Effect of copper ions on the flotation separation of chalcopyrite and molybdenite using sodium sulfide as a depressant

[Display omitted] •Copper ions severely deteriorate the floatability of chalcopyrite and molybdenite.•The adsorption of CuOH+ and Cu(OH)2 provide more reaction sites for depressants.•Cu2S is identified as the primary product during the inhibition process.•The similar floatability makes it difficult...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 115; pp. 44 - 52
Main Authors Zhao, Qiang, Liu, Wengang, Wei, Dezhou, Wang, Wendan, Cui, Baoyu, Liu, Wenbao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Copper ions severely deteriorate the floatability of chalcopyrite and molybdenite.•The adsorption of CuOH+ and Cu(OH)2 provide more reaction sites for depressants.•Cu2S is identified as the primary product during the inhibition process.•The similar floatability makes it difficult to achieve Cu-Mo flotation separation.•An inhibition model among mineral surface, copper ions and sulfide ions is proposed. Copper ions are unavoidable in the process of copper-molybdenum flotation separation. The flotation response of chalcopyrite and molybdenite in the presence of copper ions was investigated through single mineral flotation tests and flotation separation tests. The influence mechanism was studied by adsorption experiments, zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS) analysis. Flotation results indicated that copper ions dramatically reduced the recoveries of copper and molybdenum, and increased the inhibition effect of sodium sulfide; that is, the flotation separation of chalcopyrite and molybdenite was seriously hindered by copper ions. The adsorption experiments demonstrated that copper ions were adsorbed on molybdenite and chalcopyrite, and the adsorption amounts increased in the presence of sodium sulfide. The results of zeta-potential measurements confirmed that the floatability of the minerals was deteriorated by the adsorption of copper hydroxides (Cu(OH)+ and Cu(OH)2) and the subsequent adsorption of hydrosulfide ions (HS−). Moreover, XPS analysis verified that the adsorbed copper hydroxides reacted with hydrosulfide ions, producing Cu(I)-S species on the surface of chalcopyrite and molybdenite. The adsorbed Cu(I) ions provided additional reaction sites and promoted the formation of a hydrophilic layer by the attachment of excessive hydrosulfide ions. Based on these analyses, a possible inhibition model for the interactions among the mineral surface, copper ions, and sulfide ions is proposed.
AbstractList [Display omitted] •Copper ions severely deteriorate the floatability of chalcopyrite and molybdenite.•The adsorption of CuOH+ and Cu(OH)2 provide more reaction sites for depressants.•Cu2S is identified as the primary product during the inhibition process.•The similar floatability makes it difficult to achieve Cu-Mo flotation separation.•An inhibition model among mineral surface, copper ions and sulfide ions is proposed. Copper ions are unavoidable in the process of copper-molybdenum flotation separation. The flotation response of chalcopyrite and molybdenite in the presence of copper ions was investigated through single mineral flotation tests and flotation separation tests. The influence mechanism was studied by adsorption experiments, zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS) analysis. Flotation results indicated that copper ions dramatically reduced the recoveries of copper and molybdenum, and increased the inhibition effect of sodium sulfide; that is, the flotation separation of chalcopyrite and molybdenite was seriously hindered by copper ions. The adsorption experiments demonstrated that copper ions were adsorbed on molybdenite and chalcopyrite, and the adsorption amounts increased in the presence of sodium sulfide. The results of zeta-potential measurements confirmed that the floatability of the minerals was deteriorated by the adsorption of copper hydroxides (Cu(OH)+ and Cu(OH)2) and the subsequent adsorption of hydrosulfide ions (HS−). Moreover, XPS analysis verified that the adsorbed copper hydroxides reacted with hydrosulfide ions, producing Cu(I)-S species on the surface of chalcopyrite and molybdenite. The adsorbed Cu(I) ions provided additional reaction sites and promoted the formation of a hydrophilic layer by the attachment of excessive hydrosulfide ions. Based on these analyses, a possible inhibition model for the interactions among the mineral surface, copper ions, and sulfide ions is proposed.
Author Wang, Wendan
Liu, Wenbao
Zhao, Qiang
Wei, Dezhou
Cui, Baoyu
Liu, Wengang
Author_xml – sequence: 1
  givenname: Qiang
  surname: Zhao
  fullname: Zhao, Qiang
– sequence: 2
  givenname: Wengang
  surname: Liu
  fullname: Liu, Wengang
  email: liuwengang@mail.neu.edu.cn
– sequence: 3
  givenname: Dezhou
  orcidid: 0000-0003-1189-8533
  surname: Wei
  fullname: Wei, Dezhou
  email: dzwei@mail.neu.edu.cn
– sequence: 4
  givenname: Wendan
  surname: Wang
  fullname: Wang, Wendan
– sequence: 5
  givenname: Baoyu
  surname: Cui
  fullname: Cui, Baoyu
– sequence: 6
  givenname: Wenbao
  surname: Liu
  fullname: Liu, Wenbao
BookMark eNqFkM1qwzAQhEVJoUnaN-hBL2BXsmVb6qFQQvoDgV7as5GlVaJgS0ZyAnn72rinHtrT7g4zA_ut0MJ5BwjdU5JSQsuHY9pZB26fZoRWo5QSwq_QkvIqSwRjbIGWhIssKXlV3KBVjEdCSFFxsUTnrTGgBuwNVr7vIWDrXcTe4eEA2LR-kMOo4Ai9DPM6WQ-yHe2XYAfA0mnc-fbSaHDTfYrW7XH02p46HE-tsXo0RSyxhj5AjNINt-jayDbC3c9co6-X7efmLdl9vL5vnneJYkQMCaPUaG540yhCIBd5Lg0RgjU5ZcxURanyIm9YRoDzphJ5IUulZVGUpuFNpiFfIzb3quBjDGDqPthOhktNST2xq4_1zK6e2E3qyG6MPf6KKTuDGIK07X_hpzkM42NnC6GOyoJToG0YUdfa278LvgHvxJIX
CitedBy_id crossref_primary_10_1016_j_colsurfa_2021_127210
crossref_primary_10_3390_min10111027
crossref_primary_10_1016_j_colsurfa_2021_126683
crossref_primary_10_1016_j_mineng_2020_106765
crossref_primary_10_1016_j_cej_2020_125137
crossref_primary_10_1016_j_apsusc_2019_144313
crossref_primary_10_1016_j_seppur_2024_130507
crossref_primary_10_3389_fchem_2020_00242
crossref_primary_10_1016_j_colsurfa_2019_123958
crossref_primary_10_1016_j_mineng_2022_107655
crossref_primary_10_3390_min13121548
crossref_primary_10_1016_j_mineng_2020_106203
crossref_primary_10_1016_j_mineng_2022_107653
crossref_primary_10_1016_j_jclepro_2020_125322
crossref_primary_10_1016_j_mineng_2020_106486
crossref_primary_10_1016_j_cis_2021_102466
crossref_primary_10_1016_j_colsurfa_2020_124932
crossref_primary_10_1016_j_apsusc_2021_149466
crossref_primary_10_3390_w15030464
crossref_primary_10_1016_j_mineng_2019_02_023
crossref_primary_10_1016_j_jiec_2023_10_065
crossref_primary_10_1088_1755_1315_1415_1_012066
crossref_primary_10_1007_s11837_018_3135_2
crossref_primary_10_1016_j_ijmst_2022_06_007
crossref_primary_10_3390_molecules30061396
crossref_primary_10_1016_j_mineng_2024_109091
crossref_primary_10_1016_j_powtec_2023_119049
crossref_primary_10_1016_j_powtec_2025_120876
crossref_primary_10_1080_08827508_2024_2316060
crossref_primary_10_1016_j_colsurfa_2022_129127
crossref_primary_10_1016_j_mineng_2022_107703
crossref_primary_10_1016_j_colsurfa_2021_127920
crossref_primary_10_1016_j_molliq_2020_114707
crossref_primary_10_1016_j_jece_2024_114429
crossref_primary_10_1016_j_mineng_2021_107324
crossref_primary_10_1016_j_molliq_2020_114907
crossref_primary_10_1080_08827508_2021_1935928
crossref_primary_10_1016_j_apsusc_2024_162206
crossref_primary_10_1016_j_mineng_2020_106576
crossref_primary_10_1016_j_mineng_2021_107287
crossref_primary_10_1016_j_mineng_2020_106530
crossref_primary_10_1016_j_jmrt_2021_10_052
crossref_primary_10_1016_j_seppur_2024_128973
crossref_primary_10_1016_j_apsusc_2018_03_097
crossref_primary_10_3390_min8040149
crossref_primary_10_1016_j_apsusc_2018_02_132
crossref_primary_10_1016_j_molliq_2020_114781
crossref_primary_10_3390_min10020157
crossref_primary_10_1016_j_seppur_2024_129823
crossref_primary_10_1016_j_molliq_2022_120661
crossref_primary_10_1039_C9QI00054B
crossref_primary_10_3390_met10091269
crossref_primary_10_1016_j_mineng_2020_106589
crossref_primary_10_1080_01496395_2018_1467451
crossref_primary_10_1016_j_colsurfa_2023_132666
crossref_primary_10_1016_j_mineng_2019_03_009
crossref_primary_10_1016_j_mineng_2020_106309
crossref_primary_10_1007_s10008_019_04284_8
crossref_primary_10_1016_j_colsurfa_2022_129897
crossref_primary_10_1016_j_mineng_2020_106747
crossref_primary_10_1016_j_mineng_2023_108209
crossref_primary_10_1016_j_molliq_2019_03_013
crossref_primary_10_1016_j_mineng_2022_107677
crossref_primary_10_3390_molecules26175365
crossref_primary_10_1007_s11771_023_5239_2
crossref_primary_10_1016_j_jece_2025_115746
crossref_primary_10_1080_00084433_2022_2031680
crossref_primary_10_3390_min9010001
crossref_primary_10_1016_j_cej_2024_153159
crossref_primary_10_3390_min12111346
crossref_primary_10_1016_j_psep_2025_106920
crossref_primary_10_1007_s11696_022_02098_z
crossref_primary_10_1016_j_jmrt_2020_09_021
crossref_primary_10_1007_s11595_019_2212_x
crossref_primary_10_1016_j_jmrt_2020_03_062
crossref_primary_10_1021_acsomega_4c02464
crossref_primary_10_1016_j_mineng_2021_106778
crossref_primary_10_1016_j_mineng_2021_106932
crossref_primary_10_1016_j_mineng_2021_107229
crossref_primary_10_1016_S1003_6326_21_65640_6
crossref_primary_10_1016_j_molliq_2024_125803
crossref_primary_10_1016_j_jclepro_2020_123493
crossref_primary_10_3390_ma15196536
crossref_primary_10_1016_S1003_6326_23_66324_1
crossref_primary_10_1016_j_mineng_2023_108235
crossref_primary_10_1016_j_seppur_2024_128282
crossref_primary_10_2473_journalofmmij_138_12
crossref_primary_10_1016_j_mineng_2023_108166
crossref_primary_10_1016_j_powtec_2018_12_089
crossref_primary_10_1016_j_mineng_2023_108120
crossref_primary_10_1016_j_apt_2024_104715
crossref_primary_10_1016_j_apsusc_2022_155703
crossref_primary_10_1016_j_molliq_2020_115257
Cites_doi 10.1016/S1003-6326(15)63942-5
10.1016/j.mineng.2015.03.003
10.1016/j.mineng.2014.07.011
10.1016/j.mineng.2015.09.013
10.1016/j.cis.2008.09.001
10.1016/j.apsusc.2014.05.052
10.1016/j.mineng.2012.07.016
10.1021/jp108283z
10.1016/j.hydromet.2015.05.011
10.1016/j.electacta.2012.07.119
10.1016/j.seppur.2017.01.049
10.1016/S1003-6326(09)60201-6
10.1016/j.mineng.2010.03.007
10.1016/j.cis.2004.08.009
10.1016/j.mineng.2016.09.008
10.1007/s12613-014-0924-7
10.1016/S1003-6326(14)63556-1
10.1139/v07-078
10.1016/j.mineng.2016.10.007
10.1016/j.minpro.2016.01.003
10.1016/j.hydromet.2014.08.012
10.1016/j.jcis.2014.08.069
10.1016/j.minpro.2005.10.009
10.1016/j.seppur.2016.09.011
10.1016/j.susc.2014.12.012
10.1016/S0301-7516(99)00022-8
10.1016/j.mineng.2016.06.023
10.1016/0301-7516(84)90026-7
10.1016/j.jcis.2003.11.013
10.1016/j.mineng.2016.11.005
10.1016/j.minpro.2012.08.003
10.1016/j.colsurfa.2016.08.059
10.1016/j.mineng.2006.12.008
10.1016/j.jcis.2007.01.048
10.1016/j.seppur.2017.01.053
10.1016/j.mineng.2004.10.013
10.1016/j.mineng.2015.04.021
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2017.10.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
EndPage 52
ExternalDocumentID 10_1016_j_mineng_2017_10_008
S0892687517302509
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSG
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c409t-411fd8f8bbc00e3933af0994b3144f756c353b420e88b7935a6cda556fb8b2de3
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Tue Jul 01 01:13:23 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Fri Feb 23 02:35:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Molybdenite
Chalcopyrite
Copper ions
Sodium sulfide
Flotation separation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-411fd8f8bbc00e3933af0994b3144f756c353b420e88b7935a6cda556fb8b2de3
ORCID 0000-0003-1189-8533
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_mineng_2017_10_008
crossref_citationtrail_10_1016_j_mineng_2017_10_008
elsevier_sciencedirect_doi_10_1016_j_mineng_2017_10_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle Minerals engineering
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yin, Zhang, Feng (b0215) 2010; 20
Chandra, Gerson (b0045) 2009; 145
Raghavan, Hsu (b0180) 1984; 12
Acres, Harmer, Beattie (b0005) 2010; 23
Yin, Sun, Hu, Zhang, Guan, Liu, Chen, Tian (b0225) 2017; 179
Iranmahboob, Gardner, Toghiani, Hill (b0115) 2004; 270
Yang, Harmer, Chen (b0210) 2015; 156
Mitchell, Nguyen, Evans (b0165) 2005; 114
Castro, Lopez-Valdivieso, Laskowski (b0030) 2016; 148
Hoover (b0100) 1980
Deng, Wen, Jian, Wu, Feng (b0055) 2014; 24
Castro (b0025) 2012
Yin, Sun, Hu, Zhai, Qingjun (b0220) 2017; 173
Liu, Qiu, Wang, Liu, Xiao, Zeng, Zhong, Xu (b0145) 2015; 437
Hirajima, Mori, Ichikawa, Sasaki, Miki, Farahat, Sawada (b0090) 2014; 66
Qiu, Liu, Liu, Zhong (b0175) 2016; 509
Li, Wei, Shen, Liu, Gao, Liang (b0135) 2015; 25
Ansari, Pawlik (b0010) 2007; 20
Chander, Fuerstenau (b0040) 1972; 252
Chandra, Puskar, Simpson, Gerson (b0050) 2012; 114
Huang, Grano, Skinner (b0105) 2006; 78
Rao (b0185) 2013
Luo, Zhu, Sun, Li, Han (b0160) 2015; 77
Reyes-Bozo, Escudey, Vyhmeister, Higueras, Godoy-Faúndez, Salazar, Valdés-González, Wolf-Sepúlveda, Herrera-Urbina (b0190) 2015; 78
Hirajima, Miki, Suyantara, Matsuoka, Elmahdy, Sasaki, Imaizumi, Kuroiwa (b0085) 2017; 100
Laskowski, Castro, Ramos (b0130) 2014; 50
Castro, Uribe, Laskowski (b0035) 2014
Ghahremaninezhad, Dixon, Asselin (b0075) 2013; 87
Feng, Zhao, Wen, Cao (b0065) 2017; 178
Buckley, Skinner, Harmer, Pring, Lamb, Fan, Yang (b0015) 2007; 85
Ejtemaei, Nguyen (b0060) 2017; 100
Poorkani, Banisi (b0170) 2005; 18
Ikumapayi, Makitalo, Johansson, Rao (b0110) 2012; 39
Li, Wei, Liu, Liu, Zheng, Sun (b0140) 2015; 83
Taheri, Abdollahy, Tonkaboni, Javadian, Yarahmadi (b0200) 2014; 21
López-Valdivieso, A., Madrid-Ortega, I., Valdez-Pérez, D., Yang, B., Song, S., 2012. The heterogeneity of the basal plane of molybdenite; its effect on molybdenite floatability and calcium ion adsorption. In: Proceedings of the 9th International Mineral Processing Conference, pp. 288–296.
Kalegowda, Chan, Wei, Harmer (b0120) 2015; 635
Healy, Fuerstenau (b0080) 2007; 309
Liu, Wen, Deng, Chen, Feng (b0150) 2014; 311
Wang, Gan, Zhao, Hu, Li, Qin, Qiu (b0205) 2016; 98
Somasundaran, Zhang, Fuerstenau (b0195) 2000; 58
Hirajima, Suyantara, Ichikawa, Elmahdy, Miki, Sasaki (b0095) 2016; 96
Khoshkhoo, Dopson, Shchukarev, Sandström (b0125) 2014; 149
Bulatovic (b0020) 2007
Ghahremaninezhad, Asselin, Dixon (b0070) 2011; 115
Poorkani (10.1016/j.mineng.2017.10.008_b0170) 2005; 18
Chandra (10.1016/j.mineng.2017.10.008_b0045) 2009; 145
Yin (10.1016/j.mineng.2017.10.008_b0220) 2017; 173
Luo (10.1016/j.mineng.2017.10.008_b0160) 2015; 77
Acres (10.1016/j.mineng.2017.10.008_b0005) 2010; 23
Qiu (10.1016/j.mineng.2017.10.008_b0175) 2016; 509
10.1016/j.mineng.2017.10.008_b0155
Chander (10.1016/j.mineng.2017.10.008_b0040) 1972; 252
Taheri (10.1016/j.mineng.2017.10.008_b0200) 2014; 21
Li (10.1016/j.mineng.2017.10.008_b0135) 2015; 25
Liu (10.1016/j.mineng.2017.10.008_b0145) 2015; 437
Chandra (10.1016/j.mineng.2017.10.008_b0050) 2012; 114
Rao (10.1016/j.mineng.2017.10.008_b0185) 2013
Bulatovic (10.1016/j.mineng.2017.10.008_b0020) 2007
Iranmahboob (10.1016/j.mineng.2017.10.008_b0115) 2004; 270
Mitchell (10.1016/j.mineng.2017.10.008_b0165) 2005; 114
Castro (10.1016/j.mineng.2017.10.008_b0030) 2016; 148
Healy (10.1016/j.mineng.2017.10.008_b0080) 2007; 309
Hoover (10.1016/j.mineng.2017.10.008_b0100) 1980
Laskowski (10.1016/j.mineng.2017.10.008_b0130) 2014; 50
Feng (10.1016/j.mineng.2017.10.008_b0065) 2017; 178
Yang (10.1016/j.mineng.2017.10.008_b0210) 2015; 156
Buckley (10.1016/j.mineng.2017.10.008_b0015) 2007; 85
Reyes-Bozo (10.1016/j.mineng.2017.10.008_b0190) 2015; 78
Raghavan (10.1016/j.mineng.2017.10.008_b0180) 1984; 12
Khoshkhoo (10.1016/j.mineng.2017.10.008_b0125) 2014; 149
Yin (10.1016/j.mineng.2017.10.008_b0215) 2010; 20
Kalegowda (10.1016/j.mineng.2017.10.008_b0120) 2015; 635
Liu (10.1016/j.mineng.2017.10.008_b0150) 2014; 311
Deng (10.1016/j.mineng.2017.10.008_b0055) 2014; 24
Ghahremaninezhad (10.1016/j.mineng.2017.10.008_b0075) 2013; 87
Huang (10.1016/j.mineng.2017.10.008_b0105) 2006; 78
Somasundaran (10.1016/j.mineng.2017.10.008_b0195) 2000; 58
Hirajima (10.1016/j.mineng.2017.10.008_b0085) 2017; 100
Ejtemaei (10.1016/j.mineng.2017.10.008_b0060) 2017; 100
Ghahremaninezhad (10.1016/j.mineng.2017.10.008_b0070) 2011; 115
Hirajima (10.1016/j.mineng.2017.10.008_b0095) 2016; 96
Wang (10.1016/j.mineng.2017.10.008_b0205) 2016; 98
Ansari (10.1016/j.mineng.2017.10.008_b0010) 2007; 20
Castro (10.1016/j.mineng.2017.10.008_b0025) 2012
Castro (10.1016/j.mineng.2017.10.008_b0035) 2014
Hirajima (10.1016/j.mineng.2017.10.008_b0090) 2014; 66
Yin (10.1016/j.mineng.2017.10.008_b0225) 2017; 179
Li (10.1016/j.mineng.2017.10.008_b0140) 2015; 83
Ikumapayi (10.1016/j.mineng.2017.10.008_b0110) 2012; 39
References_xml – volume: 178
  start-page: 193
  year: 2017
  end-page: 199
  ident: b0065
  article-title: Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector
  publication-title: Sep. Purif. Technol.
– volume: 635
  start-page: 70
  year: 2015
  end-page: 77
  ident: b0120
  article-title: X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite flotation: effect of pulp potential
  publication-title: Surf. Sci.
– start-page: 20
  year: 2014
  end-page: 24
  ident: b0035
  article-title: Depression of inherently hydrophobic minerals by hydrolysable metal cations: Molybdenite depression in seawater
  publication-title: XXVII Int. Miner. Proc. Congr.-IMPC
– volume: 25
  start-page: 3126
  year: 2015
  end-page: 3132
  ident: b0135
  article-title: Selective depression effect in flotation separation of copper-molybdenum sulfides using 2, 3-disulfanylbutanedioic acid
  publication-title: Trans. Nonferr. Met. Soc. China
– volume: 114
  start-page: 16
  year: 2012
  end-page: 26
  ident: b0050
  article-title: Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation
  publication-title: Int. J. Miner. Proc.
– volume: 78
  start-page: 128
  year: 2015
  end-page: 135
  ident: b0190
  article-title: Adsorption of biosolids and their main components on chalcopyrite, molybdenite and pyrite: zeta potential and FTIR spectroscopy studies
  publication-title: Miner. Eng.
– volume: 66
  start-page: 102
  year: 2014
  end-page: 111
  ident: b0090
  article-title: Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment
  publication-title: Miner. Eng.
– volume: 21
  start-page: 415
  year: 2014
  end-page: 422
  ident: b0200
  article-title: Dual effects of sodium sulfide on the flotation behavior of chalcopyrite: I. Effect of pulp potential
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 23
  start-page: 928
  year: 2010
  end-page: 936
  ident: b0005
  article-title: Synchrotron XPS, NEXAFS, and ToF-SIMS studies of solution exposed chalcopyrite and heterogeneous chalcopyrite with pyrite
  publication-title: Miner. Eng.
– volume: 309
  start-page: 183
  year: 2007
  end-page: 188
  ident: b0080
  article-title: The isoelectric point/point-of zero-charge of interfaces formed by aqueous solutions and nonpolar solids, liquids, and gases
  publication-title: J. Coll. Interf. Sci.
– volume: 179
  start-page: 248
  year: 2017
  end-page: 256
  ident: b0225
  article-title: Utilization of acetic acid-[(hydrazinylthioxomethyl) thio]-sodium as a novel selective depressant for chalcopyrite in the flotation separation of molybdenite
  publication-title: Sep. Purif. Technol.
– volume: 77
  start-page: 86
  year: 2015
  end-page: 92
  ident: b0160
  article-title: Flotation and adsorption of a new collector α-bromodecanoic acid on quartz surface
  publication-title: Miner. Eng.
– volume: 311
  start-page: 258
  year: 2014
  end-page: 263
  ident: b0150
  article-title: DFT study of ethyl xanthate interaction with sphalerite (1 1 0) surface in the absence and presence of copper
  publication-title: Appl. Surf. Sci.
– volume: 85
  start-page: 767
  year: 2007
  end-page: 781
  ident: b0015
  article-title: Examination of the proposition that Cu (II) can be required for charge neutrality in a sulfide lattice—Cu in tetrahedrites and sphalerite
  publication-title: Can. J. Chem.
– volume: 114
  start-page: 227
  year: 2005
  end-page: 237
  ident: b0165
  article-title: Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation
  publication-title: Adv. Coll. Interf. Sci.
– volume: 20
  start-page: 702
  year: 2010
  end-page: 706
  ident: b0215
  article-title: Flotation of Xinhua molybdenite using sodium sulfide as modifier
  publication-title: Trans. Nonferr. Met. Soc. China
– volume: 87
  start-page: 97
  year: 2013
  end-page: 112
  ident: b0075
  article-title: Electrochemical and XPS analysis of chalcopyrite (CuFeS
  publication-title: Electrochim. Acta
– year: 2007
  ident: b0020
  article-title: Handbook of Flotation Reagents: Chemistry, Theory and Practice: Volume 1: Flotation of Sulfide Ores
– volume: 252
  start-page: 62
  year: 1972
  end-page: 69
  ident: b0040
  article-title: On the natural floatability of molybdenite
  publication-title: Trans. AIME
– volume: 149
  start-page: 220
  year: 2014
  end-page: 227
  ident: b0125
  article-title: Chalcopyrite leaching and bioleaching: An X-ray photoelectron spectroscopic (XPS) investigation on the nature of hindered dissolution
  publication-title: Hydrometallurgy
– volume: 39
  start-page: 77
  year: 2012
  end-page: 88
  ident: b0110
  article-title: Recycling of process water in sulphide flotation: Effect of calcium and sulphate ions on flotation of galena
  publication-title: Miner. Eng.
– volume: 83
  start-page: 217
  year: 2015
  end-page: 222
  ident: b0140
  article-title: Flotation separation of copper-molybdenum sulfides using chitosan as a selective depressant
  publication-title: Miner. Eng.
– volume: 156
  start-page: 89
  year: 2015
  end-page: 98
  ident: b0210
  article-title: Synchrotron-based XPS and NEXAFS study of surface chemical species during electrochemical oxidation of chalcopyrite
  publication-title: Hydrometallurgy
– start-page: 100
  year: 1980
  end-page: 112
  ident: b0100
  article-title: Water chemistry effects in the flotation of sulfide ores- a review and discussion for molybdenite
  publication-title: Complex Sulphide Ores
– volume: 12
  start-page: 145
  year: 1984
  end-page: 162
  ident: b0180
  article-title: Factors affecting the flotation recovery of molybdenite from porphyry copper ores
  publication-title: Int. J. Miner. Process.
– volume: 78
  start-page: 198
  year: 2006
  end-page: 213
  ident: b0105
  article-title: Galvanic interaction between grinding media and arsenopyrite and its effect on flotation: Part II. Effect of grinding on flotation
  publication-title: Int. J. Miner. Proc.
– volume: 100
  start-page: 83
  year: 2017
  end-page: 92
  ident: b0085
  article-title: Selective flotation of chalcopyrite and molybdenite with H
  publication-title: Miner. Eng.
– start-page: 29
  year: 2012
  end-page: 40
  ident: b0025
  article-title: Challenges in flotation of Cu-Mo sulfide ores in sea water
  publication-title: Water in Mineral Processing–Proc. of the First International Symposium
– volume: 98
  start-page: 264
  year: 2016
  end-page: 278
  ident: b0205
  article-title: Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis
  publication-title: Miner. Eng.
– volume: 437
  start-page: 42
  year: 2015
  end-page: 49
  ident: b0145
  article-title: Study of N-isopropoxypropyl-N’-ethoxycarbonyl thiourea adsorption on chalcopyrite using in situ SECM, ToF-SIMS and XPS
  publication-title: J. Coll. Interf. Sci.
– volume: 58
  start-page: 85
  year: 2000
  end-page: 97
  ident: b0195
  article-title: The effect of environment, oxidation and dissolved metal species on the chemistry of coal flotation
  publication-title: Int. J. Miner. Proc.
– volume: 100
  start-page: 223
  year: 2017
  end-page: 232
  ident: b0060
  article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate
  publication-title: Miner. Eng.
– volume: 270
  start-page: 123
  year: 2004
  end-page: 126
  ident: b0115
  article-title: XPS study of molybdenum sulfide catalyst exposed to CO and H
  publication-title: J. Coll. Interf. Sci.
– volume: 145
  start-page: 97
  year: 2009
  end-page: 110
  ident: b0045
  article-title: A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite
  publication-title: Adv. Coll. Interface. Sci.
– reference: López-Valdivieso, A., Madrid-Ortega, I., Valdez-Pérez, D., Yang, B., Song, S., 2012. The heterogeneity of the basal plane of molybdenite; its effect on molybdenite floatability and calcium ion adsorption. In: Proceedings of the 9th International Mineral Processing Conference, pp. 288–296.
– volume: 18
  start-page: 735
  year: 2005
  end-page: 738
  ident: b0170
  article-title: Industrial use of nitrogen in flotation of molybdenite at the Sarcheshmeh copper complex
  publication-title: Miner. Eng.
– volume: 20
  start-page: 609
  year: 2007
  end-page: 616
  ident: b0010
  article-title: Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part II. Hallimond tube flotation
  publication-title: Miner. Eng.
– volume: 24
  start-page: 3955
  year: 2014
  end-page: 3963
  ident: b0055
  article-title: Adsorption and activation of copper ions on chalcopyrite surfaces: A new viewpoint of self-activation
  publication-title: Trans. Nonferr. Met. Soc. China
– volume: 96
  start-page: 83
  year: 2016
  end-page: 93
  ident: b0095
  article-title: Effect of Mg
  publication-title: Miner. Eng.
– volume: 50
  start-page: 17
  year: 2014
  end-page: 29
  ident: b0130
  article-title: Effect of seawater main components on frothability in the flotation of Cu-Mo sulfide ore
  publication-title: Physicochem. Prob. Miner. Proc.
– volume: 509
  start-page: 123
  year: 2016
  end-page: 129
  ident: b0175
  article-title: Understanding the roles of high salinity in inhibiting the molybdenite flotation
  publication-title: Coll. Surf. A
– volume: 173
  start-page: 9
  year: 2017
  end-page: 16
  ident: b0220
  article-title: Evaluation of the replacement of NaCN with depressant mixtures in the separation of copper-molybdenum sulphide ore by flotation
  publication-title: Sep. Purif. Technol.
– volume: 115
  start-page: 9320
  year: 2011
  end-page: 9334
  ident: b0070
  article-title: Electrodeposition and growth mechanism of copper sulfide nanowires
  publication-title: J. Phys. Chem. C
– year: 2013
  ident: b0185
  article-title: Surface Chemistry of Froth Flotation: Volume 1: Fundamentals
– volume: 148
  start-page: 48
  year: 2016
  end-page: 58
  ident: b0030
  article-title: Review of the flotation of molybdenite. Part I: Surface properties and floatability
  publication-title: Int. J. Miner. Process.
– volume: 25
  start-page: 3126
  issue: 9
  year: 2015
  ident: 10.1016/j.mineng.2017.10.008_b0135
  article-title: Selective depression effect in flotation separation of copper-molybdenum sulfides using 2, 3-disulfanylbutanedioic acid
  publication-title: Trans. Nonferr. Met. Soc. China
  doi: 10.1016/S1003-6326(15)63942-5
– start-page: 29
  year: 2012
  ident: 10.1016/j.mineng.2017.10.008_b0025
  article-title: Challenges in flotation of Cu-Mo sulfide ores in sea water
– volume: 77
  start-page: 86
  issue: 6
  year: 2015
  ident: 10.1016/j.mineng.2017.10.008_b0160
  article-title: Flotation and adsorption of a new collector α-bromodecanoic acid on quartz surface
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2015.03.003
– volume: 66
  start-page: 102
  issue: 11
  year: 2014
  ident: 10.1016/j.mineng.2017.10.008_b0090
  article-title: Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2014.07.011
– volume: 83
  start-page: 217
  issue: 1
  year: 2015
  ident: 10.1016/j.mineng.2017.10.008_b0140
  article-title: Flotation separation of copper-molybdenum sulfides using chitosan as a selective depressant
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2015.09.013
– volume: 145
  start-page: 97
  issue: 1
  year: 2009
  ident: 10.1016/j.mineng.2017.10.008_b0045
  article-title: A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite
  publication-title: Adv. Coll. Interface. Sci.
  doi: 10.1016/j.cis.2008.09.001
– start-page: 20
  year: 2014
  ident: 10.1016/j.mineng.2017.10.008_b0035
  article-title: Depression of inherently hydrophobic minerals by hydrolysable metal cations: Molybdenite depression in seawater
  publication-title: XXVII Int. Miner. Proc. Congr.-IMPC
– volume: 311
  start-page: 258
  year: 2014
  ident: 10.1016/j.mineng.2017.10.008_b0150
  article-title: DFT study of ethyl xanthate interaction with sphalerite (1 1 0) surface in the absence and presence of copper
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.05.052
– volume: 39
  start-page: 77
  issue: 12
  year: 2012
  ident: 10.1016/j.mineng.2017.10.008_b0110
  article-title: Recycling of process water in sulphide flotation: Effect of calcium and sulphate ions on flotation of galena
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2012.07.016
– volume: 115
  start-page: 9320
  issue: 19
  year: 2011
  ident: 10.1016/j.mineng.2017.10.008_b0070
  article-title: Electrodeposition and growth mechanism of copper sulfide nanowires
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp108283z
– volume: 156
  start-page: 89
  year: 2015
  ident: 10.1016/j.mineng.2017.10.008_b0210
  article-title: Synchrotron-based XPS and NEXAFS study of surface chemical species during electrochemical oxidation of chalcopyrite
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2015.05.011
– volume: 87
  start-page: 97
  issue: 1
  year: 2013
  ident: 10.1016/j.mineng.2017.10.008_b0075
  article-title: Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.07.119
– year: 2007
  ident: 10.1016/j.mineng.2017.10.008_b0020
– volume: 179
  start-page: 248
  year: 2017
  ident: 10.1016/j.mineng.2017.10.008_b0225
  article-title: Utilization of acetic acid-[(hydrazinylthioxomethyl) thio]-sodium as a novel selective depressant for chalcopyrite in the flotation separation of molybdenite
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.01.049
– volume: 20
  start-page: 702
  issue: 4
  year: 2010
  ident: 10.1016/j.mineng.2017.10.008_b0215
  article-title: Flotation of Xinhua molybdenite using sodium sulfide as modifier
  publication-title: Trans. Nonferr. Met. Soc. China
  doi: 10.1016/S1003-6326(09)60201-6
– volume: 23
  start-page: 928
  issue: 11
  year: 2010
  ident: 10.1016/j.mineng.2017.10.008_b0005
  article-title: Synchrotron XPS, NEXAFS, and ToF-SIMS studies of solution exposed chalcopyrite and heterogeneous chalcopyrite with pyrite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2010.03.007
– volume: 114
  start-page: 227
  year: 2005
  ident: 10.1016/j.mineng.2017.10.008_b0165
  article-title: Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation
  publication-title: Adv. Coll. Interf. Sci.
  doi: 10.1016/j.cis.2004.08.009
– volume: 98
  start-page: 264
  year: 2016
  ident: 10.1016/j.mineng.2017.10.008_b0205
  article-title: Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.09.008
– ident: 10.1016/j.mineng.2017.10.008_b0155
– volume: 21
  start-page: 415
  issue: 5
  year: 2014
  ident: 10.1016/j.mineng.2017.10.008_b0200
  article-title: Dual effects of sodium sulfide on the flotation behavior of chalcopyrite: I. Effect of pulp potential
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-014-0924-7
– volume: 24
  start-page: 3955
  issue: 12
  year: 2014
  ident: 10.1016/j.mineng.2017.10.008_b0055
  article-title: Adsorption and activation of copper ions on chalcopyrite surfaces: A new viewpoint of self-activation
  publication-title: Trans. Nonferr. Met. Soc. China
  doi: 10.1016/S1003-6326(14)63556-1
– volume: 85
  start-page: 767
  issue: 10
  year: 2007
  ident: 10.1016/j.mineng.2017.10.008_b0015
  article-title: Examination of the proposition that Cu (II) can be required for charge neutrality in a sulfide lattice—Cu in tetrahedrites and sphalerite
  publication-title: Can. J. Chem.
  doi: 10.1139/v07-078
– volume: 100
  start-page: 83
  year: 2017
  ident: 10.1016/j.mineng.2017.10.008_b0085
  article-title: Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.10.007
– year: 2013
  ident: 10.1016/j.mineng.2017.10.008_b0185
– volume: 148
  start-page: 48
  year: 2016
  ident: 10.1016/j.mineng.2017.10.008_b0030
  article-title: Review of the flotation of molybdenite. Part I: Surface properties and floatability
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2016.01.003
– volume: 149
  start-page: 220
  year: 2014
  ident: 10.1016/j.mineng.2017.10.008_b0125
  article-title: Chalcopyrite leaching and bioleaching: An X-ray photoelectron spectroscopic (XPS) investigation on the nature of hindered dissolution
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2014.08.012
– volume: 437
  start-page: 42
  year: 2015
  ident: 10.1016/j.mineng.2017.10.008_b0145
  article-title: Study of N-isopropoxypropyl-N’-ethoxycarbonyl thiourea adsorption on chalcopyrite using in situ SECM, ToF-SIMS and XPS
  publication-title: J. Coll. Interf. Sci.
  doi: 10.1016/j.jcis.2014.08.069
– volume: 78
  start-page: 198
  issue: 3
  year: 2006
  ident: 10.1016/j.mineng.2017.10.008_b0105
  article-title: Galvanic interaction between grinding media and arsenopyrite and its effect on flotation: Part II. Effect of grinding on flotation
  publication-title: Int. J. Miner. Proc.
  doi: 10.1016/j.minpro.2005.10.009
– start-page: 100
  year: 1980
  ident: 10.1016/j.mineng.2017.10.008_b0100
  article-title: Water chemistry effects in the flotation of sulfide ores- a review and discussion for molybdenite
  publication-title: Complex Sulphide Ores
– volume: 173
  start-page: 9
  year: 2017
  ident: 10.1016/j.mineng.2017.10.008_b0220
  article-title: Evaluation of the replacement of NaCN with depressant mixtures in the separation of copper-molybdenum sulphide ore by flotation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.09.011
– volume: 50
  start-page: 17
  issue: 1
  year: 2014
  ident: 10.1016/j.mineng.2017.10.008_b0130
  article-title: Effect of seawater main components on frothability in the flotation of Cu-Mo sulfide ore
  publication-title: Physicochem. Prob. Miner. Proc.
– volume: 635
  start-page: 70
  year: 2015
  ident: 10.1016/j.mineng.2017.10.008_b0120
  article-title: X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite flotation: effect of pulp potential
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2014.12.012
– volume: 58
  start-page: 85
  issue: 1
  year: 2000
  ident: 10.1016/j.mineng.2017.10.008_b0195
  article-title: The effect of environment, oxidation and dissolved metal species on the chemistry of coal flotation
  publication-title: Int. J. Miner. Proc.
  doi: 10.1016/S0301-7516(99)00022-8
– volume: 96
  start-page: 83
  year: 2016
  ident: 10.1016/j.mineng.2017.10.008_b0095
  article-title: Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.06.023
– volume: 12
  start-page: 145
  issue: 1
  year: 1984
  ident: 10.1016/j.mineng.2017.10.008_b0180
  article-title: Factors affecting the flotation recovery of molybdenite from porphyry copper ores
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/0301-7516(84)90026-7
– volume: 270
  start-page: 123
  issue: 1
  year: 2004
  ident: 10.1016/j.mineng.2017.10.008_b0115
  article-title: XPS study of molybdenum sulfide catalyst exposed to CO and H2
  publication-title: J. Coll. Interf. Sci.
  doi: 10.1016/j.jcis.2003.11.013
– volume: 100
  start-page: 223
  year: 2017
  ident: 10.1016/j.mineng.2017.10.008_b0060
  article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.11.005
– volume: 114
  start-page: 16
  year: 2012
  ident: 10.1016/j.mineng.2017.10.008_b0050
  article-title: Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation
  publication-title: Int. J. Miner. Proc.
  doi: 10.1016/j.minpro.2012.08.003
– volume: 509
  start-page: 123
  year: 2016
  ident: 10.1016/j.mineng.2017.10.008_b0175
  article-title: Understanding the roles of high salinity in inhibiting the molybdenite flotation
  publication-title: Coll. Surf. A
  doi: 10.1016/j.colsurfa.2016.08.059
– volume: 252
  start-page: 62
  year: 1972
  ident: 10.1016/j.mineng.2017.10.008_b0040
  article-title: On the natural floatability of molybdenite
  publication-title: Trans. AIME
– volume: 20
  start-page: 609
  issue: 6
  year: 2007
  ident: 10.1016/j.mineng.2017.10.008_b0010
  article-title: Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part II. Hallimond tube flotation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2006.12.008
– volume: 309
  start-page: 183
  issue: 1
  year: 2007
  ident: 10.1016/j.mineng.2017.10.008_b0080
  article-title: The isoelectric point/point-of zero-charge of interfaces formed by aqueous solutions and nonpolar solids, liquids, and gases
  publication-title: J. Coll. Interf. Sci.
  doi: 10.1016/j.jcis.2007.01.048
– volume: 178
  start-page: 193
  year: 2017
  ident: 10.1016/j.mineng.2017.10.008_b0065
  article-title: Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2017.01.053
– volume: 18
  start-page: 735
  issue: 7
  year: 2005
  ident: 10.1016/j.mineng.2017.10.008_b0170
  article-title: Industrial use of nitrogen in flotation of molybdenite at the Sarcheshmeh copper complex
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2004.10.013
– volume: 78
  start-page: 128
  year: 2015
  ident: 10.1016/j.mineng.2017.10.008_b0190
  article-title: Adsorption of biosolids and their main components on chalcopyrite, molybdenite and pyrite: zeta potential and FTIR spectroscopy studies
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2015.04.021
SSID ssj0005789
Score 2.4970825
Snippet [Display omitted] •Copper ions severely deteriorate the floatability of chalcopyrite and molybdenite.•The adsorption of CuOH+ and Cu(OH)2 provide more reaction...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 44
SubjectTerms Chalcopyrite
Copper ions
Flotation separation
Molybdenite
Sodium sulfide
Title Effect of copper ions on the flotation separation of chalcopyrite and molybdenite using sodium sulfide as a depressant
URI https://dx.doi.org/10.1016/j.mineng.2017.10.008
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl47dYuSZsex3BMxV10sFtpPjorXVvWTdjFv92XfsgEUfCWhJdSXl7e-6X95T2EbkPiOK4UEnaa48MBhRHTYhZYhw_w2VWizHjzNHUnM_owZ_MWGjV3YQytsvb9lU8vvXU90q-12c_juP9sc3gawG0HjBQCubnER6lnrLz3sUPz8MoyeEbYMtLN9bmS47UEJJcuDMHL65UcL_5zeNoJOeMjdFhjRTysXucYtXR6gg52Mgieovcq-zDOIiyzPNcrbMwIZykGYIejJKv-tONCVzm-oWlEX8MExLcrwJs4TBVeZslWgAcyfcOEX-AiU_FmiYtNEsUKhAoc4po1C2txhmbju5fRxKpLKVgSDnBrizpOpHjEhZC2rYlPSBgBNqSCwIEq8pgrCSOCDmzNuYAty0JXqpAxNxJcDJQm56idZqm-QFjYkvoS3ITJnSeo4EwBJgq5IIpTTVgHkUaDgazzjJtyF0nQEMregkrvgdG7GQW9d5D1NSuv8mz8Ie81ixN8s5cAQsGvMy__PfMK7UOPVx9grlF7vdroG4Aka9Etba6L9ob3j5PpJzCS4aU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOAAHxCp2fIBjaFLHqXvggFjUsvRCkbiFeEkpSpOqaUG98FP8IOMsqEgIJCRujmNbzngyfpM8zwAcBtRxPCkkvmlOAx0URk2JWagdDYTPnhJZxJvbtte8d68e2EMF3suzMIZWWdj-3KZn1rqoqRbSrA56veqdzXE0hNsOKilu5I2CWXmtJ6_ot6UnrXNc5KNa7fKic9a0itQClkSHZmS5jhMqHnIhpG1ril59ECJWcgVFByOsM09SRoVbszXnAlWYBZ5UAWNeKLioKU1x3BmYc9FcmLQJx29TvJJ6lnfPzM4y0yvP62Wksj5Cx7hrGGX144xUxr_fD6f2uMtlWCrAKTnNn38FKjpehcWpkIVr8JKHOyZJSGQyGOghMXpLkpggkiRhlOS_9kmq86DiWDRNn4IIm0-GCHBJECvST6KJQJNnrg31vkvSRPXGfZKOo7CnsFFKAlLQdHHx1-H-XwS8AbNxEutNIMKWbkOiXTLB-oQrOFMIwgIuqOKupmwLaClBXxaBzU1-jcgvGWzPfi5338jd1KLct8D67DXIA3v80r5eLo7_RUF93Ht-7Ln9554HMN_s3N74N6329Q4s4B2ef_3ZhdnRcKz3EA-NxH6mfwQe_1vhPwAKMx0i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+copper+ions+on+the+flotation+separation+of+chalcopyrite+and+molybdenite+using+sodium+sulfide+as+a+depressant&rft.jtitle=Minerals+engineering&rft.au=Zhao%2C+Qiang&rft.au=Liu%2C+Wengang&rft.au=Wei%2C+Dezhou&rft.au=Wang%2C+Wendan&rft.date=2018-01-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=115&rft.spage=44&rft.epage=52&rft_id=info:doi/10.1016%2Fj.mineng.2017.10.008&rft.externalDocID=S0892687517302509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon