Hierarchical Deep Features Progressive Aggregation for Remote Sensing Images Scene Classification

Remote sensing image scene classification is essential, and it can promote the rational planning of land and ecological monitoring in the practical application of agricultural production. High spatial resolution (HSR) remote sensing images are widely used in smart agriculture because of their wide c...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 9442 - 9450
Main Authors Zhao, Yang, Liang, Jiaqi, Huang, Sisi, Huang, Pingping
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Remote sensing image scene classification is essential, and it can promote the rational planning of land and ecological monitoring in the practical application of agricultural production. High spatial resolution (HSR) remote sensing images are widely used in smart agriculture because of their wide coverage and HSR. The HSR remote sensing images have a more detailed description of the local scene. However, the complexity of scene details intensifies the intraclass diversity and interclass similarity of scenes, and the interference to scene classification is more significant. To distinguish scene categories effectively in complex background, this article proposes a scene classification method of remote sensing images based on progressive aggregation (PA) with local and global cooperative learning. Specifically, multilevel local and global feature modules are employed at different levels to describe the influence of local objects and their global distribution on scene category determination. Then, the PA module is introduced to explore the collaboration of the same level features and reduce the interference of shallow redundancy. The residual structure can establish the correlation between multilevel representations, thereby improving the representation of the aggregate features. To verify the performance of the proposed method, we implemented cross-domain experiments on four internationally available remote sensing image classification datasets: NWPU-RESISC45, WHU-RS19, RSSCN7, and AID. The experimental results show that the proposed method is effective and robust in remote sensing scene classification.
AbstractList Remote sensing image scene classification is essential, and it can promote the rational planning of land and ecological monitoring in the practical application of agricultural production. High spatial resolution (HSR) remote sensing images are widely used in smart agriculture because of their wide coverage and HSR. The HSR remote sensing images have a more detailed description of the local scene. However, the complexity of scene details intensifies the intraclass diversity and interclass similarity of scenes, and the interference to scene classification is more significant. To distinguish scene categories effectively in complex background, this article proposes a scene classification method of remote sensing images based on progressive aggregation (PA) with local and global cooperative learning. Specifically, multilevel local and global feature modules are employed at different levels to describe the influence of local objects and their global distribution on scene category determination. Then, the PA module is introduced to explore the collaboration of the same level features and reduce the interference of shallow redundancy. The residual structure can establish the correlation between multilevel representations, thereby improving the representation of the aggregate features. To verify the performance of the proposed method, we implemented cross-domain experiments on four internationally available remote sensing image classification datasets: NWPU-RESISC45, WHU-RS19, RSSCN7, and AID. The experimental results show that the proposed method is effective and robust in remote sensing scene classification.
Author Liang, Jiaqi
Huang, Pingping
Huang, Sisi
Zhao, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-7302-7787
  surname: Zhao
  fullname: Zhao, Yang
  email: zhaoyang@imut.edu.cn
  organization: School of Information Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 2
  givenname: Jiaqi
  orcidid: 0009-0001-2655-2482
  surname: Liang
  fullname: Liang, Jiaqi
  email: 20231100106@imut.edu.cn
  organization: School of Information Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 3
  givenname: Sisi
  orcidid: 0009-0001-1238-0800
  surname: Huang
  fullname: Huang, Sisi
  email: 202110203061@imut.edu.cn
  organization: School of Information Engineering, Inner Mongolia University of Technology, Hohhot, China
– sequence: 4
  givenname: Pingping
  orcidid: 0000-0001-7720-1183
  surname: Huang
  fullname: Huang, Pingping
  email: hwangpp@imut.edu.cn
  organization: School of Information Engineering, Inner Mongolia University of Technology, Hohhot, China
BookMark eNp9kUtrGzEUhUVJoU6aX5AuBroeV8-RtDRu0zgEWuJ0LTSaq6nMeORK40D-feRMCqGLbu5DnO9wxTlHZ2McAaErgpeEYP3ldvuwut8uKaZ8yZgmjNF3aEGJIDURTJyhBdFM14Rj_gGd57zDuKFSswWyNwGSTe53cHaovgIcqmuw0zFBrn6m2JeewyNUq76MvZ1CHCsfU3UP-zhBtYUxh7GvNnvbF2LrYIRqPdgC-eJ4kn9E770dMly-9gv06_rbw_qmvvvxfbNe3dWOYz3VXCnbWSlY23DXKN8Sq1zDfcuY0KWUTchWKK8Ulx2XDW2pYs4zwaVwyrMLtJl9u2h35pDC3qYnE20wLw8x9camKbgBDNO8tR0XGkvNObQae6xdpztPPdOuLV6fZ69Din-OkCezi8c0lvMNw4ISxUWji0rPKpdizgm8cWF6-fOUbBgMweaUjpnTMad0zGs6hWX_sH8v_j_1aaYCALwhBBZScvYMJi6eJA
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1007_s12145_025_01828_7
crossref_primary_10_1007_s10489_024_06216_0
Cites_doi 10.1109/jiot.2024.3368140
10.1109/TGRS.2022.3192321
10.1109/TGRS.2023.3265346
10.1109/TIP.2021.3127851
10.55730/1300-011X.3025
10.1109/LGRS.2023.3262407
10.1109/TMM.2023.3330096
10.1109/JSTARS.2022.3225791
10.1016/j.cageo.2022.105042
10.3390/rs13071270
10.1016/j.geoderma.2023.116765
10.1109/igarss.2018.8518096
10.1109/CVPR46437.2021.00253
10.1109/LGRS.2022.3229334
10.1109/JSTARS.2022.3213749
10.1109/JSTARS.2020.3026724
10.55730/1300-011X.3033
10.1109/JSTARS.2023.3298492
10.1016/j.isprsjprs.2022.07.013
10.1109/JSTARS.2020.3005403
10.1109/TGRS.2022.3140485
10.1109/LGRS.2023.3304645
10.3390/rs13193861
10.1016/j.isprsjprs.2022.11.013
10.1109/TGRS.2023.3260873
10.1109/TCSVT.2022.3209007
10.1109/CVPR.2018.00813
10.1109/LGRS.2015.2475299
10.1109/TGRS.2017.2685945
10.1109/LGRS.2021.3109061
10.1109/TGRS.2023.3296813
10.1109/TGRS.2023.3290794
10.1109/TGRS.2022.3200056
10.1016/j.ins.2020.06.011
10.1109/LGRS.2021.3079248
10.1109/ACCESS.2022.3147543
10.48550/ARXIV.1706.03762
10.1109/TGRS.2022.3151405
10.1109/TGRS.2023.3297560
10.55730/1300-011X.3011
10.1109/JSTARS.2023.3339336
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2024.3391332
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 9450
ExternalDocumentID oai_doaj_org_article_394bad45907944eb90f09cd9df2f39cb
10_1109_JSTARS_2024_3391332
10505774
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U22A2010
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c409t-488ada753b64c68fb1a8c64fb3359b33a8c57b58f8847d4762b283cf35475c8f3
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Wed Aug 27 01:20:43 EDT 2025
Fri Jul 25 10:37:05 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Tue Jul 01 05:23:10 EDT 2025
Wed Aug 27 01:43:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-488ada753b64c68fb1a8c64fb3359b33a8c57b58f8847d4762b283cf35475c8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7302-7787
0009-0001-2655-2482
0009-0001-1238-0800
0000-0001-7720-1183
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10505774
PQID 3052184569
PQPubID 75722
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_394bad45907944eb90f09cd9df2f39cb
crossref_citationtrail_10_1109_JSTARS_2024_3391332
crossref_primary_10_1109_JSTARS_2024_3391332
ieee_primary_10505774
proquest_journals_3052184569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
Saito (ref43) 2019
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Xia (ref37) 2010
References_xml – ident: ref5
  doi: 10.1109/jiot.2024.3368140
– ident: ref22
  doi: 10.1109/TGRS.2022.3192321
– ident: ref17
  doi: 10.1109/TGRS.2023.3265346
– ident: ref19
  doi: 10.1109/TIP.2021.3127851
– start-page: 1
  volume-title: Proc. Comput. Vis. Pattern Recognit.
  year: 2019
  ident: ref43
  article-title: EMI-supervised domain adaptation via minimax entropy
– ident: ref3
  doi: 10.55730/1300-011X.3025
– ident: ref20
  doi: 10.1109/LGRS.2023.3262407
– ident: ref6
  doi: 10.1109/TMM.2023.3330096
– ident: ref11
  doi: 10.1109/JSTARS.2022.3225791
– ident: ref16
  doi: 10.1016/j.cageo.2022.105042
– ident: ref40
  doi: 10.3390/rs13071270
– ident: ref7
  doi: 10.1016/j.geoderma.2023.116765
– ident: ref41
  doi: 10.1109/igarss.2018.8518096
– ident: ref44
  doi: 10.1109/CVPR46437.2021.00253
– ident: ref26
  doi: 10.1109/LGRS.2022.3229334
– ident: ref8
  doi: 10.1109/JSTARS.2022.3213749
– ident: ref9
  doi: 10.1109/JSTARS.2020.3026724
– ident: ref4
  doi: 10.55730/1300-011X.3033
– ident: ref18
  doi: 10.1109/JSTARS.2023.3298492
– ident: ref23
  doi: 10.1016/j.isprsjprs.2022.07.013
– ident: ref2
  doi: 10.1109/JSTARS.2020.3005403
– ident: ref29
  doi: 10.1109/TGRS.2022.3140485
– ident: ref15
  doi: 10.1109/LGRS.2023.3304645
– ident: ref42
  doi: 10.3390/rs13193861
– ident: ref27
  doi: 10.1016/j.isprsjprs.2022.11.013
– ident: ref30
  doi: 10.1109/TGRS.2023.3260873
– ident: ref35
  doi: 10.1109/TCSVT.2022.3209007
– ident: ref33
  doi: 10.1109/CVPR.2018.00813
– ident: ref36
  doi: 10.1109/LGRS.2015.2475299
– ident: ref39
  doi: 10.1109/TGRS.2017.2685945
– ident: ref32
  doi: 10.1109/LGRS.2021.3109061
– ident: ref38
  doi: 10.1109/LGRS.2015.2475299
– ident: ref14
  doi: 10.1109/TGRS.2023.3296813
– ident: ref24
  doi: 10.1109/TGRS.2023.3290794
– ident: ref25
  doi: 10.1109/TGRS.2022.3200056
– ident: ref12
  doi: 10.1016/j.ins.2020.06.011
– ident: ref21
  doi: 10.1109/LGRS.2021.3079248
– ident: ref31
  doi: 10.1109/ACCESS.2022.3147543
– ident: ref34
  doi: 10.48550/ARXIV.1706.03762
– ident: ref13
  doi: 10.1109/TGRS.2022.3151405
– ident: ref28
  doi: 10.1109/TGRS.2023.3297560
– start-page: 298
  volume-title: Proc. ISPRS TC VII Symp.-100 Years ISPRS
  year: 2010
  ident: ref37
  article-title: Structural high-resolution satellite image indexing
– ident: ref10
  doi: 10.55730/1300-011X.3011
– ident: ref1
  doi: 10.1109/JSTARS.2023.3339336
SSID ssj0062793
Score 2.3730063
Snippet Remote sensing image scene classification is essential, and it can promote the rational planning of land and ecological monitoring in the practical application...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9442
SubjectTerms Aggregation
Agricultural production
Classification
Complexity
Convolutional neural networks
Cooperative learning
Digital agriculture
Distribution functions
Ecological monitoring
Feature extraction
Graphical models
Image classification
Interference
Modules
Multilevel local (MLL) and multilevel global (MLG) feature modules
progressive aggregation (PA)
Redundancy
Remote sensing
remote sensing images scene classification
Representations
Scene classification
Semantics
Spatial discrimination
Spatial resolution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hf7MGj0SS7m2SP9VGroIhV6G3ZZxFqFa2C_96ZTVoqgl68hCRsSDIzO_N9yewMIQcm9y7XgiVZFdKEF5lOjJAusVo7a7gwPP6Kub4peg_8aiAGc62-MCesLg9cC-6YSW604wJInOTcG5mGVFonXcgDk9ag94WYNyVTtQ8u8jKW2wV0IhMsINPUG8pSeQwG37nrAzPM-RFjEjha_i0mxdL9Ta-VHw46Rp3uCllu4CLt1I-5Shb8eI0sXsR2vJ_rRPcecQFx7Gcyomfev1DEdO_AoektZl5hkuuHp50h7A6jEiigVHrnQUOe9jF7fTykl0_gVd5o34Ljo7FNJiYQxeEb5KF7fn_aS5qmCYkFqjZJYEJqp4GEmILbogom05UteDCMCQkbOBKlEVWoIC45Dr7QAMKwgQleClsFtkla4-ex3yIUuGEwwIdC6TzQzFL7kAEgtCbzphKpbpN8KjZlm4ri2NhipCKzSKWqZa1Q1qqRdZsczi56qQtq_D78BPUxG4rVsOMJsBHV2Ij6y0baZAO1OXc_pGUlb5PdqXpVM3XfFMPlzBXgSrn9H_feIUv4PvVXm13Smry--z3AMROzH032CwUF7AI
  priority: 102
  providerName: Directory of Open Access Journals
Title Hierarchical Deep Features Progressive Aggregation for Remote Sensing Images Scene Classification
URI https://ieeexplore.ieee.org/document/10505774
https://www.proquest.com/docview/3052184569
https://doaj.org/article/394bad45907944eb90f09cd9df2f39cb
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJSQuPItYKJUPHMmSxHYSH5dHWZCoUJdKvVkee7xClG1Fd5Hg1zPjeCseAnGJkshRHH32-PuceQjxBFqMrTeqaoZUV7prfAXGxip4HwNoAzr_inl31M1P9NtTc1qC1XMsDCJm5zOc8mn-lx_Pw4a3ymiGM53u9Y7YIeU2BmttzW7X9jnDLhESW3HOmJJiqKntMxrjs-MFicFWT5WyJMvaX5ahnK2_lFf5wybnhebwljjadnH0L_k03axhGr7_lr3xv7_htrhZKKecjWPkjriGq7vi-utc0vfbPeHnHzkIOddEOZMvES8k88IN6XD5nr232FH2K8rZkk6XGUhJTFceI6GMcsEe8KulfPOZLNOlXAQynjKX2mQnpNx8T5wcvvrwYl6VwgtVILm3rmhS--hJyECnQzckaPwQOp1AKWPpQFemBzOkgda2qMmeArGUkJTRvQlDUvfF7up8hQ-EJH2ZgDRV6iOSVO09poZIZYAGYTC1n4h2i4MLJSs5F8c4c1md1NaN4DkGzxXwJuLp1UMXY1KOfzd_zgBfNeWM2vkGAePKBHXKavBRG1uThdIItk61DdHG1CZlA0zEHoP50_tGHCdifzteXJn-l05xSPRA3NQ-_Mtjj8QN7uK4mbMvdtdfNviY6M0aDvK2wEEe3D8ABPH2Zg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEYILz1YsLeADR7IksZ3Exy1t2UK7Qt1W6s3yY7xCtNuq3UWCX8_Y8VY8BOISOZGjJPrs8ffF8wB4bWv0tZG8qLpQFqKpTGGl8oUzxjsrpBVpK-Zw0oxPxIdTeZqD1VMsDCIm5zMcxmbay_cXbhl_ldEMj3S6FbfhDi38su7DtVaGt6nblGOXKIkqYtaYnGSoKtVbGuWjoynJwVoMOVckzOpfFqKUrz8XWPnDKqelZu8hTFYv2XuYfBkuF3bovv-Wv_G_v-IRPMikk436UfIYbuH8Cdx9n4r6fnsKZvw5hiGnqihnbAfxkkVmuCQlzj5F_63oKvsV2WhGzVmCkhHXZUdIOCObRh_4-Yztn5NtumZTR-aTpWKb0Q0pdV-Hk73d43fjIpdeKBwJvkVB09p4Q1LGNsI1XbCV6VwjguVcKjrQmWyt7EJHq5sXZFEt8RQXuBStdF3gG7A2v5jjM2CkMIMlVRVajyRWW4OhIlrpbIW2k6UZQL3CQbuclzyWxzjTSZ-USvfg6QiezuAN4M3NTZd9Wo5_d9-OAN90jTm10wUCRucpqrkS1nghVUk2SqBVZSiV88qHOnDl7ADWI5g_Pa_HcQBbq_GiswG41jwGRXfETtXzv9z2Cu6Njw8P9MH-5OMm3I-v2__a2YK1xdUSXxDZWdiXaYj_ADde-Ls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Deep+Features+Progressive+Aggregation+for+Remote+Sensing+Images+Scene+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Zhao%2C+Yang&rft.au=Liang%2C+Jiaqi&rft.au=Huang%2C+Sisi&rft.au=Huang%2C+Pingping&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=9442&rft.epage=9450&rft_id=info:doi/10.1109%2FJSTARS.2024.3391332&rft.externalDocID=10505774
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon