Hierarchical Deep Features Progressive Aggregation for Remote Sensing Images Scene Classification
Remote sensing image scene classification is essential, and it can promote the rational planning of land and ecological monitoring in the practical application of agricultural production. High spatial resolution (HSR) remote sensing images are widely used in smart agriculture because of their wide c...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 9442 - 9450 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Remote sensing image scene classification is essential, and it can promote the rational planning of land and ecological monitoring in the practical application of agricultural production. High spatial resolution (HSR) remote sensing images are widely used in smart agriculture because of their wide coverage and HSR. The HSR remote sensing images have a more detailed description of the local scene. However, the complexity of scene details intensifies the intraclass diversity and interclass similarity of scenes, and the interference to scene classification is more significant. To distinguish scene categories effectively in complex background, this article proposes a scene classification method of remote sensing images based on progressive aggregation (PA) with local and global cooperative learning. Specifically, multilevel local and global feature modules are employed at different levels to describe the influence of local objects and their global distribution on scene category determination. Then, the PA module is introduced to explore the collaboration of the same level features and reduce the interference of shallow redundancy. The residual structure can establish the correlation between multilevel representations, thereby improving the representation of the aggregate features. To verify the performance of the proposed method, we implemented cross-domain experiments on four internationally available remote sensing image classification datasets: NWPU-RESISC45, WHU-RS19, RSSCN7, and AID. The experimental results show that the proposed method is effective and robust in remote sensing scene classification. |
---|---|
AbstractList | Remote sensing image scene classification is essential, and it can promote the rational planning of land and ecological monitoring in the practical application of agricultural production. High spatial resolution (HSR) remote sensing images are widely used in smart agriculture because of their wide coverage and HSR. The HSR remote sensing images have a more detailed description of the local scene. However, the complexity of scene details intensifies the intraclass diversity and interclass similarity of scenes, and the interference to scene classification is more significant. To distinguish scene categories effectively in complex background, this article proposes a scene classification method of remote sensing images based on progressive aggregation (PA) with local and global cooperative learning. Specifically, multilevel local and global feature modules are employed at different levels to describe the influence of local objects and their global distribution on scene category determination. Then, the PA module is introduced to explore the collaboration of the same level features and reduce the interference of shallow redundancy. The residual structure can establish the correlation between multilevel representations, thereby improving the representation of the aggregate features. To verify the performance of the proposed method, we implemented cross-domain experiments on four internationally available remote sensing image classification datasets: NWPU-RESISC45, WHU-RS19, RSSCN7, and AID. The experimental results show that the proposed method is effective and robust in remote sensing scene classification. |
Author | Liang, Jiaqi Huang, Pingping Huang, Sisi Zhao, Yang |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-7302-7787 surname: Zhao fullname: Zhao, Yang email: zhaoyang@imut.edu.cn organization: School of Information Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 2 givenname: Jiaqi orcidid: 0009-0001-2655-2482 surname: Liang fullname: Liang, Jiaqi email: 20231100106@imut.edu.cn organization: School of Information Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 3 givenname: Sisi orcidid: 0009-0001-1238-0800 surname: Huang fullname: Huang, Sisi email: 202110203061@imut.edu.cn organization: School of Information Engineering, Inner Mongolia University of Technology, Hohhot, China – sequence: 4 givenname: Pingping orcidid: 0000-0001-7720-1183 surname: Huang fullname: Huang, Pingping email: hwangpp@imut.edu.cn organization: School of Information Engineering, Inner Mongolia University of Technology, Hohhot, China |
BookMark | eNp9kUtrGzEUhUVJoU6aX5AuBroeV8-RtDRu0zgEWuJ0LTSaq6nMeORK40D-feRMCqGLbu5DnO9wxTlHZ2McAaErgpeEYP3ldvuwut8uKaZ8yZgmjNF3aEGJIDURTJyhBdFM14Rj_gGd57zDuKFSswWyNwGSTe53cHaovgIcqmuw0zFBrn6m2JeewyNUq76MvZ1CHCsfU3UP-zhBtYUxh7GvNnvbF2LrYIRqPdgC-eJ4kn9E770dMly-9gv06_rbw_qmvvvxfbNe3dWOYz3VXCnbWSlY23DXKN8Sq1zDfcuY0KWUTchWKK8Ulx2XDW2pYs4zwaVwyrMLtJl9u2h35pDC3qYnE20wLw8x9camKbgBDNO8tR0XGkvNObQae6xdpztPPdOuLV6fZ69Din-OkCezi8c0lvMNw4ISxUWji0rPKpdizgm8cWF6-fOUbBgMweaUjpnTMad0zGs6hWX_sH8v_j_1aaYCALwhBBZScvYMJi6eJA |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_1007_s12145_025_01828_7 crossref_primary_10_1007_s10489_024_06216_0 |
Cites_doi | 10.1109/jiot.2024.3368140 10.1109/TGRS.2022.3192321 10.1109/TGRS.2023.3265346 10.1109/TIP.2021.3127851 10.55730/1300-011X.3025 10.1109/LGRS.2023.3262407 10.1109/TMM.2023.3330096 10.1109/JSTARS.2022.3225791 10.1016/j.cageo.2022.105042 10.3390/rs13071270 10.1016/j.geoderma.2023.116765 10.1109/igarss.2018.8518096 10.1109/CVPR46437.2021.00253 10.1109/LGRS.2022.3229334 10.1109/JSTARS.2022.3213749 10.1109/JSTARS.2020.3026724 10.55730/1300-011X.3033 10.1109/JSTARS.2023.3298492 10.1016/j.isprsjprs.2022.07.013 10.1109/JSTARS.2020.3005403 10.1109/TGRS.2022.3140485 10.1109/LGRS.2023.3304645 10.3390/rs13193861 10.1016/j.isprsjprs.2022.11.013 10.1109/TGRS.2023.3260873 10.1109/TCSVT.2022.3209007 10.1109/CVPR.2018.00813 10.1109/LGRS.2015.2475299 10.1109/TGRS.2017.2685945 10.1109/LGRS.2021.3109061 10.1109/TGRS.2023.3296813 10.1109/TGRS.2023.3290794 10.1109/TGRS.2022.3200056 10.1016/j.ins.2020.06.011 10.1109/LGRS.2021.3079248 10.1109/ACCESS.2022.3147543 10.48550/ARXIV.1706.03762 10.1109/TGRS.2022.3151405 10.1109/TGRS.2023.3297560 10.55730/1300-011X.3011 10.1109/JSTARS.2023.3339336 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2024.3391332 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 9450 |
ExternalDocumentID | oai_doaj_org_article_394bad45907944eb90f09cd9df2f39cb 10_1109_JSTARS_2024_3391332 10505774 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U22A2010 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c409t-488ada753b64c68fb1a8c64fb3359b33a8c57b58f8847d4762b283cf35475c8f3 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:20:43 EDT 2025 Fri Jul 25 10:37:05 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Tue Jul 01 05:23:10 EDT 2025 Wed Aug 27 01:43:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-488ada753b64c68fb1a8c64fb3359b33a8c57b58f8847d4762b283cf35475c8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7302-7787 0009-0001-2655-2482 0009-0001-1238-0800 0000-0001-7720-1183 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10505774 |
PQID | 3052184569 |
PQPubID | 75722 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_394bad45907944eb90f09cd9df2f39cb crossref_citationtrail_10_1109_JSTARS_2024_3391332 crossref_primary_10_1109_JSTARS_2024_3391332 ieee_primary_10505774 proquest_journals_3052184569 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 Saito (ref43) 2019 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Xia (ref37) 2010 |
References_xml | – ident: ref5 doi: 10.1109/jiot.2024.3368140 – ident: ref22 doi: 10.1109/TGRS.2022.3192321 – ident: ref17 doi: 10.1109/TGRS.2023.3265346 – ident: ref19 doi: 10.1109/TIP.2021.3127851 – start-page: 1 volume-title: Proc. Comput. Vis. Pattern Recognit. year: 2019 ident: ref43 article-title: EMI-supervised domain adaptation via minimax entropy – ident: ref3 doi: 10.55730/1300-011X.3025 – ident: ref20 doi: 10.1109/LGRS.2023.3262407 – ident: ref6 doi: 10.1109/TMM.2023.3330096 – ident: ref11 doi: 10.1109/JSTARS.2022.3225791 – ident: ref16 doi: 10.1016/j.cageo.2022.105042 – ident: ref40 doi: 10.3390/rs13071270 – ident: ref7 doi: 10.1016/j.geoderma.2023.116765 – ident: ref41 doi: 10.1109/igarss.2018.8518096 – ident: ref44 doi: 10.1109/CVPR46437.2021.00253 – ident: ref26 doi: 10.1109/LGRS.2022.3229334 – ident: ref8 doi: 10.1109/JSTARS.2022.3213749 – ident: ref9 doi: 10.1109/JSTARS.2020.3026724 – ident: ref4 doi: 10.55730/1300-011X.3033 – ident: ref18 doi: 10.1109/JSTARS.2023.3298492 – ident: ref23 doi: 10.1016/j.isprsjprs.2022.07.013 – ident: ref2 doi: 10.1109/JSTARS.2020.3005403 – ident: ref29 doi: 10.1109/TGRS.2022.3140485 – ident: ref15 doi: 10.1109/LGRS.2023.3304645 – ident: ref42 doi: 10.3390/rs13193861 – ident: ref27 doi: 10.1016/j.isprsjprs.2022.11.013 – ident: ref30 doi: 10.1109/TGRS.2023.3260873 – ident: ref35 doi: 10.1109/TCSVT.2022.3209007 – ident: ref33 doi: 10.1109/CVPR.2018.00813 – ident: ref36 doi: 10.1109/LGRS.2015.2475299 – ident: ref39 doi: 10.1109/TGRS.2017.2685945 – ident: ref32 doi: 10.1109/LGRS.2021.3109061 – ident: ref38 doi: 10.1109/LGRS.2015.2475299 – ident: ref14 doi: 10.1109/TGRS.2023.3296813 – ident: ref24 doi: 10.1109/TGRS.2023.3290794 – ident: ref25 doi: 10.1109/TGRS.2022.3200056 – ident: ref12 doi: 10.1016/j.ins.2020.06.011 – ident: ref21 doi: 10.1109/LGRS.2021.3079248 – ident: ref31 doi: 10.1109/ACCESS.2022.3147543 – ident: ref34 doi: 10.48550/ARXIV.1706.03762 – ident: ref13 doi: 10.1109/TGRS.2022.3151405 – ident: ref28 doi: 10.1109/TGRS.2023.3297560 – start-page: 298 volume-title: Proc. ISPRS TC VII Symp.-100 Years ISPRS year: 2010 ident: ref37 article-title: Structural high-resolution satellite image indexing – ident: ref10 doi: 10.55730/1300-011X.3011 – ident: ref1 doi: 10.1109/JSTARS.2023.3339336 |
SSID | ssj0062793 |
Score | 2.3730063 |
Snippet | Remote sensing image scene classification is essential, and it can promote the rational planning of land and ecological monitoring in the practical application... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 9442 |
SubjectTerms | Aggregation Agricultural production Classification Complexity Convolutional neural networks Cooperative learning Digital agriculture Distribution functions Ecological monitoring Feature extraction Graphical models Image classification Interference Modules Multilevel local (MLL) and multilevel global (MLG) feature modules progressive aggregation (PA) Redundancy Remote sensing remote sensing images scene classification Representations Scene classification Semantics Spatial discrimination Spatial resolution |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHgRn1hf7MGj0SS7m2SP9VGroIhV6G3ZZxFqFa2C_96ZTVoqgl68hCRsSDIzO_N9yewMIQcm9y7XgiVZFdKEF5lOjJAusVo7a7gwPP6Kub4peg_8aiAGc62-MCesLg9cC-6YSW604wJInOTcG5mGVFonXcgDk9ag94WYNyVTtQ8u8jKW2wV0IhMsINPUG8pSeQwG37nrAzPM-RFjEjha_i0mxdL9Ta-VHw46Rp3uCllu4CLt1I-5Shb8eI0sXsR2vJ_rRPcecQFx7Gcyomfev1DEdO_AoektZl5hkuuHp50h7A6jEiigVHrnQUOe9jF7fTykl0_gVd5o34Ljo7FNJiYQxeEb5KF7fn_aS5qmCYkFqjZJYEJqp4GEmILbogom05UteDCMCQkbOBKlEVWoIC45Dr7QAMKwgQleClsFtkla4-ex3yIUuGEwwIdC6TzQzFL7kAEgtCbzphKpbpN8KjZlm4ri2NhipCKzSKWqZa1Q1qqRdZsczi56qQtq_D78BPUxG4rVsOMJsBHV2Ij6y0baZAO1OXc_pGUlb5PdqXpVM3XfFMPlzBXgSrn9H_feIUv4PvVXm13Smry--z3AMROzH032CwUF7AI priority: 102 providerName: Directory of Open Access Journals |
Title | Hierarchical Deep Features Progressive Aggregation for Remote Sensing Images Scene Classification |
URI | https://ieeexplore.ieee.org/document/10505774 https://www.proquest.com/docview/3052184569 https://doaj.org/article/394bad45907944eb90f09cd9df2f39cb |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJSQuPItYKJUPHMmSxHYSH5dHWZCoUJdKvVkee7xClG1Fd5Hg1zPjeCseAnGJkshRHH32-PuceQjxBFqMrTeqaoZUV7prfAXGxip4HwNoAzr_inl31M1P9NtTc1qC1XMsDCJm5zOc8mn-lx_Pw4a3ymiGM53u9Y7YIeU2BmttzW7X9jnDLhESW3HOmJJiqKntMxrjs-MFicFWT5WyJMvaX5ahnK2_lFf5wybnhebwljjadnH0L_k03axhGr7_lr3xv7_htrhZKKecjWPkjriGq7vi-utc0vfbPeHnHzkIOddEOZMvES8k88IN6XD5nr232FH2K8rZkk6XGUhJTFceI6GMcsEe8KulfPOZLNOlXAQynjKX2mQnpNx8T5wcvvrwYl6VwgtVILm3rmhS--hJyECnQzckaPwQOp1AKWPpQFemBzOkgda2qMmeArGUkJTRvQlDUvfF7up8hQ-EJH2ZgDRV6iOSVO09poZIZYAGYTC1n4h2i4MLJSs5F8c4c1md1NaN4DkGzxXwJuLp1UMXY1KOfzd_zgBfNeWM2vkGAePKBHXKavBRG1uThdIItk61DdHG1CZlA0zEHoP50_tGHCdifzteXJn-l05xSPRA3NQ-_Mtjj8QN7uK4mbMvdtdfNviY6M0aDvK2wEEe3D8ABPH2Zg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEYILz1YsLeADR7IksZ3Exy1t2UK7Qt1W6s3yY7xCtNuq3UWCX8_Y8VY8BOISOZGjJPrs8ffF8wB4bWv0tZG8qLpQFqKpTGGl8oUzxjsrpBVpK-Zw0oxPxIdTeZqD1VMsDCIm5zMcxmbay_cXbhl_ldEMj3S6FbfhDi38su7DtVaGt6nblGOXKIkqYtaYnGSoKtVbGuWjoynJwVoMOVckzOpfFqKUrz8XWPnDKqelZu8hTFYv2XuYfBkuF3bovv-Wv_G_v-IRPMikk436UfIYbuH8Cdx9n4r6fnsKZvw5hiGnqihnbAfxkkVmuCQlzj5F_63oKvsV2WhGzVmCkhHXZUdIOCObRh_4-Yztn5NtumZTR-aTpWKb0Q0pdV-Hk73d43fjIpdeKBwJvkVB09p4Q1LGNsI1XbCV6VwjguVcKjrQmWyt7EJHq5sXZFEt8RQXuBStdF3gG7A2v5jjM2CkMIMlVRVajyRWW4OhIlrpbIW2k6UZQL3CQbuclzyWxzjTSZ-USvfg6QiezuAN4M3NTZd9Wo5_d9-OAN90jTm10wUCRucpqrkS1nghVUk2SqBVZSiV88qHOnDl7ADWI5g_Pa_HcQBbq_GiswG41jwGRXfETtXzv9z2Cu6Njw8P9MH-5OMm3I-v2__a2YK1xdUSXxDZWdiXaYj_ADde-Ls |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Deep+Features+Progressive+Aggregation+for+Remote+Sensing+Images+Scene+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Zhao%2C+Yang&rft.au=Liang%2C+Jiaqi&rft.au=Huang%2C+Sisi&rft.au=Huang%2C+Pingping&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=9442&rft.epage=9450&rft_id=info:doi/10.1109%2FJSTARS.2024.3391332&rft.externalDocID=10505774 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |