb2f582
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT3CgPIpYKJUPHMmSx9iOj2VpqZDYC63Um2XHYyGBslW7e6n48fXYzraAQNyiKE5sfePxzGTmG8beoqrBukZXrRKhAhH6ynbeVT5ar0PwGGygauQvS3l6Dp8vxEUpVk-1MIiYks9wTpfpX75fDRsKlcUdLhriX99hO1HOcrHWNqBCHSS0UIVZqKn1-6PFIi4i-oAtzLtOE-XlL6dPIukvXVX-UMXpfDnZY8tpZjmt5Pt8s3bz4eY30sb_nvoT9rhYmvwoi8ZT9gDHZ-zRPf7B5-znlHfHVyP_urnEq4rC-VkY-fH4jUSCXszvIvA8JRnwHIxAz88myxev-DLnlHM7et595OTa3hHU8lXgSfXzT9SW4nqfnZ8cny1Oq9KOoRqiE7iuhNOhRatc6AM2vnPKQd0JaUUQbtBWQuOF1W0vZfSTRA2DV86Drx1AVO9994LtjqsRXzKOOjrBHSrlojsjA9poRtQeQpA9eIHNjLUTTGYoXOXUMuOHST5LrU3G1hC2pmA7Y--2gy4zVce_H_9A-G8fJZ7tdCPiZsq2NdRzsY9LBQcSpHUWfeP6QYbg2iD6dsb2Cet738swz9jBJE6mKIVr01GhtAYF8Oovw16zhzTFHOI5YLsRIXwTjZ61O0zBgsMk8re-HAHi
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHIADn0UsFPCBI1mSeOzEx7K0LNDuha3Um2XHY1UCZat294L48XjsZFtAIG5RFCe23ng8M5l5w9hrbEqwrtJF3chQgAxtYYV3hY_Waxc8BhuoGvl4oeYn8OlUng7F6qkWBhFT8hlO6TL9y_erbkOhsrjDZUX86zfZrXjwg8zlWtuQCvWQ0LIZuIWqUr_dn83iMqIXWMNUCE2kl7-cP4mmf-ir8ocyTifM4X22GOeWE0u-TjdrN-2-_0bb-N-Tf8DuDbYm38_C8ZDdwP4Ru3uNgfAx-zFm3vFVz79szvGioIB-Fkd-0J-RUNCL-VUMnqc0A57DEej5crR98YIvclY5t73n4j0n5_aKopavAk_Kn3-gxhSXu-zk8GA5mxdDQ4aii27gupBOhxpt40IbsPLCNQ5KIZWVQbpOWwWVl1bXrVLRU5IldL5xHnzpAKKCb8UTttOvenzKOOroBgtsGhcdGhXQRkOi9BCCasFLrCasHmEy3cBWTk0zvpnktZTaZGwNYWsGbCfszXbQeSbr-Pfj7wj_7aPEtJ1uRNzMsHENdV1s41LBgQJlnUVfubZTIbg6yLaesF3C-tr3MswTtjeKkxnUwqURVCqtoQF49pdhr9jt-fL4yBx9XHx-zu7QdHPAZ4_tRLTwRTSB1u5lEvyfR3kEOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Super-Resolution+Enhancement+Technology+Using+Improved+Transformer+Network+and+3D+Reconstruction+of+Wheat+Grains&rft.jtitle=IEEE+access&rft.au=Tian%2C+Yijun&rft.au=Zhang%2C+Jinning&rft.au=Zhang%2C+Zhongjie&rft.au=Wu%2C+Jianjun&rft.date=2024-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=62882&rft.epage=62898&rft_id=info:doi/10.1109%2FACCESS.2024.3396148&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3396148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon