Combined upper–lower bound analysis for shear strength of transversely reinforced concrete beams under axial tension

Axial tension force exerted because of a temperature change or shrinkage can cause the collapse of reinforced concrete (RC) structural members. Earlier work on this subject has revealed that axial tension imposed on a lightly reinforced section led to the partial collapse of the Wilkins Air Force De...

Full description

Saved in:
Bibliographic Details
Published inEngineering structures Vol. 246; p. 112970
Main Author Kanazawa, Takeru
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Axial tension force exerted because of a temperature change or shrinkage can cause the collapse of reinforced concrete (RC) structural members. Earlier work on this subject has revealed that axial tension imposed on a lightly reinforced section led to the partial collapse of the Wilkins Air Force Depot in 1955. Design code provisions and analytical models such as modified compression field theory yield reasonable estimates of shear strength of RC beams subjected to axial tension. Nevertheless, their semi-empirical nature is not always appropriate for shear assessment of existing RC structural members. The extra conservativeness and empirically determined parameters can incorrectly estimate the actual strengths of existing structures. A generalized mechanical model with rigorous formulation must be developed. This paper presents an analytical model that is useful to predict the shear strength of RC beams with transverse reinforcement under axial tension. Without regressive functions or empirical parameters, the combined upper and lower bound analysis enables shear strength derivation based on the force equilibrium and compatible patterns of failure. The accuracy of these analyses has been validated through comparison of its predictions with five available experimental campaigns and international shear design expressions as well as the modified compression field theory. Comparisons reveal the limitations of design code provisions and the general validity of the developed analysis.
AbstractList Axial tension force exerted because of a temperature change or shrinkage can cause the collapse of reinforced concrete (RC) structural members. Earlier work on this subject has revealed that axial tension imposed on a lightly reinforced section led to the partial collapse of the Wilkins Air Force Depot in 1955. Design code provisions and analytical models such as modified compression field theory yield reasonable estimates of shear strength of RC beams subjected to axial tension. Nevertheless, their semi-empirical nature is not always appropriate for shear assessment of existing RC structural members. The extra conservativeness and empirically determined parameters can incorrectly estimate the actual strengths of existing structures. A generalized mechanical model with rigorous formulation must be developed. This paper presents an analytical model that is useful to predict the shear strength of RC beams with transverse reinforcement under axial tension. Without regressive functions or empirical parameters, the combined upper and lower bound analysis enables shear strength derivation based on the force equilibrium and compatible patterns of failure. The accuracy of these analyses has been validated through comparison of its predictions with five available experimental campaigns and international shear design expressions as well as the modified compression field theory. Comparisons reveal the limitations of design code provisions and the general validity of the developed analysis.
ArticleNumber 112970
Author Kanazawa, Takeru
Author_xml – sequence: 1
  givenname: Takeru
  surname: Kanazawa
  fullname: Kanazawa, Takeru
  email: t-kanazawa@hgu.jp
  organization: Hokkai Gakuen University, Minami 26, Nishi 11, Chuo-ku, Sapporo 064-0926, Japan
BookMark eNqNkL-OEzEQhy10SOQOngFL1BtmvFnvbkFxivgnnUQDteV1xpyjjR3G3kA63oE35EnwKYiCBpqZ5vf7RvNdi6uYIgnxHGGNgPrlfk3xcy68uLJWoHCNqMYeHokVDn3b9K1qr8QKcIMNqFE_Edc57wFADQOsxGmbDlOItJPL8Uj88_uPOX0lllNa4k7aaOdzDln6xDLfk62zcL1X7mXysrCN-UScaT5LphBrzFWUS9ExFZIT2UOWlVSJ9luwsywUc0jxqXjs7Zzp2e99Iz69ef1x-665-_D2_fb2rnEbGEuzwWHyrQYYyRNOvZ-81puB-q6jScOoutFZhzuvvG41ElnUk1Me2hE7ZaG9ES8u3COnLwvlYvZp4fpVNqobcNBj2-ma6i8pxylnJm-OHA6WzwbBPEg2e_NHsnmQbC6Sa_PVX00Xii31w-omzP_Rv730qUo4BWKTXaBYJQammt2l8E_GL9DxpK8
CitedBy_id crossref_primary_10_1016_j_istruc_2023_105708
crossref_primary_10_1061_JSENDH_STENG_13036
Cites_doi 10.1061/(ASCE)0733-9445(1996)122:2(169)
10.1061/JSDEAG.0002996
10.1002/suco.201500135
10.1139/l96-004
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Nov 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 1, 2021
DBID AAYXX
CITATION
7SR
7ST
8BQ
8FD
C1K
FR3
JG9
KR7
SOI
DOI 10.1016/j.engstruct.2021.112970
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Engineering Research Database
Environment Abstracts
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7323
ExternalDocumentID 10_1016_j_engstruct_2021_112970
S0141029621011135
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ATOGT
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSH
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SET
SEW
VH1
WUQ
ZY4
7SR
7ST
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
SOI
ID FETCH-LOGICAL-c409t-418bf36009efe1b7fbf6648e755eb609259cac1df2f6361eea16bc2f039152a03
IEDL.DBID .~1
ISSN 0141-0296
IngestDate Wed Aug 13 08:46:03 EDT 2025
Tue Jul 01 01:21:50 EDT 2025
Thu Apr 24 22:56:29 EDT 2025
Sun Apr 06 06:52:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Lower bound analysis
Shear strength
RC beams
Transverse reinforcement
Upper bound analysis
Axial tension
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-418bf36009efe1b7fbf6648e755eb609259cac1df2f6361eea16bc2f039152a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2581869356
PQPubID 2045481
ParticipantIDs proquest_journals_2581869356
crossref_primary_10_1016_j_engstruct_2021_112970
crossref_citationtrail_10_1016_j_engstruct_2021_112970
elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_112970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Engineering structures
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Drucker (b14) 1960
Tan, Hasegawa, Nishino (b13) 1984; 350
Xie (b4) 2009
Chapman (b15) 2015
fib Bulletin 57. Shear and Punching Shear in RC and FRC Elements. Lausanne: International Federation for Structural Concrete; 2010, p. 129.
Elstner, Hognestad (b1) 1957; 53
Haddadin, Hong, Mattock (b12) 1971; 97
Bhide, Collins (b2) 1989; 86
ACI Committee 318. Building code requirements for structural concrete (ACI 318-19) and commentary (318-R19). Farmington Hills: American Concrete Institute; 2019.
Adebar, Collins (b3) 1996; 23
Yang, den Uijl, Walraven (b9) 2016; 17
AF, Morley (b18) 1996; 122
Smith, Howell, Triska, Higgins (b5) 2014; 111
Pham, Fouré, Nicolas, Abouri, Mège (b7) 2020
MD, Spiliopoulos (b19) 1998; 21
Muttoni, Fernández (b10) 2008; 2
European Committee for Standardization. Eurocode 2: Design of Concrete Structures, Part 1: General Rules and Rules for Buildings. London: British Standards Institute; 2004.
