Integrating unmanned and manned UAVs data network based on combined Bayesian belief network and multi-objective reinforcement learning algorithm

This paper presents and assesses the feasibility and potential of a novel concept: the operation of multiple Unmanned Aerial Vehicles (UAVs) commanded and supported by a manned “Tender” air vehicle carrying a pilot and flight manager(s). The “Tender” is equipped to flexibly and economically monitor...

Full description

Saved in:
Bibliographic Details
Published inDrone systems and applications Vol. 11; pp. 1 - 17
Main Authors Millar, Richard C., Hashemi, Leila, Mahmoodi, Armin, Meyer, Robert Walter, Laliberte, Jeremy
Format Journal Article
LanguageEnglish
Published NRC Research Press 01.01.2023
Canadian Science Publishing
Subjects
Online AccessGet full text
ISSN2564-4939
2564-4939
DOI10.1139/dsa-2022-0043

Cover

Abstract This paper presents and assesses the feasibility and potential of a novel concept: the operation of multiple Unmanned Aerial Vehicles (UAVs) commanded and supported by a manned “Tender” air vehicle carrying a pilot and flight manager(s). The “Tender” is equipped to flexibly and economically monitor and manage multiple diverse UAVs over otherwise inaccessible terrain through wireless communication. The proposed architecture enables operations and analysis supported by the means to detect, assess, and accommodate change and hazards on the spot with effective human observation and coordination. Further, this paper seeks to find the optimal trajectories for UAVs to collect data from sensors in a predefined continuous space. We formulate the path-planning problem for a cooperative, and a diverse swarm of UAVs tasked with optimizing multiple objectives simultaneously with the goal of maximizing accumulated data within a given flight time within cloud data processing constraints as well as minimizing the probable imposed risk during UAVs mission. The risk assessment model determines risk indicators using an integrated Specific Operation Risk Assessment—Bayesian belief network approach, while its resultant analysis is weighted through the analytic hierarchy process ranking model. To this end, as the problem is formulated as a convex optimization model, and we propose a low complexity multi-objective reinforcement learning (MORL) algorithm with a provable performance guarantee to solve the problem efficiently. We show that the MORL architecture can be successfully trained and allows each UAV to map each observation of the network state to an action to make optimal movement decisions. This proposed network architecture enables the UAVs to balance multiple objectives. Estimated MSE measures show that the algorithm produced decreasing errors in the learning process with increasing epoch number.
AbstractList This paper presents and assesses the feasibility and potential of a novel concept: the operation of multiple Unmanned Aerial Vehicles (UAVs) commanded and supported by a manned “Tender” air vehicle carrying a pilot and flight manager(s). The “Tender” is equipped to flexibly and economically monitor and manage multiple diverse UAVs over otherwise inaccessible terrain through wireless communication. The proposed architecture enables operations and analysis supported by the means to detect, assess, and accommodate change and hazards on the spot with effective human observation and coordination. Further, this paper seeks to find the optimal trajectories for UAVs to collect data from sensors in a predefined continuous space. We formulate the path-planning problem for a cooperative, and a diverse swarm of UAVs tasked with optimizing multiple objectives simultaneously with the goal of maximizing accumulated data within a given flight time within cloud data processing constraints as well as minimizing the probable imposed risk during UAVs mission. The risk assessment model determines risk indicators using an integrated Specific Operation Risk Assessment—Bayesian belief network approach, while its resultant analysis is weighted through the analytic hierarchy process ranking model. To this end, as the problem is formulated as a convex optimization model, and we propose a low complexity multi-objective reinforcement learning (MORL) algorithm with a provable performance guarantee to solve the problem efficiently. We show that the MORL architecture can be successfully trained and allows each UAV to map each observation of the network state to an action to make optimal movement decisions. This proposed network architecture enables the UAVs to balance multiple objectives. Estimated MSE measures show that the algorithm produced decreasing errors in the learning process with increasing epoch number.
This paper presents and assesses the feasibility and potential of a novel concept: the operation of multiple Unmanned Aerial Vehicles (UAVs) commanded and supported by a manned "Tender" air vehicle carrying a pilot and flight manager(s). The "Tender" is equipped to flexibly and economically monitor and manage multiple diverse UAVs over otherwise inaccessible terrain through wireless communication. The proposed architecture enables operations and analysis supported by the means to detect, assess, and accommodate change and hazards on the spot with effective human observation and coordination. Further, this paper seeks to find the optimal trajectories for UAVs to collect data from sensors in a predefined continuous space. We formulate the path-planning problem for a cooperative, and a diverse swarm of UAVs tasked with optimizing multiple objectives simultaneously with the goal of maximizing accumulated data within a given flight time within cloud data processing constraints as well as minimizing the probable imposed risk during UAVs mission. The risk assessment model determines risk indicators using an integrated Specific Operation Risk Assessment--Bayesian belief network approach, while its resultant analysis is weighted through the analytic hierarchy process ranking model. To this end, as the problem is formulated as a convex optimization model, and we propose a low complexity multi-objective reinforcement learning (MORL) algorithm with a provable performance guarantee to solve the problem efficiently We show that the MORL architecture can be successfully trained and allows each UAV to map each observation of the network state to an action to make optimal movement decisions. This proposed network architecture enables the UAVs to balance multiple objectives. Estimated MSE measures show that the algorithm produced decreasing errors in the learning process with increasing epoch number. Key words: trajectory optimization, multi-objective reinforcement algorithm, Bayesian belief network, unmanned aerial vehicle (UAV), LIDAR sensor
Audience Trade
Author Millar, Richard C.
Mahmoodi, Armin
Laliberte, Jeremy
Meyer, Robert Walter
Hashemi, Leila
Author_xml – sequence: 1
  givenname: Richard C.
  surname: Millar
  fullname: Millar, Richard C.
– sequence: 2
  givenname: Leila
  surname: Hashemi
  fullname: Hashemi, Leila
– sequence: 3
  givenname: Armin
  surname: Mahmoodi
  fullname: Mahmoodi, Armin
– sequence: 4
  givenname: Robert Walter
  surname: Meyer
  fullname: Meyer, Robert Walter
– sequence: 5
  givenname: Jeremy
  orcidid: 0000-0001-7265-8926
  surname: Laliberte
  fullname: Laliberte, Jeremy
BookMark eNptkc1rFTEUxYNUsNYu3QdcT80kk_lYPosfDwrdWLfhJrkZ85xJJEmV_hf-yWb6qmgpgeRy-J0TLuclOQkxICGvW3bRtmJ6azM0nHHeMNaJZ-SUy75ruklMJ__ML8h5zgfGGB8HwaU8Jb_2oeCcoPgw09uwQghoKQRLH8ab3ZdMLRSgAcvPmL5RDbnqMVATV-035h3cYfYQqMbFo_tL3sfcLsU3UR_QFP8DaUIfXEwGVwyFLggpbF_DMsfky9f1FXnuYMl4_vCekZsP7z9ffmqurj_uL3dXjenYVJoOkOleCg3jZK2QdpIWhG57bNlgGAoBrdBysK7vDfajHFi9YHBidNyxQZyR_THXRjio78mvkO5UBK_uhZhmBal4s6CyXHRgDDiLpjOIWkg-DBNzoxRc9FvWm2PWDBXf9isJzOqzUbuxFW3HR84qdfEEVY_F1ZvapvNV_88gjgaTYs4JnTK-1KZiqEa_qJaprXpVq1db9WqrvrqaR64_yz3N_wab57QP
CitedBy_id crossref_primary_10_1139_dsa_2023_0039
crossref_primary_10_1016_j_ress_2024_110185
crossref_primary_10_1109_ACCESS_2024_3358198
crossref_primary_10_1108_MSCRA_09_2023_0040
crossref_primary_10_1016_j_clscn_2024_100166
crossref_primary_10_3390_electronics13224509
Cites_doi 10.3390/su14095733
10.1109/JIOT.2021.3121511
10.1109/ACCESS.2019.2911980
10.3991/ijoe.v11i2.4366
10.1016/j.paerosci.2017.10.001
10.48550/arXiv.1803.02965S
10.1177/0278364913495721
10.1109/TVT.2019.2934027
10.3390/s18114075
10.1016/j.orl.2004.02.006
10.1109/MNET.2013.6616116
10.1016/j.comnet.2016.02.019
10.1109/TWC.2019.2940447
10.3390/s17081818
10.1155/2017/3296874
10.1007/978-0-8176-4755-1
10.3390/app12136566
10.4271/2015-01-2385
10.1109/TVT.2020.2964821
10.1109/JETCAS.2013.2243032
10.3390/rs4051146
10.3390/electronics10161916
10.3390/ijgi10070426
10.1109/TSMC.2016.2582745
10.3390/designs6030055
10.1109/LCOMM.2019.2894696
10.1007/s10878-019-00434-w
10.1007/s10489-022-03254-4
10.4218/etrij.2020-0210
10.1016/j.trc.2021.102985
10.1016/j.comnet.2008.04.002
10.3390/s20185036
10.1109/OJCOMS.2021.3081996
10.1108/SRT-08-2021-0008
10.13053/cys-23-4-2705
10.1109/JIOT/2022.3184323
10.1109/TCC.2017.2696529
ContentType Journal Article
Copyright COPYRIGHT 2023 NRC Research Press
Copyright_xml – notice: COPYRIGHT 2023 NRC Research Press
DBID AAYXX
CITATION
DOA
DOI 10.1139/dsa-2022-0043
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2564-4939
EndPage 17
ExternalDocumentID oai_doaj_org_article_d234accafdec4ceeb3527790f8532367
A813142820
10_1139_dsa_2022_0043
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 5RP
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
IAO
ICD
IEA
ITC
M~E
PV9
RRP
ID FETCH-LOGICAL-c409t-4ae0b653ba89dd35d95da3b16e107c0e33a13b57df66ce68570685a7f38f2f073
IEDL.DBID DOA
ISSN 2564-4939
IngestDate Wed Aug 27 01:27:50 EDT 2025
Wed Mar 19 02:07:09 EDT 2025
Sat Mar 08 18:49:41 EST 2025
Thu Apr 24 23:05:25 EDT 2025
Thu Aug 14 00:03:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-4ae0b653ba89dd35d95da3b16e107c0e33a13b57df66ce68570685a7f38f2f073
ORCID 0000-0001-7265-8926
OpenAccessLink https://doaj.org/article/d234accafdec4ceeb3527790f8532367
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_d234accafdec4ceeb3527790f8532367
gale_infotracmisc_A813142820
gale_infotracacademiconefile_A813142820
crossref_citationtrail_10_1139_dsa_2022_0043
crossref_primary_10_1139_dsa_2022_0043
PublicationCentury 2000
PublicationDate 2023-01-01
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Drone systems and applications
PublicationYear 2023
Publisher NRC Research Press
Canadian Science Publishing
Publisher_xml – name: NRC Research Press
– name: Canadian Science Publishing
References Liu L. (refg29/ref29) 2011; 6
refg47/ref47
refg40/ref40
refg20/ref20
refg22/ref22
refg36/ref36
refg38/ref38
Zhao P. (refg48/ref48) 2017; 5
refg45/ref45
refg49/ref49
refg31/ref31
refg25/ref25
refg15/ref15
refg43/ref43
refg34/ref34
refg26/ref26
refg14/ref14
refg8/ref8
refg2/ref2
refg37/ref37
refg19/ref19
refg30/ref30
refg21/ref21
Keshtgar E. (refg24/ref24) 2012
refg4/ref4
refg46/ref46
refg10/ref10
refg12/ref12
refg1/ref1
refg28/ref28
refg41/ref41
Bonabeau E. (refg11/ref11) 2001; 79
refg35/ref35
refg39/ref39
refg3/ref3
Bardi M. (refg6/ref6) 1997
JARUS Guidelines (refg23/ref23) 2017
Coggan M. (refg7/ref7) 2004
Dorling K.J. (refg18/ref18) 2017; 47
Mahmoodi A. (refg32/ref32) 2022; 6
refg42/ref42
refg44/ref44
refg33/ref33
Bareither C. (refg9/ref9) 2007; 2
refg13/ref13
refg27/ref27
References_xml – volume-title: Joint Authorities for Rulemaking of Unmanned Systems (JARUS)
  year: 2017
  ident: refg23/ref23
– ident: refg21/ref21
  doi: 10.3390/su14095733
– volume: 2
  start-page: 137
  issue: 2
  year: 2007
  ident: refg9/ref9
  publication-title: Int. J. Ind. Syst. Eng
– ident: refg43/ref43
  doi: 10.1109/JIOT.2021.3121511
– ident: refg1/ref1
  doi: 10.1109/ACCESS.2019.2911980
– ident: refg49/ref49
  doi: 10.3991/ijoe.v11i2.4366
– ident: refg45/ref45
  doi: 10.1016/j.paerosci.2017.10.001
– ident: refg36/ref36
  doi: 10.48550/arXiv.1803.02965S
– volume-title: Analysis and Simulation of Robots Optimum Path Panning Based On Multi-Objective Reinforcement Learning Algorithms, MSc thesis
  year: 2012
  ident: refg24/ref24
– ident: refg26/ref26
  doi: 10.1177/0278364913495721
– ident: refg4/ref4
  doi: 10.1109/TVT.2019.2934027
– ident: refg8/ref8
  doi: 10.3390/s18114075
– ident: refg20/ref20
  doi: 10.1016/j.orl.2004.02.006
– ident: refg44/ref44
  doi: 10.1109/MNET.2013.6616116
– ident: refg46/ref46
  doi: 10.1016/j.comnet.2016.02.019
– ident: refg41/ref41
  doi: 10.1109/TWC.2019.2940447
– ident: refg14/ref14
  doi: 10.3390/s17081818
– ident: refg15/ref15
  doi: 10.1155/2017/3296874
– volume-title: Optimal Control and Viscosity Solutions of Hamilton-Jacobi Bellman Equations
  year: 1997
  ident: refg6/ref6
  doi: 10.1007/978-0-8176-4755-1
– ident: refg2/ref2
  doi: 10.3390/app12136566
– volume-title: Exploration and Exploitation in Reinforcement Learning
  year: 2004
  ident: refg7/ref7
– ident: refg33/ref33
  doi: 10.4271/2015-01-2385
– ident: refg47/ref47
  doi: 10.1109/TVT.2020.2964821
– ident: refg28/ref28
  doi: 10.1109/JETCAS.2013.2243032
– ident: refg3/ref3
  doi: 10.3390/rs4051146
– ident: refg12/ref12
  doi: 10.3390/electronics10161916
– ident: refg27/ref27
  doi: 10.3390/ijgi10070426
– volume: 47
  start-page: 70
  issue: 1
  year: 2017
  ident: refg18/ref18
  publication-title: IEEE Trans. Syst. Man Cybern. Syst
  doi: 10.1109/TSMC.2016.2582745
– volume: 6
  start-page: 55
  issue: 3
  year: 2022
  ident: refg32/ref32
  publication-title: Designs
  doi: 10.3390/designs6030055
– volume: 6
  start-page: 482
  year: 2011
  ident: refg29/ref29
  publication-title: J. Netw.
– ident: refg38/ref38
  doi: 10.1109/LCOMM.2019.2894696
– ident: refg30/ref30
  doi: 10.1007/s10878-019-00434-w
– ident: refg34/ref34
– ident: refg39/ref39
  doi: 10.1007/s10489-022-03254-4
– ident: refg42/ref42
  doi: 10.4218/etrij.2020-0210
– ident: refg19/ref19
  doi: 10.1016/j.trc.2021.102985
– ident: refg25/ref25
– ident: refg35/ref35
  doi: 10.1016/j.comnet.2008.04.002
– volume: 79
  start-page: 106
  issue: 5
  year: 2001
  ident: refg11/ref11
  publication-title: Harv. Bus. Rev
– ident: refg13/ref13
  doi: 10.3390/s20185036
– ident: refg10/ref10
  doi: 10.1109/OJCOMS.2021.3081996
– ident: refg22/ref22
  doi: 10.1108/SRT-08-2021-0008
– volume: 5
  start-page: 255
  issue: 11
  year: 2017
  ident: refg48/ref48
  publication-title: IEEE Access
– ident: refg37/ref37
  doi: 10.13053/cys-23-4-2705
– ident: refg40/ref40
  doi: 10.1109/JIOT/2022.3184323
– ident: refg31/ref31
  doi: 10.1109/TCC.2017.2696529
SSID ssj0002873255
Score 2.283131
Snippet This paper presents and assesses the feasibility and potential of a novel concept: the operation of multiple Unmanned Aerial Vehicles (UAVs) commanded and...
SourceID doaj
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Algorithms
Bayesian belief network
Control systems
Drone aircraft
LIDAR sensor
Methods
multi-objective reinforcement algorithm
Reinforcement learning (Machine learning)
Remote sensing
trajectory optimization
unmanned aerial vehicle (UAV)
Title Integrating unmanned and manned UAVs data network based on combined Bayesian belief network and multi-objective reinforcement learning algorithm
URI https://doaj.org/article/d234accafdec4ceeb3527790f8532367
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygU5AHBQkRaJ3U9tqgIkGCiqJvlJw9BgvoYWPgN_GTuHLdKB8TCYjnJKXF8l3s45-8IOfGOc26ET0RqeYIljZOuMzoRzGce7IEQoUzn3X3nepjdjvJRrdQX5oRV8MDVxF3YNssUPMZbZzLQ6Bo8BsTI82BnEH0MtW8q0low9RqWjDgDZ3kOqsnEhZ0okAiIvPDf15IRClj9USPXbMvVJtmITiHtVYPZIiuu2CbrNajAHfJ9E3Ed4IjOineF-pGqwtLYHfYeJxTzPWlRZXZTNFCWlgUFoYL4F_p99elw0yTVDlxPv6AMt8HMwqTUr5UGpGMXMFVNWD6ksbjEE1VvT-X4Zfr8vkuGV4OHy-skVlNIDMRw0yRTLtWdnGnVFday3IrcKqZbHQcRoEkdY6rFdM4tsMi4DgLfQ6O4Z13f9qAJ9shqURZun9CUCbBxwupU-4xzqz0zrbbPmFXCa-0b5Hw-vdJEqHGsePEmQ8jBhARuSOSGRG40yOmC_KPC2PiNsI-8WhAhNHY4AQIjo8DIvwSmQc6Q0xInEQZlVNyHAK-GUFiy120xhKFrpw3SXKKED8_ULh_8x2gOyRoWsK8WdZpkdTqeuSNwc6b6OEg0tHdfgx8nb_8r
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+unmanned+and+manned+UAVs+data+network+based+on+combined+Bayesian+belief+network+and+multi-objective+reinforcement+learning+algorithm&rft.jtitle=Drone+systems+and+applications&rft.au=Millar%2C+Richard+C.&rft.au=Hashemi%2C+Leila&rft.au=Mahmoodi%2C+Armin&rft.au=Meyer%2C+Robert+Walter&rft.date=2023-01-01&rft.issn=2564-4939&rft.eissn=2564-4939&rft.volume=11&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1139%2Fdsa-2022-0043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1139_dsa_2022_0043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2564-4939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2564-4939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2564-4939&client=summon