Combined upper–lower bound analysis for shear strength of transversely reinforced concrete beams under axial tension
Axial tension force exerted because of a temperature change or shrinkage can cause the collapse of reinforced concrete (RC) structural members. Earlier work on this subject has revealed that axial tension imposed on a lightly reinforced section led to the partial collapse of the Wilkins Air Force De...
Saved in:
Published in | Engineering structures Vol. 246; p. 112970 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.11.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Axial tension force exerted because of a temperature change or shrinkage can cause the collapse of reinforced concrete (RC) structural members. Earlier work on this subject has revealed that axial tension imposed on a lightly reinforced section led to the partial collapse of the Wilkins Air Force Depot in 1955. Design code provisions and analytical models such as modified compression field theory yield reasonable estimates of shear strength of RC beams subjected to axial tension. Nevertheless, their semi-empirical nature is not always appropriate for shear assessment of existing RC structural members. The extra conservativeness and empirically determined parameters can incorrectly estimate the actual strengths of existing structures. A generalized mechanical model with rigorous formulation must be developed. This paper presents an analytical model that is useful to predict the shear strength of RC beams with transverse reinforcement under axial tension. Without regressive functions or empirical parameters, the combined upper and lower bound analysis enables shear strength derivation based on the force equilibrium and compatible patterns of failure. The accuracy of these analyses has been validated through comparison of its predictions with five available experimental campaigns and international shear design expressions as well as the modified compression field theory. Comparisons reveal the limitations of design code provisions and the general validity of the developed analysis. |
---|---|
AbstractList | Axial tension force exerted because of a temperature change or shrinkage can cause the collapse of reinforced concrete (RC) structural members. Earlier work on this subject has revealed that axial tension imposed on a lightly reinforced section led to the partial collapse of the Wilkins Air Force Depot in 1955. Design code provisions and analytical models such as modified compression field theory yield reasonable estimates of shear strength of RC beams subjected to axial tension. Nevertheless, their semi-empirical nature is not always appropriate for shear assessment of existing RC structural members. The extra conservativeness and empirically determined parameters can incorrectly estimate the actual strengths of existing structures. A generalized mechanical model with rigorous formulation must be developed. This paper presents an analytical model that is useful to predict the shear strength of RC beams with transverse reinforcement under axial tension. Without regressive functions or empirical parameters, the combined upper and lower bound analysis enables shear strength derivation based on the force equilibrium and compatible patterns of failure. The accuracy of these analyses has been validated through comparison of its predictions with five available experimental campaigns and international shear design expressions as well as the modified compression field theory. Comparisons reveal the limitations of design code provisions and the general validity of the developed analysis. |
ArticleNumber | 112970 |
Author | Kanazawa, Takeru |
Author_xml | – sequence: 1 givenname: Takeru surname: Kanazawa fullname: Kanazawa, Takeru email: t-kanazawa@hgu.jp organization: Hokkai Gakuen University, Minami 26, Nishi 11, Chuo-ku, Sapporo 064-0926, Japan |
BookMark | eNqNkL-OEzEQhy10SOQOngFL1BtmvFnvbkFxivgnnUQDteV1xpyjjR3G3kA63oE35EnwKYiCBpqZ5vf7RvNdi6uYIgnxHGGNgPrlfk3xcy68uLJWoHCNqMYeHokVDn3b9K1qr8QKcIMNqFE_Edc57wFADQOsxGmbDlOItJPL8Uj88_uPOX0lllNa4k7aaOdzDln6xDLfk62zcL1X7mXysrCN-UScaT5LphBrzFWUS9ExFZIT2UOWlVSJ9luwsywUc0jxqXjs7Zzp2e99Iz69ef1x-665-_D2_fb2rnEbGEuzwWHyrQYYyRNOvZ-81puB-q6jScOoutFZhzuvvG41ElnUk1Me2hE7ZaG9ES8u3COnLwvlYvZp4fpVNqobcNBj2-ma6i8pxylnJm-OHA6WzwbBPEg2e_NHsnmQbC6Sa_PVX00Xii31w-omzP_Rv730qUo4BWKTXaBYJQammt2l8E_GL9DxpK8 |
CitedBy_id | crossref_primary_10_1016_j_istruc_2023_105708 crossref_primary_10_1061_JSENDH_STENG_13036 |
Cites_doi | 10.1061/(ASCE)0733-9445(1996)122:2(169) 10.1061/JSDEAG.0002996 10.1002/suco.201500135 10.1139/l96-004 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Nov 1, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Nov 1, 2021 |
DBID | AAYXX CITATION 7SR 7ST 8BQ 8FD C1K FR3 JG9 KR7 SOI |
DOI | 10.1016/j.engstruct.2021.112970 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Engineering Research Database Environment Abstracts METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7323 |
ExternalDocumentID | 10_1016_j_engstruct_2021_112970 S0141029621011135 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSE SSH SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SET SEW VH1 WUQ ZY4 7SR 7ST 8BQ 8FD C1K EFKBS FR3 JG9 KR7 SOI |
ID | FETCH-LOGICAL-c409t-418bf36009efe1b7fbf6648e755eb609259cac1df2f6361eea16bc2f039152a03 |
IEDL.DBID | .~1 |
ISSN | 0141-0296 |
IngestDate | Wed Aug 13 08:46:03 EDT 2025 Tue Jul 01 01:21:50 EDT 2025 Thu Apr 24 22:56:29 EDT 2025 Sun Apr 06 06:52:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lower bound analysis Shear strength RC beams Transverse reinforcement Upper bound analysis Axial tension |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-418bf36009efe1b7fbf6648e755eb609259cac1df2f6361eea16bc2f039152a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2581869356 |
PQPubID | 2045481 |
ParticipantIDs | proquest_journals_2581869356 crossref_primary_10_1016_j_engstruct_2021_112970 crossref_citationtrail_10_1016_j_engstruct_2021_112970 elsevier_sciencedirect_doi_10_1016_j_engstruct_2021_112970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 2021-11-00 20211101 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Engineering structures |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Drucker (b14) 1960 Tan, Hasegawa, Nishino (b13) 1984; 350 Xie (b4) 2009 Chapman (b15) 2015 fib Bulletin 57. Shear and Punching Shear in RC and FRC Elements. Lausanne: International Federation for Structural Concrete; 2010, p. 129. Elstner, Hognestad (b1) 1957; 53 Haddadin, Hong, Mattock (b12) 1971; 97 Bhide, Collins (b2) 1989; 86 ACI Committee 318. Building code requirements for structural concrete (ACI 318-19) and commentary (318-R19). Farmington Hills: American Concrete Institute; 2019. Adebar, Collins (b3) 1996; 23 Yang, den Uijl, Walraven (b9) 2016; 17 AF, Morley (b18) 1996; 122 Smith, Howell, Triska, Higgins (b5) 2014; 111 Pham, Fouré, Nicolas, Abouri, Mège (b7) 2020 MD, Spiliopoulos (b19) 1998; 21 Muttoni, Fernández (b10) 2008; 2 European Committee for Standardization. Eurocode 2: Design of Concrete Structures, Part 1: General Rules and Rules for Buildings. London: British Standards Institute; 2004. Vecchio, Collins (b8) 1986; 83 Pham, Fouré, Nicolas, Abouri, Mège (b6) 2020 Elstner (10.1016/j.engstruct.2021.112970_b1) 1957; 53 AF (10.1016/j.engstruct.2021.112970_b18) 1996; 122 Haddadin (10.1016/j.engstruct.2021.112970_b12) 1971; 97 Pham (10.1016/j.engstruct.2021.112970_b7) 2020 MD (10.1016/j.engstruct.2021.112970_b19) 1998; 21 Adebar (10.1016/j.engstruct.2021.112970_b3) 1996; 23 Vecchio (10.1016/j.engstruct.2021.112970_b8) 1986; 83 Smith (10.1016/j.engstruct.2021.112970_b5) 2014; 111 Muttoni (10.1016/j.engstruct.2021.112970_b10) 2008; 2 Tan (10.1016/j.engstruct.2021.112970_b13) 1984; 350 Chapman (10.1016/j.engstruct.2021.112970_b15) 2015 Bhide (10.1016/j.engstruct.2021.112970_b2) 1989; 86 Pham (10.1016/j.engstruct.2021.112970_b6) 2020 Drucker (10.1016/j.engstruct.2021.112970_b14) 1960 10.1016/j.engstruct.2021.112970_b17 10.1016/j.engstruct.2021.112970_b16 Xie (10.1016/j.engstruct.2021.112970_b4) 2009 Yang (10.1016/j.engstruct.2021.112970_b9) 2016; 17 10.1016/j.engstruct.2021.112970_b11 |
References_xml | – start-page: 1 year: 2020 end-page: 18 ident: b7 article-title: Influence of axial tension on the shear strength of transversally reinforced concrete beams publication-title: Str Con – volume: 23 start-page: 30 year: 1996 end-page: 41 ident: b3 article-title: Collins MP shear strength of members without transverse reinforcement publication-title: Can J Civ Eng – year: 1960 ident: b14 article-title: On Structural Concrete and the Theorems of Limit Analysis – volume: 53 start-page: 637 year: 1957 end-page: 668 ident: b1 article-title: Laboratory investigation of rigid frame failure publication-title: ACI J Proc – volume: 17 start-page: 790 year: 2016 end-page: 798 ident: b9 article-title: Critical shear displacement theory: on the way to extending the scope of shear design and assessment for members without shear reinforcement publication-title: Str Con – reference: fib Bulletin 57. Shear and Punching Shear in RC and FRC Elements. Lausanne: International Federation for Structural Concrete; 2010, p. 129. – reference: European Committee for Standardization. Eurocode 2: Design of Concrete Structures, Part 1: General Rules and Rules for Buildings. London: British Standards Institute; 2004. – volume: 86 start-page: 570 year: 1989 end-page: 581 ident: b2 article-title: Influence of axial tension on the shear capacity of reinforced concrete members publication-title: ACI Str J – start-page: 1 year: 2020 end-page: 17 ident: b6 article-title: Influence of axial tension on the shear strength of RC beams without stirrups publication-title: Str Con – volume: 83 start-page: 219 year: 1986 end-page: 231 ident: b8 article-title: Vecchio FJ collins MP the modified compression-field theory for reinforced concrete elements subjected to shear publication-title: ACI J – volume: 350 start-page: 125 year: 1984 end-page: 133 ident: b13 article-title: A combined upper and lower bound analysis and its applications publication-title: J JSCE – reference: ACI Committee 318. Building code requirements for structural concrete (ACI 318-19) and commentary (318-R19). Farmington Hills: American Concrete Institute; 2019. – volume: 122 start-page: 169 year: 1996 end-page: 178 ident: b18 article-title: Effectiveness factor of concrete in continuous deep beams publication-title: J Str Eng – volume: 97 start-page: 2277 year: 1971 end-page: 2297 ident: b12 article-title: Stirrup effectiveness in reinforced concrete beams with axial force publication-title: J Str Div – year: 2009 ident: b4 article-title: The Influence of Axial Load and Prestress on the Shear Strength of Web-Shear Critical Reinforced Concrete Elements – year: 2015 ident: b15 article-title: MATLAB Programming for Engineers – volume: 21 start-page: 330 year: 1998 end-page: 338 ident: b19 article-title: Evaluation of structural-concrete design-concepts based on finite-element analysis publication-title: Comp Mech – volume: 111 start-page: 211 year: 2014 end-page: 222 ident: b5 article-title: Effects of axial tension on shear-moment capacity of full-scale reinforced concrete girders publication-title: ACI Str J – volume: 2 start-page: 163 year: 2008 end-page: 172 ident: b10 article-title: Shear strength of members without transverse reinforcement as function of critical shear crack width publication-title: ACI Str J – volume: 86 start-page: 570 issue: 5 year: 1989 ident: 10.1016/j.engstruct.2021.112970_b2 article-title: Influence of axial tension on the shear capacity of reinforced concrete members publication-title: ACI Str J – volume: 122 start-page: 169 issue: 2 year: 1996 ident: 10.1016/j.engstruct.2021.112970_b18 article-title: Effectiveness factor of concrete in continuous deep beams publication-title: J Str Eng doi: 10.1061/(ASCE)0733-9445(1996)122:2(169) – start-page: 1 year: 2020 ident: 10.1016/j.engstruct.2021.112970_b6 article-title: Influence of axial tension on the shear strength of RC beams without stirrups publication-title: Str Con – volume: 53 start-page: 637 issue: 1 year: 1957 ident: 10.1016/j.engstruct.2021.112970_b1 article-title: Laboratory investigation of rigid frame failure publication-title: ACI J Proc – volume: 83 start-page: 219 issue: 2 year: 1986 ident: 10.1016/j.engstruct.2021.112970_b8 article-title: Vecchio FJ collins MP the modified compression-field theory for reinforced concrete elements subjected to shear publication-title: ACI J – start-page: 1 year: 2020 ident: 10.1016/j.engstruct.2021.112970_b7 article-title: Influence of axial tension on the shear strength of transversally reinforced concrete beams publication-title: Str Con – volume: 350 start-page: 125 year: 1984 ident: 10.1016/j.engstruct.2021.112970_b13 article-title: A combined upper and lower bound analysis and its applications publication-title: J JSCE – volume: 111 start-page: 211 issue: 1 year: 2014 ident: 10.1016/j.engstruct.2021.112970_b5 article-title: Effects of axial tension on shear-moment capacity of full-scale reinforced concrete girders publication-title: ACI Str J – volume: 97 start-page: 2277 issue: 9 year: 1971 ident: 10.1016/j.engstruct.2021.112970_b12 article-title: Stirrup effectiveness in reinforced concrete beams with axial force publication-title: J Str Div doi: 10.1061/JSDEAG.0002996 – year: 2009 ident: 10.1016/j.engstruct.2021.112970_b4 – volume: 17 start-page: 790 issue: 5 year: 2016 ident: 10.1016/j.engstruct.2021.112970_b9 article-title: Critical shear displacement theory: on the way to extending the scope of shear design and assessment for members without shear reinforcement publication-title: Str Con doi: 10.1002/suco.201500135 – ident: 10.1016/j.engstruct.2021.112970_b11 – year: 1960 ident: 10.1016/j.engstruct.2021.112970_b14 – volume: 2 start-page: 163 year: 2008 ident: 10.1016/j.engstruct.2021.112970_b10 article-title: Shear strength of members without transverse reinforcement as function of critical shear crack width publication-title: ACI Str J – volume: 23 start-page: 30 issue: 1 year: 1996 ident: 10.1016/j.engstruct.2021.112970_b3 article-title: Collins MP shear strength of members without transverse reinforcement publication-title: Can J Civ Eng doi: 10.1139/l96-004 – ident: 10.1016/j.engstruct.2021.112970_b17 – ident: 10.1016/j.engstruct.2021.112970_b16 – year: 2015 ident: 10.1016/j.engstruct.2021.112970_b15 – volume: 21 start-page: 330 issue: 4 year: 1998 ident: 10.1016/j.engstruct.2021.112970_b19 article-title: Evaluation of structural-concrete design-concepts based on finite-element analysis publication-title: Comp Mech |
SSID | ssj0002880 |
Score | 2.3469365 |
Snippet | Axial tension force exerted because of a temperature change or shrinkage can cause the collapse of reinforced concrete (RC) structural members. Earlier work on... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 112970 |
SubjectTerms | Axial tension Collapse Compression Compressive strength Design modifications Empirical analysis Failure analysis Field theory Lower bound analysis Lower bounds Mathematical models Parameters RC beams Reinforced concrete Shear strength Structural members Tension Transverse reinforcement Upper bound analysis |
Title | Combined upper–lower bound analysis for shear strength of transversely reinforced concrete beams under axial tension |
URI | https://dx.doi.org/10.1016/j.engstruct.2021.112970 https://www.proquest.com/docview/2581869356 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEF5FcCkHBC2InzTaA1c3Xnu9sbkh1CgUkUuLxG21a8_SoOBEiVu1F8Q78IY8CTNrOwVUiQPHtXYse2d2fqSZ72PsSIKInChkEBeJCqQTeZAWhQ0wQ8rDzODaa_pirEaX8ttVctVhp-0sDLVVNr6_9uneWzdP-s1p9ueTSf-7b1GMMoVFC_Gl06C5lAOy8i93_9o8otSzp9HmgHa_6PGC8rqGacVCMRI0TpMRa_H_I9QrX-0D0HCLbTaZIz-pP26bdaD8yDae4Ql-Yr_xdmOlCwX_NZ_D4vH-YUokaNwSdxI3Df4IxzyVL4nJmtOkSHld_eQzxyuKWtSkAdO_fAEeURWPh2PBjJllBdyCuV1yGjpbcPMH7Zb77vdZucMuh19_nI6ChlghyLGcqwIpUutiTHUycCDswFmnlExhkCRgVZhhSZSbXBQucipWAsAIZfPIeTT5yITxLlsrZyXsMe7yNIxjQJHUSBdagz5BmZgwdzC5K7J9ptrD1HmDOk7kF1Pdtpfd6JUWNGlB11rYZ-FKcF4Db7wtctxqS7-wIY3h4W3hbqtf3Vzjpca_IsquOFEH73n3IftAq3qEscvWcAN8xlymsj1vrD22fnJ2Pho_AUBI-HE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELU4CqBAnOLGBW3YOIdJ6BACLWcDSHSWnYw5tGRXuwFBg_gH_pAvYcZJuIREQZlkJko89hzSzHuMbUQgAivyyAvzWHqRFZmX5LnxMEPK_FTjtbP0yalsX0SHl_HlENttZmGorbL2_ZVPd966vtOqV7PVu7lpnbkWxSCVWLQQX3o8zEYjPL5EY7D5_NnnESSOPo2kPRL_1uQFxVWF04qVYiBoniYl2uLfQ9QPZ-0i0P4Um6xTR75Tfd00G4Jihk18ARScZQ94vLHUhZzf93rQf3t57RALGjdEnsR1DUDCMVHlA6Ky5jQqUlyV17xreUlhi7o0oPPE--AgVXF9OFbMmFqWwA3ouwGnqbM-14-4cblrf-8Wc-xif-98t-3VzApehvVc6UUiMTbEXCcFC8JsWWOljBLYimMw0k-xJsp0JnIbWBlKAaCFNFlgHZx8oP1wno0U3QIWGLdZ4ochoEqiI-sbjU5B6pBAdzC7y9NFJpvFVFkNO07sFx3V9Jfdqg8rKLKCqqywyPwPxV6FvPG3ynZjLfVtEymMD38rrzT2VfU5Hij8K-LsCmO59J93r7Ox9vnJsTo-OD1aZuP0pJpnXGEjKAyrmNiUZs1t3Hflwfn_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+upper%E2%80%93lower+bound+analysis+for+shear+strength+of+transversely+reinforced+concrete+beams+under+axial+tension&rft.jtitle=Engineering+structures&rft.au=Kanazawa%2C+Takeru&rft.date=2021-11-01&rft.issn=0141-0296&rft.volume=246&rft.spage=112970&rft_id=info:doi/10.1016%2Fj.engstruct.2021.112970&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engstruct_2021_112970 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |