Understanding forecast reconciliation

•We relate recent literature on Forecast Reconciliation to the extensive body of work on Forecast Combination.•We demonstrate how the linear constraints which naturally apply to the data can be used to generate indirect forecasts of each time-series. These are then combined with direct forecasts to...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of operational research Vol. 294; no. 1; pp. 149 - 160
Main Authors Hollyman, Ross, Petropoulos, Fotios, Tipping, Michael E.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We relate recent literature on Forecast Reconciliation to the extensive body of work on Forecast Combination.•We demonstrate how the linear constraints which naturally apply to the data can be used to generate indirect forecasts of each time-series. These are then combined with direct forecasts to improve forecast accuracy.•The techniques described are generally applicable beyond the hierarchical setting and can improve forecast accuracy in any multivariate forecasting scenario where time-series are subject to linear constraints.•We demonstrate significant improvements in forecast accuracy in the noisiest and hardest to forecast time-series. A series of recent papers introduce the concept of Forecast Reconciliation, a process by which independently generated forecasts of a collection of linearly related time series are reconciled via the introduction of accounting aggregations that naturally apply to the data. Aside from its clear presentational and operational virtues, the reconciliation approach generally improves the accuracy of the combined forecasts. In this paper, we examine the mechanisms by which this improvement is generated by re-formulating the reconciliation problem as a combination of direct forecasts of each time series with additional indirect forecasts derived from the linear constraints. Our work establishes a direct link between the nascent Forecast Reconciliation literature and the extensive work on Forecast Combination. In the original hierarchical setting, our approach clarifies for the first time how unbiased forecasts for the entire collection can be generated from base forecasts made at any level of the hierarchy, and we illustrate more generally how simple robust combined forecasts can be generated in any multivariate setting subject to linear constraints. In an empirical example, we show that simple combinations of such forecasts generate significant improvements in forecast accuracy where it matters most: where noise levels are highest and the forecasting task is at its most challenging.
AbstractList •We relate recent literature on Forecast Reconciliation to the extensive body of work on Forecast Combination.•We demonstrate how the linear constraints which naturally apply to the data can be used to generate indirect forecasts of each time-series. These are then combined with direct forecasts to improve forecast accuracy.•The techniques described are generally applicable beyond the hierarchical setting and can improve forecast accuracy in any multivariate forecasting scenario where time-series are subject to linear constraints.•We demonstrate significant improvements in forecast accuracy in the noisiest and hardest to forecast time-series. A series of recent papers introduce the concept of Forecast Reconciliation, a process by which independently generated forecasts of a collection of linearly related time series are reconciled via the introduction of accounting aggregations that naturally apply to the data. Aside from its clear presentational and operational virtues, the reconciliation approach generally improves the accuracy of the combined forecasts. In this paper, we examine the mechanisms by which this improvement is generated by re-formulating the reconciliation problem as a combination of direct forecasts of each time series with additional indirect forecasts derived from the linear constraints. Our work establishes a direct link between the nascent Forecast Reconciliation literature and the extensive work on Forecast Combination. In the original hierarchical setting, our approach clarifies for the first time how unbiased forecasts for the entire collection can be generated from base forecasts made at any level of the hierarchy, and we illustrate more generally how simple robust combined forecasts can be generated in any multivariate setting subject to linear constraints. In an empirical example, we show that simple combinations of such forecasts generate significant improvements in forecast accuracy where it matters most: where noise levels are highest and the forecasting task is at its most challenging.
Author Petropoulos, Fotios
Tipping, Michael E.
Hollyman, Ross
Author_xml – sequence: 1
  givenname: Ross
  orcidid: 0000-0002-0535-0013
  surname: Hollyman
  fullname: Hollyman, Ross
  email: rah98@bath.ac.uk
  organization: School of Management, University of Bath, United Kingdom
– sequence: 2
  givenname: Fotios
  surname: Petropoulos
  fullname: Petropoulos, Fotios
  email: f.petropoulos@bath.ac.uk
  organization: School of Management, University of Bath, United Kingdom
– sequence: 3
  givenname: Michael E.
  surname: Tipping
  fullname: Tipping, Michael E.
  email: mt821@bath.ac.uk
  organization: Institute for Mathematical Innovation, University of Bath, United Kingdom
BookMark eNp9kE1LxDAQhoOsYHf1D3jai8fWmXTbtOBFFr9gwYt7DtlkIik1kSQI_ntb15OHhRfeyzzDPLNkCx88MXaNUCFgeztUNIRYceBYwRxxxgrsBC_broUFK6AWouQcxQVbpjQAADbYFOxm7w3FlJU3zr-vbYikVcrrqYLXbnQqu-Av2blVY6Krv16x_ePD2_a53L0-vWzvd6XeQJ_LRhmruakFB6TaHlpeb7hGITrgvVUHshYJYdMJS9NI36OF5iCUqMGaCa5XjB_36hhSimTlZ3QfKn5LBDmLykHOonIWlTBHTFD3D9Iu_56do3LjafTuiNIk9eUoyqQdeU3GTQ_I0gR3Cv8BL1dwyA
CitedBy_id crossref_primary_10_1007_s11222_023_10343_y
crossref_primary_10_1080_03610926_2024_2420246
crossref_primary_10_1002_for_3224
crossref_primary_10_1016_j_energy_2023_126794
crossref_primary_10_3390_stats7030039
crossref_primary_10_1016_j_eswa_2021_115102
crossref_primary_10_1016_j_ijforecast_2024_10_002
crossref_primary_10_1080_00207543_2023_2199435
crossref_primary_10_1016_j_ejor_2024_05_024
crossref_primary_10_1016_j_ijforecast_2022_03_004
crossref_primary_10_1016_j_apenergy_2024_124527
crossref_primary_10_1016_j_ijforecast_2022_11_005
crossref_primary_10_1016_j_ijforecast_2022_11_004
crossref_primary_10_1109_TASE_2024_3361651
crossref_primary_10_1016_j_ijforecast_2021_11_001
crossref_primary_10_1016_j_asoc_2021_107756
crossref_primary_10_1016_j_ijforecast_2023_04_003
crossref_primary_10_1016_j_ejor_2024_04_009
crossref_primary_10_1016_j_rineng_2024_102773
crossref_primary_10_2139_ssrn_3542278
crossref_primary_10_1016_j_eswa_2023_119565
crossref_primary_10_1016_j_eswa_2023_119566
crossref_primary_10_1016_j_ijforecast_2022_12_005
crossref_primary_10_2139_ssrn_3918315
crossref_primary_10_3390_a16040206
crossref_primary_10_1002_for_3075
crossref_primary_10_1016_j_apenergy_2024_122971
crossref_primary_10_1016_j_trc_2023_104410
crossref_primary_10_1080_14697688_2024_2412687
crossref_primary_10_1016_j_compind_2022_103803
crossref_primary_10_3390_forecast3030029
crossref_primary_10_1016_j_energy_2024_134097
crossref_primary_10_1007_s10489_025_06275_x
crossref_primary_10_1016_j_ijforecast_2023_04_007
crossref_primary_10_1016_j_cie_2022_108651
crossref_primary_10_1016_j_ijforecast_2022_07_001
crossref_primary_10_1287_opre_2022_0113
crossref_primary_10_1016_j_ijforecast_2022_08_011
crossref_primary_10_1016_j_ejor_2022_11_035
crossref_primary_10_1016_j_apenergy_2023_121676
crossref_primary_10_2139_ssrn_4077875
crossref_primary_10_1002_wene_465
crossref_primary_10_1080_01605682_2023_2253852
crossref_primary_10_1016_j_ejor_2024_12_004
crossref_primary_10_1016_j_ijforecast_2023_12_004
crossref_primary_10_1016_j_ijforecast_2024_05_008
crossref_primary_10_1007_s43069_025_00424_1
crossref_primary_10_1016_j_ijforecast_2023_10_010
crossref_primary_10_1016_j_seps_2022_101298
Cites_doi 10.1080/10618600.2016.1237877
10.1080/01621459.1988.10478694
10.1016/j.tre.2017.10.012
10.1016/j.ijforecast.2006.03.001
10.1080/01621459.2018.1448825
10.1057/jors.1969.103
10.1016/j.apenergy.2019.114339
10.3386/w20573
10.1016/j.csda.2011.03.006
10.1198/016214502388618960
10.1016/j.ijforecast.2008.07.004
10.3905/jfds.2019.1.3.009
10.1016/j.ejor.2017.02.046
10.1016/j.ijforecast.2016.02.005
10.1371/journal.pone.0223422
10.1016/j.ejor.2017.04.047
10.1080/01621459.1993.10476353
10.1016/0169-2070(90)90028-A
10.1016/j.ijforecast.2013.02.005
10.1016/j.ejor.2019.07.061
10.1007/s12197-012-9234-y
10.1016/j.ijforecast.2019.02.011
10.1016/j.jedc.2015.03.004
10.1016/j.ijpe.2018.05.019
10.1016/j.ijforecast.2015.07.002
10.2469/faj.v48.n5.28
10.1002/for.3980030207
10.1016/j.annals.2019.02.001
10.1093/biomet/asq017
10.1093/rfs/hhp063
10.1016/j.ejor.2019.05.020
10.1016/j.ijforecast.2019.01.006
10.1007/s11113-016-9413-1
10.1016/S0169-2070(00)00066-2
10.1016/j.ejor.2018.01.045
10.1016/j.csda.2015.11.007
10.1098/rsif.2018.0572
10.1002/for.928
10.1016/j.ijforecast.2010.04.006
10.1016/j.eneco.2011.12.001
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ejor.2021.01.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 160
ExternalDocumentID 10_1016_j_ejor_2021_01_017
S0377221721000199
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
AAAKG
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
VH1
WUQ
ID FETCH-LOGICAL-c409t-5adfc2d37201e3fb62342c1778029fabeff1e10487fe201991f05b7a730fd5ad3
IEDL.DBID .~1
ISSN 0377-2217
IngestDate Tue Jul 01 03:28:07 EDT 2025
Thu Apr 24 23:08:38 EDT 2025
Fri Feb 23 02:41:48 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Forecast combinations
Hierarchies
Unbiasedness
Top-down
Forecasting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-5adfc2d37201e3fb62342c1778029fabeff1e10487fe201991f05b7a730fd5ad3
ORCID 0000-0002-0535-0013
OpenAccessLink https://researchportal.bath.ac.uk/en/publications/93655123-d51a-4da3-9915-54993863d224
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_ejor_2021_01_017
crossref_citationtrail_10_1016_j_ejor_2021_01_017
elsevier_sciencedirect_doi_10_1016_j_ejor_2021_01_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationTitle European journal of operational research
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Black (bib0011) 1992; 48
Kourentzes, Barrow, Petropoulos (bib0029) 2019; 209
Spiliotis, Petropoulos, Assimakopoulos (bib0044) 2019; 14
Stock (bib0046) 2002; 97
Hyndman, Lee, Wang (bib0025) 2016; 97
Park, Nassar (bib0035) 2014
Pennings, van Dalen (bib0036) 2017; 263
Petropoulos, Svetunkov (bib0038) 2020; 36
Athanasopoulos, Ahmed, Hyndman (bib0003) 2009; 25
Rapach, Strauss, Tu, Zhou (bib0039) 2019; 1
Spiliotis, Petropoulos, Kourentzes, Assimakopoulos (bib0045) 2020; 261
Wickramasuriya, Athanasopoulos, Hyndman (bib0051) 2019; 114
George, McCulloch (bib0018) 1993; 88
Montero-Manso, Athanasopoulos, Hyndman, Talagala (bib0032) 2020; 36
Shang, Hyndman (bib0043) 2017; 26
Athanasopoulos, Hyndman, Kourentzes, Petropoulos (bib0005) 2017; 262
Ben Taieb, Taylor, Hyndman (bib0009) 2020; 0
Shang (bib0041) 2017; 36
Thomson, Jabbari, Taylor, Arlt, Smith (bib0050) 2019; 16
Bergmeir, Hyndman, Benítez (bib0010) 2016; 32
Rapach, Strauss, Zhou (bib0040) 2010; 23
Summers, L. H., & Pritchett, L. (2014). Asiaphoria meets regression to the mean. NBER Working Paper Series,.
Hyndman, Ahmed, Athanasopoulos, Shang (bib0022) 2011; 55
Graefe, Armstrong, Jones Jr, Cuzán (bib0019) 2014; 30
Nystrup, Lindström, Pinson, Madsen (bib0033) 2020; 280
Elliott (bib0015) 2015; 54
Fiorucci, Pellegrini, Louzada, Petropoulos, Koehler (bib0017) 2016; 32
Bates, Granger (bib0007) 1969; 20
Stock, Watson (bib0047) 1998
Hyndman, Koehler (bib0024) 2006; 22
Miller, Gelman (bib0030) 2020; 35
Gurrola-Perez, Murphy (bib0021) 2015; Working Paper 525
Kourentzes, Athanasopoulos (bib0028) 2019; 75
Shang, Haberman (bib0042) 2017; 75
Bordignon, Bunn, Lisi, Nan (bib0012) 2013; 35
Mitchell, Beauchamp (bib0031) 1988; 83
Bansal, Strauss, Nasseh (bib0006) 2015; 39
Carvalho, Polson, Scott (bib0013) 2010; 97
Elliott, Timmermann (bib0016) 2013
Diebold, Pauly (bib0014) 1990; 6
Abouarghoub, Nomikos, Petropoulos (bib0001) 2018; 113
Ben Taieb, Taylor, Hyndman (bib0008) 2017
Hyndman, Athanasopoulos (bib0023) 2018
Petropoulos, Hyndman, Bergmeir (bib0037) 2018
Athanasopoulos, Gamakumara, Panagiotelis, Hyndman, Affan (bib0004) 2019
Jeon, Panagiotelis, Petropoulos (bib0026) 2019; 279
Kolassa (bib0027) 2011; 27
Stock, Watson (bib0048) 2004; 23
Granger, Ramanathan (bib0020) 1984; 3
Assimakopoulos, Nikolopoulos (bib0002) 2000; 16
Panagiotelis, Gamakumara, Athanasopoulos, Hyndman (bib0034) 2020
Abouarghoub (10.1016/j.ejor.2021.01.017_bib0001) 2018; 113
Graefe (10.1016/j.ejor.2021.01.017_bib0019) 2014; 30
Ben Taieb (10.1016/j.ejor.2021.01.017_bib0008) 2017
Elliott (10.1016/j.ejor.2021.01.017_bib0015) 2015; 54
Hyndman (10.1016/j.ejor.2021.01.017_bib0022) 2011; 55
Fiorucci (10.1016/j.ejor.2021.01.017_bib0017) 2016; 32
Panagiotelis (10.1016/j.ejor.2021.01.017_bib0034) 2020
10.1016/j.ejor.2021.01.017_bib0049
Bansal (10.1016/j.ejor.2021.01.017_bib0006) 2015; 39
Carvalho (10.1016/j.ejor.2021.01.017_bib0013) 2010; 97
Assimakopoulos (10.1016/j.ejor.2021.01.017_bib0002) 2000; 16
Shang (10.1016/j.ejor.2021.01.017_bib0042) 2017; 75
Stock (10.1016/j.ejor.2021.01.017_bib0047) 1998
Rapach (10.1016/j.ejor.2021.01.017_bib0039) 2019; 1
Bergmeir (10.1016/j.ejor.2021.01.017_bib0010) 2016; 32
Athanasopoulos (10.1016/j.ejor.2021.01.017_bib0004) 2019
George (10.1016/j.ejor.2021.01.017_bib0018) 1993; 88
Shang (10.1016/j.ejor.2021.01.017_bib0043) 2017; 26
Petropoulos (10.1016/j.ejor.2021.01.017_bib0038) 2020; 36
Athanasopoulos (10.1016/j.ejor.2021.01.017_bib0005) 2017; 262
Montero-Manso (10.1016/j.ejor.2021.01.017_bib0032) 2020; 36
Thomson (10.1016/j.ejor.2021.01.017_bib0050) 2019; 16
Hyndman (10.1016/j.ejor.2021.01.017_bib0024) 2006; 22
Hyndman (10.1016/j.ejor.2021.01.017_bib0025) 2016; 97
Gurrola-Perez (10.1016/j.ejor.2021.01.017_bib0021) 2015; Working Paper 525
Hyndman (10.1016/j.ejor.2021.01.017_bib0023) 2018
Pennings (10.1016/j.ejor.2021.01.017_bib0036) 2017; 263
Nystrup (10.1016/j.ejor.2021.01.017_bib0033) 2020; 280
Kourentzes (10.1016/j.ejor.2021.01.017_bib0029) 2019; 209
Park (10.1016/j.ejor.2021.01.017_bib0035) 2014
Elliott (10.1016/j.ejor.2021.01.017_bib0016) 2013
Spiliotis (10.1016/j.ejor.2021.01.017_bib0045) 2020; 261
Wickramasuriya (10.1016/j.ejor.2021.01.017_bib0051) 2019; 114
Athanasopoulos (10.1016/j.ejor.2021.01.017_bib0003) 2009; 25
Miller (10.1016/j.ejor.2021.01.017_bib0030) 2020; 35
Stock (10.1016/j.ejor.2021.01.017_bib0046) 2002; 97
Spiliotis (10.1016/j.ejor.2021.01.017_bib0044) 2019; 14
Bates (10.1016/j.ejor.2021.01.017_bib0007) 1969; 20
Black (10.1016/j.ejor.2021.01.017_bib0011) 1992; 48
Jeon (10.1016/j.ejor.2021.01.017_bib0026) 2019; 279
Bordignon (10.1016/j.ejor.2021.01.017_bib0012) 2013; 35
Granger (10.1016/j.ejor.2021.01.017_bib0020) 1984; 3
Ben Taieb (10.1016/j.ejor.2021.01.017_bib0009) 2020; 0
Kourentzes (10.1016/j.ejor.2021.01.017_bib0028) 2019; 75
Mitchell (10.1016/j.ejor.2021.01.017_bib0031) 1988; 83
Diebold (10.1016/j.ejor.2021.01.017_bib0014) 1990; 6
Petropoulos (10.1016/j.ejor.2021.01.017_bib0037) 2018
Rapach (10.1016/j.ejor.2021.01.017_bib0040) 2010; 23
Kolassa (10.1016/j.ejor.2021.01.017_bib0027) 2011; 27
Shang (10.1016/j.ejor.2021.01.017_bib0041) 2017; 36
Stock (10.1016/j.ejor.2021.01.017_bib0048) 2004; 23
References_xml – volume: 27
  start-page: 238
  year: 2011
  end-page: 251
  ident: bib0027
  article-title: Combining exponential smoothing forecasts using akaike weights
  publication-title: International Journal of Forecasting
– volume: 30
  start-page: 43
  year: 2014
  end-page: 54
  ident: bib0019
  article-title: Combining forecasts: An application to elections
  publication-title: International Journal of Forecasting
– volume: 83
  start-page: 1023
  year: 1988
  end-page: 1032
  ident: bib0031
  article-title: Bayesian variable selection in linear regression
  publication-title: Journal of the American Statistical Association
– volume: 263
  start-page: 412
  year: 2017
  end-page: 418
  ident: bib0036
  article-title: Integrated hierarchical forecasting
  publication-title: European Journal of Operational Research
– volume: 23
  start-page: 821
  year: 2010
  end-page: 862
  ident: bib0040
  article-title: Out-of-sample equity premium prediction: Combination forecasts and links to the real economy
  publication-title: Review of Financial Studies
– volume: 20
  start-page: 451
  year: 1969
  end-page: 468
  ident: bib0007
  article-title: The combination of forecasts
  publication-title: Journal of the Operational Research Society
– volume: 16
  year: 2019
  ident: bib0050
  article-title: Simultaneous parameter estimation and variable selection via the logit-normal continuous analogue of the spike-and-slab prior
  publication-title: Journal of the Royal Society Interface
– volume: 0
  start-page: 1
  year: 2020
  end-page: 17
  ident: bib0009
  article-title: Hierarchical probabilistic forecasting of electricity demand with smart meter data
  publication-title: Journal of the American Statistical Association
– volume: 26
  start-page: 330
  year: 2017
  end-page: 343
  ident: bib0043
  article-title: Grouped functional time series forecasting: An application to age-specific mortality rates
  publication-title: Journal of Computational and Graphical Statistics
– year: 2019
  ident: bib0004
  article-title: Hierarchical forecasting
  publication-title: IDEAS Working Paper Series from RePEc
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: bib0024
  article-title: Another look at measures of forecast accuracy
  publication-title: International Journal of Forecasting
– volume: 48
  start-page: 28
  year: 1992
  end-page: 44
  ident: bib0011
  article-title: Global portfolio optimization
  publication-title: Financial Analysts Journal
– volume: 32
  start-page: 303
  year: 2016
  end-page: 312
  ident: bib0010
  article-title: Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation
  publication-title: International Journal of Forecasting
– volume: 75
  start-page: 393
  year: 2019
  end-page: 409
  ident: bib0028
  article-title: Cross-temporal coherent forecasts for australian tourism
  publication-title: Annals of Tourism Research
– year: 2018
  ident: bib0037
  article-title: Exploring the sources of uncertainty: Why does bagging for time series forecasting work?
  publication-title: European Journal of Operational Research
– volume: 88
  start-page: 881
  year: 1993
  end-page: 890
  ident: bib0018
  article-title: Variable selection via Gibbs sampling
  publication-title: Journal of the American Statistical Association
– volume: 1
  start-page: 9
  year: 2019
  end-page: 28
  ident: bib0039
  article-title: Industry return predictability: A machine learning approach
  publication-title: The Journal of Financial Data Science
– volume: 279
  start-page: 364
  year: 2019
  end-page: 379
  ident: bib0026
  article-title: Probabilistic forecast reconciliation with applications to wind power and electric load
  publication-title: European Journal of Operational Research
– volume: 75
  start-page: 166
  year: 2017
  end-page: 179
  ident: bib0042
  article-title: Grouped multivariate and functional time series forecasting:an application to annuity pricing
  publication-title: Insurance: Mathematics and Economics
– volume: 14
  start-page: e0223422
  year: 2019
  ident: bib0044
  article-title: Improving the forecasting performance of temporal hierarchies
  publication-title: PloS one
– volume: 97
  start-page: 1167
  year: 2002
  end-page: 1180
  ident: bib0046
  article-title: Forecasting using principal components from a large number of predictors
  publication-title: Journal of the American Statistical Association
– year: 2014
  ident: bib0035
  article-title: Variational bayesian inference for forecasting hierarchical time series
– start-page: 3348
  year: 2017
  end-page: 3357
  ident: bib0008
  article-title: Coherent probabilistic forecasts for hierarchical time series
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– volume: 36
  start-page: 110
  year: 2020
  end-page: 115
  ident: bib0038
  article-title: A simple combination of univariate models
  publication-title: International Journal of Forecasting
– year: 1998
  ident: bib0047
  article-title: A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series
  publication-title: NBER Working Papers
– volume: 114
  start-page: 804
  year: 2019
  end-page: 819
  ident: bib0051
  article-title: Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization
  publication-title: Journal of the American Statistical Association
– volume: 280
  start-page: 876
  year: 2020
  end-page: 888
  ident: bib0033
  article-title: Temporal hierarchies with autocorrelation for load forecasting
  publication-title: European Journal of Operational Research
– volume: 6
  start-page: 503
  year: 1990
  end-page: 508
  ident: bib0014
  article-title: The use of prior information in forecast combination
  publication-title: International Journal of Forecasting
– volume: 261
  start-page: 114339
  year: 2020
  ident: bib0045
  article-title: Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption
  publication-title: Applied energy
– reference: Summers, L. H., & Pritchett, L. (2014). Asiaphoria meets regression to the mean. NBER Working Paper Series,.
– volume: 54
  start-page: 86
  year: 2015
  end-page: 111
  ident: bib0015
  article-title: Complete subset regressions with large-dimensional sets of predictors.
  publication-title: Journal of Economic Dynamics & Control
– volume: 262
  start-page: 60
  year: 2017
  end-page: 74
  ident: bib0005
  article-title: Forecasting with temporal hierarchies
  publication-title: European Journal of Operational Research
– volume: 3
  start-page: 197
  year: 1984
  end-page: 204
  ident: bib0020
  article-title: Improved methods of combining forecasts
  publication-title: Journal of Forecasting
– year: 2018
  ident: bib0023
  article-title: Forecasting: principles and practice
– volume: 113
  start-page: 225
  year: 2018
  end-page: 238
  ident: bib0001
  article-title: On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry
  publication-title: Transportation Research Part E: Logistics and Transportation Review
– volume: 55
  start-page: 2579
  year: 2011
  end-page: 2589
  ident: bib0022
  article-title: Optimal combination forecasts for hierarchical time series
  publication-title: Computational Statistics and Data Analysis
– volume: 23
  start-page: 405
  year: 2004
  end-page: 430
  ident: bib0048
  article-title: Combination forecasts of output growth in a seven-country data set
  publication-title: Journal of Forecasting
– volume: 39
  start-page: 1
  year: 2015
  end-page: 22
  ident: bib0006
  article-title: Can we consistently forecast a firms earnings? using combination forecast methods to predict the eps of dow firms
  publication-title: Journal of Economics and Finance
– volume: 97
  start-page: 16
  year: 2016
  end-page: 32
  ident: bib0025
  article-title: Fast computation of reconciled forecasts for hierarchical and grouped time series
  publication-title: Computational Statistics and Data Analysis
– volume: 36
  start-page: 55
  year: 2017
  end-page: 84
  ident: bib0041
  article-title: Reconciling forecasts of infant mortality rates at national and sub-national levels: Grouped time-series methods
  publication-title: Population Research and Policy Review
– year: 2013
  ident: bib0016
  article-title: Handbook of economic forecasting
– volume: Working Paper 525
  start-page: 1
  year: 2015
  end-page: 33
  ident: bib0021
  article-title: Filtered historical simulation value-at-risk models and their competitors
  publication-title: Bank of England. Quarterly Bulletin
– volume: 36
  start-page: 86
  year: 2020
  end-page: 92
  ident: bib0032
  article-title: FFORMA: Feature-based forecast model averaging
  publication-title: International Journal of Forecasting
– volume: 35
  start-page: 159
  year: 2020
  end-page: 170
  ident: bib0030
  article-title: Laplaces theories of cognitive illusions, heuristics and biases
  publication-title: Statistical science
– volume: 97
  start-page: 465
  year: 2010
  end-page: 480
  ident: bib0013
  article-title: The horseshoe estimator for sparse signals
  publication-title: Biometrika
– volume: 35
  start-page: 88
  year: 2013
  end-page: 103
  ident: bib0012
  article-title: Combining day-ahead forecasts for british electricity prices
  publication-title: Energy Economics
– year: 2020
  ident: bib0034
  article-title: Forecast reconciliation: A geometric view with new insights on bias correction
  publication-title: International Journal of Forecatsing, To Appear
– volume: 32
  start-page: 1151
  year: 2016
  end-page: 1161
  ident: bib0017
  article-title: Models for optimising the theta method and their relationship to state space models
  publication-title: International Journal of Forecasting
– volume: 209
  start-page: 226
  year: 2019
  end-page: 235
  ident: bib0029
  article-title: Another look at forecast selection and combination: Evidence from forecast pooling
  publication-title: International Journal of Production Economics
– volume: 16
  start-page: 521
  year: 2000
  end-page: 530
  ident: bib0002
  article-title: The Theta model: a decomposition approach to forecasting
  publication-title: International Journal of Forecasting
– volume: 25
  start-page: 146
  year: 2009
  end-page: 166
  ident: bib0003
  article-title: Hierarchical forecasts for australian domestic tourism
  publication-title: International Journal of Forecasting
– year: 2014
  ident: 10.1016/j.ejor.2021.01.017_bib0035
– volume: 35
  start-page: 159
  issue: 2
  year: 2020
  ident: 10.1016/j.ejor.2021.01.017_bib0030
  article-title: Laplaces theories of cognitive illusions, heuristics and biases
  publication-title: Statistical science
– volume: 26
  start-page: 330
  issue: 2
  year: 2017
  ident: 10.1016/j.ejor.2021.01.017_bib0043
  article-title: Grouped functional time series forecasting: An application to age-specific mortality rates
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2016.1237877
– volume: 83
  start-page: 1023
  issue: 404
  year: 1988
  ident: 10.1016/j.ejor.2021.01.017_bib0031
  article-title: Bayesian variable selection in linear regression
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1988.10478694
– volume: 113
  start-page: 225
  year: 2018
  ident: 10.1016/j.ejor.2021.01.017_bib0001
  article-title: On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry
  publication-title: Transportation Research Part E: Logistics and Transportation Review
  doi: 10.1016/j.tre.2017.10.012
– start-page: 3348
  year: 2017
  ident: 10.1016/j.ejor.2021.01.017_bib0008
  article-title: Coherent probabilistic forecasts for hierarchical time series
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– year: 1998
  ident: 10.1016/j.ejor.2021.01.017_bib0047
  article-title: A Comparison of Linear and Nonlinear Univariate Models for Forecasting Macroeconomic Time Series
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 10.1016/j.ejor.2021.01.017_bib0024
  article-title: Another look at measures of forecast accuracy
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2006.03.001
– volume: 114
  start-page: 804
  issue: 526
  year: 2019
  ident: 10.1016/j.ejor.2021.01.017_bib0051
  article-title: Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.2018.1448825
– volume: 20
  start-page: 451
  issue: 4
  year: 1969
  ident: 10.1016/j.ejor.2021.01.017_bib0007
  article-title: The combination of forecasts
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/jors.1969.103
– volume: 261
  start-page: 114339
  year: 2020
  ident: 10.1016/j.ejor.2021.01.017_bib0045
  article-title: Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption
  publication-title: Applied energy
  doi: 10.1016/j.apenergy.2019.114339
– ident: 10.1016/j.ejor.2021.01.017_bib0049
  doi: 10.3386/w20573
– volume: 55
  start-page: 2579
  issue: 9
  year: 2011
  ident: 10.1016/j.ejor.2021.01.017_bib0022
  article-title: Optimal combination forecasts for hierarchical time series
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2011.03.006
– volume: 97
  start-page: 1167
  issue: 460
  year: 2002
  ident: 10.1016/j.ejor.2021.01.017_bib0046
  article-title: Forecasting using principal components from a large number of predictors
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502388618960
– volume: 25
  start-page: 146
  issue: 1
  year: 2009
  ident: 10.1016/j.ejor.2021.01.017_bib0003
  article-title: Hierarchical forecasts for australian domestic tourism
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2008.07.004
– volume: 1
  start-page: 9
  issue: 3
  year: 2019
  ident: 10.1016/j.ejor.2021.01.017_bib0039
  article-title: Industry return predictability: A machine learning approach
  publication-title: The Journal of Financial Data Science
  doi: 10.3905/jfds.2019.1.3.009
– volume: 262
  start-page: 60
  issue: 1
  year: 2017
  ident: 10.1016/j.ejor.2021.01.017_bib0005
  article-title: Forecasting with temporal hierarchies
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.02.046
– volume: 32
  start-page: 1151
  issue: 4
  year: 2016
  ident: 10.1016/j.ejor.2021.01.017_bib0017
  article-title: Models for optimising the theta method and their relationship to state space models
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2016.02.005
– volume: 14
  start-page: e0223422
  issue: 10
  year: 2019
  ident: 10.1016/j.ejor.2021.01.017_bib0044
  article-title: Improving the forecasting performance of temporal hierarchies
  publication-title: PloS one
  doi: 10.1371/journal.pone.0223422
– volume: 263
  start-page: 412
  issue: 2
  year: 2017
  ident: 10.1016/j.ejor.2021.01.017_bib0036
  article-title: Integrated hierarchical forecasting
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.04.047
– volume: 88
  start-page: 881
  issue: 423
  year: 1993
  ident: 10.1016/j.ejor.2021.01.017_bib0018
  article-title: Variable selection via Gibbs sampling
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1993.10476353
– volume: 6
  start-page: 503
  issue: 4
  year: 1990
  ident: 10.1016/j.ejor.2021.01.017_bib0014
  article-title: The use of prior information in forecast combination
  publication-title: International Journal of Forecasting
  doi: 10.1016/0169-2070(90)90028-A
– volume: 30
  start-page: 43
  issue: 1
  year: 2014
  ident: 10.1016/j.ejor.2021.01.017_bib0019
  article-title: Combining forecasts: An application to elections
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2013.02.005
– volume: 280
  start-page: 876
  issue: 3
  year: 2020
  ident: 10.1016/j.ejor.2021.01.017_bib0033
  article-title: Temporal hierarchies with autocorrelation for load forecasting
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2019.07.061
– volume: 39
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.ejor.2021.01.017_bib0006
  article-title: Can we consistently forecast a firms earnings? using combination forecast methods to predict the eps of dow firms
  publication-title: Journal of Economics and Finance
  doi: 10.1007/s12197-012-9234-y
– volume: 36
  start-page: 86
  issue: 1
  year: 2020
  ident: 10.1016/j.ejor.2021.01.017_bib0032
  article-title: FFORMA: Feature-based forecast model averaging
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2019.02.011
– volume: 75
  start-page: 166
  year: 2017
  ident: 10.1016/j.ejor.2021.01.017_bib0042
  article-title: Grouped multivariate and functional time series forecasting:an application to annuity pricing
  publication-title: Insurance: Mathematics and Economics
– volume: 54
  start-page: 86
  year: 2015
  ident: 10.1016/j.ejor.2021.01.017_bib0015
  article-title: Complete subset regressions with large-dimensional sets of predictors.
  publication-title: Journal of Economic Dynamics & Control
  doi: 10.1016/j.jedc.2015.03.004
– volume: 209
  start-page: 226
  year: 2019
  ident: 10.1016/j.ejor.2021.01.017_bib0029
  article-title: Another look at forecast selection and combination: Evidence from forecast pooling
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2018.05.019
– year: 2013
  ident: 10.1016/j.ejor.2021.01.017_bib0016
– volume: 32
  start-page: 303
  issue: 2
  year: 2016
  ident: 10.1016/j.ejor.2021.01.017_bib0010
  article-title: Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2015.07.002
– year: 2019
  ident: 10.1016/j.ejor.2021.01.017_bib0004
  article-title: Hierarchical forecasting
  publication-title: IDEAS Working Paper Series from RePEc
– volume: 0
  start-page: 1
  issue: 0
  year: 2020
  ident: 10.1016/j.ejor.2021.01.017_bib0009
  article-title: Hierarchical probabilistic forecasting of electricity demand with smart meter data
  publication-title: Journal of the American Statistical Association
– volume: Working Paper 525
  start-page: 1
  year: 2015
  ident: 10.1016/j.ejor.2021.01.017_bib0021
  article-title: Filtered historical simulation value-at-risk models and their competitors
  publication-title: Bank of England. Quarterly Bulletin
– volume: 48
  start-page: 28
  issue: 5
  year: 1992
  ident: 10.1016/j.ejor.2021.01.017_bib0011
  article-title: Global portfolio optimization
  publication-title: Financial Analysts Journal
  doi: 10.2469/faj.v48.n5.28
– volume: 3
  start-page: 197
  issue: 2
  year: 1984
  ident: 10.1016/j.ejor.2021.01.017_bib0020
  article-title: Improved methods of combining forecasts
  publication-title: Journal of Forecasting
  doi: 10.1002/for.3980030207
– volume: 75
  start-page: 393
  year: 2019
  ident: 10.1016/j.ejor.2021.01.017_bib0028
  article-title: Cross-temporal coherent forecasts for australian tourism
  publication-title: Annals of Tourism Research
  doi: 10.1016/j.annals.2019.02.001
– volume: 97
  start-page: 465
  issue: 2
  year: 2010
  ident: 10.1016/j.ejor.2021.01.017_bib0013
  article-title: The horseshoe estimator for sparse signals
  publication-title: Biometrika
  doi: 10.1093/biomet/asq017
– volume: 23
  start-page: 821
  issue: 2
  year: 2010
  ident: 10.1016/j.ejor.2021.01.017_bib0040
  article-title: Out-of-sample equity premium prediction: Combination forecasts and links to the real economy
  publication-title: Review of Financial Studies
  doi: 10.1093/rfs/hhp063
– volume: 279
  start-page: 364
  issue: 2
  year: 2019
  ident: 10.1016/j.ejor.2021.01.017_bib0026
  article-title: Probabilistic forecast reconciliation with applications to wind power and electric load
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2019.05.020
– volume: 36
  start-page: 110
  issue: 1
  year: 2020
  ident: 10.1016/j.ejor.2021.01.017_bib0038
  article-title: A simple combination of univariate models
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2019.01.006
– volume: 36
  start-page: 55
  issue: 1
  year: 2017
  ident: 10.1016/j.ejor.2021.01.017_bib0041
  article-title: Reconciling forecasts of infant mortality rates at national and sub-national levels: Grouped time-series methods
  publication-title: Population Research and Policy Review
  doi: 10.1007/s11113-016-9413-1
– volume: 16
  start-page: 521
  issue: 4
  year: 2000
  ident: 10.1016/j.ejor.2021.01.017_bib0002
  article-title: The Theta model: a decomposition approach to forecasting
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(00)00066-2
– year: 2020
  ident: 10.1016/j.ejor.2021.01.017_bib0034
  article-title: Forecast reconciliation: A geometric view with new insights on bias correction
  publication-title: International Journal of Forecatsing, To Appear
– year: 2018
  ident: 10.1016/j.ejor.2021.01.017_bib0037
  article-title: Exploring the sources of uncertainty: Why does bagging for time series forecasting work?
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2018.01.045
– year: 2018
  ident: 10.1016/j.ejor.2021.01.017_bib0023
– volume: 97
  start-page: 16
  year: 2016
  ident: 10.1016/j.ejor.2021.01.017_bib0025
  article-title: Fast computation of reconciled forecasts for hierarchical and grouped time series
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2015.11.007
– volume: 16
  issue: 150
  year: 2019
  ident: 10.1016/j.ejor.2021.01.017_bib0050
  article-title: Simultaneous parameter estimation and variable selection via the logit-normal continuous analogue of the spike-and-slab prior
  publication-title: Journal of the Royal Society Interface
  doi: 10.1098/rsif.2018.0572
– volume: 23
  start-page: 405
  issue: 6
  year: 2004
  ident: 10.1016/j.ejor.2021.01.017_bib0048
  article-title: Combination forecasts of output growth in a seven-country data set
  publication-title: Journal of Forecasting
  doi: 10.1002/for.928
– volume: 27
  start-page: 238
  issue: 2
  year: 2011
  ident: 10.1016/j.ejor.2021.01.017_bib0027
  article-title: Combining exponential smoothing forecasts using akaike weights
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2010.04.006
– volume: 35
  start-page: 88
  year: 2013
  ident: 10.1016/j.ejor.2021.01.017_bib0012
  article-title: Combining day-ahead forecasts for british electricity prices
  publication-title: Energy Economics
  doi: 10.1016/j.eneco.2011.12.001
SSID ssj0001515
Score 2.550686
Snippet •We relate recent literature on Forecast Reconciliation to the extensive body of work on Forecast Combination.•We demonstrate how the linear constraints which...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 149
SubjectTerms Forecast combinations
Forecasting
Hierarchies
Top-down
Unbiasedness
Title Understanding forecast reconciliation
URI https://dx.doi.org/10.1016/j.ejor.2021.01.017
Volume 294
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH-MCaIHP6bi_Bg96Enimixt2uMYjqm4iw52K0mawMbYhtarf7t5baoTxIPQS0oelN9L3gd97_0ArmxoUxlqReIejwkXipNUc0USyXKbxlLHGhPFp3E8mvCHaTRtwKDuhcGySm_7K5teWmv_puvR7K5ns-5z2HORIfIr0TJQwSY-zgWe8tuP7zIPdNjlnwQhCO72jTNVjZeZr3AmKKPl6M6StOwX57ThcIYHsOcjxaBffcwhNMyyBdt1oXoL9mtChsDfzxbsbkwXPILryWbjSuCiU6PlWxGUObCeLSqlHMNkePcyGBHPikC0y8UKEsncapYjuww1Patc_MKZpkIkIUutVMZaalySlQhrGOJCbRgpId1VtrkT7p1Ac7lamlMIlM4dPNSmOlEuDWFSp7Fmljn9RaEWtA20hiPTfmQ4Mlcssro2bJ4hhBlCmIX4iDbcfMmsq4EZf-6OapSzH2rPnEX_Q-7sn3LnsIOrqhrvAprF67u5dFFFoTrlsenAVv_-cTT-BP9nyvc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qBR8HH1WxPnPQk6zNbh6bHKVYqra92EJvy-5mF1pKWzRe_e3uJhutID0IOSU7EL7JvMjMfAA32tcp96VAcRDGKKQiRKkMBUo4yXQacxlLWyj2B3F3FD6Po3EN2tUsjG2rdL6_9OmFt3Z3Wg7N1nIyab36gckMLb8SLhKVdAM2Q2O-lsbg_vOnz8NG7OJXAqXIHneTM2WTl5ou7FJQgovdnQVr2R_RaSXidA5gz6WK3kP5NodQU_MGbFWd6g3YrxgZPGegDdhdWS94BLej1ckVz6SnSvL33CuKYDmZlVo5hlHncdjuIkeLgKQpxnIU8UxLkll6GawCLUwCExKJKU18kmoulNZYmSoroVoRCwzWfiQoN7asMyMcnEB9vpirU_CEzAw8WKcyEaYOIVymsSSaGAVGvqS4CbiCg0m3M9xSV8xY1Rw2ZRZCZiFkvr1oE-6-ZZblxoy1p6MKZfZL78y49DVyZ_-Uu4bt7rDfY72nwcs57NgnZWveBdTztw91aVKMXFwVn9AX2BTMhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+forecast+reconciliation&rft.jtitle=European+journal+of+operational+research&rft.au=Hollyman%2C+Ross&rft.au=Petropoulos%2C+Fotios&rft.au=Tipping%2C+Michael+E.&rft.date=2021-10-01&rft.issn=0377-2217&rft.volume=294&rft.issue=1&rft.spage=149&rft.epage=160&rft_id=info:doi/10.1016%2Fj.ejor.2021.01.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2021_01_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon