Computer Vision-Based Assessment of Autistic Children: Analyzing Interactions, Emotions, Human Pose, and Life Skills
In this paper, the proposed work tests the computer vision application to perform the skill and emotion assessment of children with Autism Spectrum Disorder (ASD) by extracting various bio-behaviors, human activities, child-therapist interactions, and joint pose estimations from the video-recorded i...
Saved in:
Published in | IEEE access Vol. 11; p. 1 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, the proposed work tests the computer vision application to perform the skill and emotion assessment of children with Autism Spectrum Disorder (ASD) by extracting various bio-behaviors, human activities, child-therapist interactions, and joint pose estimations from the video-recorded interactive single-or two-person play-based intervention sessions. A comprehensive data set of 300 videos are amassed from ASD children engaged in social interaction and developed three novel deep learning-based computer vision models which are explained as follows: 1) activity comprehension to analyze child-play partner interactions (Activity Comprehension model); 2) an automatic joint attention recognition framework using pose, and 3) emotion and facial expression recognition. We tested models on children's real-world unseen 68 videos captured from the clinic and public datasets. The activity comprehension model has an overall accuracy of 72.32%, the joint attention models have an accuracy of 97% for following eye gaze and 93.4% for hand pointing and the facial expression recognition model has an overall accuracy of 95.1%. The proposed models could extract activities and behaviors of interest from free-play and intervention session videos, empowering clinicians with data useful in diagnosis, assessment, treatment formulation, and monitoring of ASD children with limited supervision. |
---|---|
AbstractList | In this paper, the proposed work implements and tests the computer vision applications to perform the skill and emotion assessment of children with Autism Spectrum Disorder (ASD) by extracting various bio-behaviors, human activities, child-therapist interactions, and joint pose estimations from the recorded videos of interactive single- or two-person play-based intervention sessions. A comprehensive data set of 300 videos is amassed from ASD children engaged in social interaction, and three novel deep learning-based vision models are developed, which are explained as follows: (i) activity comprehension to analyze child-play partner interactions (activity comprehension model); (ii) an automatic joint attention recognition framework using head and hand pose; and (iii) emotion and facial expression recognition. The proposed models are also tested on children's real-world, 68 unseen videos captured from the clinic, and public datasets. The activity comprehension model has an overall accuracy of 72.32%, the joint attention recognition models have an accuracy of 97% for follow eye gaze and 93.4% for hand pointing, and the facial expression recognition model has an overall accuracy of 95.1%. The proposed models could extract behaviors of interest, events of activities, emotions, and social skills from free-play and intervention session videos of long duration and provide temporal plots for session monitoring and assessment, thus empowering clinicians with insightful data useful in diagnosis, assessment, treatment formulation, and monitoring ASD children with limited supervision. In this paper, the proposed work tests the computer vision application to perform the skill and emotion assessment of children with Autism Spectrum Disorder (ASD) by extracting various bio-behaviors, human activities, child-therapist interactions, and joint pose estimations from the video-recorded interactive single-or two-person play-based intervention sessions. A comprehensive data set of 300 videos are amassed from ASD children engaged in social interaction and developed three novel deep learning-based computer vision models which are explained as follows: 1) activity comprehension to analyze child-play partner interactions (Activity Comprehension model); 2) an automatic joint attention recognition framework using pose, and 3) emotion and facial expression recognition. We tested models on children's real-world unseen 68 videos captured from the clinic and public datasets. The activity comprehension model has an overall accuracy of 72.32%, the joint attention models have an accuracy of 97% for following eye gaze and 93.4% for hand pointing and the facial expression recognition model has an overall accuracy of 95.1%. The proposed models could extract activities and behaviors of interest from free-play and intervention session videos, empowering clinicians with data useful in diagnosis, assessment, treatment formulation, and monitoring of ASD children with limited supervision. |
Author | Prathosh, A P Prakash, Varun Ganjigunte Kommu, John Vijay Sagar Kohli, Swati Panigrahi, Debasis Das, Diptanshu Wadhera, Tanu Kohli, Manu |
Author_xml | – sequence: 1 givenname: Varun Ganjigunte orcidid: 0000-0002-9356-7035 surname: Prakash fullname: Prakash, Varun Ganjigunte organization: CogniAble, Gurugram, Haryana, India – sequence: 2 givenname: Manu surname: Kohli fullname: Kohli, Manu organization: CogniAble, Gurugram, Haryana, India – sequence: 3 givenname: Swati surname: Kohli fullname: Kohli, Swati organization: CogniAble, Gurugram, Haryana, India – sequence: 4 givenname: A P orcidid: 0000-0002-8699-5760 surname: Prathosh fullname: Prathosh, A P organization: Department of Electrical Communication Engineering, Signal Processing Building West, Indian Institute of Science, Bengaluru, India – sequence: 5 givenname: Tanu surname: Wadhera fullname: Wadhera, Tanu organization: Department of Electronics & Communication Engineering, Indian Institute of Information Technology Una (IIITU), Una, Himachal Pradesh, India – sequence: 6 givenname: Diptanshu surname: Das fullname: Das, Diptanshu organization: Institute of NeuroDevelopment, Kolkata, West Bengal, India – sequence: 7 givenname: Debasis surname: Panigrahi fullname: Panigrahi, Debasis organization: Jagannath Hospital, Saheed Nagar, Bhubaneshwar, Odisha, India – sequence: 8 givenname: John Vijay Sagar surname: Kommu fullname: Kommu, John Vijay Sagar organization: Department of Child and Adolescent Psychiatry, NIMHANS, Bengaluru, Karnataka, India |
BookMark | eNpNkU1v1DAQhiNUJErpL4CDJa7N4o84driFaKErrQTSAlfLH-PiJbGXODmUX98sWaHOZUajed7RzPu6uIopQlG8JXhDCG4-tF23PRw2FFO2YbRuMBUvimtK6qZknNVXz-pXxW3OR7yEXFpcXBdTl4bTPMGIfoYcUiw_6QwOtTlDzgPECSWP2nkKeQoWdb9C70aIH1Ebdf_4N8QHtIsLre20wPkObYd0qe7nQUf0LWW4Qzo6tA8e0OF36Pv8pnjpdZ_h9pJvih-ft9-7-3L_9cuua_elrXAzlVxQ4ySvrOFWOEI0N42XxDjmCbDGmJo3xAtppBGEM8MJ1BQE9x5sja1gN8Vu1XVJH9VpDIMeH1XSQf1rpPFB6XG5qwdlHXGWcidwZSrCsKwMWEl5LQUX3stF6_2qdRrTnxnypI5pHpcvZEUlkawWRJw3snXKjinnEfz_rQSrs1tqdUud3VIXtxbq3UoFAHhGEMxlTdkTbkCSkQ |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s44196_024_00491_y crossref_primary_10_1016_j_engappai_2023_107185 crossref_primary_10_3390_s24113484 crossref_primary_10_3934_mfc_2023042 |
Cites_doi | 10.1016/j.jpeds.2016.04.023 10.1007/s10803-014-2137-3 10.1186/s40708-022-00164-6 10.1109/DICTA.2015.7371296 10.5765/jkacap.190027 10.1038/s41390-021-01465-y 10.1038/s41598-021-01050-7 10.1016/j.cviu.2016.10.014 10.1108/LHT-08-2019-0176 10.1038/s41398-020-0743-8 10.1007/s13311-022-01183-1 10.1177/10883576211073691 10.1192/j.eurpsy.2020.17 10.4103/IJPSYM.IJPSYM_154_18 10.1109/R10-HTC.2016.7906785 10.2196/13822 10.1038/s41598-020-61213-w 10.1109/ICCV.2015.331 10.1007/978-3-319-25554-5_13 10.1109/CVPR.2017.502 10.1007/s11263-012-0594-8 10.1109/ACCESS.2022.3208587 10.1109/ICCV.2011.6126543 10.1002/jaba.411 10.1016/j.cviu.2021.103219 10.1109/ACCESS.2020.3010248 10.1111/jcpp.13105 10.1007/s12098-022-04172-6 10.30773/pi.2019.0229 10.1109/TPAMI.2016.2577031 10.3390/jcm10081776 10.1109/CVPR.2019.00372 10.1007/s41095-021-0214-z 10.1016/j.neuropsychologia.2019.04.022 10.1007/978-3-030-58555-6_5 10.1007/s10803-021-05084-8 10.1111/j.1469-7610.2008.01948.x 10.3390/s21217315 10.1609/aaai.v34i01.5383 10.1007/s00530-022-01019-0 10.1177/1088357620943504 10.1016/j.cviu.2021.103187 10.1109/CVPR.2018.00633 10.1177/0734282911400873 10.1007/s00787-021-01772-z 10.1038/s41398-020-01015-w 10.1016/j.cviu.2021.103242 10.1007/BF02172145 10.1109/TPAMI.2008.106 10.1109/ACCESS.2020.2986861 10.3109/13668250.2014.994171 10.1109/ICCV.2019.00630 10.1007/s10803-018-3690-y 10.1145/2663204.2663235 10.1007/s11227-021-04184-7 10.3844/jcssp.2019.1161.1183 10.1038/s41746-019-0191-0 10.3389/fnins.2020.00779 10.1542/peds.2020-049880 10.1002/aur.2033 10.1007/s12652-021-03612-z 10.1109/ICCV.2017.472 10.1109/ITSC.2014.6958057 10.1038/s41398-020-0780-3 10.1109/CVPR.2018.00734 10.1542/peds.2013-1813 10.1023/A:1005592401947 10.1109/TAFFC.2018.2868196 10.1109/CVPR.2005.177 10.1126/scirobotics.aaz3791 10.1109/SMC.2015.512 10.1007/s10578-014-0494-y 10.1016/j.biopsych.2019.05.006 10.1109/CVPRW.2016.53 10.1038/s41746-020-00376-2 10.1002/aur.2391 10.1016/j.neunet.2014.09.005 10.1007/978-3-030-01228-1_25 10.1016/j.neucom.2017.07.029 10.1186/s11689-022-09438-w 10.3390/s19051147 10.1109/SIBGRAPI.2019.00012 10.1109/ICCV.2017.617 10.5220/0010839200003124 10.1007/s10803-014-2047-4 10.1109/ICPR48806.2021.9412317 10.1007/978-3-319-46487-9_47 10.3389/fnhum.2012.00172 10.1007/s00530-022-00980-0 10.1038/tp.2016.75 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3269027 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_cd1dc25d704b413084bec82568757ff8 10_1109_ACCESS_2023_3269027 10105862 |
Genre | orig-research |
GrantInformation_xml | – fundername: Biotechnology Industry Research Assistance Council grantid: BIRAC/FITT0528/BIG-13/18 funderid: 10.13039/501100014825 – fundername: Social Alpha |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RIG RNS 4.4 AAYXX CITATION EJD 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-572bd854cb5c7d11a5b9f81bd3f1e39bb6591f78b8b7153b51e62e75ffec60c73 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 15:14:30 EDT 2024 Thu Oct 10 18:23:49 EDT 2024 Fri Aug 23 03:12:52 EDT 2024 Mon Nov 04 12:05:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-572bd854cb5c7d11a5b9f81bd3f1e39bb6591f78b8b7153b51e62e75ffec60c73 |
ORCID | 0000-0002-9356-7035 0000-0002-8699-5760 0000-0001-9044-2344 0000-0002-7646-2303 0000-0002-7221-5022 |
OpenAccessLink | https://doaj.org/article/cd1dc25d704b413084bec82568757ff8 |
PQID | 2818367177 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2023_3269027 doaj_primary_oai_doaj_org_article_cd1dc25d704b413084bec82568757ff8 proquest_journals_2818367177 ieee_primary_10105862 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref59 ref58 ref53 ref55 ref54 putra (ref14) 2021; 11 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 jiang (ref65) 2014 ref49 (ref1) 2021 ref9 ref3 ref6 ref5 ref100 ref40 zheng (ref52) 2020 bhatia (ref7) 2020 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 zhou (ref101) 2020 ref24 ref23 ref26 ref25 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref97 ref96 sundberg (ref4) 2008 ref11 ref10 ref98 shao (ref99) 2018 ref17 ref16 ref19 ref18 tang (ref78) 2020 ref92 ref95 ref94 sciortino (ref56) 2017 ref91 klintwall (ref20) 2014 ref85 ref88 ref87 redmon (ref89) 2018 xu (ref86) 2020 monfort (ref93) 2019; 42 opar (ref8) 2019 ref82 ref81 ref84 ref83 ref80 ref79 ref106 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 jocher (ref90) 2020 ref71 ref70 ref73 ref72 ref68 ref69 ref64 ref63 ref66 kay (ref67) 2017 ref60 ref62 ref61 |
References_xml | – ident: ref5 doi: 10.1016/j.jpeds.2016.04.023 – year: 2020 ident: ref52 article-title: Deep learning-based human pose estimation: A survey publication-title: arXiv 2012 13392 contributor: fullname: zheng – ident: ref26 doi: 10.1007/s10803-014-2137-3 – ident: ref47 doi: 10.1186/s40708-022-00164-6 – year: 2020 ident: ref7 publication-title: How to Help Low-Income Children With Autism contributor: fullname: bhatia – ident: ref104 doi: 10.1109/DICTA.2015.7371296 – year: 2020 ident: ref101 article-title: WHENet: Real-time fine-grained estimation for wide range head pose publication-title: arXiv 2005 10353 contributor: fullname: zhou – start-page: 117 year: 2014 ident: ref20 publication-title: Early and Intensive Behavioral Intervention (EIBI) in Autism contributor: fullname: klintwall – ident: ref40 doi: 10.5765/jkacap.190027 – ident: ref36 doi: 10.1038/s41390-021-01465-y – volume: 11 start-page: 22012 year: 2021 ident: ref14 article-title: Identifying autism spectrum disorder symptoms using response and gaze behavior during the Go/NoGo game CatChicken publication-title: Sci Rep doi: 10.1038/s41598-021-01050-7 contributor: fullname: putra – ident: ref77 doi: 10.1016/j.cviu.2016.10.014 – ident: ref62 doi: 10.1108/LHT-08-2019-0176 – ident: ref45 doi: 10.1038/s41398-020-0743-8 – ident: ref23 doi: 10.1007/s13311-022-01183-1 – ident: ref32 doi: 10.1177/10883576211073691 – ident: ref44 doi: 10.1192/j.eurpsy.2020.17 – year: 2019 ident: ref8 publication-title: How to Help Low-Income Children With Autism contributor: fullname: opar – ident: ref28 doi: 10.4103/IJPSYM.IJPSYM_154_18 – ident: ref10 doi: 10.1109/R10-HTC.2016.7906785 – ident: ref12 doi: 10.2196/13822 – ident: ref39 doi: 10.1038/s41598-020-61213-w – ident: ref100 doi: 10.1109/ICCV.2015.331 – ident: ref58 doi: 10.1007/978-3-319-25554-5_13 – ident: ref74 doi: 10.1109/CVPR.2017.502 – ident: ref70 doi: 10.1007/s11263-012-0594-8 – ident: ref9 doi: 10.1109/ACCESS.2022.3208587 – ident: ref66 doi: 10.1109/ICCV.2011.6126543 – ident: ref6 doi: 10.1002/jaba.411 – ident: ref83 doi: 10.1016/j.cviu.2021.103219 – year: 2017 ident: ref67 article-title: The kinetics human action video dataset publication-title: arXiv 1705 06950 contributor: fullname: kay – ident: ref51 doi: 10.1109/ACCESS.2020.3010248 – start-page: 71 year: 2020 ident: ref78 publication-title: Asynchronous interaction aggregation for action detection contributor: fullname: tang – ident: ref41 doi: 10.1111/jcpp.13105 – ident: ref33 doi: 10.1007/s12098-022-04172-6 – ident: ref27 doi: 10.30773/pi.2019.0229 – ident: ref91 doi: 10.1109/TPAMI.2016.2577031 – ident: ref63 doi: 10.3390/jcm10081776 – ident: ref79 doi: 10.1109/CVPR.2019.00372 – ident: ref53 doi: 10.1007/s41095-021-0214-z – ident: ref22 doi: 10.1016/j.neuropsychologia.2019.04.022 – ident: ref88 doi: 10.1007/978-3-030-58555-6_5 – ident: ref35 doi: 10.1007/s10803-021-05084-8 – ident: ref21 doi: 10.1111/j.1469-7610.2008.01948.x – ident: ref57 doi: 10.3390/s21217315 – ident: ref73 doi: 10.1609/aaai.v34i01.5383 – ident: ref55 doi: 10.1007/s00530-022-01019-0 – ident: ref37 doi: 10.1177/1088357620943504 – ident: ref82 doi: 10.1016/j.cviu.2021.103187 – ident: ref64 doi: 10.1109/CVPR.2018.00633 – ident: ref30 doi: 10.1177/0734282911400873 – ident: ref3 doi: 10.1007/s00787-021-01772-z – ident: ref71 doi: 10.1038/s41398-020-01015-w – ident: ref87 doi: 10.1016/j.cviu.2021.103242 – ident: ref13 doi: 10.1007/BF02172145 – ident: ref95 doi: 10.1109/TPAMI.2008.106 – ident: ref106 doi: 10.1109/ACCESS.2020.2986861 – year: 2021 ident: ref1 publication-title: Autism Spectrum Disorders - Data and Statistics – year: 2020 ident: ref86 article-title: Spatio-temporal action detection with multi-object interaction publication-title: arXiv 2004 00180 contributor: fullname: xu – ident: ref34 doi: 10.3109/13668250.2014.994171 – ident: ref85 doi: 10.1109/ICCV.2019.00630 – ident: ref61 doi: 10.1007/s10803-018-3690-y – start-page: 410 year: 2017 ident: ref56 article-title: On the estimation of children's poses publication-title: Image Analysis and Processing-ICIAP contributor: fullname: sciortino – ident: ref94 doi: 10.1145/2663204.2663235 – ident: ref50 doi: 10.1007/s11227-021-04184-7 – year: 2018 ident: ref99 article-title: CrowdHuman: A benchmark for detecting human in a crowd publication-title: arXiv 1805 00123 contributor: fullname: shao – ident: ref19 doi: 10.3844/jcssp.2019.1161.1183 – ident: ref48 doi: 10.1038/s41746-019-0191-0 – year: 2014 ident: ref65 publication-title: THUMOS Challenge Action Recognition with A Large Number of Classes contributor: fullname: jiang – year: 2020 ident: ref90 publication-title: Ultralytics/Yolov5 V3 1-Bug Fixes and Performance Improvements contributor: fullname: jocher – ident: ref72 doi: 10.3389/fnins.2020.00779 – ident: ref24 doi: 10.1542/peds.2020-049880 – ident: ref31 doi: 10.1002/aur.2033 – ident: ref18 doi: 10.1007/s12652-021-03612-z – ident: ref81 doi: 10.1109/ICCV.2017.472 – year: 2008 ident: ref4 publication-title: VB-MAPP Verbal Behavior Milestones Assessment and Placement Program A Language and Social Skills Assessment Program for Children with Autism or Other Developmental Disabilities contributor: fullname: sundberg – ident: ref97 doi: 10.1109/ITSC.2014.6958057 – ident: ref16 doi: 10.1038/s41398-020-0780-3 – ident: ref68 doi: 10.1109/CVPR.2018.00734 – ident: ref29 doi: 10.1542/peds.2013-1813 – ident: ref2 doi: 10.1023/A:1005592401947 – ident: ref46 doi: 10.1109/TAFFC.2018.2868196 – year: 2018 ident: ref89 article-title: YOLOv3: An incremental improvement publication-title: arXiv 1804 02767 contributor: fullname: redmon – ident: ref69 doi: 10.1109/CVPR.2005.177 – ident: ref49 doi: 10.1126/scirobotics.aaz3791 – ident: ref102 doi: 10.1109/SMC.2015.512 – ident: ref25 doi: 10.1007/s10578-014-0494-y – ident: ref60 doi: 10.1016/j.biopsych.2019.05.006 – ident: ref103 doi: 10.1109/CVPRW.2016.53 – volume: 42 start-page: 1 year: 2019 ident: ref93 article-title: Moments in time dataset: One million videos for event understanding publication-title: IEEE Trans Pattern Anal Mach Intell contributor: fullname: monfort – ident: ref17 doi: 10.1038/s41746-020-00376-2 – ident: ref43 doi: 10.1002/aur.2391 – ident: ref92 doi: 10.1016/j.neunet.2014.09.005 – ident: ref84 doi: 10.1007/978-3-030-01228-1_25 – ident: ref96 doi: 10.1016/j.neucom.2017.07.029 – ident: ref38 doi: 10.1186/s11689-022-09438-w – ident: ref98 doi: 10.3390/s19051147 – ident: ref75 doi: 10.1109/SIBGRAPI.2019.00012 – ident: ref76 doi: 10.1109/ICCV.2017.617 – ident: ref11 doi: 10.5220/0010839200003124 – ident: ref42 doi: 10.1007/s10803-014-2047-4 – ident: ref105 doi: 10.1109/ICPR48806.2021.9412317 – ident: ref80 doi: 10.1007/978-3-319-46487-9_47 – ident: ref59 doi: 10.3389/fnhum.2012.00172 – ident: ref54 doi: 10.1007/s00530-022-00980-0 – ident: ref15 doi: 10.1038/tp.2016.75 |
SSID | ssj0000816957 |
Score | 2.3638248 |
Snippet | In this paper, the proposed work tests the computer vision application to perform the skill and emotion assessment of children with Autism Spectrum Disorder... In this paper, the proposed work implements and tests the computer vision applications to perform the skill and emotion assessment of children with Autism... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Activity Comprehension Applied behavior analysis ASD screening Autism Autism Spectrum Disorder Behavioral sciences Children Computational modeling Computer vision Emotions Eye movements Face recognition Facial expressions Joint attention Monitoring Pediatrics Skills Social factors Variable speed drives Video Videos |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpTumheZZumwYdely7tmVZVm-bJSGENATahNyEnhASdkPXe8mvz4ykXZaGQm_G-CF7RjPfjDTfEPKtDYzH9JKtpC5ajYuEAEQLoXvNOstkF7A4-ed1d3HbXt7z-1ysHmthvPdx85kv8TCu5bu5XWKqDGY4oIEeLe47IWUq1lonVLCDhOQiMwvVlfw-mU7hI0psEF4CSpEVto7Z8D6RpD93VXljiqN_Od8l16uRpW0lj-VyMKV9-Yu08b-Hvkc-ZKRJJ0k19smWnx2Q9xv8g4dkWPV0oHexxLw4BZ_m6GTN1knngU5ANZHMmU5z3fcPGplMXuARNCYUU23EYkzPUk8gOIprA_RmvvBjqmeOXj0ET389Pjw9LY7I7fnZ7-lFkdswFBaCv6HgojGu56013ApX15obGQDtOhZqz6QxHZd1EL3pjQD7aXjtu8YLjvtRusoK9pFsz-Yz_4lQyXQD-IAZA2GYFkFaAEgVEwbMtW7bZkTGK_Go58S2oWKUUkmVpKlQmipLc0ROUYTrS5EqO56AX6_yzFPW1c423ImqNeix-xbUFuLiDqn8Q-hH5AjFtfG-JKkROV5phMrzeqGQO4t1EAKLz_-47QvZwSGmLM0x2R7-LP1XwC2DOYn6-gq_cOll priority: 102 providerName: IEEE |
Title | Computer Vision-Based Assessment of Autistic Children: Analyzing Interactions, Emotions, Human Pose, and Life Skills |
URI | https://ieeexplore.ieee.org/document/10105862 https://www.proquest.com/docview/2818367177 https://doaj.org/article/cd1dc25d704b413084bec82568757ff8 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8IwFG4MJz0Yf2BEkfTgkcG2ru3qDQiEGDUmiuHWtN2aEAkYwYt_va_tIEs8ePG2bMu6vte99763vu8hdJtZQn16ycRCRZlyPwkhEI24yhVhhghmXXHy4xObzrL7OZ3XWn25PWGBHjgIrm-KpDApLXicaWdw8wxGBVjDHBO7taHMNxY1MOVtcJ4wQXlFMwTX-4PRCGbUc93CexCyiNj1kam5Is_YX7VY-WWXvbOZnKDjKkrEg_B2p-igXJ2hoxp34Dna7vox4DdfHh4NwR8VeLBn2sRriwewrBwRMx5VNdt32LOQfMMjsE8GhrqGTRePQz8fOPJ5ffy83pRdrFYFfljYEr-8L5bLTRPNJuPX0TSqWihEBoDbNqI81UVOM6Op4UWSKKqFhUi1IDYpidCaUZFYnutcc7B9miYlS0tO3V4SFhtOLlBjtV6VlwgLolLw7URrgFCKW2EguIkJ12BqVZalLdTdSVN-BKYM6RFGLGQQvnTCl5XwW2joJL6_1dFc-xOgfFkpX_6l_BZqOn3VxoNwETBaC7V3CpTVN7mRjveKMICv_Oo_xr5Gh24-IR3TRo3t51d5AwHKVnf8Wuz4WsIfN-vgMw |
link.rule.ids | 315,783,787,799,867,2109,27936,27937,55086 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQeAAe-ByiY4AfeGxCEsd2zFtXbSrQVUhsaG-W7djStKlFNH3ZX787260qEBJvUZQPJ3e--93Z9ztCPraB8ZhecpUyRWtwkRCAaCFNZ5hwTImAxcnnCzG7bL9e8atcrB5rYbz3cfOZL_EwruX3K7fBVBnMcEADHVrchwCsO5HKtXYpFewhobjM3EJ1pT5NplP4jBJbhJeAU1SFzWP2_E-k6c99Vf4yxtHDnD0ji-3Y0saSm3Iz2NLd_UHb-N-Df06eZqxJJ0k5XpAHfvmSPNljIHxFhm1XB_ozFpkXJ-DVejrZ8XXSVaATUE6kc6bTXPn9mUYukzt4BI0pxVQdsR7T09QVCI7i6gD9vlr7MTXLns6vg6c_bq5vb9eH5PLs9GI6K3IjhsJB-DcUXDa273jrLHeyr2vDrQqAd3sWas-UtYKrOsjOdlaCBbW89qLxkuOOFFE5yV6Tg-Vq6d8QqphpACEwayEQMzIoBxCpYtKCwTZt24zIeCse_SvxbegYp1RKJ2lqlKbO0hyRExTh7lIky44n4NfrPPe06-veNbyXVWvRZ3ctKC5ExgLJ_EPoRuQQxbX3viSpETneaoTOM3utkT2LCQiC5dE_bvtAHs0uzud6_mXx7S15jMNNOZtjcjD83vh3gGIG-z7q7j0Wsuyw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer+Vision-Based+Assessment+of+Autistic+Children%3A+Analyzing+Interactions%2C+Emotions%2C+Human+Pose%2C+and+Life+Skills&rft.jtitle=IEEE+access&rft.au=Varun+Ganjigunte+Prakash&rft.au=Manu+Kohli&rft.au=Swati+Kohli&rft.au=A.+P.+Prathosh&rft.date=2023-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=47907&rft.epage=47929&rft_id=info:doi/10.1109%2FACCESS.2023.3269027&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_cd1dc25d704b413084bec82568757ff8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |