Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011
The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia...
Saved in:
Published in | Science China. Earth sciences Vol. 60; no. 7; pp. 1338 - 1355 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.07.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia as a whole, dust emissions, transport, and deposition over the TD and the GD in different seasons from 2007 to 2011 were systematically compared, based on the Weather Research and Forecasting model coupled with Chemistry(WRF-Chem). Dust emissions, uplift, and long-range transport related to these two dust source regions were markedly different due to differences in topography, elevation, thermal conditions, and atmospheric circulation. Specifically,the topography of the GD is relatively flat, and at a high elevation, and the area is under the influence of two jet streams at high altitudes, resulting in high wind speeds in the upper atmosphere. Deep convective mixing enables the descending branch of jet streams to continuously transport momentum downward to the mid-troposphere, leading to enhanced wind speeds in the lower troposphere over the GD which favors the vertical uplift of the GD dust particles. Therefore, the GD dust was very likely to be transported under the effect of strong westerly jets, and thus played the most important role in contributing to dust concentrations in East Asia. Approximately 35% and 31% of dust emitted from the GD transported to remote areas in East Asia in spring and summer, respectively. The TD has the highest dust emission capabilities in East Asia, with emissions of about 70.54 Tg yr.1 in spring, accounting for 42% of the total dust emissions in East Asia. However, the TD is located in the Tarim Basin and surrounded by mountains on three sides. Furthermore, the dominant surface wind direction is eastward and the average wind speed at high altitudes is relatively small over the TD. As a result, the TD dust particles are not easily transported outside the Tarim Basin, such that most of the dust particles are re-deposited after uplift, at a total deposition rate of about 40 g m.2. It is only when the TD dust particles are uplifted above 4 km, and entrained in westerlies that they begin to undergo a long-range transport. Therefore,the contribution of the TD dust to East Asian dust concentrations was relatively small. Only 25% and 23% of the TD dust was transported to remote areas over East Asia in spring and summer, respectively. |
---|---|
AbstractList | The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia as a whole, dust emissions, transport, and deposition over the TD and the GD in different seasons from 2007 to 2011 were systematically compared, based on the Weather Research and Forecasting model coupled with Chemistry(WRF-Chem). Dust emissions, uplift, and long-range transport related to these two dust source regions were markedly different due to differences in topography, elevation, thermal conditions, and atmospheric circulation. Specifically,the topography of the GD is relatively flat, and at a high elevation, and the area is under the influence of two jet streams at high altitudes, resulting in high wind speeds in the upper atmosphere. Deep convective mixing enables the descending branch of jet streams to continuously transport momentum downward to the mid-troposphere, leading to enhanced wind speeds in the lower troposphere over the GD which favors the vertical uplift of the GD dust particles. Therefore, the GD dust was very likely to be transported under the effect of strong westerly jets, and thus played the most important role in contributing to dust concentrations in East Asia. Approximately 35% and 31% of dust emitted from the GD transported to remote areas in East Asia in spring and summer, respectively. The TD has the highest dust emission capabilities in East Asia, with emissions of about 70.54 Tg yr.1 in spring, accounting for 42% of the total dust emissions in East Asia. However, the TD is located in the Tarim Basin and surrounded by mountains on three sides. Furthermore, the dominant surface wind direction is eastward and the average wind speed at high altitudes is relatively small over the TD. As a result, the TD dust particles are not easily transported outside the Tarim Basin, such that most of the dust particles are re-deposited after uplift, at a total deposition rate of about 40 g m.2. It is only when the TD dust particles are uplifted above 4 km, and entrained in westerlies that they begin to undergo a long-range transport. Therefore,the contribution of the TD dust to East Asian dust concentrations was relatively small. Only 25% and 23% of the TD dust was transported to remote areas over East Asia in spring and summer, respectively. The Taklimakan Desert (TD) and Gobi Desert (GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia as a whole, dust emissions, transport, and deposition over the TD and the GD in different seasons from 2007 to 2011 were systematically compared, based on the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Dust emissions, uplift, and long-range transport related to these two dust source regions were markedly different due to differences in topography, elevation, thermal conditions, and atmospheric circulation. Specifically, the topography of the GD is relatively flat, and at a high elevation, and the area is under the influence of two jet streams at high altitudes, resulting in high wind speeds in the upper atmosphere. Deep convective mixing enables the descending branch of jet streams to continuously transport momentum downward to the mid-troposphere, leading to enhanced wind speeds in the lower troposphere over the GD which favors the vertical uplift of the GD dust particles. Therefore, the GD dust was very likely to be transported under the effect of strong westerly jets, and thus played the most important role in contributing to dust concentrations in East Asia. Approximately 35% and 31% of dust emitted from the GD transported to remote areas in East Asia in spring and summer, respectively. The TD has the highest dust emission capabilities in East Asia, with emissions of about 70.54 Tg yr −1 in spring, accounting for 42% of the total dust emissions in East Asia. However, the TD is located in the Tarim Basin and surrounded by mountains on three sides. Furthermore, the dominant surface wind direction is eastward and the average wind speed at high altitudes is relatively small over the TD. As a result, the TD dust particles are not easily transported outside the Tarim Basin, such that most of the dust particles are re-deposited after uplift, at a total deposition rate of about 40 g m −2 . It is only when the TD dust particles are uplifted above 4 km, and entrained in westerlies that they begin to undergo a long-range transport. Therefore, the contribution of the TD dust to East Asian dust concentrations was relatively small. Only 25% and 23% of the TD dust was transported to remote areas over East Asia in spring and summer, respectively. The Taklimakan Desert (TD) and Gobi Desert (GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia as a whole, dust emissions, transport, and deposition over the TD and the GD in different seasons from 2007 to 2011 were systematically compared, based on the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Dust emissions, uplift, and long-range transport related to these two dust source regions were markedly different due to differences in topography, elevation, thermal conditions, and atmospheric circulation. Specifically, the topography of the GD is relatively flat, and at a high elevation, and the area is under the influence of two jet streams at high altitudes, resulting in high wind speeds in the upper atmosphere. Deep convective mixing enables the descending branch of jet streams to continuously transport momentum downward to the mid-troposphere, leading to enhanced wind speeds in the lower troposphere over the GD which favors the vertical uplift of the GD dust particles. Therefore, the GD dust was very likely to be transported under the effect of strong westerly jets, and thus played the most important role in contributing to dust concentrations in East Asia. Approximately 35% and 31% of dust emitted from the GD transported to remote areas in East Asia in spring and summer, respectively. The TD has the highest dust emission capabilities in East Asia, with emissions of about 70.54 Tg yr-1 in spring, accounting for 42% of the total dust emissions in East Asia. However, the TD is located in the Tarim Basin and surrounded by mountains on three sides. Furthermore, the dominant surface wind direction is eastward and the average wind speed at high altitudes is relatively small over the TD. As a result, the TD dust particles are not easily transported outside the Tarim Basin, such that most of the dust particles are re-deposited after uplift, at a total deposition rate of about 40 g m-2. It is only when the TD dust particles are uplifted above 4 km, and entrained in westerlies that they begin to undergo a long-range transport. Therefore, the contribution of the TD dust to East Asian dust concentrations was relatively small. Only 25% and 23% of the TD dust was transported to remote areas over East Asia in spring and summer, respectively. |
Author | CHEN SiYu HUANG JianPing LI JingXin JIA Rui JIANG NanXuan KANG LiTai MA XiaoJun XIE TingTing |
AuthorAffiliation | Lanzhou University, College of Atmospheric Sciences, Lanzhou 730000, China Chinese Academy of Meteorological Sciences, Institute of Climate System (Polar Meteorology), State Key Laboratory of Severe Weather, Beijing 100081, China |
Author_xml | – sequence: 1 givenname: SiYu surname: Chen fullname: Chen, SiYu organization: Lanzhou University, College of Atmospheric Sciences – sequence: 2 givenname: JianPing surname: Huang fullname: Huang, JianPing email: hjp@lzu.edu.cn organization: Lanzhou University, College of Atmospheric Sciences – sequence: 3 givenname: JingXin surname: Li fullname: Li, JingXin organization: Chinese Academy of Meteorological Sciences, Institute of Climate System (Polar Meteorology), State Key Laboratory of Severe Weather – sequence: 4 givenname: Rui surname: Jia fullname: Jia, Rui organization: Lanzhou University, College of Atmospheric Sciences – sequence: 5 givenname: NanXuan surname: Jiang fullname: Jiang, NanXuan organization: Lanzhou University, College of Atmospheric Sciences – sequence: 6 givenname: LiTai surname: Kang fullname: Kang, LiTai organization: Lanzhou University, College of Atmospheric Sciences – sequence: 7 givenname: XiaoJun surname: Ma fullname: Ma, XiaoJun organization: Lanzhou University, College of Atmospheric Sciences – sequence: 8 givenname: TingTing surname: Xie fullname: Xie, TingTing organization: Lanzhou University, College of Atmospheric Sciences |
BookMark | eNp9kU1PHDEMhqMKJGDLD-AWwZVp7UnmI0e0UFoJqRc4R5kZDwzsJkOSFeLf4-3SCvVALk5kv37tJ0dizwdPQpwgfEOA5ntC1AoKwLowUGEBX8QhtrUpsDXNHt_rRheNQnUgjlN6BD6KM2VzKF6WYT27OKXgZRjlsElZ0npKaQo-ncscnU9ziPlcOj_IgeaQpsw52VF-IfIyP5C8dU-rae2enJeXlCjmP8XXoZv-vscY1rLkWWUOHBG_iv3RrRIdv8eFuPtxdbv8Wdz8vv61vLgpeg0mF3pUekADYzN0ZkAFehi7HqGl3tRgOoetorZXuuqcwY54STRl5ZCU0V3bqoU42_WdY3jeUMr2MWyiZ0vLhQCVrpjdQuCuqo8hpUijnSMvFF8tgt0itjvElhHbLWILrGn-0_RTdls2DG1afaosd8rELv6e4oeZPhGdvts9BH__zLp_M9ZNWZX83ZV6Awokm8U |
CitedBy_id | crossref_primary_10_1016_j_atmosenv_2020_117705 crossref_primary_10_1080_22797254_2022_2093278 crossref_primary_10_1016_j_scitotenv_2021_150982 crossref_primary_10_1016_j_scitotenv_2021_152368 crossref_primary_10_1016_j_scitotenv_2021_147971 crossref_primary_10_1038_s41598_018_25166_5 crossref_primary_10_3389_fenvs_2022_851915 crossref_primary_10_1175_JCLI_D_18_0361_1 crossref_primary_10_1016_j_scitotenv_2023_168437 crossref_primary_10_1016_j_atmosres_2020_105411 crossref_primary_10_1002_joc_7408 crossref_primary_10_1007_s00704_020_03144_0 crossref_primary_10_1016_j_aeolia_2018_07_004 crossref_primary_10_1029_2023JF007227 crossref_primary_10_2151_sola_2022_026 crossref_primary_10_3390_atmos9110441 crossref_primary_10_1007_s12517_019_4580_0 crossref_primary_10_1016_j_atmosenv_2023_119606 crossref_primary_10_3390_su15032029 crossref_primary_10_1016_j_atmosres_2023_107143 crossref_primary_10_1016_j_chemosphere_2023_140280 crossref_primary_10_1016_j_atmosenv_2018_09_047 crossref_primary_10_5194_acp_18_2949_2018 crossref_primary_10_1016_j_apr_2025_102455 crossref_primary_10_1016_j_jclepro_2018_10_199 crossref_primary_10_1016_j_agrformet_2020_107987 crossref_primary_10_1016_j_atmosres_2021_105886 crossref_primary_10_1016_j_envint_2023_107732 crossref_primary_10_1016_j_gsf_2024_101958 crossref_primary_10_1016_j_scitotenv_2022_160681 crossref_primary_10_1016_j_atmosres_2021_105515 crossref_primary_10_5194_acp_18_7131_2018 crossref_primary_10_1038_s41598_018_29366_x crossref_primary_10_1016_j_atmosenv_2020_117670 crossref_primary_10_1029_2022EF002649 crossref_primary_10_1038_s41598_018_27727_0 crossref_primary_10_3389_fpubh_2025_1535543 crossref_primary_10_1038_s41598_019_40491_z crossref_primary_10_3390_rs11060701 crossref_primary_10_1029_2023GL103512 crossref_primary_10_3390_atmos12030339 crossref_primary_10_1007_s10482_023_01882_5 crossref_primary_10_1016_j_atmosres_2023_106846 crossref_primary_10_1016_j_palaeo_2020_109585 crossref_primary_10_1016_j_scitotenv_2024_178178 crossref_primary_10_5194_acp_18_11389_2018 crossref_primary_10_1021_acs_est_0c00017 crossref_primary_10_1016_j_scitotenv_2020_140560 crossref_primary_10_1088_1748_9326_ac3b79 crossref_primary_10_1007_s40333_021_0072_7 crossref_primary_10_1016_j_envpol_2020_115442 crossref_primary_10_1029_2023GL107042 crossref_primary_10_1029_2022GL100948 crossref_primary_10_1016_j_atmosres_2022_106416 crossref_primary_10_1016_j_earscirev_2022_104216 crossref_primary_10_1016_j_scitotenv_2018_12_412 crossref_primary_10_1016_j_gloplacha_2025_104738 crossref_primary_10_1017_S0016756819000335 crossref_primary_10_1007_s11069_019_03686_1 crossref_primary_10_1016_j_geoderma_2020_114322 crossref_primary_10_5194_acp_20_10845_2020 crossref_primary_10_1080_02786826_2019_1571160 crossref_primary_10_5194_acp_18_8353_2018 crossref_primary_10_1016_j_solener_2024_112964 crossref_primary_10_1016_j_jclepro_2019_117746 crossref_primary_10_1016_j_atmosres_2022_106092 crossref_primary_10_3390_atmos13060857 crossref_primary_10_1016_j_partic_2022_05_007 crossref_primary_10_1016_j_geomorph_2018_08_042 crossref_primary_10_1016_j_ecolind_2022_109168 crossref_primary_10_3390_rs15020410 crossref_primary_10_1007_s00382_021_06100_4 crossref_primary_10_1029_2018JD028588 crossref_primary_10_1016_j_atmosenv_2025_121177 crossref_primary_10_1016_j_gloplacha_2024_104509 crossref_primary_10_1007_s10661_020_08299_x crossref_primary_10_1088_1742_6596_2557_1_012023 crossref_primary_10_5194_acp_24_5199_2024 crossref_primary_10_1007_s12517_020_5073_x crossref_primary_10_1002_ldr_4621 crossref_primary_10_3390_rs9101050 crossref_primary_10_3390_su11143957 crossref_primary_10_1016_j_jes_2022_10_032 crossref_primary_10_1038_s41612_023_00418_y crossref_primary_10_5194_acp_22_14489_2022 crossref_primary_10_1016_j_atmosenv_2022_118957 crossref_primary_10_3390_rs15245734 crossref_primary_10_1016_j_quaint_2024_05_013 crossref_primary_10_3390_toxics13010033 crossref_primary_10_1016_j_atmosenv_2024_120470 crossref_primary_10_3390_atmos14071071 crossref_primary_10_1016_j_rse_2022_112906 crossref_primary_10_1021_acs_estlett_2c00652 crossref_primary_10_1016_j_jes_2024_07_003 crossref_primary_10_1016_j_atmosres_2019_104735 crossref_primary_10_1029_2019JD030695 crossref_primary_10_1177_0959683619883011 crossref_primary_10_1016_j_jclepro_2022_133958 crossref_primary_10_1080_02786826_2025_2450206 crossref_primary_10_1016_j_atmosenv_2018_11_063 crossref_primary_10_1007_s13351_022_1212_5 crossref_primary_10_3390_rs15112875 crossref_primary_10_1016_j_geomorph_2020_107386 crossref_primary_10_1016_j_jenvman_2022_116947 crossref_primary_10_12677_GSER_2023_122024 crossref_primary_10_3390_atmos12080952 crossref_primary_10_1088_2515_7620_ad19f3 crossref_primary_10_1016_j_atmosres_2020_105036 crossref_primary_10_3390_rs14040990 crossref_primary_10_5194_acp_21_16797_2021 crossref_primary_10_1016_j_scitotenv_2023_164923 crossref_primary_10_1016_j_gloplacha_2024_104524 crossref_primary_10_1038_s41467_023_37859_1 crossref_primary_10_5194_acp_18_5991_2018 crossref_primary_10_2110_jsr_2018_11 crossref_primary_10_1029_2020JD032942 crossref_primary_10_1016_j_atmosenv_2022_119502 crossref_primary_10_1016_j_catena_2021_105215 crossref_primary_10_5194_acp_22_7905_2022 crossref_primary_10_1007_s40333_018_0096_9 crossref_primary_10_1088_2515_7620_acf9e2 crossref_primary_10_3390_w14111803 crossref_primary_10_1016_j_atmosres_2022_106054 crossref_primary_10_1007_s11430_018_9354_y crossref_primary_10_1016_j_atmosres_2024_107342 crossref_primary_10_1007_s11430_024_1503_4 crossref_primary_10_3389_feart_2022_802658 crossref_primary_10_1002_ldr_4558 crossref_primary_10_1016_j_jqsrt_2018_04_013 crossref_primary_10_1016_j_atmosenv_2018_07_043 crossref_primary_10_3390_rs14143422 crossref_primary_10_1021_acs_est_2c09470 crossref_primary_10_5194_acp_19_363_2019 crossref_primary_10_1016_j_atmosenv_2021_118369 crossref_primary_10_3389_fenvs_2022_931529 crossref_primary_10_1016_j_atmosenv_2021_118768 |
Cites_doi | 10.1029/2002JD002775 10.1029/2003JD003667 10.1016/j.gloplacha.2007.06.001 10.1029/2000JD900665 10.1016/j.atmosenv.2015.10.085 10.1016/j.aeolia.2011.02.001 10.1016/j.aeolia.2014.02.001 10.5194/acpd-10-23781-2010 10.1175/2010BAMS3064.1 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 10.1029/2004JD004920 10.1016/j.atmosenv.2005.04.027 10.5194/acp-9-4011-2009 10.1155/2012/351731 10.1029/2007GL032329 10.5194/acp-10-8821-2010 10.1029/2000JD000053 10.1080/16742834.2013.11447105 10.1016/j.atmosenv.2008.01.040 10.5194/acp-12-5391-2012 10.1175/JAS3446.1 10.1016/S1364-8152(03)00114-2 10.1029/2008JD010620 10.1029/2011JD016023 10.1016/j.atmosres.2015.09.013 10.5194/acp-10-10949-2010 10.1029/2005JD006721 10.1175/1520-0469(2002)059<0736:RFOSDG>2.0.CO;2 10.1029/2004GL019807 10.1016/j.jqsrt.2012.06.016 10.1029/2007GL029938 10.1016/j.atmosenv.2015.10.038 10.5194/acp-8-2763-2008 10.1029/2006GL026561 10.2151/jmsj.83A.107 10.1029/95JD00690 10.5194/acp-17-2401-2017 10.1029/2009JD013263 10.1007/s00376-009-8170-z 10.1016/j.rse.2004.09.009 10.1109/TGRS.2002.801142 10.1002/2014JD022280 10.1016/j.jqsrt.2009.03.010 10.2151/jmsj.86.257 10.1007/s00376-009-0057-5 10.5194/acp-13-10733-2013 10.1002/2014JD021796 10.1029/2008JD011575 10.1016/j.atmosenv.2004.02.016 10.1002/2015JD023322 10.1175/MWR3199.1 10.1002/jgrd.50122 10.1016/j.atmosres.2011.05.020 10.5194/acp-9-3137-2009 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag GmbH Germany 2017 Science China Earth Sciences is a copyright of Springer, 2017. |
Copyright_xml | – notice: Science China Press and Springer-Verlag GmbH Germany 2017 – notice: Science China Earth Sciences is a copyright of Springer, 2017. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 3V. 7TG 7UA 7XB 88I 8FK ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M2P PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U |
DOI | 10.1007/s11430-016-9051-0 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection (ProQuest) Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
DocumentTitleAlternate | Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011 |
EISSN | 1869-1897 |
EndPage | 1355 |
ExternalDocumentID | 10_1007_s11430_016_9051_0 672528695 |
GeographicLocations | East Asia China Tarim Basin Gobi Desert |
GeographicLocations_xml | – name: Tarim Basin – name: East Asia – name: China – name: Gobi Desert |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .VR 06D 0VY 1N0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 40D 40E 5VR 5VS 67M 88I 8FE 8FH 8TC 8UJ 92L 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACGOD ACHSB ACHXU ACIGE ACIHN ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFRAH AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ CAG CCEZO CCPQU CCVFK CHBEP COF CQIGP CSCUP CW9 DDRTE DNIVK DPUIP DWQXO EBD EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV L8X LK5 LLZTM M2P M4Y M7R MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9J PCBAR PF0 PQQKQ PROAC PT4 Q2X QOS R89 RIG ROL RSV S16 S3B SAP SCL SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TR2 TSG TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7Y ZMTXR ~02 ~A9 ~WA -SA -S~ 0R~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AEUYN AGQEE AGRTI AIGIU BSONS CAJEA CJPJV H13 Q-- U1G U5K AAPKM AAYXX ABBRH ABDBE ACMFV ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT 7TG 7UA 7XB 8FK ABRTQ C1K F1W H96 KL. L.G PKEHL PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c409t-4f34d190f7db9d1304dfbc108ec9609ba183e8c345ba91be7311925a1e394b883 |
IEDL.DBID | BENPR |
ISSN | 1674-7313 |
IngestDate | Sat Jul 26 00:16:33 EDT 2025 Tue Jul 01 02:28:17 EDT 2025 Thu Apr 24 22:49:14 EDT 2025 Fri Feb 21 02:32:51 EST 2025 Wed Feb 14 10:00:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | East Asian dust Dust transport Dust deposition Taklimakan Desert Dust Gobi Desert Dust Dust emissions WRF-Chem model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-4f34d190f7db9d1304dfbc108ec9609ba183e8c345ba91be7311925a1e394b883 |
Notes | East Asian dust, WRF-Chem model, Taklimakan Desert Dust, Gobi Desert Dust, Dust emissions, Dust transport,Dust deposition 11-5843/P The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems and water cycles at regional and even global scales. To investigate the contribution of the TD and the GD to dust concentrations in East Asia as a whole, dust emissions, transport, and deposition over the TD and the GD in different seasons from 2007 to 2011 were systematically compared, based on the Weather Research and Forecasting model coupled with Chemistry(WRF-Chem). Dust emissions, uplift, and long-range transport related to these two dust source regions were markedly different due to differences in topography, elevation, thermal conditions, and atmospheric circulation. Specifically,the topography of the GD is relatively flat, and at a high elevation, and the area is under the influence of two jet streams at high altitudes, resulting in high wind speeds in the upper atmosphere. Deep convective mixing enables the descending branch of jet streams to continuously transport momentum downward to the mid-troposphere, leading to enhanced wind speeds in the lower troposphere over the GD which favors the vertical uplift of the GD dust particles. Therefore, the GD dust was very likely to be transported under the effect of strong westerly jets, and thus played the most important role in contributing to dust concentrations in East Asia. Approximately 35% and 31% of dust emitted from the GD transported to remote areas in East Asia in spring and summer, respectively. The TD has the highest dust emission capabilities in East Asia, with emissions of about 70.54 Tg yr.1 in spring, accounting for 42% of the total dust emissions in East Asia. However, the TD is located in the Tarim Basin and surrounded by mountains on three sides. Furthermore, the dominant surface wind direction is eastward and the average wind speed at high altitudes is relatively small over the TD. As a result, the TD dust particles are not easily transported outside the Tarim Basin, such that most of the dust particles are re-deposited after uplift, at a total deposition rate of about 40 g m.2. It is only when the TD dust particles are uplifted above 4 km, and entrained in westerlies that they begin to undergo a long-range transport. Therefore,the contribution of the TD dust to East Asian dust concentrations was relatively small. Only 25% and 23% of the TD dust was transported to remote areas over East Asia in spring and summer, respectively. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1920054514 |
PQPubID | 54336 |
PageCount | 18 |
ParticipantIDs | proquest_journals_1920054514 crossref_primary_10_1007_s11430_016_9051_0 crossref_citationtrail_10_1007_s11430_016_9051_0 springer_journals_10_1007_s11430_016_9051_0 chongqing_primary_672528695 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Dordrecht |
PublicationTitle | Science China. Earth sciences |
PublicationTitleAbbrev | Sci. China Earth Sci |
PublicationTitleAlternate | SCIENCE CHINA Earth Sciences |
PublicationYear | 2017 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | Cheng, Chen, Gu, Yu, Guo, Guo (CR8) 2012; 113 Han, Ueda, Matsuda, Zhang, Arao, Kanai, Hasome (CR20) 2004; 109 Marticorena, Bergametti (CR39) 1995; 100 Uno, Yumimoto, Shimizu, Hara, Sugimoto, Wang, Liu, Winker (CR52) 2008; 35 Huang, Minnis, Chen, Huang, Liu, Zhao, Yi, Ayers (CR26) 2008; 113 Diner, Martonchik, Kahn, Pinty, Gobron, Nelson, Holben (CR10) 2005; 94 Ge, Su, Ackerman, Fu, Huang, Shi (CR15) 2010; 115 Grell, Peckham, Schmitz, McKeen, Frost, Skamarock, Eder (CR16) 2005; 39 Zhang, Reid (CR63) 2010; 10 Yue, Wang, Liao, Fan (CR57) 2010; 27 Kain (CR34) 2004; 43 Kanayama, Yabuki, Zeng, Liu, Shen, Liu, Yanagisawa, Abe (CR35) 2005; 83A Wang, Xu, Henze, Zeng, Ji, Tsay, Huang (CR53) 2012; 39 Zhang, Takahashi, Guo (CR65) 2008; 86 Huang, Fu, Zhang, Wang, Zhang, Ye, Warren (CR23) 2011; 92 Weaver, Ginoux, Hsu, Chou, Joiner (CR56) 2002; 59 Gong, Zhang, Zhao, McKendry, Jaffe, Lu (CR19) 2003; 108 Zhang, Wang, Guo, Wang (CR61) 2009; 26 Chen, Huang, Qian, Ge, Su (CR5) 2014; 20 Huang, Guan, Ji (CR24) 2012; 12 Nakano, Yokoo, Nishikawa, Koyanagi (CR43) 2004; 38 Zhao, Dabu, Li (CR67) 2004; 31 Chen, Zhao, Qian, Leung, Huang, Huang, Bi, Zhang, Shi, Yang, Li, Li (CR7) 2014; 15 Diner, Hodos, Davis, Garay, Martonchik, Sanghavi, Allmen, Kokhanovsky, Zhai (CR9) 2012; 116 Cavazos-Guerra, Todd (CR2) 2012; 2012 Shao, Yang, Wang, Song, Leslie, Dong, Zhang, Lin, Kanai, Yabuki, Chun (CR47) 2003; 108 Martonchik, Diner, Kahn, Gaitley, Holben (CR41) 2004; 31 Zhang, Gong, Zhao, Arimoto, Wang, Zhou (CR64) 2003; 30 Chen, Huang, Kang, Wang, Ma, He, Yuan, Yang, Huang, Zhang (CR4) 2017; 17 Kim (CR38) 2008; 42 Shen, Shen, Du (CR48) 2005; 24 Shao, Wyrwoll, Chappell, Huang, Lin, McTainsh, Mikami, Tanaka, Wang, Yoon (CR46) 2011; 2 Chen, Dudhia (CR3) 2001; 129 Huang, Minnis, Yi, Tang, Wang, Hu, Liu, Ayers, Trepte, Winker (CR28) 2007; 34 Wang, Huang, Zhang, Chen, Bi (CR55) 2010; 115 Huang, Fu, Su, Tang, Minnis, Hu, Yi, Zhao (CR22) 2009; 9 Yue, Liao, Tang (CR58) 2013; 6 Zhao, Chen, Leung, Qian, Kok, Zaveri, Huang (CR66) 2013; 13 Kang, Huang, Chen, Wang (CR37) 2016; 125 Zhao, Liu, Leung, Johnson, McFarlane, Gustafson Jr, Fast, Easter (CR68) 2010; 10 Fast, Gustafson Jr, Easter, Zaveri, Barnard, Chapman, Grell, Peckham (CR12) 2006; 111 Belly (CR1) 1964 Ge, Huang, Xu, Qi, Liu (CR14) 2014; 119 Martonchik, Diner, Crean, Bull (CR40) 2002; 40 Zhang, Ma, Zheng (CR62) 2009; 67 Hong, Noh, Dudhia (CR21) 2006; 134 Eguchi, Uno, Yumimoto, Takemura, Shimizu, Sugimoto, Liu (CR11) 2009; 9 Huang, Huang, Bi, Wang, Wang, Fu, Li, Tsay, Shi (CR30) 2010; 115 Huang, Minnis, Lin, Wang, Yi, Hu, Sun-Mack, Ayers (CR27) 2006; 33 Huang, Lin, Minnis, Wang, Wang, Hu, Yi, Ayers (CR25) 2006; 33 Fu, Thorsen, Su, Ge, Huang (CR13) 2009; 110 Tesfaye, Sivakumar, Botai, Tsidu (CR51) 2011; 116 Su, Huang, Fu Minnis, Ge, Bi (CR49) 2008; 8 Huang, Wang, Wang, Li, Yan (CR29) 2014; 119 Kahn, Gaitley (CR33) 2015; 120 Chen, Huang, Zhao, Qian, Leung, Yang (CR6) 2013; 118 Morrison, Curry, Khvorostyanov (CR42) 2005; 62 Pye (CR44) 1989 Huneeus, Schulz, Balkanski, Griesfeller, Kinne, Prospero, Bauer, Boucher, Chin, Dentener, Diehl, Easter, Fillmore, Ghan, Ginoux, Grini, Horowitz, Koch, Krol, Landing, Liu, Mahowald, Miller, Morcrette, Myhre, Penner, Perlwitz, Stier, Takemura, Zender (CR31) 2010; 10 Zhang, Tsunekawa, Tsubo (CR60) 2008; 60 Zender, Bian, Newman (CR59) 2003; 108 Qian, Gong, Fan, Leung, Bennartz, Chen, Wang (CR45) 2009; 114 Ginoux, Chin, Tegen, Prospero, Holben, Dubovik, Lin (CR17) 2001; 106 Ginoux, Prospero, Torres, Chin (CR18) 2004; 19 Jia, Liu, Chen, Zhang, Huang (CR32) 2015; 123 Sun, Zhang, Liu (CR50) 2001; 106 Wang, Zhuang, Huang, Liu, Lin, Deng, Fu, Fu, Chen, Zhang, Yiming (CR54) 2016; 169 Kang, Chen (CR36) 2017; 37 R A Kahn (9051_CR33) 2015; 120 J P Huang (9051_CR28) 2007; 34 T Cheng (9051_CR8) 2012; 113 C S Zhao (9051_CR67) 2004; 31 R Jia (9051_CR32) 2015; 123 C S Zender (9051_CR59) 2003; 108 N Huneeus (9051_CR31) 2010; 10 S Y Chen (9051_CR5) 2014; 20 S Y Hong (9051_CR21) 2006; 134 S Kanayama (9051_CR35) 2005; 83A T Nakano (9051_CR43) 2004; 38 Y B Shen (9051_CR48) 2005; 24 Q Z Wang (9051_CR54) 2016; 169 J P Huang (9051_CR25) 2006; 33 Z W Huang (9051_CR30) 2010; 115 J V Martonchik (9051_CR40) 2002; 40 J P Huang (9051_CR24) 2012; 12 J Sun (9051_CR50) 2001; 106 Y C Zhang (9051_CR65) 2008; 86 S Y Chen (9051_CR4) 2017; 17 Q Fu (9051_CR13) 2009; 110 X Y Zhang (9051_CR64) 2003; 30 P Ginoux (9051_CR17) 2001; 106 J Wang (9051_CR53) 2012; 39 J D Fast (9051_CR12) 2006; 111 C Zhao (9051_CR68) 2010; 10 D J Diner (9051_CR9) 2012; 116 J M Ge (9051_CR15) 2010; 115 J V Martonchik (9051_CR41) 2004; 31 K Pye (9051_CR44) 1989 J P Huang (9051_CR27) 2006; 33 S L Gong (9051_CR19) 2003; 108 J S Kain (9051_CR34) 2004; 43 J Kim (9051_CR38) 2008; 42 C J Weaver (9051_CR56) 2002; 59 X Wang (9051_CR55) 2010; 115 H Morrison (9051_CR42) 2005; 62 Y Shao (9051_CR46) 2011; 2 I Uno (9051_CR52) 2008; 35 H Zhang (9051_CR62) 2009; 67 B Zhang (9051_CR60) 2008; 60 L T Kang (9051_CR36) 2017; 37 L T Kang (9051_CR37) 2016; 125 P Y Belly (9051_CR1) 1964 C Zhao (9051_CR66) 2013; 13 J Zhang (9051_CR63) 2010; 10 K Eguchi (9051_CR11) 2009; 9 D J Diner (9051_CR10) 2005; 94 X Yue (9051_CR58) 2013; 6 J J P Su (9051_CR49) 2008; 8 C Cavazos-Guerra (9051_CR2) 2012; 2012 Y P Shao (9051_CR47) 2003; 108 H Zhang (9051_CR61) 2009; 26 S Y Chen (9051_CR7) 2014; 15 Y Qian (9051_CR45) 2009; 114 J P Huang (9051_CR23) 2011; 92 J M Ge (9051_CR14) 2014; 119 J P Huang (9051_CR22) 2009; 9 B Marticorena (9051_CR39) 1995; 100 Z Han (9051_CR20) 2004; 109 J P Huang (9051_CR26) 2008; 113 F Chen (9051_CR3) 2001; 129 P Ginoux (9051_CR18) 2004; 19 M Tesfaye (9051_CR51) 2011; 116 G A Grell (9051_CR16) 2005; 39 S Y Chen (9051_CR6) 2013; 118 J P Huang (9051_CR29) 2014; 119 X Yue (9051_CR57) 2010; 27 |
References_xml | – volume: 108 start-page: 4416 year: 2003 ident: CR59 article-title: Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology publication-title: J Geophys Res doi: 10.1029/2002JD002775 – volume: 108 start-page: 4691 year: 2003 end-page: 4710 ident: CR47 article-title: Northeast Asian dust storms: Real-time numerical prediction and validation publication-title: J Geophys Res doi: 10.1029/2003JD003667 – volume: 60 start-page: 487 year: 2008 end-page: 504 ident: CR60 article-title: Contributions of sandy lands and stony deserts to long-distance dust emission in China and Mongolia during 2000–2006 publication-title: Glob Planet Change doi: 10.1016/j.gloplacha.2007.06.001 – volume: 108 start-page: 4262 year: 2003 ident: CR19 article-title: Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation publication-title: J Geophys Res – volume: 106 start-page: 10325 year: 2001 end-page: 10333 ident: CR50 article-title: Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate publication-title: J Geophys Res doi: 10.1029/2000JD900665 – volume: 125 start-page: 188 year: 2016 end-page: 198 ident: CR37 article-title: Long-term trends of dust events over Tibetan Plateau during 1961–2010 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2015.10.085 – volume: 2 start-page: 181 year: 2011 end-page: 204 ident: CR46 article-title: Dust cycle: An emerging core theme in Earth system science publication-title: Aeolian Res doi: 10.1016/j.aeolia.2011.02.001 – volume: 15 start-page: 15 year: 2014 end-page: 30 ident: CR7 article-title: Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem publication-title: Aeolian Res doi: 10.1016/j.aeolia.2014.02.001 – volume: 10 start-page: 23781 year: 2010 end-page: 23864 ident: CR31 article-title: Global dust model intercomparison in AeroCom phase I publication-title: Atmos Chem Phys Discuss doi: 10.5194/acpd-10-23781-2010 – volume: 92 start-page: 175 year: 2011 end-page: 181 ident: CR23 article-title: Dust and black carbon in seasonal snow across northern China publication-title: Bull Amer Meteorol Soc doi: 10.1175/2010BAMS3064.1 – volume: 43 start-page: 170 year: 2004 end-page: 181 ident: CR34 article-title: The kain-fritsch convective parameterization: An update publication-title: J Appl Meteorol doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 – volume: 30 start-page: 2272 year: 2003 ident: CR64 article-title: Sources of Asian dust and role of climate change versus desertification in Asian dust emission publication-title: Geophys Res Lett – volume: 109 start-page: D19205 year: 2004 ident: CR20 article-title: Model study on particle size segregation and deposition during Asian dust events in March 2002 publication-title: J Geophys Res doi: 10.1029/2004JD004920 – volume: 39 start-page: 6957 year: 2005 end-page: 6975 ident: CR16 article-title: Fully coupled “online” chemistry within the WRF model publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2005.04.027 – volume: 9 start-page: 4011 year: 2009 end-page: 4021 ident: CR22 article-title: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints publication-title: Atmos Chem Phys doi: 10.5194/acp-9-4011-2009 – volume: 2012 start-page: 1 year: 2012 end-page: 17 ident: CR2 article-title: Model simulations of complex dust emissions over the Sahara during the West African monsoon onset publication-title: Adv Meteor doi: 10.1155/2012/351731 – volume: 35 start-page: L06803 year: 2008 ident: CR52 article-title: 3D structure of Asian dust transport revealed by CALIPSO lidar and a 4DVAR dust model publication-title: Geophys Res Lett doi: 10.1029/2007GL032329 – volume: 10 start-page: 8821 year: 2010 end-page: 8838 ident: CR68 article-title: The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: Modeling sensitivities to dust emissions and aerosol size treatments publication-title: Atmos Chem Phys doi: 10.5194/acp-10-8821-2010 – volume: 129 start-page: 569 year: 2001 end-page: 585 ident: CR3 article-title: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system publication-title: Part I: Model implementation and sensitivity. Mon Weather Rev – volume: 106 start-page: 20255 year: 2001 end-page: 20273 ident: CR17 article-title: Sources and distributions of dust aerosols simulated with the GOCART model publication-title: J Geophys Res doi: 10.1029/2000JD000053 – year: 1989 ident: CR44 publication-title: Aeolian Dust and Dust Deposites – volume: 6 start-page: 343 year: 2013 end-page: 348 ident: CR58 article-title: Simulation of the direct radiative effect of mineral dust and sea salt aerosols in a doubled Carbon dioxide climate publication-title: Atmos Ocean Sci Lett doi: 10.1080/16742834.2013.11447105 – volume: 42 start-page: 4778 year: 2008 end-page: 4789 ident: CR38 article-title: Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965–2004) publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2008.01.040 – volume: 12 start-page: 5391 year: 2012 end-page: 5398 ident: CR24 article-title: Enhanced cold-season warming in semi-arid regions publication-title: Atmos Chem Phys doi: 10.5194/acp-12-5391-2012 – volume: 62 start-page: 1665 year: 2005 end-page: 1677 ident: CR42 article-title: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description publication-title: J Atmos Sci doi: 10.1175/JAS3446.1 – volume: 19 start-page: 113 year: 2004 end-page: 128 ident: CR18 article-title: Long-term simulation of global dust distribution with the GOCART model: Correlation with North Atlantic oscillation publication-title: Environ Model Softw doi: 10.1016/S1364-8152(03)00114-2 – volume: 113 start-page: D23212 year: 2008 ident: CR26 article-title: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX publication-title: J Geophys Res doi: 10.1029/2008JD010620 – volume: 116 start-page: D20216 year: 2011 ident: CR51 article-title: Aerosol climatology over South Africa based on 10 years of Multiangle Imaging Spectroradiometer (MISR) data publication-title: J Geophys Res doi: 10.1029/2011JD016023 – volume: 169 start-page: 86 year: 2016 end-page: 95 ident: CR54 article-title: Evolution of particulate sulfate and nitrate along the Asian dust pathway: Secondary transformation and primary pollutants via long-range transport publication-title: Atmos Res doi: 10.1016/j.atmosres.2015.09.013 – volume: 10 start-page: 10949 year: 2010 end-page: 10963 ident: CR63 article-title: A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products publication-title: Atmos Chem Phys doi: 10.5194/acp-10-10949-2010 – volume: 111 start-page: D21305 year: 2006 ident: CR12 article-title: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled Meteorology-Chemistry-Aerosol Model publication-title: J Geophys Res doi: 10.1029/2005JD006721 – volume: 59 start-page: 736 year: 2002 end-page: 747 ident: CR56 article-title: Radiative forcing of Saharan dust: GOCART model simulations compared with ERBE Data publication-title: J Atmos Sci doi: 10.1175/1520-0469(2002)059<0736:RFOSDG>2.0.CO;2 – volume: 31 start-page: L16102 year: 2004 ident: CR41 article-title: Comparison of MISR and AERONET aerosol optical depths over desert sites publication-title: Geophys Res Lett doi: 10.1029/2004GL019807 – volume: 113 start-page: 2135 year: 2012 end-page: 2145 ident: CR8 article-title: The inter-comparison of MODIS, MISR and GOCART aerosol products against AERONET data over China publication-title: J Quant Spectrosc Ra doi: 10.1016/j.jqsrt.2012.06.016 – volume: 34 start-page: L18805 year: 2007 ident: CR28 article-title: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau publication-title: Geophys Res Lett doi: 10.1029/2007GL029938 – volume: 123 start-page: 210 year: 2015 end-page: 219 ident: CR32 article-title: Source and transportation of summer dust over the Tibetan Plateau publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2015.10.038 – volume: 67 start-page: 510 year: 2009 end-page: 521 ident: CR62 article-title: A modeling study of global radiative forcing due to dust aerosol (in Chinese) publication-title: Acta Meteorol Sin – volume: 8 start-page: 2763 year: 2008 end-page: 2771 ident: CR49 article-title: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements publication-title: Atmos Chem Phys doi: 10.5194/acp-8-2763-2008 – volume: 33 start-page: L19802 year: 2006 ident: CR25 article-title: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia publication-title: Geophys Res Lett doi: 10.1029/2006GL026561 – volume: 83A start-page: 107 year: 2005 end-page: 120 ident: CR35 article-title: Size-dependent geochemical characteristics of Asian dust publication-title: J Meteorol Soc Jpn doi: 10.2151/jmsj.83A.107 – volume: 100 start-page: 16415 year: 1995 ident: CR39 article-title: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme publication-title: J Geophys Res doi: 10.1029/95JD00690 – volume: 17 start-page: 2401 year: 2017 end-page: 2421 ident: CR4 article-title: Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi Deserts: Comparison of measurements and model results publication-title: Atmos Chem Phys doi: 10.5194/acp-17-2401-2017 – volume: 115 start-page: D00K15 year: 2010 ident: CR30 article-title: Dust aerosol vertical structure measurements using three MPL lidars during 2008 China-U.S. joint dust field experiment publication-title: J Geophys Res – start-page: 1 year: 1964 end-page: 38 ident: CR1 article-title: Sand movement by wind publication-title: US Army Coastal Eng Res Tech Memo – volume: 115 start-page: D00K12 year: 2010 ident: CR15 article-title: Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China-U.S. joint field experiment publication-title: J Geophys Res doi: 10.1029/2009JD013263 – volume: 115 start-page: D00K27 year: 2010 ident: CR55 article-title: Surface measurements of aerosol properties over northwest China during ARM China 2008 deployment publication-title: J Geophys Res – volume: 27 start-page: 230 year: 2010 end-page: 242 ident: CR57 article-title: Direct climatic effect of dust aerosol in the NCAR community atmosphere model version 3 (CAM3) publication-title: Adv Atmos Sci doi: 10.1007/s00376-009-8170-z – volume: 94 start-page: 155 year: 2005 end-page: 171 ident: CR10 article-title: Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land publication-title: Remote Sens Environ doi: 10.1016/j.rse.2004.09.009 – volume: 40 start-page: 1520 year: 2002 end-page: 1531 ident: CR40 article-title: Regional aerosol retrieval results from MISR publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2002.801142 – volume: 119 start-page: 11772 year: 2014 end-page: 11783 ident: CR14 article-title: Characteristics of Taklimakan dust emission and distribution: A satellite and reanalysis field perspective publication-title: J Geophys Res-Atmos doi: 10.1002/2014JD022280 – volume: 110 start-page: 1640 year: 2009 end-page: 1653 ident: CR13 article-title: Test of Mie-based single- scattering properties of non-spherical dust aerosols in radiative flux calculations publication-title: J Quant Spectrosc Ra doi: 10.1016/j.jqsrt.2009.03.010 – volume: 20 start-page: 242 year: 2014 end-page: 250 ident: CR5 article-title: Effects of aerosols on autumn precipitation over Mid-eastern China publication-title: J Trop Meteorol – volume: 24 start-page: 611 year: 2005 end-page: 616 ident: CR48 article-title: Factors affecting on dust emission by wind erosion and their variational characteristics (in Chinese) publication-title: Plateau Meteorol – volume: 86 start-page: 257 year: 2008 end-page: 278 ident: CR65 article-title: Analysis of the East Asian subtropical westerly jet simulated by CCSR/NIES/FRCGC coupled climate system model publication-title: J Meteorol Soc Jpn doi: 10.2151/jmsj.86.257 – volume: 37 start-page: 321 year: 2017 end-page: 331 ident: CR36 article-title: Numerical modeling study of a dust storm process in Northern China (in Chinese) publication-title: Atoms Environ – volume: 26 start-page: 57 year: 2009 end-page: 66 ident: CR61 article-title: A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia publication-title: Adv Atmos Sci doi: 10.1007/s00376-009-0057-5 – volume: 13 start-page: 10733 year: 2013 end-page: 10753 ident: CR66 article-title: Uncertainty in modeling dust mass balance and radiative forcing from size parameterization publication-title: Atmos Chem Phys doi: 10.5194/acp-13-10733-2013 – volume: 31 start-page: L01103 year: 2004 ident: CR67 article-title: Relationship between climatic factors and dust storm frequency in Inner Mongolia of China publication-title: Geophys Res Lett – volume: 119 start-page: 11,398 year: 2014 end-page: 11,416 ident: CR29 article-title: Climate effects of dust aerosols over East Asian arid and semiarid regions publication-title: J Geophys Res-Atmos doi: 10.1002/2014JD021796 – volume: 114 start-page: D00K02 year: 2009 ident: CR45 article-title: Heavy pollution suppresses light rain in China: Observations and modeling publication-title: J Geophys Res doi: 10.1029/2008JD011575 – volume: 33 start-page: L06824 year: 2006 ident: CR27 article-title: Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES publication-title: Geophys Res Lett – volume: 38 start-page: 3061 year: 2004 end-page: 3067 ident: CR43 article-title: Regional Sr-Nd isotopic ratios of soil minerals in northern China as Asian dust fingerprints publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2004.02.016 – volume: 120 start-page: 4248 year: 2015 end-page: 4281 ident: CR33 article-title: An analysis of global aerosol type as retrieved by MISR publication-title: J Geophys Res-Atmos doi: 10.1002/2015JD023322 – volume: 134 start-page: 2318 year: 2006 end-page: 2341 ident: CR21 article-title: A new vertical diffusion package with an explicit treatment of entrainment processes publication-title: Mon Weather Rev doi: 10.1175/MWR3199.1 – volume: 39 start-page: L08802 year: 2012 ident: CR53 article-title: Top-down estimate of dust emissions through integration of MODIS and MISR aerosol retrievals with the GEOS-Chem adjoint model publication-title: Geophys Res Lett – volume: 118 start-page: 797 year: 2013 end-page: 812 ident: CR6 article-title: Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006 publication-title: J Geophys Res-Atmos doi: 10.1002/jgrd.50122 – volume: 116 start-page: 1 year: 2012 end-page: 14 ident: CR9 article-title: An optimization approach for aerosol retrievals using simulated MISR radiances publication-title: Atmos Res doi: 10.1016/j.atmosres.2011.05.020 – volume: 9 start-page: 3137 year: 2009 end-page: 3145 ident: CR11 article-title: Trans-pacific dust transport: Integrated analysis of NASA/CALIPSO and a global aerosol transport model publication-title: Atmos Chem Phys doi: 10.5194/acp-9-3137-2009 – volume: 2012 start-page: 1 year: 2012 ident: 9051_CR2 publication-title: Adv Meteor doi: 10.1155/2012/351731 – volume: 59 start-page: 736 year: 2002 ident: 9051_CR56 publication-title: J Atmos Sci doi: 10.1175/1520-0469(2002)059<0736:RFOSDG>2.0.CO;2 – volume: 19 start-page: 113 year: 2004 ident: 9051_CR18 publication-title: Environ Model Softw doi: 10.1016/S1364-8152(03)00114-2 – volume: 15 start-page: 15 year: 2014 ident: 9051_CR7 publication-title: Aeolian Res doi: 10.1016/j.aeolia.2014.02.001 – volume: 110 start-page: 1640 year: 2009 ident: 9051_CR13 publication-title: J Quant Spectrosc Ra doi: 10.1016/j.jqsrt.2009.03.010 – volume: 31 start-page: L01103 year: 2004 ident: 9051_CR67 publication-title: Geophys Res Lett – volume: 62 start-page: 1665 year: 2005 ident: 9051_CR42 publication-title: J Atmos Sci doi: 10.1175/JAS3446.1 – volume: 123 start-page: 210 year: 2015 ident: 9051_CR32 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2015.10.038 – volume: 31 start-page: L16102 year: 2004 ident: 9051_CR41 publication-title: Geophys Res Lett doi: 10.1029/2004GL019807 – volume: 109 start-page: D19205 year: 2004 ident: 9051_CR20 publication-title: J Geophys Res doi: 10.1029/2004JD004920 – volume: 108 start-page: 4416 year: 2003 ident: 9051_CR59 publication-title: J Geophys Res doi: 10.1029/2002JD002775 – volume: 39 start-page: 6957 year: 2005 ident: 9051_CR16 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2005.04.027 – volume: 108 start-page: 4262 year: 2003 ident: 9051_CR19 publication-title: J Geophys Res – volume: 13 start-page: 10733 year: 2013 ident: 9051_CR66 publication-title: Atmos Chem Phys doi: 10.5194/acp-13-10733-2013 – volume: 30 start-page: 2272 year: 2003 ident: 9051_CR64 publication-title: Geophys Res Lett – volume: 34 start-page: L18805 year: 2007 ident: 9051_CR28 publication-title: Geophys Res Lett doi: 10.1029/2007GL029938 – volume: 119 start-page: 11,398 year: 2014 ident: 9051_CR29 publication-title: J Geophys Res-Atmos doi: 10.1002/2014JD021796 – volume: 100 start-page: 16415 year: 1995 ident: 9051_CR39 publication-title: J Geophys Res doi: 10.1029/95JD00690 – volume: 116 start-page: D20216 year: 2011 ident: 9051_CR51 publication-title: J Geophys Res doi: 10.1029/2011JD016023 – volume-title: Aeolian Dust and Dust Deposites year: 1989 ident: 9051_CR44 – volume: 115 start-page: D00K15 year: 2010 ident: 9051_CR30 publication-title: J Geophys Res – volume: 115 start-page: D00K12 year: 2010 ident: 9051_CR15 publication-title: J Geophys Res – volume: 113 start-page: D23212 year: 2008 ident: 9051_CR26 publication-title: J Geophys Res doi: 10.1029/2008JD010620 – volume: 94 start-page: 155 year: 2005 ident: 9051_CR10 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2004.09.009 – volume: 27 start-page: 230 year: 2010 ident: 9051_CR57 publication-title: Adv Atmos Sci doi: 10.1007/s00376-009-8170-z – volume: 24 start-page: 611 year: 2005 ident: 9051_CR48 publication-title: Plateau Meteorol – volume: 106 start-page: 10325 year: 2001 ident: 9051_CR50 publication-title: J Geophys Res doi: 10.1029/2000JD900665 – volume: 10 start-page: 10949 year: 2010 ident: 9051_CR63 publication-title: Atmos Chem Phys doi: 10.5194/acp-10-10949-2010 – volume: 2 start-page: 181 year: 2011 ident: 9051_CR46 publication-title: Aeolian Res doi: 10.1016/j.aeolia.2011.02.001 – volume: 169 start-page: 86 year: 2016 ident: 9051_CR54 publication-title: Atmos Res doi: 10.1016/j.atmosres.2015.09.013 – volume: 134 start-page: 2318 year: 2006 ident: 9051_CR21 publication-title: Mon Weather Rev doi: 10.1175/MWR3199.1 – volume: 33 start-page: L19802 year: 2006 ident: 9051_CR25 publication-title: Geophys Res Lett doi: 10.1029/2006GL026561 – volume: 10 start-page: 23781 year: 2010 ident: 9051_CR31 publication-title: Atmos Chem Phys Discuss doi: 10.5194/acpd-10-23781-2010 – volume: 37 start-page: 321 year: 2017 ident: 9051_CR36 publication-title: Atoms Environ – volume: 119 start-page: 11772 year: 2014 ident: 9051_CR14 publication-title: J Geophys Res-Atmos doi: 10.1002/2014JD022280 – volume: 8 start-page: 2763 year: 2008 ident: 9051_CR49 publication-title: Atmos Chem Phys doi: 10.5194/acp-8-2763-2008 – volume: 115 start-page: D00K27 year: 2010 ident: 9051_CR55 publication-title: J Geophys Res – volume: 125 start-page: 188 year: 2016 ident: 9051_CR37 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2015.10.085 – volume: 106 start-page: 20255 year: 2001 ident: 9051_CR17 publication-title: J Geophys Res doi: 10.1029/2000JD000053 – volume: 12 start-page: 5391 year: 2012 ident: 9051_CR24 publication-title: Atmos Chem Phys doi: 10.5194/acp-12-5391-2012 – volume: 35 start-page: L06803 year: 2008 ident: 9051_CR52 publication-title: Geophys Res Lett – volume: 129 start-page: 569 year: 2001 ident: 9051_CR3 publication-title: Part I: Model implementation and sensitivity. Mon Weather Rev – volume: 118 start-page: 797 year: 2013 ident: 9051_CR6 publication-title: J Geophys Res-Atmos doi: 10.1002/jgrd.50122 – volume: 114 start-page: D00K02 year: 2009 ident: 9051_CR45 publication-title: J Geophys Res doi: 10.1029/2008JD011575 – volume: 108 start-page: 4691 year: 2003 ident: 9051_CR47 publication-title: J Geophys Res doi: 10.1029/2003JD003667 – volume: 9 start-page: 4011 year: 2009 ident: 9051_CR22 publication-title: Atmos Chem Phys doi: 10.5194/acp-9-4011-2009 – volume: 17 start-page: 2401 year: 2017 ident: 9051_CR4 publication-title: Atmos Chem Phys doi: 10.5194/acp-17-2401-2017 – volume: 10 start-page: 8821 year: 2010 ident: 9051_CR68 publication-title: Atmos Chem Phys doi: 10.5194/acp-10-8821-2010 – volume: 20 start-page: 242 year: 2014 ident: 9051_CR5 publication-title: J Trop Meteorol – volume: 83A start-page: 107 year: 2005 ident: 9051_CR35 publication-title: J Meteorol Soc Jpn doi: 10.2151/jmsj.83A.107 – volume: 67 start-page: 510 year: 2009 ident: 9051_CR62 publication-title: Acta Meteorol Sin – volume: 33 start-page: L06824 year: 2006 ident: 9051_CR27 publication-title: Geophys Res Lett – volume: 9 start-page: 3137 year: 2009 ident: 9051_CR11 publication-title: Atmos Chem Phys doi: 10.5194/acp-9-3137-2009 – volume: 39 start-page: L08802 year: 2012 ident: 9051_CR53 publication-title: Geophys Res Lett – volume: 86 start-page: 257 year: 2008 ident: 9051_CR65 publication-title: J Meteorol Soc Jpn doi: 10.2151/jmsj.86.257 – volume: 116 start-page: 1 year: 2012 ident: 9051_CR9 publication-title: Atmos Res doi: 10.1016/j.atmosres.2011.05.020 – volume: 38 start-page: 3061 year: 2004 ident: 9051_CR43 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2004.02.016 – volume: 6 start-page: 343 year: 2013 ident: 9051_CR58 publication-title: Atmos Ocean Sci Lett doi: 10.1080/16742834.2013.11447105 – volume: 26 start-page: 57 year: 2009 ident: 9051_CR61 publication-title: Adv Atmos Sci doi: 10.1007/s00376-009-0057-5 – volume: 40 start-page: 1520 year: 2002 ident: 9051_CR40 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2002.801142 – volume: 92 start-page: 175 year: 2011 ident: 9051_CR23 publication-title: Bull Amer Meteorol Soc doi: 10.1175/2010BAMS3064.1 – volume: 120 start-page: 4248 year: 2015 ident: 9051_CR33 publication-title: J Geophys Res-Atmos doi: 10.1002/2015JD023322 – volume: 60 start-page: 487 year: 2008 ident: 9051_CR60 publication-title: Glob Planet Change doi: 10.1016/j.gloplacha.2007.06.001 – volume: 111 start-page: D21305 year: 2006 ident: 9051_CR12 publication-title: J Geophys Res doi: 10.1029/2005JD006721 – volume: 43 start-page: 170 year: 2004 ident: 9051_CR34 publication-title: J Appl Meteorol doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 – start-page: 1 volume-title: US Army Coastal Eng Res Tech Memo year: 1964 ident: 9051_CR1 – volume: 113 start-page: 2135 year: 2012 ident: 9051_CR8 publication-title: J Quant Spectrosc Ra doi: 10.1016/j.jqsrt.2012.06.016 – volume: 42 start-page: 4778 year: 2008 ident: 9051_CR38 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2008.01.040 |
SSID | ssj0000389727 |
Score | 2.5347123 |
Snippet | The Taklimakan Desert(TD) and Gobi Desert(GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets, ecosystems... The Taklimakan Desert (TD) and Gobi Desert (GD) are two of the most important dust sources in East Asia, and have important impact on energy budgets,... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1338 |
SubjectTerms | Atmosphere Atmospheric circulation Atmospheric particulates Banks (topography) Circulation Climatology Comparative studies Convective mixing Cycles Deposition Deserts Dust Dust emission Dust particles Dust storms Earth and Environmental Science Earth Sciences Ecosystems Elevation Emissions Energy Energy budget Entrainment Forecasting High altitude Hydrologic cycle Jet stream Jet streams (meteorology) Jets Long-range transport Lower troposphere Minerals Momentum Mountains Research Paper Seasons Slope Spring Spring (season) Streams Summer Surface wind Topography Topography (geology) Transport Troposphere Uplift Upper atmosphere Weather Weather forecasting Westerlies Wind Wind direction Wind speed 东亚地区 塔克拉玛干沙漠 戈壁滩 沉积系统 沙尘源区 粉尘排放 运输 高海拔地区 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iCF7EJ66ukoMn3UAfSdocZfGBB0-74K0kTaqL2upuRfz3znSbrooKHkuTlGaazjeZL98QcoyZNGOVZEkQOcYLkzIjIskKzp2VykC3huV7I6_G_PpW3LbnuGee7e5Tks2fenHYDVw7kqgkQ00pBnH6ioDQHXlc4-is21hBxbikKdWKBHuWxGHss5k_jYKaCvdVefcCT_zqmxaA81uOtHE9FxtkvcWM9Gxu5E2y5MotsnrZ1OR93yZvw66WIK0KiqU4KFZxw32w2YDWXr58QHVpqXWep0VbjhYFDEhH-uFx8qQfdEkhFHXTuml8WZmJv8aDKBT3HGldUXToO2R8cT4aXrG2ngLLIYqrwRIxtwAAisQaZcF5cVuYPAxSl6PunNGwvF2ax1wYrULjYOoA_wkdulhxk6bxLlkuq9LtEQpRlUiVUFYEBXdhrKM81KHhPJdSp6rokYNuVrPnuW5GJpNIRKlUokcCP89Z3kqRY0WMx2whooxmypB-hmbKgh456br48f5o3PfGy9olOcvgVRCfAkDskVNv0E-3fxts_1-tD8hahI6_IfT2yXI9fXWHAFtqc9R8ph-gu-Ax priority: 102 providerName: Springer Nature |
Title | Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011 |
URI | http://lib.cqvip.com/qk/60111X/201707/672528695.html https://link.springer.com/article/10.1007/s11430-016-9051-0 https://www.proquest.com/docview/1920054514 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PSxwxFH7UXQq9lFYtXbVLDp5aQ-dHkklOspV1xYKU4oKehmSSqaLOqDul9L83b0x2bUGPwyQ55CV5L-99-T6AXaykGasELZLMUVYbSQ3PBK0Zc1Yo47v1KN8TcTRnx2f8LCTcFgFWGc_E_qC2bYU58q8-EsHwwvv3_ds7iqpRWF0NEhprMPRHsJQDGH6bnvz4ucyyIH1c0eu2ItqeFnmax9Jm_37ORwuIyxIUaapoggQLF23z6867jX8d1Sr6_K9g2vuhw3fwNgSQZPJo8ffwyjXr8HrWC_T-3YA_B0thQdLWBHU5CEq6YVJssUe6yGW-R3RjiXURtEUCYIv4gJCc6qvryxt9pRvi76Xuvusbz1pzGb_xVQrBBCTpWoLefRPmh9PTgyMaxBVo5a90nTdLzqyPBurCGmW9J2O2NlWaSFchCZ3Rfq87WeWMG61S4_zUeRNwnbpcMSNl_gEGTdu4j0D8FYtLxZXlSc1cmuusSnVqGKuE0FLVI9hezmp5-0iiUYoi45kUio8gifNcVoGXHOUxrssVozKaqUQsGpqpTEbwedkljvdC451ovDLsz0W5Wk0j-BIN-uT3c4NtvTzYNrzJ0O33cN4dGHT3v90nH7R0ZgzDyez8-3QcVugY1ubZ5AFcMeeR |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEE-xbQEf4AK1yMN2kgNCUNpuaVkhtJV6c-3Ygapt0naDqv4pfiMz2XgXkOitxyixE3kmM9-Mx_MBvKSdNOsKxbMo8VxUNudWJopXQninCovDuirfsRrti88H8mAJfoWzMFRWGWxiZ6hdU1KO_C0iEYIX6N_fn51zYo2i3dVAoTFTi11_dYkh2_TdzieU76sk2dqcbIx4zyrAS4xlWvyeVDh0g1XmbOHQhAtX2TKOcl9S9zVrUMl9XqZCWlPE1mdpjO-WJvZpIWyepzjvLVgWqYqSASx_3Bx__TbP6lC7uqzjiaXqfo5j07CV2p3XQ3RCdWCKU1ssHlFDhx9N_f0c3dTfjnGBdv_ZoO383tZ9uNcDVvZhpmEPYMnXD-H2dkcIfPUILjfmRIasqRjxgDCikKMk3HSdtaF3-joztWPOhyIx1heIMQSgbGKOT45OzbGpGcbB_qLtHt5u7FG4plMwjBKerG0YoYnHsH8jy_4EBnVT-6fAMKSTeSELJ6NK-Dg1SRmb2ApRKmXyohrC6nxV9dmsaYdWWSKTXBVyCFFYZ132fdCJjuNELzo4k5g01b6RmHQ0hNfzIWG-ax5eC8LTvT2Y6oX2DuFNEOgft_832cr1k72AO6PJlz29tzPeXYW7CUGOrqJ8DQbtxU__DAFTa5_3Wsrg8KZ_jN-X_iFf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RRa24VP1Ut9DWh_bSYpEP24kPFWqBBUq1QhVI3FI7dgqCJsCmQvy1_jpmsvFuW6ncOEaJrcgz9ryxn-cBvKWTNOu04lmUeC4qm3MrE8UrIbxT2mKzjuU7VjuH4suRPFqA3-EuDNEqw5rYLdSuKWmPfA2RCMELjO9rVU-L2N8crZ9fcFKQopPWIKcxdZE9f32F6dvk4-4m2vpdkoy2DjZ2eK8wwEvMa1r8t1Q4DIlV5qx2uJwLV9kyjnJfUiU2a9DhfV6mQlqjY-uzNMb_kCb2qRY2z1Ps9x4sZpQVDWDx89Z4_9tsh4dK12WdZiwx_Tm2TcOxand3D5EKccIUpxJZPKLiDsdN_eMCQ9bfQXKOfP85rO1i4OgRPOzBK_s09bbHsODrJ3B_uxMHvn4KVxszUUPWVIw0QRjJydGG3GSVtaGO-ioztWPOB8IY68liDMEoOzCnZyc_zampGebE_rLtPt5u7El4phsxjDY_WdswQhbP4PBOhv05DOqm9i-AYXoncy21k1ElfJyapIxNbIUolTK5roawPBvV4nxawKNQWSKTXGk5hCiMc1H2NdFJmuOsmFdzJjMVxIMjMxXREN7PmoT-bvl4JRiv6NeGSTH35CF8CAb94_X_Ont5e2dv4AFOiOLr7nhvGZYSQh8dq3gFBu3lL_8KsVNrX_dOyuD7Xc-LG0_XJZk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+dust+emissions%2C+transport%2C+and+deposition+between+the+Taklimakan+Desert+and+Gobi+Desert+from+2007+to+2011&rft.jtitle=Science+China.+Earth+sciences&rft.au=Chen%2C+SiYu&rft.au=Huang%2C+JianPing&rft.au=Li%2C+JingXin&rft.au=Jia%2C+Rui&rft.date=2017-07-01&rft.issn=1674-7313&rft.eissn=1869-1897&rft.volume=60&rft.issue=7&rft.spage=1338&rft.epage=1355&rft_id=info:doi/10.1007%2Fs11430-016-9051-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11430_016_9051_0 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60111X%2F60111X.jpg |