Vecchio, Collins (b8) 1986; 83
Pham, Fouré, Nicolas, Abouri, Mège (b6) 2020
Elstner (10.1016/j.engstruct.2021.112970_b1) 1957; 53
AF (10.1016/j.engstruct.2021.112970_b18) 1996; 122
Haddadin (10.1016/j.engstruct.2021.112970_b12) 1971; 97
Pham (10.1016/j.engstruct.2021.112970_b7) 2020
MD (10.1016/j.engstruct.2021.112970_b19) 1998; 21
Adebar (10.1016/j.engstruct.2021.112970_b3) 1996; 23
Vecchio (10.1016/j.engstruct.2021.112970_b8) 1986; 83
Smith (10.1016/j.engstruct.2021.112970_b5) 2014; 111
Muttoni (10.1016/j.engstruct.2021.112970_b10) 2008; 2
Tan (10.1016/j.engstruct.2021.112970_b13) 1984; 350
Chapman (10.1016/j.engstruct.2021.112970_b15) 2015
Bhide (10.1016/j.engstruct.2021.112970_b2) 1989; 86
Pham (10.1016/j.engstruct.2021.112970_b6) 2020
Drucker (10.1016/j.engstruct.2021.112970_b14) 1960
10.1016/j.engstruct.2021.112970_b17
10.1016/j.engstruct.2021.112970_b16
Xie (10.1016/j.engstruct.2021.112970_b4) 2009
Yang (10.1016/j.engstruct.2021.112970_b9) 2016; 17
10.1016/j.engstruct.2021.112970_b11
References_xml – start-page: 1
  year: 2020
  end-page: 18
  ident: b7
  article-title: Influence of axial tension on the shear strength of transversally reinforced concrete beams
  publication-title: Str Con
– volume: 23
  start-page: 30
  year: 1996
  end-page: 41
  ident: b3
  article-title: Collins MP shear strength of members without transverse reinforcement
  publication-title: Can J Civ Eng
– year: 1960
  ident: b14
  article-title: On Structural Concrete and the Theorems of Limit Analysis
– volume: 53
  start-page: 637
  year: 1957
  end-page: 668
  ident: b1
  article-title: Laboratory investigation of rigid frame failure
  publication-title: ACI J Proc
– volume: 17
  start-page: 790
  year: 2016
  end-page: 798
  ident: b9
  article-title: Critical shear displacement theory: on the way to extending the scope of shear design and assessment for members without shear reinforcement
  publication-title: Str Con
– reference: fib Bulletin 57. Shear and Punching Shear in RC and FRC Elements. Lausanne: International Federation for Structural Concrete; 2010, p. 129.
– reference: European Committee for Standardization. Eurocode 2: Design of Concrete Structures, Part 1: General Rules and Rules for Buildings. London: British Standards Institute; 2004.
– volume: 86
  start-page: 570
  year: 1989
  end-page: 581
  ident: b2
  article-title: Influence of axial tension on the shear capacity of reinforced concrete members
  publication-title: ACI Str J
– start-page: 1
  year: 2020
  end-page: 17
  ident: b6
  article-title: Influence of axial tension on the shear strength of RC beams without stirrups
  publication-title: Str Con
– volume: 83
  start-page: 219
  year: 1986
  end-page: 231
  ident: b8
  article-title: Vecchio FJ collins MP the modified compression-field theory for reinforced concrete elements subjected to shear
  publication-title: ACI J
– volume: 350
  start-page: 125
  year: 1984
  end-page: 133
  ident: b13
  article-title: A combined upper and lower bound analysis and its applications
  publication-title: J JSCE
– reference: ACI Committee 318. Building code requirements for structural concrete (ACI 318-19) and commentary (318-R19). Farmington Hills: American Concrete Institute; 2019.
– volume: 122
  start-page: 169
  year: 1996
  end-page: 178
  ident: b18
  article-title: Effectiveness factor of concrete in continuous deep beams
  publication-title: J Str Eng
– volume: 97
  start-page: 2277
  year: 1971
  end-page: 2297
  ident: b12
  article-title: Stirrup effectiveness in reinforced concrete beams with axial force
  publication-title: J Str Div
– year: 2009
  ident: b4
  article-title: The Influence of Axial Load and Prestress on the Shear Strength of Web-Shear Critical Reinforced Concrete Elements
– year: 2015
  ident: b15
  article-title: MATLAB Programming for Engineers
– volume: 21
  start-page: 330
  year: 1998
  end-page: 338
  ident: b19
  article-title: Evaluation of structural-concrete design-concepts based on finite-element analysis
  publication-title: Comp Mech
– volume: 111
  start-page: 211
  year: 2014
  end-page: 222
  ident: b5
  article-title: Effects of axial tension on shear-moment capacity of full-scale reinforced concrete girders
  publication-title: ACI Str J
– volume: 2
  start-page: 163
  year: 2008
  end-page: 172
  ident: b10
  article-title: Shear strength of members without transverse reinforcement as function of critical shear crack width
  publication-title: ACI Str J
– volume: 86
  start-page: 570
  issue: 5
  year: 1989
  ident: 10.1016/j.engstruct.2021.112970_b2
  article-title: Influence of axial tension on the shear capacity of reinforced concrete members
  publication-title: ACI Str J
– volume: 122
  start-page: 169
  issue: 2
  year: 1996
  ident: 10.1016/j.engstruct.2021.112970_b18
  article-title: Effectiveness factor of concrete in continuous deep beams
  publication-title: J Str Eng
  doi: 10.1061/(ASCE)0733-9445(1996)122:2(169)
– start-page: 1
  year: 2020
  ident: 10.1016/j.engstruct.2021.112970_b6
  article-title: Influence of axial tension on the shear strength of RC beams without stirrups
  publication-title: Str Con
– volume: 53
  start-page: 637
  issue: 1
  year: 1957
  ident: 10.1016/j.engstruct.2021.112970_b1
  article-title: Laboratory investigation of rigid frame failure
  publication-title: ACI J Proc
– volume: 83
  start-page: 219
  issue: 2
  year: 1986
  ident: 10.1016/j.engstruct.2021.112970_b8
  article-title: Vecchio FJ collins MP the modified compression-field theory for reinforced concrete elements subjected to shear
  publication-title: ACI J
– start-page: 1
  year: 2020
  ident: 10.1016/j.engstruct.2021.112970_b7
  article-title: Influence of axial tension on the shear strength of transversally reinforced concrete beams
  publication-title: Str Con
– volume: 350
  start-page: 125
  year: 1984
  ident: 10.1016/j.engstruct.2021.112970_b13
  article-title: A combined upper and lower bound analysis and its applications
  publication-title: J JSCE
– volume: 111
  start-page: 211
  issue: 1
  year: 2014
  ident: 10.1016/j.engstruct.2021.112970_b5
  article-title: Effects of axial tension on shear-moment capacity of full-scale reinforced concrete girders
  publication-title: ACI Str J
– volume: 97
  start-page: 2277
  issue: 9
  year: 1971
  ident: 10.1016/j.engstruct.2021.112970_b12
  article-title: Stirrup effectiveness in reinforced concrete beams with axial force
  publication-title: J Str Div
  doi: 10.1061/JSDEAG.0002996
– year: 2009
  ident: 10.1016/j.engstruct.2021.112970_b4
– volume: 17
  start-page: 790
  issue: 5
  year: 2016
  ident: 10.1016/j.engstruct.2021.112970_b9
  article-title: Critical shear displacement theory: on the way to extending the scope of shear design and assessment for members without shear reinforcement
  publication-title: Str Con
  doi: 10.1002/suco.201500135
– ident: 10.1016/j.engstruct.2021.112970_b11
– year: 1960
  ident: 10.1016/j.engstruct.2021.112970_b14
– volume: 2
  start-page: 163
  year: 2008
  ident: 10.1016/j.engstruct.2021.112970_b10
  article-title: Shear strength of members without transverse reinforcement as function of critical shear crack width
  publication-title: ACI Str J
– volume: 23
  start-page: 30
  issue: 1
  year: 1996
  ident: 10.1016/j.engstruct.2021.112970_b3
  article-title: Collins MP shear strength of members without transverse reinforcement
  publication-title: Can J Civ Eng
  doi: 10.1139/l96-004
– ident: 10.1016/j.engstruct.2021.112970_b17
– ident: 10.1016/j.engstruct.2021.112970_b16
– year: 2015
  ident: 10.1016/j.engstruct.2021.112970_b15
– volume: 21
  start-page: 330
  issue: 4
  year: 1998
  ident: 10.1016/j.engstruct.2021.112970_b19
  article-title: Evaluation of structural-concrete design-concepts based on finite-element analysis
  publication-title: Comp Mech
SSID ssj0002880
Score 2.3469365
Snippet Axial tension force exerted because of a temperature change or shrinkage can cause the collapse of reinforced concrete (RC) structural members. Earlier work on...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112970
SubjectTerms Axial tension
Collapse
Compression
Compressive strength
Design modifications
Empirical analysis
Failure analysis
Field theory
Lower bound analysis
Lower bounds
Mathematical models
Parameters
RC beams
Reinforced concrete
Shear strength
Structural members
Tension
Transverse reinforcement
Upper bound analysis
Title Combined upper–lower bound analysis for shear strength of transversely reinforced concrete beams under axial tension
URI https://dx.doi.org/10.1016/j.engstruct.2021.112970
https://www.proquest.com/docview/2581869356
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEF5FcCkHBC2InzTaA1c3Xnu9sbkh1CgUkUuLxG21a8_SoOBEiVu1F8Q78IY8CTNrOwVUiQPHtXYse2d2fqSZ72PsSIKInChkEBeJCqQTeZAWhQ0wQ8rDzODaa_pirEaX8ttVctVhp-0sDLVVNr6_9uneWzdP-s1p9ueTSf-7b1GMMoVFC_Gl06C5lAOy8i93_9o8otSzp9HmgHa_6PGC8rqGacVCMRI0TpMRa_H_I9QrX-0D0HCLbTaZIz-pP26bdaD8yDae4Ql-Yr_xdmOlCwX_NZ_D4vH-YUokaNwSdxI3Df4IxzyVL4nJmtOkSHld_eQzxyuKWtSkAdO_fAEeURWPh2PBjJllBdyCuV1yGjpbcPMH7Zb77vdZucMuh19_nI6ChlghyLGcqwIpUutiTHUycCDswFmnlExhkCRgVZhhSZSbXBQucipWAsAIZfPIeTT5yITxLlsrZyXsMe7yNIxjQJHUSBdagz5BmZgwdzC5K7J9ptrD1HmDOk7kF1Pdtpfd6JUWNGlB11rYZ-FKcF4Db7wtctxqS7-wIY3h4W3hbqtf3Vzjpca_IsquOFEH73n3IftAq3qEscvWcAN8xlymsj1vrD22fnJ2Pho_AUBI-HE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELU4CqBAnOLGBW3YOIdJ6BACLWcDSHSWnYw5tGRXuwFBg_gH_pAvYcZJuIREQZlkJko89hzSzHuMbUQgAivyyAvzWHqRFZmX5LnxMEPK_FTjtbP0yalsX0SHl_HlENttZmGorbL2_ZVPd966vtOqV7PVu7lpnbkWxSCVWLQQX3o8zEYjPL5EY7D5_NnnESSOPo2kPRL_1uQFxVWF04qVYiBoniYl2uLfQ9QPZ-0i0P4Um6xTR75Tfd00G4Jihk18ARScZQ94vLHUhZzf93rQf3t57RALGjdEnsR1DUDCMVHlA6Ky5jQqUlyV17xreUlhi7o0oPPE--AgVXF9OFbMmFqWwA3ouwGnqbM-14-4cblrf-8Wc-xif-98t-3VzApehvVc6UUiMTbEXCcFC8JsWWOljBLYimMw0k-xJsp0JnIbWBlKAaCFNFlgHZx8oP1wno0U3QIWGLdZ4ochoEqiI-sbjU5B6pBAdzC7y9NFJpvFVFkNO07sFx3V9Jfdqg8rKLKCqqywyPwPxV6FvPG3ynZjLfVtEymMD38rrzT2VfU5Hij8K-LsCmO59J93r7Ox9vnJsTo-OD1aZuP0pJpnXGEjKAyrmNiUZs1t3Hflwfn_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+upper%E2%80%93lower+bound+analysis+for+shear+strength+of+transversely+reinforced+concrete+beams+under+axial+tension&rft.jtitle=Engineering+structures&rft.au=Kanazawa%2C+Takeru&rft.date=2021-11-01&rft.issn=0141-0296&rft.volume=246&rft.spage=112970&rft_id=info:doi/10.1016%2Fj.engstruct.2021.112970&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2021_112970
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon