CUDAS: Distortion-Aware Saliency Benchmark
Visual saliency prediction remains an academic challenge due to the diversity and complexity of natural scenes as well as the scarcity of eye movement data on where people look in images. In many practical applications, digital images are inevitably subject to distortions, such as those caused by ac...
Saved in:
Published in | IEEE access Vol. 11; p. 1 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Visual saliency prediction remains an academic challenge due to the diversity and complexity of natural scenes as well as the scarcity of eye movement data on where people look in images. In many practical applications, digital images are inevitably subject to distortions, such as those caused by acquisition, editing, compression or transmission. A great deal of attention has been paid to predicting the saliency of distortion-free pristine images, but little attention has been given to understanding the impact of visual distortions on saliency prediction. In this paper, we first present the CUDAS database - a new distortion-aware saliency benchmark, where eye-tracking data was collected for 60 pristine images and their corresponding 540 distorted formats. We then conduct a statistical evaluation to reveal the behaviour of state-of-the-art saliency prediction models on distorted images and provide insights on building an effective model for distortion-aware saliency prediction. The new database is made publicly available to the research community. |
---|---|
AbstractList | Visual saliency prediction remains an academic challenge due to the diversity and complexity of natural scenes as well as the scarcity of eye movement data on where people look in images. In many practical applications, digital images are inevitably subject to distortions, such as those caused by acquisition, editing, compression or transmission. A great deal of attention has been paid to predicting the saliency of distortion-free pristine images, but little attention has been given to understanding the impact of visual distortions on saliency prediction. In this paper, we first present the CUDAS database - a new distortion-aware saliency benchmark, where eye-tracking data was collected for 60 pristine images and their corresponding 540 distorted formats. We then conduct a statistical evaluation to reveal the behaviour of state-of-the-art saliency prediction models on distorted images and provide insights on building an effective model for distortion-aware saliency prediction. The new database is made publicly available to the research community. |
Author | Guo, Pengfei Qin, Yipeng Saupe, Dietmar Liu, Xiaochang Liu, Hantao Zhao, Xin Wu, Yingying Leveque, Lucie Wu, Xinbo Lou, Jianxun Lin, Hanhe |
Author_xml | – sequence: 1 givenname: Xin surname: Zhao fullname: Zhao, Xin organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom – sequence: 2 givenname: Jianxun orcidid: 0000-0002-2982-595X surname: Lou fullname: Lou, Jianxun organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom – sequence: 3 givenname: Xinbo surname: Wu fullname: Wu, Xinbo organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom – sequence: 4 givenname: Yingying surname: Wu fullname: Wu, Yingying organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom – sequence: 5 givenname: Lucie orcidid: 0000-0002-1811-0991 surname: Leveque fullname: Leveque, Lucie organization: LS2N-UMR 6004 CNRS, University of Nantes, Nantes, France – sequence: 6 givenname: Xiaochang surname: Liu fullname: Liu, Xiaochang organization: School of Materials, Sun Yat-sen University, Guangzhou, China – sequence: 7 givenname: Pengfei orcidid: 0000-0002-7662-9070 surname: Guo fullname: Guo, Pengfei organization: School of Computational Science, Zhongkai University of Agriculture and Engineering, Guangzhou, China – sequence: 8 givenname: Yipeng orcidid: 0000-0002-1551-9126 surname: Qin fullname: Qin, Yipeng organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom – sequence: 9 givenname: Hanhe orcidid: 0000-0002-0297-3549 surname: Lin fullname: Lin, Hanhe organization: School of Science and Engineering, University of Dundee, Dundee, United Kingdom – sequence: 10 givenname: Dietmar orcidid: 0000-0001-6735-5103 surname: Saupe fullname: Saupe, Dietmar organization: Department of Computer and Information Science, University of Konstanz, Konstanz, Germany – sequence: 11 givenname: Hantao orcidid: 0000-0003-4544-3481 surname: Liu fullname: Liu, Hantao organization: School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom |
BookMark | eNp9kE1LAzEQhoNUsH78Aj0UvAlb852st7rWDyh4qJ7DbDqrW-umZlfEf2_qVhAPziEThnnfeXn2yaAJDRJyzOiYMZqfT4piOp-POeViLLgVQsodMuRM55lQQg9-_ffIUdsuaSqbRsoMyVnxeDWZX4yu6rYLsatDk00-IOJoDqsaG_85ukzv8yvEl0OyW8GqxaNtPyCP19OH4jab3d_cFZNZ5iXNu0wqsNQbKUtRLYxBqlBybYBpbxc5zxE0VIzZ0nqBjHKOkOtK8cooXZYVigNy1_suAizdOtbp-KcLULvvQYhPDlJSv0KH3mhLpbFIrVQlAHAN6KktS8Us6OR12nutY3h7x7Zzy_AemxTfccu1NEZymbbyfsvH0LYRK-frDjYwugj1yjHqNqRdT9ptSLst6aQVf7Q_if9XnfSqGhF_KZiURknxBVOdiXE |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_neucom_2024_128155 |
Cites_doi | 10.1016/j.visres.2005.03.019 10.1109/ACCESS.2020.3006700 10.1167/7.9.950 10.1167/10.12.5 10.1109/ICPR.2016.7900174 10.1145/355017.355028 10.1109/TIP.2018.2851672 10.1109/ICCV.2015.30 10.1167/13.4.11 10.1109/TMM.2011.2169775 10.1109/ACCESS.2018.2798573 10.1109/ACCESS.2022.3152189 10.1016/j.neucom.2022.04.080 10.1037/0033-2909.83.2.314 10.1109/34.730558 10.1109/TNNLS.2016.2522440 10.1109/34.877520 10.1073/pnas.1510393112 10.1037/0033-295X.113.4.766 10.1109/TIM.2021.3108538 10.1109/ICCV.2017.513 10.1016/j.cub.2004.09.041 10.1109/TIP.2017.2681424 10.1016/j.neunet.2006.10.001 10.1109/ACCESS.2019.2915630 10.1109/ICCV.2013.118 10.1109/ICIP.2019.8803736 10.1109/ACCESS.2018.2851451 10.1109/TIP.2012.2210727 10.1109/TIP.2014.2346028 10.1109/TIP.2017.2787612 10.1109/TPAMI.2018.2815601 10.1016/j.neucom.2017.03.018 10.1109/TNNLS.2015.2461603 10.1007/978-3-319-54407-6_19 10.1016/j.imavis.2020.103887 10.1109/CVPR.2018.00785 10.1109/ICIP40778.2020.9191203 10.1016/j.neunet.2020.05.004 10.1109/ICIP40778.2020.9190737 10.1109/ICCV.2013.147 10.1007/978-3-642-21227-7_62 10.1167/12.6.17 10.1109/CVPR.2015.7298710 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3283344 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_ec7680478e0845baaa26aec08bb518a6 10_1109_ACCESS_2023_3283344 10144754 |
Genre | orig-research |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grantid: Project-ID 251654672 ? TRR 161 (Project A05) |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-45a80c744b3fd77e05e4267a16c8d929ea6af118b8c3e1022ea96f52f756bbfe3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:26:21 EDT 2025 Sun Jun 29 15:33:54 EDT 2025 Tue Jul 01 02:49:00 EDT 2025 Thu Apr 24 23:02:57 EDT 2025 Wed Aug 27 02:57:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-45a80c744b3fd77e05e4267a16c8d929ea6af118b8c3e1022ea96f52f756bbfe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2982-595X 0000-0002-1811-0991 0000-0002-1551-9126 0000-0003-4544-3481 0000-0001-6735-5103 0000-0002-7662-9070 0000-0002-0297-3549 0009-0009-4915-2375 |
OpenAccessLink | https://doaj.org/article/ec7680478e0845baaa26aec08bb518a6 |
PQID | 2826477424 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2023_3283344 proquest_journals_2826477424 doaj_primary_oai_doaj_org_article_ec7680478e0845baaa26aec08bb518a6 ieee_primary_10144754 crossref_primary_10_1109_ACCESS_2023_3283344 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref53 ref52 ref11 ref54 borji (ref10) 2015 ref17 ref16 ref19 ref18 harel (ref12) 2006 field (ref49) 2013 ref51 ref46 ref48 ref47 ref44 ref43 ref8 ref7 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref39 ref38 bylinskii (ref45) 2023 (ref42) 1974 judd (ref9) 2012 ref24 ref23 ref26 pan (ref25) 2018 ref20 ref22 keren (ref41) 1993 ref21 ref28 ref27 ref29 kümmerer (ref50) 2023 james (ref1) 1890 |
References_xml | – ident: ref53 doi: 10.1016/j.visres.2005.03.019 – ident: ref34 doi: 10.1109/ACCESS.2020.3006700 – ident: ref15 doi: 10.1167/7.9.950 – year: 1890 ident: ref1 publication-title: The Principles of Psychology – ident: ref17 doi: 10.1167/10.12.5 – ident: ref23 doi: 10.1109/ICPR.2016.7900174 – ident: ref43 doi: 10.1145/355017.355028 – ident: ref29 doi: 10.1109/TIP.2018.2851672 – ident: ref48 doi: 10.1109/ICCV.2015.30 – ident: ref19 doi: 10.1167/13.4.11 – ident: ref4 doi: 10.1109/TMM.2011.2169775 – ident: ref3 doi: 10.1109/ACCESS.2018.2798573 – year: 2023 ident: ref45 publication-title: MIT Saliency Benchmark – ident: ref32 doi: 10.1109/ACCESS.2022.3152189 – year: 2013 ident: ref49 publication-title: Discovering Statistics Using Ibm Spss Statistics – year: 2012 ident: ref9 publication-title: A Benchmark of Computational Models of Saliency to Predict Human Fixations – ident: ref31 doi: 10.1016/j.neucom.2022.04.080 – ident: ref6 doi: 10.1037/0033-2909.83.2.314 – ident: ref2 doi: 10.1109/34.730558 – ident: ref20 doi: 10.1109/TNNLS.2016.2522440 – year: 1974 ident: ref42 publication-title: Methodology for the Subjective Assessment of the Quality of Television Pictures – ident: ref44 doi: 10.1109/34.877520 – year: 2023 ident: ref50 publication-title: MIT/Tübingen Saliency Benchmark – ident: ref54 doi: 10.1073/pnas.1510393112 – ident: ref13 doi: 10.1037/0033-295X.113.4.766 – ident: ref47 doi: 10.1109/TIM.2021.3108538 – ident: ref24 doi: 10.1109/ICCV.2017.513 – ident: ref5 doi: 10.1016/j.cub.2004.09.041 – ident: ref39 doi: 10.1109/TIP.2017.2681424 – ident: ref14 doi: 10.1016/j.neunet.2006.10.001 – ident: ref33 doi: 10.1109/ACCESS.2019.2915630 – ident: ref52 doi: 10.1109/ICCV.2013.118 – start-page: 1 year: 2015 ident: ref10 article-title: CAT2000: A large scale fixation dataset for boosting saliency research publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) Workshop Future Datasets – ident: ref36 doi: 10.1109/ICIP.2019.8803736 – start-page: 545 year: 2006 ident: ref12 article-title: Graph-based visual saliency publication-title: Proc 19th Int Conf Neural Inf Process Syst (NIPS) – ident: ref8 doi: 10.1109/ACCESS.2018.2851451 – ident: ref7 doi: 10.1109/TIP.2012.2210727 – ident: ref37 doi: 10.1109/TIP.2014.2346028 – ident: ref27 doi: 10.1109/TIP.2017.2787612 – ident: ref46 doi: 10.1109/TPAMI.2018.2815601 – year: 2018 ident: ref25 article-title: SalGAN: Visual saliency prediction with generative adversarial networks publication-title: arXiv 1701 01081 – ident: ref22 doi: 10.1016/j.neucom.2017.03.018 – ident: ref38 doi: 10.1109/TNNLS.2015.2461603 – ident: ref21 doi: 10.1007/978-3-319-54407-6_19 – ident: ref28 doi: 10.1016/j.imavis.2020.103887 – ident: ref26 doi: 10.1109/CVPR.2018.00785 – ident: ref35 doi: 10.1109/ICIP40778.2020.9191203 – ident: ref30 doi: 10.1016/j.neunet.2020.05.004 – ident: ref40 doi: 10.1109/ICIP40778.2020.9190737 – ident: ref51 doi: 10.1109/ICCV.2013.147 – ident: ref16 doi: 10.1007/978-3-642-21227-7_62 – ident: ref18 doi: 10.1167/12.6.17 – ident: ref11 doi: 10.1109/CVPR.2015.7298710 – year: 1993 ident: ref41 publication-title: A Handbook for Data Analysis in the Behavioral Sciences Volume 1 Methodological Issues Volume 2 Statistical Issues |
SSID | ssj0000816957 |
Score | 2.2721717 |
Snippet | Visual saliency prediction remains an academic challenge due to the diversity and complexity of natural scenes as well as the scarcity of eye movement data on... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Benchmark testing Benchmarks Computational modeling deep learning Digital imaging Distortion Eye movements Eye-tracking Gaze tracking Graphics processing units Image acquisition image quality Prediction models Salience saliency Visualization |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0VTu2hfBTUpRTlwAmRkMR2nHBbliLUAxdYiZs1diaqRLuLll0h8es7drwrKKLiEkWRrdh-dmae43kDcOg0220s6rQTbZ6yvW1TJIFpI5QtbK5axHDa4qq6HMuft-o2BquHWBgiCofPKPO34V9-O3ULv1V24vPKSq3kGqwxc-uDtVYbKj6DRKN0VBYq8uZkOBpxJzKfIDwTbEaFlC-sTxDpj1lVXn2Kg3252ICrZcv6YyV32WJuM_f0j2jju5u-CZ-jp5kM-6mxBR9osg2fnukPfoGj0fh8eH2anAetEA9ROnzEGSXX7J37mMzkjK-__uDsbgfGFz9uRpdpTJ6QOqZs81QqrHOnpbSia7WmXBEbY41F5eqWfSLCCjtmF7Z2gjztI2yqTpWdVpW1HYldWJ9MJ_QVEmdFUSBWHVMrSbKoHQOoVetaWxL7uwMol4NqXFQW9wkufpvAMPLG9EgYj4SJSAzgeFXpvhfW-H_xM4_WqqhXxQ4PeJRNXGSGHJMnLzdEeS2VRcSyQnJ5ba0qaqwGsOORefa-HpQB7C_BN3EJPxjmoj5IV5Zy741q3-Cjb2K_IbMP6_PZgr6zizK3B2Fq_gXxxOBU priority: 102 providerName: IEEE |
Title | CUDAS: Distortion-Aware Saliency Benchmark |
URI | https://ieeexplore.ieee.org/document/10144754 https://www.proquest.com/docview/2826477424 https://doaj.org/article/ec7680478e0845baaa26aec08bb518a6 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQH0UUSpWBCZE2ju3EYUtTqoqBpVTqZp0dR0hAQaWIv8_ZSasiJFhYMkROHL9L_O5F9jtCLk2KvA1UhhUroxD5tgzBMggzJjTVkSgB_GqL-2Qy43dzMd8q9eXWhNX2wDVwA2swIXYWMjaSXGgAiBOwJpJaCyrBm20j522JKT8HS5pkIm1shmiUDfKiwBH1XbXwPkNOZZx_oyLv2N-UWPkxL3uyGR-Q_SZLDPL66Q7Jjl0ckb0t78BjclXMRvn0Jhh5nw8Hb5h_wtIGU8ys3X7KYIjHxxdYPrXJbHz7UEzCpvBBaFBurUIuQEYm5VyzqkxTGwmLRJoCTYwsMZ-xkECFykBLw6yTbBaypBJxlYpE68qyE9JavC7sKQmMZpQCJBXKIm45lQbBT0VpSh1bzFU7JF5joEzjCu6KUzwrrw6iTNXAKQecaoDrkOvNRW-1KcbvzYcO3E1T52jtT2CcVRNn9VecO6TtQrPVH3VehXjz7jpWqvn83hXqSLfBlsf87D_6Pie7bjz1n5cuaa2WH_YCc5GV7vnXrue3DX4Ba4vXww |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB1BOUAPfBZ1oUAOnBBJ49iOE27bLdUCZS_tSr1ZY2cipMIWLbtC4tczdryrAgJxiaLIVmw_OzPP8bwBeOkN220UTd7LrszZ3nY5ksS8ldoJV-oOMZ62mNXTuXp_oS9SsHqMhSGiePiMinAb_-V3V34dtsoOQ15ZZbS6CbfY8GsxhGttt1RCDolWm6QtJMr2cDyZcDeKkCK8kGxIpVK_2J8o05_yqvzxMY4W5uQezDZtGw6WXBbrlSv8j99kG_-78ffhbvI1s_EwOR7ADVo8hN1rCoSP4NVkfjw-e5MdR7WQAFI-_o5Lys7YPw9RmdkRXz99weXlHsxP3p5PpnlKn5B7Jm2rXGlsSm-UcrLvjKFSE5tjg6L2TcdeEWGNPfML13hJgfgRtnWvq97o2rme5GPYWVwtaB8y76QQiHXP5EqREo1nCI3ufOcqYo93BNVmUK1P2uIhxcVnGzlG2doBCRuQsAmJEbzeVvo6SGv8u_hRQGtbNOhixwc8yjYtM0ue6VMQHKKyUdohYlUj-bJxTosG6xHsBWSuvW8AZQQHG_BtWsTfLLPREKarKvXkL9VewO3p-cdTe_pu9uEp3AnNHbZnDmBntVzTM3ZYVu55nKY_AdAF450 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CUDAS%3A+Distortion-Aware+Saliency+Benchmark&rft.jtitle=IEEE+access&rft.au=Zhao%2C+Xin&rft.au=Lou%2C+Jianxun&rft.au=Wu%2C+Xinbo&rft.au=Wu%2C+Yingying&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=58025&rft_id=info:doi/10.1109%2FACCESS.2023.3283344&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |