CUDAS: Distortion-Aware Saliency Benchmark

Visual saliency prediction remains an academic challenge due to the diversity and complexity of natural scenes as well as the scarcity of eye movement data on where people look in images. In many practical applications, digital images are inevitably subject to distortions, such as those caused by ac...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; p. 1
Main Authors Zhao, Xin, Lou, Jianxun, Wu, Xinbo, Wu, Yingying, Leveque, Lucie, Liu, Xiaochang, Guo, Pengfei, Qin, Yipeng, Lin, Hanhe, Saupe, Dietmar, Liu, Hantao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visual saliency prediction remains an academic challenge due to the diversity and complexity of natural scenes as well as the scarcity of eye movement data on where people look in images. In many practical applications, digital images are inevitably subject to distortions, such as those caused by acquisition, editing, compression or transmission. A great deal of attention has been paid to predicting the saliency of distortion-free pristine images, but little attention has been given to understanding the impact of visual distortions on saliency prediction. In this paper, we first present the CUDAS database - a new distortion-aware saliency benchmark, where eye-tracking data was collected for 60 pristine images and their corresponding 540 distorted formats. We then conduct a statistical evaluation to reveal the behaviour of state-of-the-art saliency prediction models on distorted images and provide insights on building an effective model for distortion-aware saliency prediction. The new database is made publicly available to the research community.
AbstractList Visual saliency prediction remains an academic challenge due to the diversity and complexity of natural scenes as well as the scarcity of eye movement data on where people look in images. In many practical applications, digital images are inevitably subject to distortions, such as those caused by acquisition, editing, compression or transmission. A great deal of attention has been paid to predicting the saliency of distortion-free pristine images, but little attention has been given to understanding the impact of visual distortions on saliency prediction. In this paper, we first present the CUDAS database - a new distortion-aware saliency benchmark, where eye-tracking data was collected for 60 pristine images and their corresponding 540 distorted formats. We then conduct a statistical evaluation to reveal the behaviour of state-of-the-art saliency prediction models on distorted images and provide insights on building an effective model for distortion-aware saliency prediction. The new database is made publicly available to the research community.
Author Guo, Pengfei
Qin, Yipeng
Saupe, Dietmar
Liu, Xiaochang
Liu, Hantao
Zhao, Xin
Wu, Yingying
Leveque, Lucie
Wu, Xinbo
Lou, Jianxun
Lin, Hanhe
Author_xml – sequence: 1
  givenname: Xin
  surname: Zhao
  fullname: Zhao, Xin
  organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
– sequence: 2
  givenname: Jianxun
  orcidid: 0000-0002-2982-595X
  surname: Lou
  fullname: Lou, Jianxun
  organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
– sequence: 3
  givenname: Xinbo
  surname: Wu
  fullname: Wu, Xinbo
  organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
– sequence: 4
  givenname: Yingying
  surname: Wu
  fullname: Wu, Yingying
  organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
– sequence: 5
  givenname: Lucie
  orcidid: 0000-0002-1811-0991
  surname: Leveque
  fullname: Leveque, Lucie
  organization: LS2N-UMR 6004 CNRS, University of Nantes, Nantes, France
– sequence: 6
  givenname: Xiaochang
  surname: Liu
  fullname: Liu, Xiaochang
  organization: School of Materials, Sun Yat-sen University, Guangzhou, China
– sequence: 7
  givenname: Pengfei
  orcidid: 0000-0002-7662-9070
  surname: Guo
  fullname: Guo, Pengfei
  organization: School of Computational Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China
– sequence: 8
  givenname: Yipeng
  orcidid: 0000-0002-1551-9126
  surname: Qin
  fullname: Qin, Yipeng
  organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
– sequence: 9
  givenname: Hanhe
  orcidid: 0000-0002-0297-3549
  surname: Lin
  fullname: Lin, Hanhe
  organization: School of Science and Engineering, University of Dundee, Dundee, United Kingdom
– sequence: 10
  givenname: Dietmar
  orcidid: 0000-0001-6735-5103
  surname: Saupe
  fullname: Saupe, Dietmar
  organization: Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
– sequence: 11
  givenname: Hantao
  orcidid: 0000-0003-4544-3481
  surname: Liu
  fullname: Liu, Hantao
  organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
BookMark eNp9kE1LAzEQhoNUsH78Aj0UvAlb852st7rWDyh4qJ7DbDqrW-umZlfEf2_qVhAPziEThnnfeXn2yaAJDRJyzOiYMZqfT4piOp-POeViLLgVQsodMuRM55lQQg9-_ffIUdsuaSqbRsoMyVnxeDWZX4yu6rYLsatDk00-IOJoDqsaG_85ukzv8yvEl0OyW8GqxaNtPyCP19OH4jab3d_cFZNZ5iXNu0wqsNQbKUtRLYxBqlBybYBpbxc5zxE0VIzZ0nqBjHKOkOtK8cooXZYVigNy1_suAizdOtbp-KcLULvvQYhPDlJSv0KH3mhLpbFIrVQlAHAN6KktS8Us6OR12nutY3h7x7Zzy_AemxTfccu1NEZymbbyfsvH0LYRK-frDjYwugj1yjHqNqRdT9ptSLst6aQVf7Q_if9XnfSqGhF_KZiURknxBVOdiXE
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_neucom_2024_128155
Cites_doi 10.1016/j.visres.2005.03.019
10.1109/ACCESS.2020.3006700
10.1167/7.9.950
10.1167/10.12.5
10.1109/ICPR.2016.7900174
10.1145/355017.355028
10.1109/TIP.2018.2851672
10.1109/ICCV.2015.30
10.1167/13.4.11
10.1109/TMM.2011.2169775
10.1109/ACCESS.2018.2798573
10.1109/ACCESS.2022.3152189
10.1016/j.neucom.2022.04.080
10.1037/0033-2909.83.2.314
10.1109/34.730558
10.1109/TNNLS.2016.2522440
10.1109/34.877520
10.1073/pnas.1510393112
10.1037/0033-295X.113.4.766
10.1109/TIM.2021.3108538
10.1109/ICCV.2017.513
10.1016/j.cub.2004.09.041
10.1109/TIP.2017.2681424
10.1016/j.neunet.2006.10.001
10.1109/ACCESS.2019.2915630
10.1109/ICCV.2013.118
10.1109/ICIP.2019.8803736
10.1109/ACCESS.2018.2851451
10.1109/TIP.2012.2210727
10.1109/TIP.2014.2346028
10.1109/TIP.2017.2787612
10.1109/TPAMI.2018.2815601
10.1016/j.neucom.2017.03.018
10.1109/TNNLS.2015.2461603
10.1007/978-3-319-54407-6_19
10.1016/j.imavis.2020.103887
10.1109/CVPR.2018.00785
10.1109/ICIP40778.2020.9191203
10.1016/j.neunet.2020.05.004
10.1109/ICIP40778.2020.9190737
10.1109/ICCV.2013.147
10.1007/978-3-642-21227-7_62
10.1167/12.6.17
10.1109/CVPR.2015.7298710
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3283344
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_ec7680478e0845baaa26aec08bb518a6
10_1109_ACCESS_2023_3283344
10144754
Genre orig-research
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  grantid: Project-ID 251654672 ? TRR 161 (Project A05)
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-45a80c744b3fd77e05e4267a16c8d929ea6af118b8c3e1022ea96f52f756bbfe3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:26:21 EDT 2025
Sun Jun 29 15:33:54 EDT 2025
Tue Jul 01 02:49:00 EDT 2025
Thu Apr 24 23:02:57 EDT 2025
Wed Aug 27 02:57:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-45a80c744b3fd77e05e4267a16c8d929ea6af118b8c3e1022ea96f52f756bbfe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2982-595X
0000-0002-1811-0991
0000-0002-1551-9126
0000-0003-4544-3481
0000-0001-6735-5103
0000-0002-7662-9070
0000-0002-0297-3549
0009-0009-4915-2375
OpenAccessLink https://doaj.org/article/ec7680478e0845baaa26aec08bb518a6
PQID 2826477424
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3283344
proquest_journals_2826477424
doaj_primary_oai_doaj_org_article_ec7680478e0845baaa26aec08bb518a6
ieee_primary_10144754
crossref_primary_10_1109_ACCESS_2023_3283344
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref53
ref52
ref11
ref54
borji (ref10) 2015
ref17
ref16
ref19
ref18
harel (ref12) 2006
field (ref49) 2013
ref51
ref46
ref48
ref47
ref44
ref43
ref8
ref7
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref39
ref38
bylinskii (ref45) 2023
(ref42) 1974
judd (ref9) 2012
ref24
ref23
ref26
pan (ref25) 2018
ref20
ref22
keren (ref41) 1993
ref21
ref28
ref27
ref29
kümmerer (ref50) 2023
james (ref1) 1890
References_xml – ident: ref53
  doi: 10.1016/j.visres.2005.03.019
– ident: ref34
  doi: 10.1109/ACCESS.2020.3006700
– ident: ref15
  doi: 10.1167/7.9.950
– year: 1890
  ident: ref1
  publication-title: The Principles of Psychology
– ident: ref17
  doi: 10.1167/10.12.5
– ident: ref23
  doi: 10.1109/ICPR.2016.7900174
– ident: ref43
  doi: 10.1145/355017.355028
– ident: ref29
  doi: 10.1109/TIP.2018.2851672
– ident: ref48
  doi: 10.1109/ICCV.2015.30
– ident: ref19
  doi: 10.1167/13.4.11
– ident: ref4
  doi: 10.1109/TMM.2011.2169775
– ident: ref3
  doi: 10.1109/ACCESS.2018.2798573
– year: 2023
  ident: ref45
  publication-title: MIT Saliency Benchmark
– ident: ref32
  doi: 10.1109/ACCESS.2022.3152189
– year: 2013
  ident: ref49
  publication-title: Discovering Statistics Using Ibm Spss Statistics
– year: 2012
  ident: ref9
  publication-title: A Benchmark of Computational Models of Saliency to Predict Human Fixations
– ident: ref31
  doi: 10.1016/j.neucom.2022.04.080
– ident: ref6
  doi: 10.1037/0033-2909.83.2.314
– ident: ref2
  doi: 10.1109/34.730558
– ident: ref20
  doi: 10.1109/TNNLS.2016.2522440
– year: 1974
  ident: ref42
  publication-title: Methodology for the Subjective Assessment of the Quality of Television Pictures
– ident: ref44
  doi: 10.1109/34.877520
– year: 2023
  ident: ref50
  publication-title: MIT/Tübingen Saliency Benchmark
– ident: ref54
  doi: 10.1073/pnas.1510393112
– ident: ref13
  doi: 10.1037/0033-295X.113.4.766
– ident: ref47
  doi: 10.1109/TIM.2021.3108538
– ident: ref24
  doi: 10.1109/ICCV.2017.513
– ident: ref5
  doi: 10.1016/j.cub.2004.09.041
– ident: ref39
  doi: 10.1109/TIP.2017.2681424
– ident: ref14
  doi: 10.1016/j.neunet.2006.10.001
– ident: ref33
  doi: 10.1109/ACCESS.2019.2915630
– ident: ref52
  doi: 10.1109/ICCV.2013.118
– start-page: 1
  year: 2015
  ident: ref10
  article-title: CAT2000: A large scale fixation dataset for boosting saliency research
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) Workshop Future Datasets
– ident: ref36
  doi: 10.1109/ICIP.2019.8803736
– start-page: 545
  year: 2006
  ident: ref12
  article-title: Graph-based visual saliency
  publication-title: Proc 19th Int Conf Neural Inf Process Syst (NIPS)
– ident: ref8
  doi: 10.1109/ACCESS.2018.2851451
– ident: ref7
  doi: 10.1109/TIP.2012.2210727
– ident: ref37
  doi: 10.1109/TIP.2014.2346028
– ident: ref27
  doi: 10.1109/TIP.2017.2787612
– ident: ref46
  doi: 10.1109/TPAMI.2018.2815601
– year: 2018
  ident: ref25
  article-title: SalGAN: Visual saliency prediction with generative adversarial networks
  publication-title: arXiv 1701 01081
– ident: ref22
  doi: 10.1016/j.neucom.2017.03.018
– ident: ref38
  doi: 10.1109/TNNLS.2015.2461603
– ident: ref21
  doi: 10.1007/978-3-319-54407-6_19
– ident: ref28
  doi: 10.1016/j.imavis.2020.103887
– ident: ref26
  doi: 10.1109/CVPR.2018.00785
– ident: ref35
  doi: 10.1109/ICIP40778.2020.9191203
– ident: ref30
  doi: 10.1016/j.neunet.2020.05.004
– ident: ref40
  doi: 10.1109/ICIP40778.2020.9190737
– ident: ref51
  doi: 10.1109/ICCV.2013.147
– ident: ref16
  doi: 10.1007/978-3-642-21227-7_62
– ident: ref18
  doi: 10.1167/12.6.17
– ident: ref11
  doi: 10.1109/CVPR.2015.7298710
– year: 1993
  ident: ref41
  publication-title: A Handbook for Data Analysis in the Behavioral Sciences Volume 1 Methodological Issues Volume 2 Statistical Issues
SSID ssj0000816957
Score 2.2721717
Snippet Visual saliency prediction remains an academic challenge due to the diversity and complexity of natural scenes as well as the scarcity of eye movement data on...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Benchmark testing
Benchmarks
Computational modeling
deep learning
Digital imaging
Distortion
Eye movements
Eye-tracking
Gaze tracking
Graphics processing units
Image acquisition
image quality
Prediction models
Salience
saliency
Visualization
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0VTu2hfBTUpRTlwAmRkMR2nHBbliLUAxdYiZs1diaqRLuLll0h8es7drwrKKLiEkWRrdh-dmae43kDcOg0220s6rQTbZ6yvW1TJIFpI5QtbK5axHDa4qq6HMuft-o2BquHWBgiCofPKPO34V9-O3ULv1V24vPKSq3kGqwxc-uDtVYbKj6DRKN0VBYq8uZkOBpxJzKfIDwTbEaFlC-sTxDpj1lVXn2Kg3252ICrZcv6YyV32WJuM_f0j2jju5u-CZ-jp5kM-6mxBR9osg2fnukPfoGj0fh8eH2anAetEA9ROnzEGSXX7J37mMzkjK-__uDsbgfGFz9uRpdpTJ6QOqZs81QqrHOnpbSia7WmXBEbY41F5eqWfSLCCjtmF7Z2gjztI2yqTpWdVpW1HYldWJ9MJ_QVEmdFUSBWHVMrSbKoHQOoVetaWxL7uwMol4NqXFQW9wkufpvAMPLG9EgYj4SJSAzgeFXpvhfW-H_xM4_WqqhXxQ4PeJRNXGSGHJMnLzdEeS2VRcSyQnJ5ba0qaqwGsOORefa-HpQB7C_BN3EJPxjmoj5IV5Zy741q3-Cjb2K_IbMP6_PZgr6zizK3B2Fq_gXxxOBU
  priority: 102
  providerName: IEEE
Title CUDAS: Distortion-Aware Saliency Benchmark
URI https://ieeexplore.ieee.org/document/10144754
https://www.proquest.com/docview/2826477424
https://doaj.org/article/ec7680478e0845baaa26aec08bb518a6
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQH0UUSpWBCZE2ju3EYUtTqoqBpVTqZp0dR0hAQaWIv8_ZSasiJFhYMkROHL9L_O5F9jtCLk2KvA1UhhUroxD5tgzBMggzJjTVkSgB_GqL-2Qy43dzMd8q9eXWhNX2wDVwA2swIXYWMjaSXGgAiBOwJpJaCyrBm20j522JKT8HS5pkIm1shmiUDfKiwBH1XbXwPkNOZZx_oyLv2N-UWPkxL3uyGR-Q_SZLDPL66Q7Jjl0ckb0t78BjclXMRvn0Jhh5nw8Hb5h_wtIGU8ys3X7KYIjHxxdYPrXJbHz7UEzCpvBBaFBurUIuQEYm5VyzqkxTGwmLRJoCTYwsMZ-xkECFykBLw6yTbBaypBJxlYpE68qyE9JavC7sKQmMZpQCJBXKIm45lQbBT0VpSh1bzFU7JF5joEzjCu6KUzwrrw6iTNXAKQecaoDrkOvNRW-1KcbvzYcO3E1T52jtT2CcVRNn9VecO6TtQrPVH3VehXjz7jpWqvn83hXqSLfBlsf87D_6Pie7bjz1n5cuaa2WH_YCc5GV7vnXrue3DX4Ba4vXww
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BOUAPfBZ1oUAOnBBJ49iOE27bLdUCZS_tSr1ZY2cipMIWLbtC4tczdryrAgJxiaLIVmw_OzPP8bwBeOkN220UTd7LrszZ3nY5ksS8ldoJV-oOMZ62mNXTuXp_oS9SsHqMhSGiePiMinAb_-V3V34dtsoOQ15ZZbS6CbfY8GsxhGttt1RCDolWm6QtJMr2cDyZcDeKkCK8kGxIpVK_2J8o05_yqvzxMY4W5uQezDZtGw6WXBbrlSv8j99kG_-78ffhbvI1s_EwOR7ADVo8hN1rCoSP4NVkfjw-e5MdR7WQAFI-_o5Lys7YPw9RmdkRXz99weXlHsxP3p5PpnlKn5B7Jm2rXGlsSm-UcrLvjKFSE5tjg6L2TcdeEWGNPfML13hJgfgRtnWvq97o2rme5GPYWVwtaB8y76QQiHXP5EqREo1nCI3ufOcqYo93BNVmUK1P2uIhxcVnGzlG2doBCRuQsAmJEbzeVvo6SGv8u_hRQGtbNOhixwc8yjYtM0ue6VMQHKKyUdohYlUj-bJxTosG6xHsBWSuvW8AZQQHG_BtWsTfLLPREKarKvXkL9VewO3p-cdTe_pu9uEp3AnNHbZnDmBntVzTM3ZYVu55nKY_AdAF450
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CUDAS%3A+Distortion-Aware+Saliency+Benchmark&rft.jtitle=IEEE+access&rft.au=Zhao%2C+Xin&rft.au=Lou%2C+Jianxun&rft.au=Wu%2C+Xinbo&rft.au=Wu%2C+Yingying&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=58025&rft_id=info:doi/10.1109%2FACCESS.2023.3283344&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon