Real-time feasibility of nonlinear model predictive control for semi-batch reactors subject to uncertainty and disturbances
This paper presents two nonlinear model predictive control based methods for solving closed-loop stochastic dynamic optimisation problems, ensuring both robustness and feasibility with respect to state output constraints. The first one is a new deterministic approach, using the wait-and-see strategy...
Saved in:
Published in | Computers & chemical engineering Vol. 133; p. 106529 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
02.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents two nonlinear model predictive control based methods for solving closed-loop stochastic dynamic optimisation problems, ensuring both robustness and feasibility with respect to state output constraints. The first one is a new deterministic approach, using the wait-and-see strategy. The key idea is to specifically anticipate violation of output hard-constraints, which are strongly affected by instantaneous disturbances, by backing off of their bounds along the moving horizon. The second method is a stochastic approach to solve nonlinear chance-constrained dynamic optimisation problems under uncertainties. The key aspect is the explicit consideration of the stochastic properties of both exogenous and endogenous uncertainties in the problem formulation (here-and-now strategy). The approach considers a nonlinear relation between uncertain inputs and the constrained state outputs. The performance of the proposed methodologies is assessed via an application to a semi-batch reactor under safety constraints, involving strongly exothermic reactions. |
---|---|
AbstractList | This paper presents two nonlinear model predictive control based methods for solving closed-loop stochastic dynamic optimisation problems, ensuring both robustness and feasibility with respect to state output constraints. The first one is a new deterministic approach, using the wait-and-see strategy. The key idea is to specifically anticipate violation of output hard-constraints, which are strongly affected by instantaneous disturbances, by backing off of their bounds along the moving horizon. The second method is a stochastic approach to solve nonlinear chance-constrained dynamic optimisation problems under uncertainties. The key aspect is the explicit consideration of the stochastic properties of both exogenous and endogenous uncertainties in the problem formulation (here-and-now strategy). The approach considers a nonlinear relation between uncertain inputs and the constrained state outputs. The performance of the proposed methodologies is assessed via an application to a semi-batch reactor under safety constraints, involving strongly exothermic reactions. |
ArticleNumber | 106529 |
Author | Dorneanu, Bogdan Vassiliadis, Vassilios S. Barz, Tilman Arellano-Garcia, Harvey |
Author_xml | – sequence: 1 givenname: Harvey surname: Arellano-Garcia fullname: Arellano-Garcia, Harvey email: arellano@b-tu.de organization: Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom – sequence: 2 givenname: Tilman surname: Barz fullname: Barz, Tilman organization: AIT Austrian Institute of Technology GmbH, Center for Energy, Vienna, 1210, Austria – sequence: 3 givenname: Bogdan surname: Dorneanu fullname: Dorneanu, Bogdan organization: Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom – sequence: 4 givenname: Vassilios S. surname: Vassiliadis fullname: Vassiliadis, Vassilios S. email: vsv20@cam.ac.uk organization: Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, United Kingdom |
BookMark | eNqNkMtKAzEYhbOoYFt9h_gAU5O5z0qkeIOCILoOufyx_zAzKUlaKL68KXUhrlwdOHA-ON-CzCY3ASE3nK044_Vtv9Ju3OktjDB9rnLGu9TXVd7NyJyxrs14UZWXZBFCzxjLy7adk683kEMWcQRqQQZUOGA8Umdpgg84gfR0dAYGuvNgUEc8ANVuit4N1DpPA4yYKRn1lnqQOjofaNirHnSk0dH9pMFHiVOCyslQgyHuvZKpDlfkwsohwPVPLsnH48P7-jnbvD69rO83mS5ZF7NSctVWna6gME2j8tJypbi2UClljOy4brqy5ta0NeRlBWXbFEYXLZdpaKEtluTuzNXeheDBCo1RRjy9kDgIzsTJn-jFL3_i5E-c_SVC94ew8zhKf_zXdn3eQrp4QPAiaIT036BPkoRx-A_KN2Z8m3k |
CitedBy_id | crossref_primary_10_1016_j_compchemeng_2021_107339 crossref_primary_10_1016_j_compchemeng_2020_106998 crossref_primary_10_1177_09596518241240677 crossref_primary_10_1080_00207179_2022_2080117 crossref_primary_10_1002_rnc_6279 crossref_primary_10_1007_s40998_024_00703_3 crossref_primary_10_1016_j_psep_2020_09_059 |
Cites_doi | 10.1016/j.compchemeng.2017.08.010 10.1016/j.automatica.2014.10.128 10.1016/j.compchemeng.2018.10.006 10.1016/S0967-0661(02)00186-7 10.1016/j.compchemeng.2016.08.002 10.1016/0005-1098(96)00063-5 10.1016/j.compchemeng.2007.05.009 10.1016/j.automatica.2008.06.011 10.1016/j.compchemeng.2009.01.022 10.1016/S0005-1098(01)00051-6 10.1016/j.compchemeng.2018.08.038 10.1016/S0005-1098(96)00255-5 10.1002/aic.690450512 10.1002/aic.690450811 10.1016/j.compchemeng.2008.01.004 10.1016/j.jprocont.2003.07.004 10.1016/j.automatica.2014.07.014 10.1016/j.ces.2011.06.018 10.1016/j.cherd.2018.08.017 10.1016/j.ces.2018.05.032 10.1002/aic.690490715 10.1007/s12555-011-0300-6 10.1016/j.ifacol.2015.09.022 10.1002/aic.690450710 10.1016/S0959-1524(00)00015-9 10.1016/j.jprocont.2017.10.006 10.1002/aic.16092 10.1016/j.compchemeng.2005.05.008 10.1016/B978-0-444-63234-0.50124-X 10.1016/j.jprocont.2014.03.010 10.1016/j.compchemeng.2016.12.004 10.1002/aic.12138 10.1016/j.arcontrol.2016.04.006 10.1016/j.automatica.2004.08.020 10.1016/j.conengprac.2011.12.004 10.1016/j.ces.2018.06.079 10.1016/S0005-1098(02)00002-X 10.1021/ie970695l 10.1016/S0959-1524(99)00049-9 10.1016/j.jprocont.2018.07.014 10.1016/S0005-1098(99)00214-9 10.1016/S0098-1354(98)00301-9 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.compchemeng.2019.106529 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_compchemeng_2019_106529 S0098135419303333 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AATTM AAXKI AAXUO ABJNI ABMAC ABNUV ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SBC SDF SDG SDP SES SPC SPCBC SSG SSH SST SSZ T5K ~G- 29F AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM CITATION EJD FEDTE FGOYB HLY HLZ HVGLF HZ~ NDZJH R2- RIG SCE SEW VH1 WUQ ZY4 |
ID | FETCH-LOGICAL-c409t-4a1b859c5e3d77b24f1bb1cfe5bbdda91c79461fd86e245e4873dc381aa1bfe83 |
IEDL.DBID | .~1 |
ISSN | 0098-1354 |
IngestDate | Thu Apr 24 22:54:01 EDT 2025 Tue Jul 01 03:20:51 EDT 2025 Sun Apr 06 06:54:24 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Output-constraints Dynamic real time optimisation Safety Chance-constraints Batch processes NMPC |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-4a1b859c5e3d77b24f1bb1cfe5bbdda91c79461fd86e245e4873dc381aa1bfe83 |
OpenAccessLink | https://www.repository.cam.ac.uk/handle/1810/295800 |
ParticipantIDs | crossref_citationtrail_10_1016_j_compchemeng_2019_106529 crossref_primary_10_1016_j_compchemeng_2019_106529 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2019_106529 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-02 |
PublicationDateYYYYMMDD | 2020-02-02 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Computers & chemical engineering |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Nagy, Braatz (bib0043) 2004; 14 Allgöwer, Badgwell, Qin, Rawlings, Wright (bib0003) 1999 Qin, Badgwell (bib0046) 2003; 11 Shi, Biegler, Hamdan, Wassick (bib0049) 2016; 95 Pahija, Manenti, Mujtaba (bib0044) 2013; 32 Abel, Helbig, Marquardy, Zwick, Daszkowski (bib0001) 2000; 10 Camacho, Bordons (bib0009) 1999 Maussner, Freund (bib0035) 2018; 192 Fogler (bib0016) 1999 Li, Wendt, Wozny (bib0030) 2002; 38 Darby, Nikolaou (bib0011) 2012; 20 Kothare, Balakrishnan, Morari (bib0026) 1996; 32 Wendt (bib0052) 2005 Forbes, Patwardhan, Hamadah, Gopaluni (bib0017) 2015; 48-8 Loeblein, Perkins (bib0032) 1999; 45 Haseltine, Rawlings (bib0020) 2005; 44 Yu, Reble, Chen, Allgöwer (bib0053) 2014; 50 Helbig, Abel, Marquardt (bib0021) 1998 Chischi, Rossiter, Zappa (bib0010) 2001; 37 Lee (bib0027) 2011; 9 Pushke, Zubov, Kosek, Mitsos (bib0045) 2017; 98 Soliman, Swartz, Baker (bib0050) 2008; 32 Kähm, Vassiliadis (bib0023) 2018; 138 Li, Arellano-Garcia, Wozny, Reuter (bib0029) 1998; 37 Mayne (bib0038) 2014; 50 Mayne, Rawlings, Rao, Scokaert (bib0037) 2000; 36 Mhaskar, El-Farra, Christofides (bib0040) 2005; 41 Barz, Wozny, Arellano-Garcia (bib0006) 2011; 50 Nagy, Braatz (bib0042) 2003; 49 Aydin, Bonvin, Sundmacher (bib0005) 2018; 108 Bonvin, François (bib0008) 2017 Alessio, Bemporad (bib0002) 2009; 384 De Nicolao, Magni, Scattolini (bib0012) 2000; 26 Schwarm, Nikolaou (bib0048) 1999; 45 Mayne (bib0039) 2016; 41 Logist, Houska, Diehl, Van Impe (bib0033) 2011; 66 Li, Arellano-Garcia, Wozny (bib0031) 2008; 32 Ma, Chung, Braatz (bib0034) 1999; 45 Bemporad, Morari (bib0007) 1999 Grifith, Biegler, Pathwardhan (bib0019) 2018; 70 Zavala, Biegler (bib0054) 2009; 45 Mayne (bib0036) 2000; 26 Dubljevic, Mhaskar, El-Farra, Christofides (bib0013) 2005; 29 Lee, Yu (bib0028) 1997; 33 Koller, Ricardez-Sandoval, Biegler (bib0025) 2018; 64 Ellis, Durand, Christofides (bib0014) 2014; 24 Emenike, Xie, Schenkendorf, Spiess, Krewer (bib0015) 2019; 121 Galvanin, Barolo, Bezzo, Macchietto (bib0018) 2009; 56 Visser, Srinivasan, Palanki, Bonvin (bib0051) 2000; 10 Kähm, Vassiliadis (bib0024) 2018; 188 Morari, Lee (bib0041) 1999; 23 Kähm, Vassiliadis (bib0022) 2018; 119 Arellano-Garcia, Wozny (bib0004) 2009; 33 Saltik, Özkan, Ludlage, Weiland, Van den Hof (bib0047) 2018; 61 Bemporad (10.1016/j.compchemeng.2019.106529_bib0007) 1999 Kähm (10.1016/j.compchemeng.2019.106529_bib0023) 2018; 138 Nagy (10.1016/j.compchemeng.2019.106529_bib0042) 2003; 49 Grifith (10.1016/j.compchemeng.2019.106529_bib0019) 2018; 70 Wendt (10.1016/j.compchemeng.2019.106529_bib0052) 2005 Pushke (10.1016/j.compchemeng.2019.106529_bib0045) 2017; 98 Ellis (10.1016/j.compchemeng.2019.106529_bib0014) 2014; 24 Emenike (10.1016/j.compchemeng.2019.106529_bib0015) 2019; 121 Alessio (10.1016/j.compchemeng.2019.106529_bib0002) 2009; 384 Li (10.1016/j.compchemeng.2019.106529_bib0029) 1998; 37 Mayne (10.1016/j.compchemeng.2019.106529_bib0038) 2014; 50 Schwarm (10.1016/j.compchemeng.2019.106529_bib0048) 1999; 45 Visser (10.1016/j.compchemeng.2019.106529_bib0051) 2000; 10 Bonvin (10.1016/j.compchemeng.2019.106529_bib0008) 2017 Haseltine (10.1016/j.compchemeng.2019.106529_bib0020) 2005; 44 Mayne (10.1016/j.compchemeng.2019.106529_bib0039) 2016; 41 Saltik (10.1016/j.compchemeng.2019.106529_bib0047) 2018; 61 Forbes (10.1016/j.compchemeng.2019.106529_bib0017) 2015; 48-8 Logist (10.1016/j.compchemeng.2019.106529_bib0033) 2011; 66 Mhaskar (10.1016/j.compchemeng.2019.106529_bib0040) 2005; 41 Dubljevic (10.1016/j.compchemeng.2019.106529_bib0013) 2005; 29 Qin (10.1016/j.compchemeng.2019.106529_bib0046) 2003; 11 Yu (10.1016/j.compchemeng.2019.106529_bib0053) 2014; 50 Mayne (10.1016/j.compchemeng.2019.106529_bib0036) 2000; 26 Abel (10.1016/j.compchemeng.2019.106529_bib0001) 2000; 10 Morari (10.1016/j.compchemeng.2019.106529_bib0041) 1999; 23 Kähm (10.1016/j.compchemeng.2019.106529_bib0024) 2018; 188 Zavala (10.1016/j.compchemeng.2019.106529_bib0054) 2009; 45 Mayne (10.1016/j.compchemeng.2019.106529_bib0037) 2000; 36 Li (10.1016/j.compchemeng.2019.106529_bib0030) 2002; 38 Soliman (10.1016/j.compchemeng.2019.106529_bib0050) 2008; 32 Lee (10.1016/j.compchemeng.2019.106529_bib0028) 1997; 33 Darby (10.1016/j.compchemeng.2019.106529_bib0011) 2012; 20 Li (10.1016/j.compchemeng.2019.106529_bib0031) 2008; 32 Helbig (10.1016/j.compchemeng.2019.106529_bib0021) 1998 Allgöwer (10.1016/j.compchemeng.2019.106529_bib0003) 1999 Ma (10.1016/j.compchemeng.2019.106529_bib0034) 1999; 45 Fogler (10.1016/j.compchemeng.2019.106529_bib0016) 1999 Pahija (10.1016/j.compchemeng.2019.106529_bib0044) 2013; 32 Chischi (10.1016/j.compchemeng.2019.106529_bib0010) 2001; 37 Galvanin (10.1016/j.compchemeng.2019.106529_bib0018) 2009; 56 Kothare (10.1016/j.compchemeng.2019.106529_bib0026) 1996; 32 Shi (10.1016/j.compchemeng.2019.106529_bib0049) 2016; 95 Camacho (10.1016/j.compchemeng.2019.106529_bib0009) 1999 Aydin (10.1016/j.compchemeng.2019.106529_bib0005) 2018; 108 Kähm (10.1016/j.compchemeng.2019.106529_bib0022) 2018; 119 Barz (10.1016/j.compchemeng.2019.106529_bib0006) 2011; 50 De Nicolao (10.1016/j.compchemeng.2019.106529_bib0012) 2000; 26 Maussner (10.1016/j.compchemeng.2019.106529_bib0035) 2018; 192 Arellano-Garcia (10.1016/j.compchemeng.2019.106529_bib0004) 2009; 33 Koller (10.1016/j.compchemeng.2019.106529_bib0025) 2018; 64 Nagy (10.1016/j.compchemeng.2019.106529_bib0043) 2004; 14 Lee (10.1016/j.compchemeng.2019.106529_bib0027) 2011; 9 Loeblein (10.1016/j.compchemeng.2019.106529_bib0032) 1999; 45 |
References_xml | – volume: 50 start-page: 2967 year: 2014 end-page: 2986 ident: bib0038 article-title: Model predictive control: recent developments and future promise publication-title: Automatica – volume: 61 start-page: 77 year: 2018 end-page: 102 ident: bib0047 article-title: An outlook on robust model predictive control algorithms: reflections on performance and computational aspects publication-title: J. Process Control – volume: 121 start-page: 232 year: 2019 end-page: 247 ident: bib0015 article-title: Robust dynamic optimisation of enzyme-catalyzed carboligation: a point estimate-based back-off approach publication-title: Comput. Chem. Eng. – volume: 37 start-page: 1019 year: 2001 end-page: 1028 ident: bib0010 article-title: Systems with persistent disturbances: predictive control with restricted constraints publication-title: Automatica – volume: 33 start-page: 763 year: 1997 end-page: 781 ident: bib0028 article-title: Worst-case formulations of model predictive control for systems with bounded parameters publication-title: Automatica – volume: 45 start-page: 1469 year: 1999 end-page: 1476 ident: bib0034 article-title: Worst-case performance analysis of optimal batch control trajectories publication-title: AIChE J. – volume: 119 start-page: 270 year: 2018 end-page: 292 ident: bib0022 article-title: Optimal Lyapunov exponent parameters for stability analysis of batch reactors with model predictive control publication-title: Comput. Chem. Eng. – volume: 32 start-page: 1361 year: 1996 end-page: 1379 ident: bib0026 article-title: Robust constrained model predictive control using linear matrix inequalities publication-title: Automatica – volume: 32 start-page: 25 year: 2008 end-page: 45 ident: bib0031 article-title: Chance constrained programming approach to process optimisation under uncertainty publication-title: Comput. Chem. Eng. – volume: 45 start-page: 1030 year: 1999 end-page: 1040 ident: bib0032 article-title: Analysis and structural design of integrated on-line optimisation and regulatory control systems publication-title: AIChE J. – volume: 44 start-page: 2451 year: 2005 end-page: 2460 ident: bib0020 article-title: Critical evaluation of extended Kalman filtering and moving-horizon estimation publication-title: I&EC Res. – volume: 192 start-page: 306 year: 2018 end-page: 317 ident: bib0035 article-title: Efficient calculation of constraint back-offs for optimisation under uncertainty: a case study on maleic anhydride synthesis publication-title: Chem. Eng. Sci. – volume: 138 start-page: 292 year: 2018 end-page: 313 ident: bib0023 article-title: Stability criterion for the intensification of batch processes with model predictive control publication-title: Chem. Eng. Res. Des. – volume: 70 start-page: 109 year: 2018 end-page: 122 ident: bib0019 article-title: Robustly stable adaptive horizon nonlinear model predictive control publication-title: J. Process Control – volume: 64 start-page: 2379 year: 2018 end-page: 2389 ident: bib0025 article-title: Stochastic back-off algorithm for simultaneous design, control and scheduling of multiproduct systems under uncertainty publication-title: AIChE J. – volume: 26 start-page: 23 year: 2000 end-page: 44 ident: bib0036 article-title: Nonlinear model predictive control: challenges and opportunities publication-title: Nonlinear Model Predictive Control. Progress in Systems and Control Theory – volume: 14 start-page: 411 year: 2004 end-page: 422 ident: bib0043 article-title: Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis publication-title: J. Process Control – volume: 38 start-page: 1171 year: 2002 end-page: 1176 ident: bib0030 article-title: A probabilistically constrained model predictive controller publication-title: Automatica – volume: 188 start-page: 192 year: 2018 end-page: 207 ident: bib0024 article-title: Thermal stability criterion integrated in model predictive control for batch reactors publication-title: Chem. Eng. Sci. – volume: 50 start-page: 2269 year: 2014 end-page: 2280 ident: bib0053 article-title: Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control publication-title: Atuomatica – volume: 41 start-page: 184 year: 2016 end-page: 192 ident: bib0039 article-title: Robust and stochastic model predictive control: are we going in the right direction? publication-title: Annu. Rev. Control – volume: 66 start-page: 4670 year: 2011 end-page: 4682 ident: bib0033 article-title: Robust multi-objective optimal control of uncertain (bio)chemical processes publication-title: Chem. Eng. Sci. – volume: 9 start-page: 415 year: 2011 end-page: 424 ident: bib0027 article-title: Model predictive control: review of the three decades of development publication-title: Int. J. Control Autom. Syst. – volume: 48-8 start-page: 531 year: 2015 end-page: 538 ident: bib0017 article-title: Model predictive control in industry: challenges and opportunities publication-title: IFAC Pap. OnLine – year: 1999 ident: bib0016 article-title: Elements of Chemical Reaction Engineering – volume: 56 start-page: 2088 year: 2009 end-page: 2102 ident: bib0018 article-title: A backoff strategy for model-based experiment design under parametric uncertainty publication-title: AIChE J. – volume: 108 start-page: 47 year: 2018 end-page: 56 ident: bib0005 article-title: NMPC using Pontryagin's minimum principle-application to a two-phase semi-batch hydroformylaton reactor under uncertainty publication-title: Comput. Chem. Eng. – volume: 29 start-page: 2335 year: 2005 end-page: 2345 ident: bib0013 article-title: Predictive control of transport-reaction processes publication-title: Comput. Chem. Eng. – volume: 24 start-page: 1156 year: 2014 end-page: 1178 ident: bib0014 article-title: A tutorial review of economic model predictive control methods publication-title: J. Process Control – start-page: 441 year: 2017 end-page: 503 ident: bib0008 article-title: Control and optimisation of batch chemical processes publication-title: Coulson and Richardson’s Chemical Engineering, Fourth ed., Vol. 3b: Process Control – volume: 41 start-page: 209 year: 2005 end-page: 217 ident: bib0040 article-title: Robust hybrid predictive control of nonlinear systems publication-title: Automatica – start-page: 207 year: 1999 end-page: 226 ident: bib0007 article-title: Robust model predictive control: a survey publication-title: Robustness in Identification and Control – volume: 11 start-page: 733 year: 2003 end-page: 764 ident: bib0046 article-title: A survey of industrial model predictive control technology publication-title: Control Eng. Pract. – volume: 10 start-page: 351 year: 2000 end-page: 362 ident: bib0001 article-title: Productivity optimisation of an industrial semi-batch polymerisation reactor under safety constraints publication-title: J. Process Control – volume: 10 start-page: 399 year: 2000 end-page: 410 ident: bib0051 article-title: A feedback-based implementation scheme for batch process optimisation publication-title: J. Process Control – volume: 37 start-page: 1341 year: 1998 end-page: 1350 ident: bib0029 article-title: Optimisation of a semibatch distillation process with model validation on the industrial site publication-title: Ind. Eng. Chem. Res. – volume: 49 start-page: 1776 year: 2003 end-page: 1786 ident: bib0042 article-title: Robust nonlinear model predictive control of batch processes publication-title: AIChE J. – volume: 384 start-page: 345 year: 2009 end-page: 369 ident: bib0002 article-title: A survey on explicit model predictive control, in Nonlinear model predictive control publication-title: Lecture Notes in Control and Information Sciences – year: 2005 ident: bib0052 article-title: PhD Thesis, Berlin University of Technology, Germany – start-page: 391 year: 1999 end-page: 449 ident: bib0003 article-title: Nonlinear predictive control and moving horizon estimation—an introductory overview publication-title: Advances in Control – volume: 50 start-page: 5050 year: 2011 end-page: 5063 ident: bib0006 article-title: Robust implementation of optimal decisions using a two-layer chance-constrained approach publication-title: I&EC Res. – volume: 32 start-page: 739 year: 2013 end-page: 744 ident: bib0044 article-title: Optimisation of batch and semi-batch reactors publication-title: Comput. Aided Chem. Eng. – volume: 98 start-page: 161 year: 2017 end-page: 179 ident: bib0045 article-title: Multi-model approach based on parametric sensitivities—a heuristic approximation for dynamic optimisation of semi-batch processes with parametric uncertainties publication-title: Comput. Chem. Eng. – volume: 20 start-page: 328 year: 2012 end-page: 342 ident: bib0011 article-title: MPC: current practice and challenges publication-title: Control Eng. Pract. – volume: 23 start-page: 667 year: 1999 end-page: 682 ident: bib0041 article-title: Model predictive control: past, present and future publication-title: Comput. Chem. Eng. – volume: 32 start-page: 2409 year: 2008 end-page: 2419 ident: bib0050 article-title: A mixed-integer formulation for back-off under constrained predictive control publication-title: Comput. Chem. Eng. – volume: 33 start-page: 1568 year: 2009 end-page: 1583 ident: bib0004 article-title: Chance constrained optimisation of process systems under uncertainty: I. Strict monotonicity publication-title: Comput. Chem. Eng. – year: 1999 ident: bib0009 article-title: Model Predictive Control – start-page: 1695 year: 1998 end-page: 1699 ident: bib0021 article-title: Model predictive control for on-line optimisation of semi-batch reactors publication-title: Proceedings of the 1998 American Control Conference – volume: 26 start-page: 3 year: 2000 end-page: 22 ident: bib0012 article-title: Stability and robustness of nonlinear receding horizon control publication-title: Nonlinear Model Predictive Control. Progress in Systems and Control Theory – volume: 45 start-page: 1743 year: 1999 end-page: 1752 ident: bib0048 article-title: Chance-constrained model predictive control publication-title: AIChE J. – volume: 45 start-page: 86 year: 2009 end-page: 93 ident: bib0054 article-title: The advanced-step NMPC controller: optimality, stability and robustness publication-title: Automatica – volume: 95 start-page: 260 year: 2016 end-page: 279 ident: bib0049 article-title: Optimisation of grade transitions in polyethylene solution polymerisation process under uncertainty publication-title: Comput. Chem. Eng. – volume: 36 start-page: 789 year: 2000 end-page: 814 ident: bib0037 article-title: Constrained model predictive control: Stability and optimality publication-title: Automatica – start-page: 207 year: 1999 ident: 10.1016/j.compchemeng.2019.106529_bib0007 article-title: Robust model predictive control: a survey – volume: 108 start-page: 47 year: 2018 ident: 10.1016/j.compchemeng.2019.106529_bib0005 article-title: NMPC using Pontryagin's minimum principle-application to a two-phase semi-batch hydroformylaton reactor under uncertainty publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.08.010 – volume: 50 start-page: 2967 year: 2014 ident: 10.1016/j.compchemeng.2019.106529_bib0038 article-title: Model predictive control: recent developments and future promise publication-title: Automatica doi: 10.1016/j.automatica.2014.10.128 – volume: 121 start-page: 232 year: 2019 ident: 10.1016/j.compchemeng.2019.106529_bib0015 article-title: Robust dynamic optimisation of enzyme-catalyzed carboligation: a point estimate-based back-off approach publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.10.006 – volume: 11 start-page: 733 year: 2003 ident: 10.1016/j.compchemeng.2019.106529_bib0046 article-title: A survey of industrial model predictive control technology publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(02)00186-7 – volume: 95 start-page: 260 year: 2016 ident: 10.1016/j.compchemeng.2019.106529_bib0049 article-title: Optimisation of grade transitions in polyethylene solution polymerisation process under uncertainty publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2016.08.002 – volume: 32 start-page: 1361 issue: 10 year: 1996 ident: 10.1016/j.compchemeng.2019.106529_bib0026 article-title: Robust constrained model predictive control using linear matrix inequalities publication-title: Automatica doi: 10.1016/0005-1098(96)00063-5 – volume: 32 start-page: 25 issue: 1-2 year: 2008 ident: 10.1016/j.compchemeng.2019.106529_bib0031 article-title: Chance constrained programming approach to process optimisation under uncertainty publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2007.05.009 – volume: 44 start-page: 2451 issue: 8 year: 2005 ident: 10.1016/j.compchemeng.2019.106529_bib0020 article-title: Critical evaluation of extended Kalman filtering and moving-horizon estimation publication-title: I&EC Res. – volume: 45 start-page: 86 issue: 1 year: 2009 ident: 10.1016/j.compchemeng.2019.106529_bib0054 article-title: The advanced-step NMPC controller: optimality, stability and robustness publication-title: Automatica doi: 10.1016/j.automatica.2008.06.011 – volume: 50 start-page: 5050 issue: 9 year: 2011 ident: 10.1016/j.compchemeng.2019.106529_bib0006 article-title: Robust implementation of optimal decisions using a two-layer chance-constrained approach publication-title: I&EC Res. – volume: 33 start-page: 1568 issue: 10 year: 2009 ident: 10.1016/j.compchemeng.2019.106529_bib0004 article-title: Chance constrained optimisation of process systems under uncertainty: I. Strict monotonicity publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.01.022 – volume: 37 start-page: 1019 issue: 7 year: 2001 ident: 10.1016/j.compchemeng.2019.106529_bib0010 article-title: Systems with persistent disturbances: predictive control with restricted constraints publication-title: Automatica doi: 10.1016/S0005-1098(01)00051-6 – volume: 119 start-page: 270 year: 2018 ident: 10.1016/j.compchemeng.2019.106529_bib0022 article-title: Optimal Lyapunov exponent parameters for stability analysis of batch reactors with model predictive control publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.08.038 – volume: 33 start-page: 763 issue: 5 year: 1997 ident: 10.1016/j.compchemeng.2019.106529_bib0028 article-title: Worst-case formulations of model predictive control for systems with bounded parameters publication-title: Automatica doi: 10.1016/S0005-1098(96)00255-5 – volume: 45 start-page: 1030 issue: 5 year: 1999 ident: 10.1016/j.compchemeng.2019.106529_bib0032 article-title: Analysis and structural design of integrated on-line optimisation and regulatory control systems publication-title: AIChE J. doi: 10.1002/aic.690450512 – volume: 384 start-page: 345 year: 2009 ident: 10.1016/j.compchemeng.2019.106529_bib0002 article-title: A survey on explicit model predictive control, in Nonlinear model predictive control – volume: 45 start-page: 1743 issue: 8 year: 1999 ident: 10.1016/j.compchemeng.2019.106529_bib0048 article-title: Chance-constrained model predictive control publication-title: AIChE J. doi: 10.1002/aic.690450811 – volume: 32 start-page: 2409 year: 2008 ident: 10.1016/j.compchemeng.2019.106529_bib0050 article-title: A mixed-integer formulation for back-off under constrained predictive control publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2008.01.004 – volume: 14 start-page: 411 year: 2004 ident: 10.1016/j.compchemeng.2019.106529_bib0043 article-title: Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis publication-title: J. Process Control doi: 10.1016/j.jprocont.2003.07.004 – year: 2005 ident: 10.1016/j.compchemeng.2019.106529_bib0052 – volume: 50 start-page: 2269 year: 2014 ident: 10.1016/j.compchemeng.2019.106529_bib0053 article-title: Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control publication-title: Atuomatica doi: 10.1016/j.automatica.2014.07.014 – volume: 66 start-page: 4670 year: 2011 ident: 10.1016/j.compchemeng.2019.106529_bib0033 article-title: Robust multi-objective optimal control of uncertain (bio)chemical processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.06.018 – volume: 138 start-page: 292 year: 2018 ident: 10.1016/j.compchemeng.2019.106529_bib0023 article-title: Stability criterion for the intensification of batch processes with model predictive control publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2018.08.017 – volume: 188 start-page: 192 year: 2018 ident: 10.1016/j.compchemeng.2019.106529_bib0024 article-title: Thermal stability criterion integrated in model predictive control for batch reactors publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.05.032 – volume: 49 start-page: 1776 issue: 7 year: 2003 ident: 10.1016/j.compchemeng.2019.106529_bib0042 article-title: Robust nonlinear model predictive control of batch processes publication-title: AIChE J. doi: 10.1002/aic.690490715 – volume: 9 start-page: 415 issue: 3 year: 2011 ident: 10.1016/j.compchemeng.2019.106529_bib0027 article-title: Model predictive control: review of the three decades of development publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-011-0300-6 – volume: 48-8 start-page: 531 year: 2015 ident: 10.1016/j.compchemeng.2019.106529_bib0017 article-title: Model predictive control in industry: challenges and opportunities publication-title: IFAC Pap. OnLine doi: 10.1016/j.ifacol.2015.09.022 – start-page: 391 year: 1999 ident: 10.1016/j.compchemeng.2019.106529_bib0003 article-title: Nonlinear predictive control and moving horizon estimation—an introductory overview – volume: 45 start-page: 1469 issue: 7 year: 1999 ident: 10.1016/j.compchemeng.2019.106529_bib0034 article-title: Worst-case performance analysis of optimal batch control trajectories publication-title: AIChE J. doi: 10.1002/aic.690450710 – start-page: 1695 year: 1998 ident: 10.1016/j.compchemeng.2019.106529_bib0021 article-title: Model predictive control for on-line optimisation of semi-batch reactors – volume: 10 start-page: 399 year: 2000 ident: 10.1016/j.compchemeng.2019.106529_bib0051 article-title: A feedback-based implementation scheme for batch process optimisation publication-title: J. Process Control doi: 10.1016/S0959-1524(00)00015-9 – volume: 61 start-page: 77 year: 2018 ident: 10.1016/j.compchemeng.2019.106529_bib0047 article-title: An outlook on robust model predictive control algorithms: reflections on performance and computational aspects publication-title: J. Process Control doi: 10.1016/j.jprocont.2017.10.006 – year: 1999 ident: 10.1016/j.compchemeng.2019.106529_bib0016 – volume: 64 start-page: 2379 issue: 7 year: 2018 ident: 10.1016/j.compchemeng.2019.106529_bib0025 article-title: Stochastic back-off algorithm for simultaneous design, control and scheduling of multiproduct systems under uncertainty publication-title: AIChE J. doi: 10.1002/aic.16092 – volume: 29 start-page: 2335 year: 2005 ident: 10.1016/j.compchemeng.2019.106529_bib0013 article-title: Predictive control of transport-reaction processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2005.05.008 – volume: 32 start-page: 739 year: 2013 ident: 10.1016/j.compchemeng.2019.106529_bib0044 article-title: Optimisation of batch and semi-batch reactors publication-title: Comput. Aided Chem. Eng. doi: 10.1016/B978-0-444-63234-0.50124-X – volume: 24 start-page: 1156 year: 2014 ident: 10.1016/j.compchemeng.2019.106529_bib0014 article-title: A tutorial review of economic model predictive control methods publication-title: J. Process Control doi: 10.1016/j.jprocont.2014.03.010 – volume: 98 start-page: 161 year: 2017 ident: 10.1016/j.compchemeng.2019.106529_bib0045 article-title: Multi-model approach based on parametric sensitivities—a heuristic approximation for dynamic optimisation of semi-batch processes with parametric uncertainties publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2016.12.004 – year: 1999 ident: 10.1016/j.compchemeng.2019.106529_bib0009 – volume: 26 start-page: 3 year: 2000 ident: 10.1016/j.compchemeng.2019.106529_bib0012 article-title: Stability and robustness of nonlinear receding horizon control – volume: 56 start-page: 2088 issue: 8 year: 2009 ident: 10.1016/j.compchemeng.2019.106529_bib0018 article-title: A backoff strategy for model-based experiment design under parametric uncertainty publication-title: AIChE J. doi: 10.1002/aic.12138 – volume: 41 start-page: 184 year: 2016 ident: 10.1016/j.compchemeng.2019.106529_bib0039 article-title: Robust and stochastic model predictive control: are we going in the right direction? publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2016.04.006 – volume: 41 start-page: 209 issue: 2 year: 2005 ident: 10.1016/j.compchemeng.2019.106529_bib0040 article-title: Robust hybrid predictive control of nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2004.08.020 – volume: 20 start-page: 328 year: 2012 ident: 10.1016/j.compchemeng.2019.106529_bib0011 article-title: MPC: current practice and challenges publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2011.12.004 – volume: 192 start-page: 306 year: 2018 ident: 10.1016/j.compchemeng.2019.106529_bib0035 article-title: Efficient calculation of constraint back-offs for optimisation under uncertainty: a case study on maleic anhydride synthesis publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.06.079 – volume: 38 start-page: 1171 issue: 7 year: 2002 ident: 10.1016/j.compchemeng.2019.106529_bib0030 article-title: A probabilistically constrained model predictive controller publication-title: Automatica doi: 10.1016/S0005-1098(02)00002-X – volume: 37 start-page: 1341 year: 1998 ident: 10.1016/j.compchemeng.2019.106529_bib0029 article-title: Optimisation of a semibatch distillation process with model validation on the industrial site publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie970695l – volume: 10 start-page: 351 issue: 4 year: 2000 ident: 10.1016/j.compchemeng.2019.106529_bib0001 article-title: Productivity optimisation of an industrial semi-batch polymerisation reactor under safety constraints publication-title: J. Process Control doi: 10.1016/S0959-1524(99)00049-9 – volume: 70 start-page: 109 year: 2018 ident: 10.1016/j.compchemeng.2019.106529_bib0019 article-title: Robustly stable adaptive horizon nonlinear model predictive control publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.07.014 – volume: 26 start-page: 23 year: 2000 ident: 10.1016/j.compchemeng.2019.106529_bib0036 article-title: Nonlinear model predictive control: challenges and opportunities – start-page: 441 year: 2017 ident: 10.1016/j.compchemeng.2019.106529_bib0008 article-title: Control and optimisation of batch chemical processes – volume: 36 start-page: 789 year: 2000 ident: 10.1016/j.compchemeng.2019.106529_bib0037 article-title: Constrained model predictive control: Stability and optimality publication-title: Automatica doi: 10.1016/S0005-1098(99)00214-9 – volume: 23 start-page: 667 year: 1999 ident: 10.1016/j.compchemeng.2019.106529_bib0041 article-title: Model predictive control: past, present and future publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(98)00301-9 |
SSID | ssj0002488 |
Score | 2.3292012 |
Snippet | This paper presents two nonlinear model predictive control based methods for solving closed-loop stochastic dynamic optimisation problems, ensuring both... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106529 |
SubjectTerms | Batch processes Chance-constraints Dynamic real time optimisation NMPC Output-constraints Safety |
Title | Real-time feasibility of nonlinear model predictive control for semi-batch reactors subject to uncertainty and disturbances |
URI | https://dx.doi.org/10.1016/j.compchemeng.2019.106529 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KguhBfGJ9lBW8xjbJbh7gpRRLVexBLPQW9qkVm5Y2PYjgb3cmD1tBUDDHJROWnWHmm-w3M4RcYIOY_NZfKKkd7M_uCE8zx8TCFaxlARRjvfN9P-gN2O2QD2ukU9XCIK2y9P2FT8-9dbnSLE-zOR2NsMY3jlyfM4AgLR8erGBnIVr55ceS5uGxKKr6ZuLbG-R8yfFC2jaczdikT8jyimE94Dna_CFGrcSd7g7ZLgEjbRd72iU1k-6RrZU2gvvk_QHQnoNT4qk1ouS7vtGJpWnRCEPMaD7xhk5neC-DHo6WHHUKoJXOzRhSZHDKzxQwZD6Ah84XEn_R0GxCIfQVxAH4qEg11WAai5lEe5kfkEH3-rHTc8qhCo6CVC5zmHBlxGPFja_DUHrMulK6yhoupdYidhW2nHetjgLjMW4gofG1grguQNCayD8ka7B5c0QoCwIFx-u5CkAVZ0KY0IpQCD-QkbQ2rJOoOsZElR3HcfDFa1JRy16SFQ0kqIGk0ECdeF-i06Ltxl-EripdJd9sKIHw8Lv48f_ET8imh7k4Mrq9U7KWzRbmDABLJhu5RTbIevvmrtf_BO4R8D4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEC10BJeDuOK4tuA1aJLuLOBlEGXc5iAK3kKvOqLjMMtB_Hmrko6OICiYY0OFprqoepW8fgVwQAIx5V9_qZUJSJ89kJHhgc1lKPmRQ1BM952vO0n7jl_ci_spOKnvwhCt0uf-KqeX2dqvHHpvHva7Xbrjm2dhLDhCkKMYn2mYIXUq0YCZ1vllu_OZkCOeZbV0JhnMwv4XzYuY2-ieF9t7IKJXjuuJKAHnD2VqovScLcGix4ysVW1rGaZsbwUWJpQEV-H9BgFfQIPimbPSU17f2KtjvUoLQw5YOfSG9Qf0a4aSHPM0dYa4lQ3tC3bJmJcfGcLIcgYPG44VfaVho1eG1a_iDuBLZc8wg9ExHigKmeEa3J2d3p60Az9XIdDYzY0CLkOViVwLG5s0VRF3oVKhdlYoZYzMQ02q86EzWWIjLiz2NLHRWNolGjqbxevQwM3bDWA8STS6Nwo14irBpbSpk6mUcaIy5VzahKx2Y6G96DjNvnguanbZUzFxAgWdQFGdQBOiT9N-pbzxF6Pj-qyKb2FUYIX43Xzzf-Z7MNe-vb4qrs47l1swH1FrTgTvaBsao8HY7iB-GaldH58fHijy7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+feasibility+of+nonlinear+model+predictive+control+for+semi-batch+reactors+subject+to+uncertainty+and+disturbances&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Arellano-Garcia%2C+Harvey&rft.au=Barz%2C+Tilman&rft.au=Dorneanu%2C+Bogdan&rft.au=Vassiliadis%2C+Vassilios+S.&rft.date=2020-02-02&rft.issn=0098-1354&rft.volume=133&rft.spage=106529&rft_id=info:doi/10.1016%2Fj.compchemeng.2019.106529&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2019_106529 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |