Understanding forecast reconciliation
•We relate recent literature on Forecast Reconciliation to the extensive body of work on Forecast Combination.•We demonstrate how the linear constraints which naturally apply to the data can be used to generate indirect forecasts of each time-series. These are then combined with direct forecasts to...
Saved in:
Published in | European journal of operational research Vol. 294; no. 1; pp. 149 - 160 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We relate recent literature on Forecast Reconciliation to the extensive body of work on Forecast Combination.•We demonstrate how the linear constraints which naturally apply to the data can be used to generate indirect forecasts of each time-series. These are then combined with direct forecasts to improve forecast accuracy.•The techniques described are generally applicable beyond the hierarchical setting and can improve forecast accuracy in any multivariate forecasting scenario where time-series are subject to linear constraints.•We demonstrate significant improvements in forecast accuracy in the noisiest and hardest to forecast time-series.
A series of recent papers introduce the concept of Forecast Reconciliation, a process by which independently generated forecasts of a collection of linearly related time series are reconciled via the introduction of accounting aggregations that naturally apply to the data. Aside from its clear presentational and operational virtues, the reconciliation approach generally improves the accuracy of the combined forecasts. In this paper, we examine the mechanisms by which this improvement is generated by re-formulating the reconciliation problem as a combination of direct forecasts of each time series with additional indirect forecasts derived from the linear constraints. Our work establishes a direct link between the nascent Forecast Reconciliation literature and the extensive work on Forecast Combination. In the original hierarchical setting, our approach clarifies for the first time how unbiased forecasts for the entire collection can be generated from base forecasts made at any level of the hierarchy, and we illustrate more generally how simple robust combined forecasts can be generated in any multivariate setting subject to linear constraints. In an empirical example, we show that simple combinations of such forecasts generate significant improvements in forecast accuracy where it matters most: where noise levels are highest and the forecasting task is at its most challenging. |
---|---|
AbstractList | •We relate recent literature on Forecast Reconciliation to the extensive body of work on Forecast Combination.•We demonstrate how the linear constraints which naturally apply to the data can be used to generate indirect forecasts of each time-series. These are then combined with direct forecasts to improve forecast accuracy.•The techniques described are generally applicable beyond the hierarchical setting and can improve forecast accuracy in any multivariate forecasting scenario where time-series are subject to linear constraints.•We demonstrate significant improvements in forecast accuracy in the noisiest and hardest to forecast time-series.
A series of recent papers introduce the concept of Forecast Reconciliation, a process by which independently generated forecasts of a collection of linearly related time series are reconciled via the introduction of accounting aggregations that naturally apply to the data. Aside from its clear presentational and operational virtues, the reconciliation approach generally improves the accuracy of the combined forecasts. In this paper, we examine the mechanisms by which this improvement is generated by re-formulating the reconciliation problem as a combination of direct forecasts of each time series with additional indirect forecasts derived from the linear constraints. Our work establishes a direct link between the nascent Forecast Reconciliation literature and the extensive work on Forecast Combination. In the original hierarchical setting, our approach clarifies for the first time how unbiased forecasts for the entire collection can be generated from base forecasts made at any level of the hierarchy, and we illustrate more generally how simple robust combined forecasts can be generated in any multivariate setting subject to linear constraints. In an empirical example, we show that simple combinations of such forecasts generate significant improvements in forecast accuracy where it matters most: where noise levels are highest and the forecasting task is at its most challenging. |
Author | Petropoulos, Fotios Tipping, Michael E. Hollyman, Ross |
Author_xml | – sequence: 1 givenname: Ross orcidid: 0000-0002-0535-0013 surname: Hollyman fullname: Hollyman, Ross email: rah98@bath.ac.uk organization: School of Management, University of Bath, United Kingdom – sequence: 2 givenname: Fotios surname: Petropoulos fullname: Petropoulos, Fotios email: f.petropoulos@bath.ac.uk organization: School of Management, University of Bath, United Kingdom – sequence: 3 givenname: Michael E. surname: Tipping fullname: Tipping, Michael E. email: mt821@bath.ac.uk organization: Institute for Mathematical Innovation, University of Bath, United Kingdom |
BookMark | eNp9kE1LxDAQhoOsYHf1D3jai8fWmXTbtOBFFr9gwYt7DtlkIik1kSQI_ntb15OHhRfeyzzDPLNkCx88MXaNUCFgeztUNIRYceBYwRxxxgrsBC_broUFK6AWouQcxQVbpjQAADbYFOxm7w3FlJU3zr-vbYikVcrrqYLXbnQqu-Av2blVY6Krv16x_ePD2_a53L0-vWzvd6XeQJ_LRhmruakFB6TaHlpeb7hGITrgvVUHshYJYdMJS9NI36OF5iCUqMGaCa5XjB_36hhSimTlZ3QfKn5LBDmLykHOonIWlTBHTFD3D9Iu_56do3LjafTuiNIk9eUoyqQdeU3GTQ_I0gR3Cv8BL1dwyA |
CitedBy_id | crossref_primary_10_1007_s11222_023_10343_y crossref_primary_10_1080_03610926_2024_2420246 crossref_primary_10_1002_for_3224 crossref_primary_10_1016_j_energy_2023_126794 crossref_primary_10_3390_stats7030039 crossref_primary_10_1016_j_eswa_2021_115102 crossref_primary_10_1016_j_ijforecast_2024_10_002 crossref_primary_10_1080_00207543_2023_2199435 crossref_primary_10_1016_j_ejor_2024_05_024 crossref_primary_10_1016_j_ijforecast_2022_03_004 crossref_primary_10_1016_j_apenergy_2024_124527 crossref_primary_10_1016_j_ijforecast_2022_11_005 crossref_primary_10_1016_j_ijforecast_2022_11_004 crossref_primary_10_1109_TASE_2024_3361651 crossref_primary_10_1016_j_ijforecast_2021_11_001 crossref_primary_10_1016_j_asoc_2021_107756 crossref_primary_10_1016_j_ijforecast_2023_04_003 crossref_primary_10_1016_j_ejor_2024_04_009 crossref_primary_10_1016_j_rineng_2024_102773 crossref_primary_10_2139_ssrn_3542278 crossref_primary_10_1016_j_eswa_2023_119565 crossref_primary_10_1016_j_eswa_2023_119566 crossref_primary_10_1016_j_ijforecast_2022_12_005 crossref_primary_10_2139_ssrn_3918315 crossref_primary_10_3390_a16040206 crossref_primary_10_1002_for_3075 crossref_primary_10_1016_j_apenergy_2024_122971 crossref_primary_10_1016_j_trc_2023_104410 crossref_primary_10_1080_14697688_2024_2412687 crossref_primary_10_1016_j_compind_2022_103803 crossref_primary_10_3390_forecast3030029 crossref_primary_10_1016_j_energy_2024_134097 crossref_primary_10_1007_s10489_025_06275_x crossref_primary_10_1016_j_ijforecast_2023_04_007 crossref_primary_10_1016_j_cie_2022_108651 crossref_primary_10_1016_j_ijforecast_2022_07_001 crossref_primary_10_1287_opre_2022_0113 crossref_primary_10_1016_j_ijforecast_2022_08_011 crossref_primary_10_1016_j_ejor_2022_11_035 crossref_primary_10_1016_j_apenergy_2023_121676 crossref_primary_10_2139_ssrn_4077875 crossref_primary_10_1002_wene_465 crossref_primary_10_1080_01605682_2023_2253852 crossref_primary_10_1016_j_ejor_2024_12_004 crossref_primary_10_1016_j_ijforecast_2023_12_004 crossref_primary_10_1016_j_ijforecast_2024_05_008 crossref_primary_10_1007_s43069_025_00424_1 crossref_primary_10_1016_j_ijforecast_2023_10_010 crossref_primary_10_1016_j_seps_2022_101298 |
Cites_doi | 10.1080/10618600.2016.1237877 10.1080/01621459.1988.10478694 10.1016/j.tre.2017.10.012 10.1016/j.ijforecast.2006.03.001 10.1080/01621459.2018.1448825 10.1057/jors.1969.103 10.1016/j.apenergy.2019.114339 10.3386/w20573 10.1016/j.csda.2011.03.006 10.1198/016214502388618960 10.1016/j.ijforecast.2008.07.004 10.3905/jfds.2019.1.3.009 10.1016/j.ejor.2017.02.046 10.1016/j.ijforecast.2016.02.005 10.1371/journal.pone.0223422 10.1016/j.ejor.2017.04.047 10.1080/01621459.1993.10476353 10.1016/0169-2070(90)90028-A 10.1016/j.ijforecast.2013.02.005 10.1016/j.ejor.2019.07.061 10.1007/s12197-012-9234-y 10.1016/j.ijforecast.2019.02.011 10.1016/j.jedc.2015.03.004 10.1016/j.ijpe.2018.05.019 10.1016/j.ijforecast.2015.07.002 10.2469/faj.v48.n5.28 10.1002/for.3980030207 10.1016/j.annals.2019.02.001 10.1093/biomet/asq017 10.1093/rfs/hhp063 10.1016/j.ejor.2019.05.020 10.1016/j.ijforecast.2019.01.006 10.1007/s11113-016-9413-1 10.1016/S0169-2070(00)00066-2 10.1016/j.ejor.2018.01.045 10.1016/j.csda.2015.11.007 10.1098/rsif.2018.0572 10.1002/for.928 10.1016/j.ijforecast.2010.04.006 10.1016/j.eneco.2011.12.001 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ejor.2021.01.017 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Business |
EISSN | 1872-6860 |
EndPage | 160 |
ExternalDocumentID | 10_1016_j_ejor_2021_01_017 S0377221721000199 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ AAAKG AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH VH1 WUQ |
ID | FETCH-LOGICAL-c409t-5adfc2d37201e3fb62342c1778029fabeff1e10487fe201991f05b7a730fd5ad3 |
IEDL.DBID | .~1 |
ISSN | 0377-2217 |
IngestDate | Tue Jul 01 03:28:07 EDT 2025 Thu Apr 24 23:08:38 EDT 2025 Fri Feb 23 02:41:48 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Forecast combinations Hierarchies Unbiasedness Top-down Forecasting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-5adfc2d37201e3fb62342c1778029fabeff1e10487fe201991f05b7a730fd5ad3 |
ORCID | 0000-0002-0535-0013 |
OpenAccessLink | https://researchportal.bath.ac.uk/en/publications/93655123-d51a-4da3-9915-54993863d224 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_ejor_2021_01_017 crossref_citationtrail_10_1016_j_ejor_2021_01_017 elsevier_sciencedirect_doi_10_1016_j_ejor_2021_01_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | European journal of operational research |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Black (bib0011) 1992; 48 Kourentzes, Barrow, Petropoulos (bib0029) 2019; 209 Spiliotis, Petropoulos, Assimakopoulos (bib0044) 2019; 14 Stock (bib0046) 2002; 97 Hyndman, Lee, Wang (bib0025) 2016; 97 Park, Nassar (bib0035) 2014 Pennings, van Dalen (bib0036) 2017; 263 Petropoulos, Svetunkov (bib0038) 2020; 36 Athanasopoulos, Ahmed, Hyndman (bib0003) 2009; 25 Rapach, Strauss, Tu, Zhou (bib0039) 2019; 1 Spiliotis, Petropoulos, Kourentzes, Assimakopoulos (bib0045) 2020; 261 Wickramasuriya, Athanasopoulos, Hyndman (bib0051) 2019; 114 George, McCulloch (bib0018) 1993; 88 Montero-Manso, Athanasopoulos, Hyndman, Talagala (bib0032) 2020; 36 Shang, Hyndman (bib0043) 2017; 26 Athanasopoulos, Hyndman, Kourentzes, Petropoulos (bib0005) 2017; 262 Ben Taieb, Taylor, Hyndman (bib0009) 2020; 0 Shang (bib0041) 2017; 36 Thomson, Jabbari, Taylor, Arlt, Smith (bib0050) 2019; 16 Bergmeir, Hyndman, Benítez (bib0010) 2016; 32 Rapach, Strauss, Zhou (bib0040) 2010; 23 Summers, L. H., & Pritchett, L. (2014). Asiaphoria meets regression to the mean. NBER Working Paper Series,. Hyndman, Ahmed, Athanasopoulos, Shang (bib0022) 2011; 55 Graefe, Armstrong, Jones Jr, Cuzán (bib0019) 2014; 30 Nystrup, Lindström, Pinson, Madsen (bib0033) 2020; 280 Elliott (bib0015) 2015; 54 Fiorucci, Pellegrini, Louzada, Petropoulos, Koehler (bib0017) 2016; 32 Bates, Granger (bib0007) 1969; 20 Stock, Watson (bib0047) 1998 Hyndman, Koehler (bib0024) 2006; 22 Miller, Gelman (bib0030) 2020; 35 Gurrola-Perez, Murphy (bib0021) 2015; Working Paper 525 Kourentzes, Athanasopoulos (bib0028) 2019; 75 Shang, Haberman (bib0042) 2017; 75 Bordignon, Bunn, Lisi, Nan (bib0012) 2013; 35 Mitchell, Beauchamp (bib0031) 1988; 83 Bansal, Strauss, Nasseh (bib0006) 2015; 39 Carvalho, Polson, Scott (bib0013) 2010; 97 Elliott, Timmermann (bib0016) 2013 Diebold, Pauly (bib0014) 1990; 6 Abouarghoub, Nomikos, Petropoulos (bib0001) 2018; 113 Ben Taieb, Taylor, Hyndman (bib0008) 2017 Hyndman, Athanasopoulos (bib0023) 2018 Petropoulos, Hyndman, Bergmeir (bib0037) 2018 Athanasopoulos, Gamakumara, Panagiotelis, Hyndman, Affan (bib0004) 2019 Jeon, Panagiotelis, Petropoulos (bib0026) 2019; 279 Kolassa (bib0027) 2011; 27 Stock, Watson (bib0048) 2004; 23 Granger, Ramanathan (bib0020) 1984; 3 Assimakopoulos, Nikolopoulos (bib0002) 2000; 16 Panagiotelis, Gamakumara, Athanasopoulos, Hyndman (bib0034) 2020 Abouarghoub (10.1016/j.ejor.2021.01.017_bib0001) 2018; 113 Graefe (10.1016/j.ejor.2021.01.017_bib0019) 2014; 30 Ben Taieb (10.1016/j.ejor.2021.01.017_bib0008) 2017 Elliott (10.1016/j.ejor.2021.01.017_bib0015) 2015; 54 Hyndman (10.1016/j.ejor.2021.01.017_bib0022) 2011; 55 Fiorucci (10.1016/j.ejor.2021.01.017_bib0017) 2016; 32 Panagiotelis (10.1016/j.ejor.2021.01.017_bib0034) 2020 10.1016/j.ejor.2021.01.017_bib0049 Bansal (10.1016/j.ejor.2021.01.017_bib0006) 2015; 39 Carvalho (10.1016/j.ejor.2021.01.017_bib0013) 2010; 97 Assimakopoulos (10.1016/j.ejor.2021.01.017_bib0002) 2000; 16 Shang (10.1016/j.ejor.2021.01.017_bib0042) 2017; 75 Stock (10.1016/j.ejor.2021.01.017_bib0047) 1998 Rapach (10.1016/j.ejor.2021.01.017_bib0039) 2019; 1 Bergmeir (10.1016/j.ejor.2021.01.017_bib0010) 2016; 32 Athanasopoulos (10.1016/j.ejor.2021.01.017_bib0004) 2019 George (10.1016/j.ejor.2021.01.017_bib0018) 1993; 88 Shang (10.1016/j.ejor.2021.01.017_bib0043) 2017; 26 Petropoulos (10.1016/j.ejor.2021.01.017_bib0038) 2020; 36 Athanasopoulos (10.1016/j.ejor.2021.01.017_bib0005) 2017; 262 Montero-Manso (10.1016/j.ejor.2021.01.017_bib0032) 2020; 36 Thomson (10.1016/j.ejor.2021.01.017_bib0050) 2019; 16 Hyndman (10.1016/j.ejor.2021.01.017_bib0024) 2006; 22 Hyndman (10.1016/j.ejor.2021.01.017_bib0025) 2016; 97 Gurrola-Perez (10.1016/j.ejor.2021.01.017_bib0021) 2015; Working Paper 525 Hyndman (10.1016/j.ejor.2021.01.017_bib0023) 2018 Pennings (10.1016/j.ejor.2021.01.017_bib0036) 2017; 263 Nystrup (10.1016/j.ejor.2021.01.017_bib0033) 2020; 280 Kourentzes (10.1016/j.ejor.2021.01.017_bib0029) 2019; 209 Park (10.1016/j.ejor.2021.01.017_bib0035) 2014 Elliott (10.1016/j.ejor.2021.01.017_bib0016) 2013 Spiliotis (10.1016/j.ejor.2021.01.017_bib0045) 2020; 261 Wickramasuriya (10.1016/j.ejor.2021.01.017_bib0051) 2019; 114 Athanasopoulos (10.1016/j.ejor.2021.01.017_bib0003) 2009; 25 Miller (10.1016/j.ejor.2021.01.017_bib0030) 2020; 35 Stock (10.1016/j.ejor.2021.01.017_bib0046) 2002; 97 Spiliotis (10.1016/j.ejor.2021.01.017_bib0044) 2019; 14 Bates (10.1016/j.ejor.2021.01.017_bib0007) 1969; 20 Black (10.1016/j.ejor.2021.01.017_bib0011) 1992; 48 Jeon (10.1016/j.ejor.2021.01.017_bib0026) 2019; 279 Bordignon (10.1016/j.ejor.2021.01.017_bib0012) 2013; 35 Granger (10.1016/j.ejor.2021.01.017_bib0020) 1984; 3 Ben Taieb (10.1016/j.ejor.2021.01.017_bib0009) 2020; 0 Kourentzes (10.1016/j.ejor.2021.01.017_bib0028) 2019; 75 Mitchell (10.1016/j.ejor.2021.01.017_bib0031) 1988; 83 Diebold (10.1016/j.ejor.2021.01.017_bib0014) 1990; 6 Petropoulos (10.1016/j.ejor.2021.01.017_bib0037) 2018 Rapach (10.1016/j.ejor.2021.01.017_bib0040) 2010; 23 Kolassa (10.1016/j.ejor.2021.01.017_bib0027) 2011; 27 Shang (10.1016/j.ejor.2021.01.017_bib0041) 2017; 36 Stock (10.1016/j.ejor.2021.01.017_bib0048) 2004; 23 |
References_xml | – volume: 27 start-page: 238 year: 2011 end-page: 251 ident: bib0027 article-title: Combining exponential smoothing forecasts using akaike weights publication-title: International Journal of Forecasting – volume: 30 start-page: 43 year: 2014 end-page: 54 ident: bib0019 article-title: Combining forecasts: An application to elections publication-title: International Journal of Forecasting – volume: 83 start-page: 1023 year: 1988 end-page: 1032 ident: bib0031 article-title: Bayesian variable selection in linear regression publication-title: Journal of the American Statistical Association – volume: 263 start-page: 412 year: 2017 end-page: 418 ident: bib0036 article-title: Integrated hierarchical forecasting publication-title: European Journal of Operational Research – volume: 23 start-page: 821 year: 2010 end-page: 862 ident: bib0040 article-title: Out-of-sample equity premium prediction: Combination forecasts and links to the real economy publication-title: Review of Financial Studies – volume: 20 start-page: 451 year: 1969 end-page: 468 ident: bib0007 article-title: The combination of forecasts publication-title: Journal of the Operational Research Society – volume: 16 year: 2019 ident: bib0050 article-title: Simultaneous parameter estimation and variable selection via the logit-normal continuous analogue of the spike-and-slab prior publication-title: Journal of the Royal Society Interface – volume: 0 start-page: 1 year: 2020 end-page: 17 ident: bib0009 article-title: Hierarchical probabilistic forecasting of electricity demand with smart meter data publication-title: Journal of the American Statistical Association – volume: 26 start-page: 330 year: 2017 end-page: 343 ident: bib0043 article-title: Grouped functional time series forecasting: An application to age-specific mortality rates publication-title: Journal of Computational and Graphical Statistics – year: 2019 ident: bib0004 article-title: Hierarchical forecasting publication-title: IDEAS Working Paper Series from RePEc – volume: 22 start-page: 679 year: 2006 end-page: 688 ident: bib0024 article-title: Another look at measures of forecast accuracy publication-title: International Journal of Forecasting – volume: 48 start-page: 28 year: 1992 end-page: 44 ident: bib0011 article-title: Global portfolio optimization publication-title: Financial Analysts Journal – volume: 32 start-page: 303 year: 2016 end-page: 312 ident: bib0010 article-title: Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation publication-title: International Journal of Forecasting – volume: 75 start-page: 393 year: 2019 end-page: 409 ident: bib0028 article-title: Cross-temporal coherent forecasts for australian tourism publication-title: Annals of Tourism Research – year: 2018 ident: bib0037 article-title: Exploring the sources of uncertainty: Why does bagging for time series forecasting work? publication-title: European Journal of Operational Research – volume: 88 start-page: 881 year: 1993 end-page: 890 ident: bib0018 article-title: Variable selection via Gibbs sampling publication-title: Journal of the American Statistical Association – volume: 1 start-page: 9 year: 2019 end-page: 28 ident: bib0039 article-title: Industry return predictability: A machine learning approach publication-title: The Journal of Financial Data Science – volume: 279 start-page: 364 year: 2019 end-page: 379 ident: bib0026 article-title: Probabilistic forecast reconciliation with applications to wind power and electric load publication-title: European Journal of Operational Research – volume: 75 start-page: 166 year: 2017 end-page: 179 ident: bib0042 article-title: Grouped multivariate and functional time series forecasting:an application to annuity pricing publication-title: Insurance: Mathematics and Economics – volume: 14 start-page: e0223422 year: 2019 ident: bib0044 article-title: Improving the forecasting performance of temporal hierarchies publication-title: PloS one – volume: 97 start-page: 1167 year: 2002 end-page: 1180 ident: bib0046 article-title: Forecasting using principal components from a large number of predictors publication-title: Journal of the American Statistical Association – year: 2014 ident: bib0035 article-title: Variational bayesian inference for forecasting hierarchical time series – start-page: 3348 year: 2017 end-page: 3357 ident: bib0008 article-title: Coherent probabilistic forecasts for hierarchical time series publication-title: Proceedings of the 34th International Conference on Machine Learning – volume: 36 start-page: 110 year: 2020 end-page: 115 ident: bib0038 article-title: A simple combination of univariate models publication-title: International Journal of Forecasting – year: 1998 ident: bib0047 article-title: A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series publication-title: NBER Working Papers – volume: 114 start-page: 804 year: 2019 end-page: 819 ident: bib0051 article-title: Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization publication-title: Journal of the American Statistical Association – volume: 280 start-page: 876 year: 2020 end-page: 888 ident: bib0033 article-title: Temporal hierarchies with autocorrelation for load forecasting publication-title: European Journal of Operational Research – volume: 6 start-page: 503 year: 1990 end-page: 508 ident: bib0014 article-title: The use of prior information in forecast combination publication-title: International Journal of Forecasting – volume: 261 start-page: 114339 year: 2020 ident: bib0045 article-title: Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption publication-title: Applied energy – reference: Summers, L. H., & Pritchett, L. (2014). Asiaphoria meets regression to the mean. NBER Working Paper Series,. – volume: 54 start-page: 86 year: 2015 end-page: 111 ident: bib0015 article-title: Complete subset regressions with large-dimensional sets of predictors. publication-title: Journal of Economic Dynamics & Control – volume: 262 start-page: 60 year: 2017 end-page: 74 ident: bib0005 article-title: Forecasting with temporal hierarchies publication-title: European Journal of Operational Research – volume: 3 start-page: 197 year: 1984 end-page: 204 ident: bib0020 article-title: Improved methods of combining forecasts publication-title: Journal of Forecasting – year: 2018 ident: bib0023 article-title: Forecasting: principles and practice – volume: 113 start-page: 225 year: 2018 end-page: 238 ident: bib0001 article-title: On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry publication-title: Transportation Research Part E: Logistics and Transportation Review – volume: 55 start-page: 2579 year: 2011 end-page: 2589 ident: bib0022 article-title: Optimal combination forecasts for hierarchical time series publication-title: Computational Statistics and Data Analysis – volume: 23 start-page: 405 year: 2004 end-page: 430 ident: bib0048 article-title: Combination forecasts of output growth in a seven-country data set publication-title: Journal of Forecasting – volume: 39 start-page: 1 year: 2015 end-page: 22 ident: bib0006 article-title: Can we consistently forecast a firms earnings? using combination forecast methods to predict the eps of dow firms publication-title: Journal of Economics and Finance – volume: 97 start-page: 16 year: 2016 end-page: 32 ident: bib0025 article-title: Fast computation of reconciled forecasts for hierarchical and grouped time series publication-title: Computational Statistics and Data Analysis – volume: 36 start-page: 55 year: 2017 end-page: 84 ident: bib0041 article-title: Reconciling forecasts of infant mortality rates at national and sub-national levels: Grouped time-series methods publication-title: Population Research and Policy Review – year: 2013 ident: bib0016 article-title: Handbook of economic forecasting – volume: Working Paper 525 start-page: 1 year: 2015 end-page: 33 ident: bib0021 article-title: Filtered historical simulation value-at-risk models and their competitors publication-title: Bank of England. Quarterly Bulletin – volume: 36 start-page: 86 year: 2020 end-page: 92 ident: bib0032 article-title: FFORMA: Feature-based forecast model averaging publication-title: International Journal of Forecasting – volume: 35 start-page: 159 year: 2020 end-page: 170 ident: bib0030 article-title: Laplaces theories of cognitive illusions, heuristics and biases publication-title: Statistical science – volume: 97 start-page: 465 year: 2010 end-page: 480 ident: bib0013 article-title: The horseshoe estimator for sparse signals publication-title: Biometrika – volume: 35 start-page: 88 year: 2013 end-page: 103 ident: bib0012 article-title: Combining day-ahead forecasts for british electricity prices publication-title: Energy Economics – year: 2020 ident: bib0034 article-title: Forecast reconciliation: A geometric view with new insights on bias correction publication-title: International Journal of Forecatsing, To Appear – volume: 32 start-page: 1151 year: 2016 end-page: 1161 ident: bib0017 article-title: Models for optimising the theta method and their relationship to state space models publication-title: International Journal of Forecasting – volume: 209 start-page: 226 year: 2019 end-page: 235 ident: bib0029 article-title: Another look at forecast selection and combination: Evidence from forecast pooling publication-title: International Journal of Production Economics – volume: 16 start-page: 521 year: 2000 end-page: 530 ident: bib0002 article-title: The Theta model: a decomposition approach to forecasting publication-title: International Journal of Forecasting – volume: 25 start-page: 146 year: 2009 end-page: 166 ident: bib0003 article-title: Hierarchical forecasts for australian domestic tourism publication-title: International Journal of Forecasting – year: 2014 ident: 10.1016/j.ejor.2021.01.017_bib0035 – volume: 35 start-page: 159 issue: 2 year: 2020 ident: 10.1016/j.ejor.2021.01.017_bib0030 article-title: Laplaces theories of cognitive illusions, heuristics and biases publication-title: Statistical science – volume: 26 start-page: 330 issue: 2 year: 2017 ident: 10.1016/j.ejor.2021.01.017_bib0043 article-title: Grouped functional time series forecasting: An application to age-specific mortality rates publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2016.1237877 – volume: 83 start-page: 1023 issue: 404 year: 1988 ident: 10.1016/j.ejor.2021.01.017_bib0031 article-title: Bayesian variable selection in linear regression publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1988.10478694 – volume: 113 start-page: 225 year: 2018 ident: 10.1016/j.ejor.2021.01.017_bib0001 article-title: On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry publication-title: Transportation Research Part E: Logistics and Transportation Review doi: 10.1016/j.tre.2017.10.012 – start-page: 3348 year: 2017 ident: 10.1016/j.ejor.2021.01.017_bib0008 article-title: Coherent probabilistic forecasts for hierarchical time series publication-title: Proceedings of the 34th International Conference on Machine Learning – year: 1998 ident: 10.1016/j.ejor.2021.01.017_bib0047 article-title: A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series – volume: 22 start-page: 679 issue: 4 year: 2006 ident: 10.1016/j.ejor.2021.01.017_bib0024 article-title: Another look at measures of forecast accuracy publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2006.03.001 – volume: 114 start-page: 804 issue: 526 year: 2019 ident: 10.1016/j.ejor.2021.01.017_bib0051 article-title: Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.2018.1448825 – volume: 20 start-page: 451 issue: 4 year: 1969 ident: 10.1016/j.ejor.2021.01.017_bib0007 article-title: The combination of forecasts publication-title: Journal of the Operational Research Society doi: 10.1057/jors.1969.103 – volume: 261 start-page: 114339 year: 2020 ident: 10.1016/j.ejor.2021.01.017_bib0045 article-title: Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption publication-title: Applied energy doi: 10.1016/j.apenergy.2019.114339 – ident: 10.1016/j.ejor.2021.01.017_bib0049 doi: 10.3386/w20573 – volume: 55 start-page: 2579 issue: 9 year: 2011 ident: 10.1016/j.ejor.2021.01.017_bib0022 article-title: Optimal combination forecasts for hierarchical time series publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2011.03.006 – volume: 97 start-page: 1167 issue: 460 year: 2002 ident: 10.1016/j.ejor.2021.01.017_bib0046 article-title: Forecasting using principal components from a large number of predictors publication-title: Journal of the American Statistical Association doi: 10.1198/016214502388618960 – volume: 25 start-page: 146 issue: 1 year: 2009 ident: 10.1016/j.ejor.2021.01.017_bib0003 article-title: Hierarchical forecasts for australian domestic tourism publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2008.07.004 – volume: 1 start-page: 9 issue: 3 year: 2019 ident: 10.1016/j.ejor.2021.01.017_bib0039 article-title: Industry return predictability: A machine learning approach publication-title: The Journal of Financial Data Science doi: 10.3905/jfds.2019.1.3.009 – volume: 262 start-page: 60 issue: 1 year: 2017 ident: 10.1016/j.ejor.2021.01.017_bib0005 article-title: Forecasting with temporal hierarchies publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2017.02.046 – volume: 32 start-page: 1151 issue: 4 year: 2016 ident: 10.1016/j.ejor.2021.01.017_bib0017 article-title: Models for optimising the theta method and their relationship to state space models publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2016.02.005 – volume: 14 start-page: e0223422 issue: 10 year: 2019 ident: 10.1016/j.ejor.2021.01.017_bib0044 article-title: Improving the forecasting performance of temporal hierarchies publication-title: PloS one doi: 10.1371/journal.pone.0223422 – volume: 263 start-page: 412 issue: 2 year: 2017 ident: 10.1016/j.ejor.2021.01.017_bib0036 article-title: Integrated hierarchical forecasting publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2017.04.047 – volume: 88 start-page: 881 issue: 423 year: 1993 ident: 10.1016/j.ejor.2021.01.017_bib0018 article-title: Variable selection via Gibbs sampling publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1993.10476353 – volume: 6 start-page: 503 issue: 4 year: 1990 ident: 10.1016/j.ejor.2021.01.017_bib0014 article-title: The use of prior information in forecast combination publication-title: International Journal of Forecasting doi: 10.1016/0169-2070(90)90028-A – volume: 30 start-page: 43 issue: 1 year: 2014 ident: 10.1016/j.ejor.2021.01.017_bib0019 article-title: Combining forecasts: An application to elections publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2013.02.005 – volume: 280 start-page: 876 issue: 3 year: 2020 ident: 10.1016/j.ejor.2021.01.017_bib0033 article-title: Temporal hierarchies with autocorrelation for load forecasting publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2019.07.061 – volume: 39 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.ejor.2021.01.017_bib0006 article-title: Can we consistently forecast a firms earnings? using combination forecast methods to predict the eps of dow firms publication-title: Journal of Economics and Finance doi: 10.1007/s12197-012-9234-y – volume: 36 start-page: 86 issue: 1 year: 2020 ident: 10.1016/j.ejor.2021.01.017_bib0032 article-title: FFORMA: Feature-based forecast model averaging publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2019.02.011 – volume: 75 start-page: 166 year: 2017 ident: 10.1016/j.ejor.2021.01.017_bib0042 article-title: Grouped multivariate and functional time series forecasting:an application to annuity pricing publication-title: Insurance: Mathematics and Economics – volume: 54 start-page: 86 year: 2015 ident: 10.1016/j.ejor.2021.01.017_bib0015 article-title: Complete subset regressions with large-dimensional sets of predictors. publication-title: Journal of Economic Dynamics & Control doi: 10.1016/j.jedc.2015.03.004 – volume: 209 start-page: 226 year: 2019 ident: 10.1016/j.ejor.2021.01.017_bib0029 article-title: Another look at forecast selection and combination: Evidence from forecast pooling publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2018.05.019 – year: 2013 ident: 10.1016/j.ejor.2021.01.017_bib0016 – volume: 32 start-page: 303 issue: 2 year: 2016 ident: 10.1016/j.ejor.2021.01.017_bib0010 article-title: Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2015.07.002 – year: 2019 ident: 10.1016/j.ejor.2021.01.017_bib0004 article-title: Hierarchical forecasting publication-title: IDEAS Working Paper Series from RePEc – volume: 0 start-page: 1 issue: 0 year: 2020 ident: 10.1016/j.ejor.2021.01.017_bib0009 article-title: Hierarchical probabilistic forecasting of electricity demand with smart meter data publication-title: Journal of the American Statistical Association – volume: Working Paper 525 start-page: 1 year: 2015 ident: 10.1016/j.ejor.2021.01.017_bib0021 article-title: Filtered historical simulation value-at-risk models and their competitors publication-title: Bank of England. Quarterly Bulletin – volume: 48 start-page: 28 issue: 5 year: 1992 ident: 10.1016/j.ejor.2021.01.017_bib0011 article-title: Global portfolio optimization publication-title: Financial Analysts Journal doi: 10.2469/faj.v48.n5.28 – volume: 3 start-page: 197 issue: 2 year: 1984 ident: 10.1016/j.ejor.2021.01.017_bib0020 article-title: Improved methods of combining forecasts publication-title: Journal of Forecasting doi: 10.1002/for.3980030207 – volume: 75 start-page: 393 year: 2019 ident: 10.1016/j.ejor.2021.01.017_bib0028 article-title: Cross-temporal coherent forecasts for australian tourism publication-title: Annals of Tourism Research doi: 10.1016/j.annals.2019.02.001 – volume: 97 start-page: 465 issue: 2 year: 2010 ident: 10.1016/j.ejor.2021.01.017_bib0013 article-title: The horseshoe estimator for sparse signals publication-title: Biometrika doi: 10.1093/biomet/asq017 – volume: 23 start-page: 821 issue: 2 year: 2010 ident: 10.1016/j.ejor.2021.01.017_bib0040 article-title: Out-of-sample equity premium prediction: Combination forecasts and links to the real economy publication-title: Review of Financial Studies doi: 10.1093/rfs/hhp063 – volume: 279 start-page: 364 issue: 2 year: 2019 ident: 10.1016/j.ejor.2021.01.017_bib0026 article-title: Probabilistic forecast reconciliation with applications to wind power and electric load publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2019.05.020 – volume: 36 start-page: 110 issue: 1 year: 2020 ident: 10.1016/j.ejor.2021.01.017_bib0038 article-title: A simple combination of univariate models publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2019.01.006 – volume: 36 start-page: 55 issue: 1 year: 2017 ident: 10.1016/j.ejor.2021.01.017_bib0041 article-title: Reconciling forecasts of infant mortality rates at national and sub-national levels: Grouped time-series methods publication-title: Population Research and Policy Review doi: 10.1007/s11113-016-9413-1 – volume: 16 start-page: 521 issue: 4 year: 2000 ident: 10.1016/j.ejor.2021.01.017_bib0002 article-title: The Theta model: a decomposition approach to forecasting publication-title: International Journal of Forecasting doi: 10.1016/S0169-2070(00)00066-2 – year: 2020 ident: 10.1016/j.ejor.2021.01.017_bib0034 article-title: Forecast reconciliation: A geometric view with new insights on bias correction publication-title: International Journal of Forecatsing, To Appear – year: 2018 ident: 10.1016/j.ejor.2021.01.017_bib0037 article-title: Exploring the sources of uncertainty: Why does bagging for time series forecasting work? publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2018.01.045 – year: 2018 ident: 10.1016/j.ejor.2021.01.017_bib0023 – volume: 97 start-page: 16 year: 2016 ident: 10.1016/j.ejor.2021.01.017_bib0025 article-title: Fast computation of reconciled forecasts for hierarchical and grouped time series publication-title: Computational Statistics and Data Analysis doi: 10.1016/j.csda.2015.11.007 – volume: 16 issue: 150 year: 2019 ident: 10.1016/j.ejor.2021.01.017_bib0050 article-title: Simultaneous parameter estimation and variable selection via the logit-normal continuous analogue of the spike-and-slab prior publication-title: Journal of the Royal Society Interface doi: 10.1098/rsif.2018.0572 – volume: 23 start-page: 405 issue: 6 year: 2004 ident: 10.1016/j.ejor.2021.01.017_bib0048 article-title: Combination forecasts of output growth in a seven-country data set publication-title: Journal of Forecasting doi: 10.1002/for.928 – volume: 27 start-page: 238 issue: 2 year: 2011 ident: 10.1016/j.ejor.2021.01.017_bib0027 article-title: Combining exponential smoothing forecasts using akaike weights publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2010.04.006 – volume: 35 start-page: 88 year: 2013 ident: 10.1016/j.ejor.2021.01.017_bib0012 article-title: Combining day-ahead forecasts for british electricity prices publication-title: Energy Economics doi: 10.1016/j.eneco.2011.12.001 |
SSID | ssj0001515 |
Score | 2.550686 |
Snippet | •We relate recent literature on Forecast Reconciliation to the extensive body of work on Forecast Combination.•We demonstrate how the linear constraints which... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 149 |
SubjectTerms | Forecast combinations Forecasting Hierarchies Top-down Unbiasedness |
Title | Understanding forecast reconciliation |
URI | https://dx.doi.org/10.1016/j.ejor.2021.01.017 |
Volume | 294 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MCaIHP6bi_Bg96Enimixt2uMYjqm4iw52K0mawMbYhtarf7t5baoTxIPQS0oelN9L3gd97_0ArmxoUxlqReIejwkXipNUc0USyXKbxlLHGhPFp3E8mvCHaTRtwKDuhcGySm_7K5teWmv_puvR7K5ns-5z2HORIfIr0TJQwSY-zgWe8tuP7zIPdNjlnwQhCO72jTNVjZeZr3AmKKPl6M6StOwX57ThcIYHsOcjxaBffcwhNMyyBdt1oXoL9mtChsDfzxbsbkwXPILryWbjSuCiU6PlWxGUObCeLSqlHMNkePcyGBHPikC0y8UKEsncapYjuww1Patc_MKZpkIkIUutVMZaalySlQhrGOJCbRgpId1VtrkT7p1Ac7lamlMIlM4dPNSmOlEuDWFSp7Fmljn9RaEWtA20hiPTfmQ4Mlcssro2bJ4hhBlCmIX4iDbcfMmsq4EZf-6OapSzH2rPnEX_Q-7sn3LnsIOrqhrvAprF67u5dFFFoTrlsenAVv_-cTT-BP9nyvc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qBR8HH1WxPnPQk6zNbh6bHKVYqra92EJvy-5mF1pKWzRe_e3uJhutID0IOSU7EL7JvMjMfAA32tcp96VAcRDGKKQiRKkMBUo4yXQacxlLWyj2B3F3FD6Po3EN2tUsjG2rdL6_9OmFt3Z3Wg7N1nIyab36gckMLb8SLhKVdAM2Q2O-lsbg_vOnz8NG7OJXAqXIHneTM2WTl5ou7FJQgovdnQVr2R_RaSXidA5gz6WK3kP5NodQU_MGbFWd6g3YrxgZPGegDdhdWS94BLej1ckVz6SnSvL33CuKYDmZlVo5hlHncdjuIkeLgKQpxnIU8UxLkll6GawCLUwCExKJKU18kmoulNZYmSoroVoRCwzWfiQoN7asMyMcnEB9vpirU_CEzAw8WKcyEaYOIVymsSSaGAVGvqS4CbiCg0m3M9xSV8xY1Rw2ZRZCZiFkvr1oE-6-ZZblxoy1p6MKZfZL78y49DVyZ_-Uu4bt7rDfY72nwcs57NgnZWveBdTztw91aVKMXFwVn9AX2BTMhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+forecast+reconciliation&rft.jtitle=European+journal+of+operational+research&rft.au=Hollyman%2C+Ross&rft.au=Petropoulos%2C+Fotios&rft.au=Tipping%2C+Michael+E.&rft.date=2021-10-01&rft.issn=0377-2217&rft.volume=294&rft.issue=1&rft.spage=149&rft.epage=160&rft_id=info:doi/10.1016%2Fj.ejor.2021.01.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2021_01_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |