Effect of copper ions on the flotation separation of chalcopyrite and molybdenite using sodium sulfide as a depressant
[Display omitted] •Copper ions severely deteriorate the floatability of chalcopyrite and molybdenite.•The adsorption of CuOH+ and Cu(OH)2 provide more reaction sites for depressants.•Cu2S is identified as the primary product during the inhibition process.•The similar floatability makes it difficult...
Saved in:
Published in | Minerals engineering Vol. 115; pp. 44 - 52 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Copper ions severely deteriorate the floatability of chalcopyrite and molybdenite.•The adsorption of CuOH+ and Cu(OH)2 provide more reaction sites for depressants.•Cu2S is identified as the primary product during the inhibition process.•The similar floatability makes it difficult to achieve Cu-Mo flotation separation.•An inhibition model among mineral surface, copper ions and sulfide ions is proposed.
Copper ions are unavoidable in the process of copper-molybdenum flotation separation. The flotation response of chalcopyrite and molybdenite in the presence of copper ions was investigated through single mineral flotation tests and flotation separation tests. The influence mechanism was studied by adsorption experiments, zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS) analysis. Flotation results indicated that copper ions dramatically reduced the recoveries of copper and molybdenum, and increased the inhibition effect of sodium sulfide; that is, the flotation separation of chalcopyrite and molybdenite was seriously hindered by copper ions. The adsorption experiments demonstrated that copper ions were adsorbed on molybdenite and chalcopyrite, and the adsorption amounts increased in the presence of sodium sulfide. The results of zeta-potential measurements confirmed that the floatability of the minerals was deteriorated by the adsorption of copper hydroxides (Cu(OH)+ and Cu(OH)2) and the subsequent adsorption of hydrosulfide ions (HS−). Moreover, XPS analysis verified that the adsorbed copper hydroxides reacted with hydrosulfide ions, producing Cu(I)-S species on the surface of chalcopyrite and molybdenite. The adsorbed Cu(I) ions provided additional reaction sites and promoted the formation of a hydrophilic layer by the attachment of excessive hydrosulfide ions. Based on these analyses, a possible inhibition model for the interactions among the mineral surface, copper ions, and sulfide ions is proposed. |
---|---|
AbstractList | [Display omitted]
•Copper ions severely deteriorate the floatability of chalcopyrite and molybdenite.•The adsorption of CuOH+ and Cu(OH)2 provide more reaction sites for depressants.•Cu2S is identified as the primary product during the inhibition process.•The similar floatability makes it difficult to achieve Cu-Mo flotation separation.•An inhibition model among mineral surface, copper ions and sulfide ions is proposed.
Copper ions are unavoidable in the process of copper-molybdenum flotation separation. The flotation response of chalcopyrite and molybdenite in the presence of copper ions was investigated through single mineral flotation tests and flotation separation tests. The influence mechanism was studied by adsorption experiments, zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS) analysis. Flotation results indicated that copper ions dramatically reduced the recoveries of copper and molybdenum, and increased the inhibition effect of sodium sulfide; that is, the flotation separation of chalcopyrite and molybdenite was seriously hindered by copper ions. The adsorption experiments demonstrated that copper ions were adsorbed on molybdenite and chalcopyrite, and the adsorption amounts increased in the presence of sodium sulfide. The results of zeta-potential measurements confirmed that the floatability of the minerals was deteriorated by the adsorption of copper hydroxides (Cu(OH)+ and Cu(OH)2) and the subsequent adsorption of hydrosulfide ions (HS−). Moreover, XPS analysis verified that the adsorbed copper hydroxides reacted with hydrosulfide ions, producing Cu(I)-S species on the surface of chalcopyrite and molybdenite. The adsorbed Cu(I) ions provided additional reaction sites and promoted the formation of a hydrophilic layer by the attachment of excessive hydrosulfide ions. Based on these analyses, a possible inhibition model for the interactions among the mineral surface, copper ions, and sulfide ions is proposed. |
Author | Wang, Wendan Liu, Wenbao Zhao, Qiang Wei, Dezhou Cui, Baoyu Liu, Wengang |
Author_xml | – sequence: 1 givenname: Qiang surname: Zhao fullname: Zhao, Qiang – sequence: 2 givenname: Wengang surname: Liu fullname: Liu, Wengang email: liuwengang@mail.neu.edu.cn – sequence: 3 givenname: Dezhou orcidid: 0000-0003-1189-8533 surname: Wei fullname: Wei, Dezhou email: dzwei@mail.neu.edu.cn – sequence: 4 givenname: Wendan surname: Wang fullname: Wang, Wendan – sequence: 5 givenname: Baoyu surname: Cui fullname: Cui, Baoyu – sequence: 6 givenname: Wenbao surname: Liu fullname: Liu, Wenbao |
BookMark | eNqFkM1qwzAQhEVJoUnaN-hBL2BXsmVb6qFQQvoDgV7as5GlVaJgS0ZyAnn72rinHtrT7g4zA_ut0MJ5BwjdU5JSQsuHY9pZB26fZoRWo5QSwq_QkvIqSwRjbIGWhIssKXlV3KBVjEdCSFFxsUTnrTGgBuwNVr7vIWDrXcTe4eEA2LR-kMOo4Ai9DPM6WQ-yHe2XYAfA0mnc-fbSaHDTfYrW7XH02p46HE-tsXo0RSyxhj5AjNINt-jayDbC3c9co6-X7efmLdl9vL5vnneJYkQMCaPUaG540yhCIBd5Lg0RgjU5ZcxURanyIm9YRoDzphJ5IUulZVGUpuFNpiFfIzb3quBjDGDqPthOhktNST2xq4_1zK6e2E3qyG6MPf6KKTuDGIK07X_hpzkM42NnC6GOyoJToG0YUdfa278LvgHvxJIX |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2021_127210 crossref_primary_10_3390_min10111027 crossref_primary_10_1016_j_colsurfa_2021_126683 crossref_primary_10_1016_j_mineng_2020_106765 crossref_primary_10_1016_j_cej_2020_125137 crossref_primary_10_1016_j_apsusc_2019_144313 crossref_primary_10_1016_j_seppur_2024_130507 crossref_primary_10_3389_fchem_2020_00242 crossref_primary_10_1016_j_colsurfa_2019_123958 crossref_primary_10_1016_j_mineng_2022_107655 crossref_primary_10_3390_min13121548 crossref_primary_10_1016_j_mineng_2020_106203 crossref_primary_10_1016_j_mineng_2022_107653 crossref_primary_10_1016_j_jclepro_2020_125322 crossref_primary_10_1016_j_mineng_2020_106486 crossref_primary_10_1016_j_cis_2021_102466 crossref_primary_10_1016_j_colsurfa_2020_124932 crossref_primary_10_1016_j_apsusc_2021_149466 crossref_primary_10_3390_w15030464 crossref_primary_10_1016_j_mineng_2019_02_023 crossref_primary_10_1016_j_jiec_2023_10_065 crossref_primary_10_1088_1755_1315_1415_1_012066 crossref_primary_10_1007_s11837_018_3135_2 crossref_primary_10_1016_j_ijmst_2022_06_007 crossref_primary_10_3390_molecules30061396 crossref_primary_10_1016_j_mineng_2024_109091 crossref_primary_10_1016_j_powtec_2023_119049 crossref_primary_10_1016_j_powtec_2025_120876 crossref_primary_10_1080_08827508_2024_2316060 crossref_primary_10_1016_j_colsurfa_2022_129127 crossref_primary_10_1016_j_mineng_2022_107703 crossref_primary_10_1016_j_colsurfa_2021_127920 crossref_primary_10_1016_j_molliq_2020_114707 crossref_primary_10_1016_j_jece_2024_114429 crossref_primary_10_1016_j_mineng_2021_107324 crossref_primary_10_1016_j_molliq_2020_114907 crossref_primary_10_1080_08827508_2021_1935928 crossref_primary_10_1016_j_apsusc_2024_162206 crossref_primary_10_1016_j_mineng_2020_106576 crossref_primary_10_1016_j_mineng_2021_107287 crossref_primary_10_1016_j_mineng_2020_106530 crossref_primary_10_1016_j_jmrt_2021_10_052 crossref_primary_10_1016_j_seppur_2024_128973 crossref_primary_10_1016_j_apsusc_2018_03_097 crossref_primary_10_3390_min8040149 crossref_primary_10_1016_j_apsusc_2018_02_132 crossref_primary_10_1016_j_molliq_2020_114781 crossref_primary_10_3390_min10020157 crossref_primary_10_1016_j_seppur_2024_129823 crossref_primary_10_1016_j_molliq_2022_120661 crossref_primary_10_1039_C9QI00054B crossref_primary_10_3390_met10091269 crossref_primary_10_1016_j_mineng_2020_106589 crossref_primary_10_1080_01496395_2018_1467451 crossref_primary_10_1016_j_colsurfa_2023_132666 crossref_primary_10_1016_j_mineng_2019_03_009 crossref_primary_10_1016_j_mineng_2020_106309 crossref_primary_10_1007_s10008_019_04284_8 crossref_primary_10_1016_j_colsurfa_2022_129897 crossref_primary_10_1016_j_mineng_2020_106747 crossref_primary_10_1016_j_mineng_2023_108209 crossref_primary_10_1016_j_molliq_2019_03_013 crossref_primary_10_1016_j_mineng_2022_107677 crossref_primary_10_3390_molecules26175365 crossref_primary_10_1007_s11771_023_5239_2 crossref_primary_10_1016_j_jece_2025_115746 crossref_primary_10_1080_00084433_2022_2031680 crossref_primary_10_3390_min9010001 crossref_primary_10_1016_j_cej_2024_153159 crossref_primary_10_3390_min12111346 crossref_primary_10_1016_j_psep_2025_106920 crossref_primary_10_1007_s11696_022_02098_z crossref_primary_10_1016_j_jmrt_2020_09_021 crossref_primary_10_1007_s11595_019_2212_x crossref_primary_10_1016_j_jmrt_2020_03_062 crossref_primary_10_1021_acsomega_4c02464 crossref_primary_10_1016_j_mineng_2021_106778 crossref_primary_10_1016_j_mineng_2021_106932 crossref_primary_10_1016_j_mineng_2021_107229 crossref_primary_10_1016_S1003_6326_21_65640_6 crossref_primary_10_1016_j_molliq_2024_125803 crossref_primary_10_1016_j_jclepro_2020_123493 crossref_primary_10_3390_ma15196536 crossref_primary_10_1016_S1003_6326_23_66324_1 crossref_primary_10_1016_j_mineng_2023_108235 crossref_primary_10_1016_j_seppur_2024_128282 crossref_primary_10_2473_journalofmmij_138_12 crossref_primary_10_1016_j_mineng_2023_108166 crossref_primary_10_1016_j_powtec_2018_12_089 crossref_primary_10_1016_j_mineng_2023_108120 crossref_primary_10_1016_j_apt_2024_104715 crossref_primary_10_1016_j_apsusc_2022_155703 crossref_primary_10_1016_j_molliq_2020_115257 |
Cites_doi | 10.1016/S1003-6326(15)63942-5 10.1016/j.mineng.2015.03.003 10.1016/j.mineng.2014.07.011 10.1016/j.mineng.2015.09.013 10.1016/j.cis.2008.09.001 10.1016/j.apsusc.2014.05.052 10.1016/j.mineng.2012.07.016 10.1021/jp108283z 10.1016/j.hydromet.2015.05.011 10.1016/j.electacta.2012.07.119 10.1016/j.seppur.2017.01.049 10.1016/S1003-6326(09)60201-6 10.1016/j.mineng.2010.03.007 10.1016/j.cis.2004.08.009 10.1016/j.mineng.2016.09.008 10.1007/s12613-014-0924-7 10.1016/S1003-6326(14)63556-1 10.1139/v07-078 10.1016/j.mineng.2016.10.007 10.1016/j.minpro.2016.01.003 10.1016/j.hydromet.2014.08.012 10.1016/j.jcis.2014.08.069 10.1016/j.minpro.2005.10.009 10.1016/j.seppur.2016.09.011 10.1016/j.susc.2014.12.012 10.1016/S0301-7516(99)00022-8 10.1016/j.mineng.2016.06.023 10.1016/0301-7516(84)90026-7 10.1016/j.jcis.2003.11.013 10.1016/j.mineng.2016.11.005 10.1016/j.minpro.2012.08.003 10.1016/j.colsurfa.2016.08.059 10.1016/j.mineng.2006.12.008 10.1016/j.jcis.2007.01.048 10.1016/j.seppur.2017.01.053 10.1016/j.mineng.2004.10.013 10.1016/j.mineng.2015.04.021 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mineng.2017.10.008 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9444 |
EndPage | 52 |
ExternalDocumentID | 10_1016_j_mineng_2017_10_008 S0892687517302509 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SSG SSZ T5K WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c409t-411fd8f8bbc00e3933af0994b3144f756c353b420e88b7935a6cda556fb8b2de3 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Tue Jul 01 01:13:23 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Fri Feb 23 02:35:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Molybdenite Chalcopyrite Copper ions Sodium sulfide Flotation separation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-411fd8f8bbc00e3933af0994b3144f756c353b420e88b7935a6cda556fb8b2de3 |
ORCID | 0000-0003-1189-8533 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_mineng_2017_10_008 crossref_citationtrail_10_1016_j_mineng_2017_10_008 elsevier_sciencedirect_doi_10_1016_j_mineng_2017_10_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationTitle | Minerals engineering |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yin, Zhang, Feng (b0215) 2010; 20 Chandra, Gerson (b0045) 2009; 145 Raghavan, Hsu (b0180) 1984; 12 Acres, Harmer, Beattie (b0005) 2010; 23 Yin, Sun, Hu, Zhang, Guan, Liu, Chen, Tian (b0225) 2017; 179 Iranmahboob, Gardner, Toghiani, Hill (b0115) 2004; 270 Yang, Harmer, Chen (b0210) 2015; 156 Mitchell, Nguyen, Evans (b0165) 2005; 114 Castro, Lopez-Valdivieso, Laskowski (b0030) 2016; 148 Hoover (b0100) 1980 Deng, Wen, Jian, Wu, Feng (b0055) 2014; 24 Castro (b0025) 2012 Yin, Sun, Hu, Zhai, Qingjun (b0220) 2017; 173 Liu, Qiu, Wang, Liu, Xiao, Zeng, Zhong, Xu (b0145) 2015; 437 Hirajima, Mori, Ichikawa, Sasaki, Miki, Farahat, Sawada (b0090) 2014; 66 Qiu, Liu, Liu, Zhong (b0175) 2016; 509 Li, Wei, Shen, Liu, Gao, Liang (b0135) 2015; 25 Ansari, Pawlik (b0010) 2007; 20 Chander, Fuerstenau (b0040) 1972; 252 Chandra, Puskar, Simpson, Gerson (b0050) 2012; 114 Huang, Grano, Skinner (b0105) 2006; 78 Rao (b0185) 2013 Luo, Zhu, Sun, Li, Han (b0160) 2015; 77 Reyes-Bozo, Escudey, Vyhmeister, Higueras, Godoy-Faúndez, Salazar, Valdés-González, Wolf-Sepúlveda, Herrera-Urbina (b0190) 2015; 78 Hirajima, Miki, Suyantara, Matsuoka, Elmahdy, Sasaki, Imaizumi, Kuroiwa (b0085) 2017; 100 Laskowski, Castro, Ramos (b0130) 2014; 50 Castro, Uribe, Laskowski (b0035) 2014 Ghahremaninezhad, Dixon, Asselin (b0075) 2013; 87 Feng, Zhao, Wen, Cao (b0065) 2017; 178 Buckley, Skinner, Harmer, Pring, Lamb, Fan, Yang (b0015) 2007; 85 Ejtemaei, Nguyen (b0060) 2017; 100 Poorkani, Banisi (b0170) 2005; 18 Ikumapayi, Makitalo, Johansson, Rao (b0110) 2012; 39 Li, Wei, Liu, Liu, Zheng, Sun (b0140) 2015; 83 Taheri, Abdollahy, Tonkaboni, Javadian, Yarahmadi (b0200) 2014; 21 López-Valdivieso, A., Madrid-Ortega, I., Valdez-Pérez, D., Yang, B., Song, S., 2012. The heterogeneity of the basal plane of molybdenite; its effect on molybdenite floatability and calcium ion adsorption. In: Proceedings of the 9th International Mineral Processing Conference, pp. 288–296. Kalegowda, Chan, Wei, Harmer (b0120) 2015; 635 Healy, Fuerstenau (b0080) 2007; 309 Liu, Wen, Deng, Chen, Feng (b0150) 2014; 311 Wang, Gan, Zhao, Hu, Li, Qin, Qiu (b0205) 2016; 98 Somasundaran, Zhang, Fuerstenau (b0195) 2000; 58 Hirajima, Suyantara, Ichikawa, Elmahdy, Miki, Sasaki (b0095) 2016; 96 Khoshkhoo, Dopson, Shchukarev, Sandström (b0125) 2014; 149 Bulatovic (b0020) 2007 Ghahremaninezhad, Asselin, Dixon (b0070) 2011; 115 Poorkani (10.1016/j.mineng.2017.10.008_b0170) 2005; 18 Chandra (10.1016/j.mineng.2017.10.008_b0045) 2009; 145 Yin (10.1016/j.mineng.2017.10.008_b0220) 2017; 173 Luo (10.1016/j.mineng.2017.10.008_b0160) 2015; 77 Acres (10.1016/j.mineng.2017.10.008_b0005) 2010; 23 Qiu (10.1016/j.mineng.2017.10.008_b0175) 2016; 509 10.1016/j.mineng.2017.10.008_b0155 Chander (10.1016/j.mineng.2017.10.008_b0040) 1972; 252 Taheri (10.1016/j.mineng.2017.10.008_b0200) 2014; 21 Li (10.1016/j.mineng.2017.10.008_b0135) 2015; 25 Liu (10.1016/j.mineng.2017.10.008_b0145) 2015; 437 Chandra (10.1016/j.mineng.2017.10.008_b0050) 2012; 114 Rao (10.1016/j.mineng.2017.10.008_b0185) 2013 Bulatovic (10.1016/j.mineng.2017.10.008_b0020) 2007 Iranmahboob (10.1016/j.mineng.2017.10.008_b0115) 2004; 270 Mitchell (10.1016/j.mineng.2017.10.008_b0165) 2005; 114 Castro (10.1016/j.mineng.2017.10.008_b0030) 2016; 148 Healy (10.1016/j.mineng.2017.10.008_b0080) 2007; 309 Hoover (10.1016/j.mineng.2017.10.008_b0100) 1980 Laskowski (10.1016/j.mineng.2017.10.008_b0130) 2014; 50 Feng (10.1016/j.mineng.2017.10.008_b0065) 2017; 178 Yang (10.1016/j.mineng.2017.10.008_b0210) 2015; 156 Buckley (10.1016/j.mineng.2017.10.008_b0015) 2007; 85 Reyes-Bozo (10.1016/j.mineng.2017.10.008_b0190) 2015; 78 Raghavan (10.1016/j.mineng.2017.10.008_b0180) 1984; 12 Khoshkhoo (10.1016/j.mineng.2017.10.008_b0125) 2014; 149 Yin (10.1016/j.mineng.2017.10.008_b0215) 2010; 20 Kalegowda (10.1016/j.mineng.2017.10.008_b0120) 2015; 635 Liu (10.1016/j.mineng.2017.10.008_b0150) 2014; 311 Deng (10.1016/j.mineng.2017.10.008_b0055) 2014; 24 Ghahremaninezhad (10.1016/j.mineng.2017.10.008_b0075) 2013; 87 Huang (10.1016/j.mineng.2017.10.008_b0105) 2006; 78 Somasundaran (10.1016/j.mineng.2017.10.008_b0195) 2000; 58 Hirajima (10.1016/j.mineng.2017.10.008_b0085) 2017; 100 Ejtemaei (10.1016/j.mineng.2017.10.008_b0060) 2017; 100 Ghahremaninezhad (10.1016/j.mineng.2017.10.008_b0070) 2011; 115 Hirajima (10.1016/j.mineng.2017.10.008_b0095) 2016; 96 Wang (10.1016/j.mineng.2017.10.008_b0205) 2016; 98 Ansari (10.1016/j.mineng.2017.10.008_b0010) 2007; 20 Castro (10.1016/j.mineng.2017.10.008_b0025) 2012 Castro (10.1016/j.mineng.2017.10.008_b0035) 2014 Hirajima (10.1016/j.mineng.2017.10.008_b0090) 2014; 66 Yin (10.1016/j.mineng.2017.10.008_b0225) 2017; 179 Li (10.1016/j.mineng.2017.10.008_b0140) 2015; 83 Ikumapayi (10.1016/j.mineng.2017.10.008_b0110) 2012; 39 |
References_xml | – volume: 178 start-page: 193 year: 2017 end-page: 199 ident: b0065 article-title: Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector publication-title: Sep. Purif. Technol. – volume: 635 start-page: 70 year: 2015 end-page: 77 ident: b0120 article-title: X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite flotation: effect of pulp potential publication-title: Surf. Sci. – start-page: 20 year: 2014 end-page: 24 ident: b0035 article-title: Depression of inherently hydrophobic minerals by hydrolysable metal cations: Molybdenite depression in seawater publication-title: XXVII Int. Miner. Proc. Congr.-IMPC – volume: 25 start-page: 3126 year: 2015 end-page: 3132 ident: b0135 article-title: Selective depression effect in flotation separation of copper-molybdenum sulfides using 2, 3-disulfanylbutanedioic acid publication-title: Trans. Nonferr. Met. Soc. China – volume: 114 start-page: 16 year: 2012 end-page: 26 ident: b0050 article-title: Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation publication-title: Int. J. Miner. Proc. – volume: 78 start-page: 128 year: 2015 end-page: 135 ident: b0190 article-title: Adsorption of biosolids and their main components on chalcopyrite, molybdenite and pyrite: zeta potential and FTIR spectroscopy studies publication-title: Miner. Eng. – volume: 66 start-page: 102 year: 2014 end-page: 111 ident: b0090 article-title: Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment publication-title: Miner. Eng. – volume: 21 start-page: 415 year: 2014 end-page: 422 ident: b0200 article-title: Dual effects of sodium sulfide on the flotation behavior of chalcopyrite: I. Effect of pulp potential publication-title: Int. J. Miner. Metall. Mater. – volume: 23 start-page: 928 year: 2010 end-page: 936 ident: b0005 article-title: Synchrotron XPS, NEXAFS, and ToF-SIMS studies of solution exposed chalcopyrite and heterogeneous chalcopyrite with pyrite publication-title: Miner. Eng. – volume: 309 start-page: 183 year: 2007 end-page: 188 ident: b0080 article-title: The isoelectric point/point-of zero-charge of interfaces formed by aqueous solutions and nonpolar solids, liquids, and gases publication-title: J. Coll. Interf. Sci. – volume: 179 start-page: 248 year: 2017 end-page: 256 ident: b0225 article-title: Utilization of acetic acid-[(hydrazinylthioxomethyl) thio]-sodium as a novel selective depressant for chalcopyrite in the flotation separation of molybdenite publication-title: Sep. Purif. Technol. – volume: 77 start-page: 86 year: 2015 end-page: 92 ident: b0160 article-title: Flotation and adsorption of a new collector α-bromodecanoic acid on quartz surface publication-title: Miner. Eng. – volume: 311 start-page: 258 year: 2014 end-page: 263 ident: b0150 article-title: DFT study of ethyl xanthate interaction with sphalerite (1 1 0) surface in the absence and presence of copper publication-title: Appl. Surf. Sci. – volume: 85 start-page: 767 year: 2007 end-page: 781 ident: b0015 article-title: Examination of the proposition that Cu (II) can be required for charge neutrality in a sulfide lattice—Cu in tetrahedrites and sphalerite publication-title: Can. J. Chem. – volume: 114 start-page: 227 year: 2005 end-page: 237 ident: b0165 article-title: Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation publication-title: Adv. Coll. Interf. Sci. – volume: 20 start-page: 702 year: 2010 end-page: 706 ident: b0215 article-title: Flotation of Xinhua molybdenite using sodium sulfide as modifier publication-title: Trans. Nonferr. Met. Soc. China – volume: 87 start-page: 97 year: 2013 end-page: 112 ident: b0075 article-title: Electrochemical and XPS analysis of chalcopyrite (CuFeS publication-title: Electrochim. Acta – year: 2007 ident: b0020 article-title: Handbook of Flotation Reagents: Chemistry, Theory and Practice: Volume 1: Flotation of Sulfide Ores – volume: 252 start-page: 62 year: 1972 end-page: 69 ident: b0040 article-title: On the natural floatability of molybdenite publication-title: Trans. AIME – volume: 149 start-page: 220 year: 2014 end-page: 227 ident: b0125 article-title: Chalcopyrite leaching and bioleaching: An X-ray photoelectron spectroscopic (XPS) investigation on the nature of hindered dissolution publication-title: Hydrometallurgy – volume: 39 start-page: 77 year: 2012 end-page: 88 ident: b0110 article-title: Recycling of process water in sulphide flotation: Effect of calcium and sulphate ions on flotation of galena publication-title: Miner. Eng. – volume: 83 start-page: 217 year: 2015 end-page: 222 ident: b0140 article-title: Flotation separation of copper-molybdenum sulfides using chitosan as a selective depressant publication-title: Miner. Eng. – volume: 156 start-page: 89 year: 2015 end-page: 98 ident: b0210 article-title: Synchrotron-based XPS and NEXAFS study of surface chemical species during electrochemical oxidation of chalcopyrite publication-title: Hydrometallurgy – start-page: 100 year: 1980 end-page: 112 ident: b0100 article-title: Water chemistry effects in the flotation of sulfide ores- a review and discussion for molybdenite publication-title: Complex Sulphide Ores – volume: 12 start-page: 145 year: 1984 end-page: 162 ident: b0180 article-title: Factors affecting the flotation recovery of molybdenite from porphyry copper ores publication-title: Int. J. Miner. Process. – volume: 78 start-page: 198 year: 2006 end-page: 213 ident: b0105 article-title: Galvanic interaction between grinding media and arsenopyrite and its effect on flotation: Part II. Effect of grinding on flotation publication-title: Int. J. Miner. Proc. – volume: 100 start-page: 83 year: 2017 end-page: 92 ident: b0085 article-title: Selective flotation of chalcopyrite and molybdenite with H publication-title: Miner. Eng. – start-page: 29 year: 2012 end-page: 40 ident: b0025 article-title: Challenges in flotation of Cu-Mo sulfide ores in sea water publication-title: Water in Mineral Processing–Proc. of the First International Symposium – volume: 98 start-page: 264 year: 2016 end-page: 278 ident: b0205 article-title: Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis publication-title: Miner. Eng. – volume: 437 start-page: 42 year: 2015 end-page: 49 ident: b0145 article-title: Study of N-isopropoxypropyl-N’-ethoxycarbonyl thiourea adsorption on chalcopyrite using in situ SECM, ToF-SIMS and XPS publication-title: J. Coll. Interf. Sci. – volume: 58 start-page: 85 year: 2000 end-page: 97 ident: b0195 article-title: The effect of environment, oxidation and dissolved metal species on the chemistry of coal flotation publication-title: Int. J. Miner. Proc. – volume: 100 start-page: 223 year: 2017 end-page: 232 ident: b0060 article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate publication-title: Miner. Eng. – volume: 270 start-page: 123 year: 2004 end-page: 126 ident: b0115 article-title: XPS study of molybdenum sulfide catalyst exposed to CO and H publication-title: J. Coll. Interf. Sci. – volume: 145 start-page: 97 year: 2009 end-page: 110 ident: b0045 article-title: A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite publication-title: Adv. Coll. Interface. Sci. – reference: López-Valdivieso, A., Madrid-Ortega, I., Valdez-Pérez, D., Yang, B., Song, S., 2012. The heterogeneity of the basal plane of molybdenite; its effect on molybdenite floatability and calcium ion adsorption. In: Proceedings of the 9th International Mineral Processing Conference, pp. 288–296. – volume: 18 start-page: 735 year: 2005 end-page: 738 ident: b0170 article-title: Industrial use of nitrogen in flotation of molybdenite at the Sarcheshmeh copper complex publication-title: Miner. Eng. – volume: 20 start-page: 609 year: 2007 end-page: 616 ident: b0010 article-title: Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part II. Hallimond tube flotation publication-title: Miner. Eng. – volume: 24 start-page: 3955 year: 2014 end-page: 3963 ident: b0055 article-title: Adsorption and activation of copper ions on chalcopyrite surfaces: A new viewpoint of self-activation publication-title: Trans. Nonferr. Met. Soc. China – volume: 96 start-page: 83 year: 2016 end-page: 93 ident: b0095 article-title: Effect of Mg publication-title: Miner. Eng. – volume: 50 start-page: 17 year: 2014 end-page: 29 ident: b0130 article-title: Effect of seawater main components on frothability in the flotation of Cu-Mo sulfide ore publication-title: Physicochem. Prob. Miner. Proc. – volume: 509 start-page: 123 year: 2016 end-page: 129 ident: b0175 article-title: Understanding the roles of high salinity in inhibiting the molybdenite flotation publication-title: Coll. Surf. A – volume: 173 start-page: 9 year: 2017 end-page: 16 ident: b0220 article-title: Evaluation of the replacement of NaCN with depressant mixtures in the separation of copper-molybdenum sulphide ore by flotation publication-title: Sep. Purif. Technol. – volume: 115 start-page: 9320 year: 2011 end-page: 9334 ident: b0070 article-title: Electrodeposition and growth mechanism of copper sulfide nanowires publication-title: J. Phys. Chem. C – year: 2013 ident: b0185 article-title: Surface Chemistry of Froth Flotation: Volume 1: Fundamentals – volume: 148 start-page: 48 year: 2016 end-page: 58 ident: b0030 article-title: Review of the flotation of molybdenite. Part I: Surface properties and floatability publication-title: Int. J. Miner. Process. – volume: 25 start-page: 3126 issue: 9 year: 2015 ident: 10.1016/j.mineng.2017.10.008_b0135 article-title: Selective depression effect in flotation separation of copper-molybdenum sulfides using 2, 3-disulfanylbutanedioic acid publication-title: Trans. Nonferr. Met. Soc. China doi: 10.1016/S1003-6326(15)63942-5 – start-page: 29 year: 2012 ident: 10.1016/j.mineng.2017.10.008_b0025 article-title: Challenges in flotation of Cu-Mo sulfide ores in sea water – volume: 77 start-page: 86 issue: 6 year: 2015 ident: 10.1016/j.mineng.2017.10.008_b0160 article-title: Flotation and adsorption of a new collector α-bromodecanoic acid on quartz surface publication-title: Miner. Eng. doi: 10.1016/j.mineng.2015.03.003 – volume: 66 start-page: 102 issue: 11 year: 2014 ident: 10.1016/j.mineng.2017.10.008_b0090 article-title: Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment publication-title: Miner. Eng. doi: 10.1016/j.mineng.2014.07.011 – volume: 83 start-page: 217 issue: 1 year: 2015 ident: 10.1016/j.mineng.2017.10.008_b0140 article-title: Flotation separation of copper-molybdenum sulfides using chitosan as a selective depressant publication-title: Miner. Eng. doi: 10.1016/j.mineng.2015.09.013 – volume: 145 start-page: 97 issue: 1 year: 2009 ident: 10.1016/j.mineng.2017.10.008_b0045 article-title: A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite publication-title: Adv. Coll. Interface. Sci. doi: 10.1016/j.cis.2008.09.001 – start-page: 20 year: 2014 ident: 10.1016/j.mineng.2017.10.008_b0035 article-title: Depression of inherently hydrophobic minerals by hydrolysable metal cations: Molybdenite depression in seawater publication-title: XXVII Int. Miner. Proc. Congr.-IMPC – volume: 311 start-page: 258 year: 2014 ident: 10.1016/j.mineng.2017.10.008_b0150 article-title: DFT study of ethyl xanthate interaction with sphalerite (1 1 0) surface in the absence and presence of copper publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.05.052 – volume: 39 start-page: 77 issue: 12 year: 2012 ident: 10.1016/j.mineng.2017.10.008_b0110 article-title: Recycling of process water in sulphide flotation: Effect of calcium and sulphate ions on flotation of galena publication-title: Miner. Eng. doi: 10.1016/j.mineng.2012.07.016 – volume: 115 start-page: 9320 issue: 19 year: 2011 ident: 10.1016/j.mineng.2017.10.008_b0070 article-title: Electrodeposition and growth mechanism of copper sulfide nanowires publication-title: J. Phys. Chem. C doi: 10.1021/jp108283z – volume: 156 start-page: 89 year: 2015 ident: 10.1016/j.mineng.2017.10.008_b0210 article-title: Synchrotron-based XPS and NEXAFS study of surface chemical species during electrochemical oxidation of chalcopyrite publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.05.011 – volume: 87 start-page: 97 issue: 1 year: 2013 ident: 10.1016/j.mineng.2017.10.008_b0075 article-title: Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.07.119 – year: 2007 ident: 10.1016/j.mineng.2017.10.008_b0020 – volume: 179 start-page: 248 year: 2017 ident: 10.1016/j.mineng.2017.10.008_b0225 article-title: Utilization of acetic acid-[(hydrazinylthioxomethyl) thio]-sodium as a novel selective depressant for chalcopyrite in the flotation separation of molybdenite publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.01.049 – volume: 20 start-page: 702 issue: 4 year: 2010 ident: 10.1016/j.mineng.2017.10.008_b0215 article-title: Flotation of Xinhua molybdenite using sodium sulfide as modifier publication-title: Trans. Nonferr. Met. Soc. China doi: 10.1016/S1003-6326(09)60201-6 – volume: 23 start-page: 928 issue: 11 year: 2010 ident: 10.1016/j.mineng.2017.10.008_b0005 article-title: Synchrotron XPS, NEXAFS, and ToF-SIMS studies of solution exposed chalcopyrite and heterogeneous chalcopyrite with pyrite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2010.03.007 – volume: 114 start-page: 227 year: 2005 ident: 10.1016/j.mineng.2017.10.008_b0165 article-title: Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation publication-title: Adv. Coll. Interf. Sci. doi: 10.1016/j.cis.2004.08.009 – volume: 98 start-page: 264 year: 2016 ident: 10.1016/j.mineng.2017.10.008_b0205 article-title: Dissolution and passivation mechanisms of chalcopyrite during bioleaching: DFT calculation, XPS and electrochemistry analysis publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.09.008 – ident: 10.1016/j.mineng.2017.10.008_b0155 – volume: 21 start-page: 415 issue: 5 year: 2014 ident: 10.1016/j.mineng.2017.10.008_b0200 article-title: Dual effects of sodium sulfide on the flotation behavior of chalcopyrite: I. Effect of pulp potential publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-014-0924-7 – volume: 24 start-page: 3955 issue: 12 year: 2014 ident: 10.1016/j.mineng.2017.10.008_b0055 article-title: Adsorption and activation of copper ions on chalcopyrite surfaces: A new viewpoint of self-activation publication-title: Trans. Nonferr. Met. Soc. China doi: 10.1016/S1003-6326(14)63556-1 – volume: 85 start-page: 767 issue: 10 year: 2007 ident: 10.1016/j.mineng.2017.10.008_b0015 article-title: Examination of the proposition that Cu (II) can be required for charge neutrality in a sulfide lattice—Cu in tetrahedrites and sphalerite publication-title: Can. J. Chem. doi: 10.1139/v07-078 – volume: 100 start-page: 83 year: 2017 ident: 10.1016/j.mineng.2017.10.008_b0085 article-title: Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.10.007 – year: 2013 ident: 10.1016/j.mineng.2017.10.008_b0185 – volume: 148 start-page: 48 year: 2016 ident: 10.1016/j.mineng.2017.10.008_b0030 article-title: Review of the flotation of molybdenite. Part I: Surface properties and floatability publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2016.01.003 – volume: 149 start-page: 220 year: 2014 ident: 10.1016/j.mineng.2017.10.008_b0125 article-title: Chalcopyrite leaching and bioleaching: An X-ray photoelectron spectroscopic (XPS) investigation on the nature of hindered dissolution publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.08.012 – volume: 437 start-page: 42 year: 2015 ident: 10.1016/j.mineng.2017.10.008_b0145 article-title: Study of N-isopropoxypropyl-N’-ethoxycarbonyl thiourea adsorption on chalcopyrite using in situ SECM, ToF-SIMS and XPS publication-title: J. Coll. Interf. Sci. doi: 10.1016/j.jcis.2014.08.069 – volume: 78 start-page: 198 issue: 3 year: 2006 ident: 10.1016/j.mineng.2017.10.008_b0105 article-title: Galvanic interaction between grinding media and arsenopyrite and its effect on flotation: Part II. Effect of grinding on flotation publication-title: Int. J. Miner. Proc. doi: 10.1016/j.minpro.2005.10.009 – start-page: 100 year: 1980 ident: 10.1016/j.mineng.2017.10.008_b0100 article-title: Water chemistry effects in the flotation of sulfide ores- a review and discussion for molybdenite publication-title: Complex Sulphide Ores – volume: 173 start-page: 9 year: 2017 ident: 10.1016/j.mineng.2017.10.008_b0220 article-title: Evaluation of the replacement of NaCN with depressant mixtures in the separation of copper-molybdenum sulphide ore by flotation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.09.011 – volume: 50 start-page: 17 issue: 1 year: 2014 ident: 10.1016/j.mineng.2017.10.008_b0130 article-title: Effect of seawater main components on frothability in the flotation of Cu-Mo sulfide ore publication-title: Physicochem. Prob. Miner. Proc. – volume: 635 start-page: 70 year: 2015 ident: 10.1016/j.mineng.2017.10.008_b0120 article-title: X-PEEM, XPS and ToF-SIMS characterisation of xanthate induced chalcopyrite flotation: effect of pulp potential publication-title: Surf. Sci. doi: 10.1016/j.susc.2014.12.012 – volume: 58 start-page: 85 issue: 1 year: 2000 ident: 10.1016/j.mineng.2017.10.008_b0195 article-title: The effect of environment, oxidation and dissolved metal species on the chemistry of coal flotation publication-title: Int. J. Miner. Proc. doi: 10.1016/S0301-7516(99)00022-8 – volume: 96 start-page: 83 year: 2016 ident: 10.1016/j.mineng.2017.10.008_b0095 article-title: Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.06.023 – volume: 12 start-page: 145 issue: 1 year: 1984 ident: 10.1016/j.mineng.2017.10.008_b0180 article-title: Factors affecting the flotation recovery of molybdenite from porphyry copper ores publication-title: Int. J. Miner. Process. doi: 10.1016/0301-7516(84)90026-7 – volume: 270 start-page: 123 issue: 1 year: 2004 ident: 10.1016/j.mineng.2017.10.008_b0115 article-title: XPS study of molybdenum sulfide catalyst exposed to CO and H2 publication-title: J. Coll. Interf. Sci. doi: 10.1016/j.jcis.2003.11.013 – volume: 100 start-page: 223 year: 2017 ident: 10.1016/j.mineng.2017.10.008_b0060 article-title: Characterisation of sphalerite and pyrite surfaces activated by copper sulphate publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.11.005 – volume: 114 start-page: 16 year: 2012 ident: 10.1016/j.mineng.2017.10.008_b0050 article-title: Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation publication-title: Int. J. Miner. Proc. doi: 10.1016/j.minpro.2012.08.003 – volume: 509 start-page: 123 year: 2016 ident: 10.1016/j.mineng.2017.10.008_b0175 article-title: Understanding the roles of high salinity in inhibiting the molybdenite flotation publication-title: Coll. Surf. A doi: 10.1016/j.colsurfa.2016.08.059 – volume: 252 start-page: 62 year: 1972 ident: 10.1016/j.mineng.2017.10.008_b0040 article-title: On the natural floatability of molybdenite publication-title: Trans. AIME – volume: 20 start-page: 609 issue: 6 year: 2007 ident: 10.1016/j.mineng.2017.10.008_b0010 article-title: Floatability of chalcopyrite and molybdenite in the presence of lignosulfonates. Part II. Hallimond tube flotation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2006.12.008 – volume: 309 start-page: 183 issue: 1 year: 2007 ident: 10.1016/j.mineng.2017.10.008_b0080 article-title: The isoelectric point/point-of zero-charge of interfaces formed by aqueous solutions and nonpolar solids, liquids, and gases publication-title: J. Coll. Interf. Sci. doi: 10.1016/j.jcis.2007.01.048 – volume: 178 start-page: 193 year: 2017 ident: 10.1016/j.mineng.2017.10.008_b0065 article-title: Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.01.053 – volume: 18 start-page: 735 issue: 7 year: 2005 ident: 10.1016/j.mineng.2017.10.008_b0170 article-title: Industrial use of nitrogen in flotation of molybdenite at the Sarcheshmeh copper complex publication-title: Miner. Eng. doi: 10.1016/j.mineng.2004.10.013 – volume: 78 start-page: 128 year: 2015 ident: 10.1016/j.mineng.2017.10.008_b0190 article-title: Adsorption of biosolids and their main components on chalcopyrite, molybdenite and pyrite: zeta potential and FTIR spectroscopy studies publication-title: Miner. Eng. doi: 10.1016/j.mineng.2015.04.021 |
SSID | ssj0005789 |
Score | 2.4970825 |
Snippet | [Display omitted]
•Copper ions severely deteriorate the floatability of chalcopyrite and molybdenite.•The adsorption of CuOH+ and Cu(OH)2 provide more reaction... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 44 |
SubjectTerms | Chalcopyrite Copper ions Flotation separation Molybdenite Sodium sulfide |
Title | Effect of copper ions on the flotation separation of chalcopyrite and molybdenite using sodium sulfide as a depressant |
URI | https://dx.doi.org/10.1016/j.mineng.2017.10.008 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl47dYuSZsex3BMxV10sFtpPjorXVvWTdjFv92XfsgEUfCWhJdSXl7e-6X95T2EbkPiOK4UEnaa48MBhRHTYhZYhw_w2VWizHjzNHUnM_owZ_MWGjV3YQytsvb9lU8vvXU90q-12c_juP9sc3gawG0HjBQCubnER6lnrLz3sUPz8MoyeEbYMtLN9bmS47UEJJcuDMHL65UcL_5zeNoJOeMjdFhjRTysXucYtXR6gg52Mgieovcq-zDOIiyzPNcrbMwIZykGYIejJKv-tONCVzm-oWlEX8MExLcrwJs4TBVeZslWgAcyfcOEX-AiU_FmiYtNEsUKhAoc4po1C2txhmbju5fRxKpLKVgSDnBrizpOpHjEhZC2rYlPSBgBNqSCwIEq8pgrCSOCDmzNuYAty0JXqpAxNxJcDJQm56idZqm-QFjYkvoS3ITJnSeo4EwBJgq5IIpTTVgHkUaDgazzjJtyF0nQEMregkrvgdG7GQW9d5D1NSuv8mz8Ie81ixN8s5cAQsGvMy__PfMK7UOPVx9grlF7vdroG4Aka9Etba6L9ob3j5PpJzCS4aU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOAAHxCp2fIBjaFLHqXvggFjUsvRCkbiFeEkpSpOqaUG98FP8IOMsqEgIJCRujmNbzngyfpM8zwAcBtRxPCkkvmlOAx0URk2JWagdDYTPnhJZxJvbtte8d68e2EMF3suzMIZWWdj-3KZn1rqoqRbSrA56veqdzXE0hNsOKilu5I2CWXmtJ6_ot6UnrXNc5KNa7fKic9a0itQClkSHZmS5jhMqHnIhpG1ril59ECJWcgVFByOsM09SRoVbszXnAlWYBZ5UAWNeKLioKU1x3BmYc9FcmLQJx29TvJJ6lnfPzM4y0yvP62Wksj5Cx7hrGGX144xUxr_fD6f2uMtlWCrAKTnNn38FKjpehcWpkIVr8JKHOyZJSGQyGOghMXpLkpggkiRhlOS_9kmq86DiWDRNn4IIm0-GCHBJECvST6KJQJNnrg31vkvSRPXGfZKOo7CnsFFKAlLQdHHx1-H-XwS8AbNxEutNIMKWbkOiXTLB-oQrOFMIwgIuqOKupmwLaClBXxaBzU1-jcgvGWzPfi5338jd1KLct8D67DXIA3v80r5eLo7_RUF93Ht-7Ln9554HMN_s3N74N6329Q4s4B2ef_3ZhdnRcKz3EA-NxH6mfwQe_1vhPwAKMx0i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+copper+ions+on+the+flotation+separation+of+chalcopyrite+and+molybdenite+using+sodium+sulfide+as+a+depressant&rft.jtitle=Minerals+engineering&rft.au=Zhao%2C+Qiang&rft.au=Liu%2C+Wengang&rft.au=Wei%2C+Dezhou&rft.au=Wang%2C+Wendan&rft.date=2018-01-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=115&rft.spage=44&rft.epage=52&rft_id=info:doi/10.1016%2Fj.mineng.2017.10.008&rft.externalDocID=S0892687517302509 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |