Novel diverse-structured h-WO3 nanoflake arrays as electrode materials for high performance supercapacitors
Hexagonal tungsten trioxide (h-WO3) nano-materials can be widely used in many fields of optics, electrics and chemistry. In this work, three types of h-WO3 (single crystal, polycrystal and hierarchical) nanoflake arrays (WNFs) are synthesized through a simple hydrothermal method. The morphologies, c...
Saved in:
Published in | Electrochimica acta Vol. 334; p. 135641 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
20.02.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hexagonal tungsten trioxide (h-WO3) nano-materials can be widely used in many fields of optics, electrics and chemistry. In this work, three types of h-WO3 (single crystal, polycrystal and hierarchical) nanoflake arrays (WNFs) are synthesized through a simple hydrothermal method. The morphologies, crystalline degree and exposed faces of these WNFs can be controlled with simple adjustments of reaction parameters. The relationships between the crystal structures and supercapacitive properties of these WNFs are systematically investigated and the results show that: the single crystal WNFs with a fast electron transmitting channel exhibits a high rate performance at high voltage scan rate, while the polycrystal and hierarchical WNFs with more oxygen vacancies and ion storage spaces have relatively high specific capacitances at low scan rate. These WNFs are used to fabricate supercapacitors, which show specific energy density as high as 88.2 W h kg−1 at a power density of 400 W kg−1. It is concluded that the electrode materials should have single structure facilitating the electrons transfer at current collector side and a porous structure for ion storage at the electrolyte side.
[Display omitted]
•Three different types of h-WO3 nanoflake arrays (WNFs) are synthesized on Cu foils.•The WNFs has a high specific capacitance of 538 F g−1 at 0.5 A g−1.•The WNFs shows an energy density of 88.2 W h kg−1 at a power density of 400 W kg−1.•The single structure facilitates the electrons transfer at the current collector side.•The porous structure could accommodate more ions at the electrolyte side. |
---|---|
AbstractList | Hexagonal tungsten trioxide (h-WO3) nano-materials can be widely used in many fields of optics, electrics and chemistry. In this work, three types of h-WO3 (single crystal, polycrystal and hierarchical) nanoflake arrays (WNFs) are synthesized through a simple hydrothermal method. The morphologies, crystalline degree and exposed faces of these WNFs can be controlled with simple adjustments of reaction parameters. The relationships between the crystal structures and supercapacitive properties of these WNFs are systematically investigated and the results show that: the single crystal WNFs with a fast electron transmitting channel exhibits a high rate performance at high voltage scan rate, while the polycrystal and hierarchical WNFs with more oxygen vacancies and ion storage spaces have relatively high specific capacitances at low scan rate. These WNFs are used to fabricate supercapacitors, which show specific energy density as high as 88.2 W h kg−1 at a power density of 400 W kg−1. It is concluded that the electrode materials should have single structure facilitating the electrons transfer at current collector side and a porous structure for ion storage at the electrolyte side.
[Display omitted]
•Three different types of h-WO3 nanoflake arrays (WNFs) are synthesized on Cu foils.•The WNFs has a high specific capacitance of 538 F g−1 at 0.5 A g−1.•The WNFs shows an energy density of 88.2 W h kg−1 at a power density of 400 W kg−1.•The single structure facilitates the electrons transfer at the current collector side.•The porous structure could accommodate more ions at the electrolyte side. Hexagonal tungsten trioxide (h-WO3) nano-materials can be widely used in many fields of optics, electrics and chemistry. In this work, three types of h-WO3 (single crystal, polycrystal and hierarchical) nanoflake arrays (WNFs) are synthesized through a simple hydrothermal method. The morphologies, crystalline degree and exposed faces of these WNFs can be controlled with simple adjustments of reaction parameters. The relationships between the crystal structures and supercapacitive properties of these WNFs are systematically investigated and the results show that: the single crystal WNFs with a fast electron transmitting channel exhibits a high rate performance at high voltage scan rate, while the polycrystal and hierarchical WNFs with more oxygen vacancies and ion storage spaces have relatively high specific capacitances at low scan rate. These WNFs are used to fabricate supercapacitors, which show specific energy density as high as 88.2 W h kg−1 at a power density of 400 W kg−1. It is concluded that the electrode materials should have single structure facilitating the electrons transfer at current collector side and a porous structure for ion storage at the electrolyte side. |
ArticleNumber | 135641 |
Author | Li, Rong Yu, Yi Zheng, Feng Zhen, Qiang Yan, Wei Zhang, Jiujun Li, Hui Liu, Yang Zhou, Jianmin Wang, Jing Hu, Pengfei Liu, Wenbo |
Author_xml | – sequence: 1 givenname: Feng surname: Zheng fullname: Zheng, Feng organization: Nano-science and Nano-technology Research Center, Shanghai University, Shanghai, 200444, PR China – sequence: 2 givenname: Jing surname: Wang fullname: Wang, Jing organization: Nano-science and Nano-technology Research Center, Shanghai University, Shanghai, 200444, PR China – sequence: 3 givenname: Wenbo surname: Liu fullname: Liu, Wenbo organization: Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, PR China – sequence: 4 givenname: Jianmin surname: Zhou fullname: Zhou, Jianmin organization: Nano-science and Nano-technology Research Center, Shanghai University, Shanghai, 200444, PR China – sequence: 5 givenname: Hui surname: Li fullname: Li, Hui organization: Nano-science and Nano-technology Research Center, Shanghai University, Shanghai, 200444, PR China – sequence: 6 givenname: Yi surname: Yu fullname: Yu, Yi organization: Zhejiang University/University of Illinois at Urbana-Champaign Institude, Zhejiang University, Zhejiang, 314400, PR China – sequence: 7 givenname: Pengfei surname: Hu fullname: Hu, Pengfei organization: Laboratory for Microstructures, Shanghai University, Shanghai, 200444, PR China – sequence: 8 givenname: Wei surname: Yan fullname: Yan, Wei organization: Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, PR China – sequence: 9 givenname: Yang surname: Liu fullname: Liu, Yang email: yangliu8651@shu.edu.cn organization: Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, PR China – sequence: 10 givenname: Rong surname: Li fullname: Li, Rong email: li-rong@shu.edu.cn organization: Nano-science and Nano-technology Research Center, Shanghai University, Shanghai, 200444, PR China – sequence: 11 givenname: Qiang surname: Zhen fullname: Zhen, Qiang organization: Nano-science and Nano-technology Research Center, Shanghai University, Shanghai, 200444, PR China – sequence: 12 givenname: Jiujun surname: Zhang fullname: Zhang, Jiujun organization: Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, PR China |
BookMark | eNqNkE1rGzEQhkVxoHaS3xBBz-voYz_kQw_GtEkgNJeWHIVWGtVy1it3pDXk30eJQw-9NDAwH7zvzPAsyGyMIxByxdmSM95e75YwgM2mxFIwUaayaWv-icy56mQlVbOakTljXFZ1q9rPZJHSjjHWtR2bk6cf8QgDdeEImKBKGSebJwRHt9Xjg6SjGaMfzBNQg2ieEzWJvt3D6IDuTQYMZkjUR6Tb8HtLD4Cl3pvRAk1T6aw5GBtyxHRBznzRwuV7Pie_vn_7ubmt7h9u7jbr-8rWbJUrCV642nJQXHLW9VatDLOsU77vfW9q6XvhGufbMm4UNKqRva9r4SxY2YhanpMvp70HjH8mSFnv4oRjOamFbMWqE7JRRfX1pLIYU0LwunxpcohjRhMGzZl-5at3-i9f_cpXn_gWf_eP_4Bhb_D5A871yQkFwjEA6mQDFGAuYNFrF8N_d7wAm_We1g |
CitedBy_id | crossref_primary_10_1039_D0NA00423E crossref_primary_10_1016_j_ijhydene_2022_11_221 crossref_primary_10_1002_ente_202300574 crossref_primary_10_1016_j_electacta_2025_145965 crossref_primary_10_1134_S0036023624700554 crossref_primary_10_1016_j_jallcom_2021_160762 crossref_primary_10_1016_j_jhazmat_2022_128811 crossref_primary_10_1021_acsomega_3c05677 crossref_primary_10_1016_j_jallcom_2022_168620 crossref_primary_10_1016_j_mcat_2021_111545 crossref_primary_10_1039_D3RA04108E crossref_primary_10_1007_s42114_025_01268_3 crossref_primary_10_1016_j_matchemphys_2023_127915 crossref_primary_10_1039_D1QI01027A crossref_primary_10_31857_S0044457X24080046 crossref_primary_10_1002_aenm_202400702 crossref_primary_10_1039_D1NR02384E crossref_primary_10_1039_D1QM00678A crossref_primary_10_1186_s12951_023_01962_8 crossref_primary_10_1007_s10854_022_08302_w crossref_primary_10_1007_s42247_024_00760_8 crossref_primary_10_1016_j_jmst_2021_02_037 crossref_primary_10_1016_j_renene_2024_120599 crossref_primary_10_2139_ssrn_4136972 crossref_primary_10_1002_sstr_202300201 crossref_primary_10_1016_j_electacta_2020_136626 crossref_primary_10_1039_D4TA08492F crossref_primary_10_1016_j_jallcom_2023_172570 crossref_primary_10_1007_s43207_022_00211_2 crossref_primary_10_1002_celc_202200122 crossref_primary_10_1016_j_inoche_2024_113872 crossref_primary_10_1016_j_surfin_2022_102567 crossref_primary_10_1016_j_jallcom_2023_169047 crossref_primary_10_1016_j_materresbull_2023_112328 crossref_primary_10_1038_s41598_022_25707_z crossref_primary_10_1016_j_susmat_2024_e01097 crossref_primary_10_3390_nano13081418 crossref_primary_10_1016_j_jallcom_2024_176963 crossref_primary_10_1016_j_jallcom_2020_154992 crossref_primary_10_1021_acsaenm_3c00654 crossref_primary_10_3390_nano11030692 |
Cites_doi | 10.1016/j.electacta.2018.12.187 10.1002/adma.201400447 10.1021/acssuschemeng.7b02135 10.1016/j.cej.2018.03.061 10.1016/j.electacta.2018.06.044 10.1021/jacs.8b05293 10.1039/C8TA01323C 10.1016/j.matlet.2017.12.109 10.1016/j.nanoen.2017.10.058 10.1007/s00706-018-2314-8 10.1016/j.tsf.2013.01.102 10.1039/c3ce40494c 10.1021/nl1034573 10.1002/smll.201900862 10.1002/chem.201806060 10.1016/j.electacta.2017.02.131 10.1016/j.jpowsour.2017.04.053 10.1021/cm8034455 10.1016/j.electacta.2019.05.073 10.1016/j.jssc.2006.08.030 10.1039/C6NR05480C 10.1016/j.solmat.2019.109916 10.1016/j.jallcom.2018.09.085 10.1016/j.jpowsour.2018.02.035 10.1021/acsnano.8b08560 10.1016/j.electacta.2018.12.137 10.1039/C7NR07191D 10.1021/acs.chemrev.8b00252 10.1006/jssc.1997.7618 10.1016/j.electacta.2015.01.093 10.1016/j.nanoen.2016.09.012 10.1039/C6CE00316H 10.1016/j.jpowsour.2018.10.005 10.1002/smll.201702881 10.1016/j.electacta.2015.06.044 10.1016/j.ssi.2016.04.009 10.1016/j.electacta.2017.10.049 10.1016/j.matdes.2017.12.038 10.1016/j.jcrysgro.2010.07.057 10.1016/j.jelechem.2005.09.026 10.1021/acsami.7b04335 10.1016/j.electacta.2019.03.029 10.1088/2053-1591/aad1dc 10.1016/j.jallcom.2018.06.192 10.1016/j.jallcom.2017.04.094 10.1016/j.electacta.2016.12.066 10.1039/C2CE25996F 10.1039/C6TA00237D 10.1016/j.polymer.2019.01.058 10.1021/acssuschemeng.8b05132 10.1126/science.281.5379.969 10.1038/nmat4368 10.1039/C8CS00904J 10.1016/j.snb.2018.06.122 10.1038/s41467-018-07774-x 10.1039/c3ta10831g 10.1016/j.electacta.2019.03.155 10.1021/jp003217o |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Feb 20, 2020 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Feb 20, 2020 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2020.135641 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
ExternalDocumentID | 10_1016_j_electacta_2020_135641 S0013468620300323 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- RIG SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c409t-3ef2d4c1e813107bc89a0c078fbbfba43fb2d5df69a058e5853bf442dcec35243 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Mon Jul 14 10:34:12 EDT 2025 Tue Jul 01 03:02:08 EDT 2025 Thu Apr 24 22:55:41 EDT 2025 Fri Feb 23 02:49:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Exposed faces Supercapacitor Nanoflake arrays Different crystallinities Tungsten trioxide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-3ef2d4c1e813107bc89a0c078fbbfba43fb2d5df69a058e5853bf442dcec35243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2362972358 |
PQPubID | 2045485 |
ParticipantIDs | proquest_journals_2362972358 crossref_citationtrail_10_1016_j_electacta_2020_135641 crossref_primary_10_1016_j_electacta_2020_135641 elsevier_sciencedirect_doi_10_1016_j_electacta_2020_135641 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-20 |
PublicationDateYYYYMMDD | 2020-02-20 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Pecquenard, Lecacheux, Livage, Julien (bib5) 1998; 135 Zheng, Song, Lu, Li, Bu, Liu, Li, Hu, Zhen (bib30) 2016; 18 Nayak, Das, Pradhan (bib19) 2017; 5 Penn, Banfield (bib59) 1998; 281 Zheng, Wang, Song, Li, Li, Li, Zhen (bib47) 2016; 290 Balaji, Djaoued, Albert, Ferguson, Bruning (bib15) 2009; 21 Nayak, Das, Pradhan (bib40) 2017; 5 Shinde, Lokhande, Chodankar, Patil, Kim, Lokhande (bib23) 2017; 224 Xu, Zheng, Xi, Yu, Chen, Yang, Hu, Zhen, Bashir (bib44) 2018; 404 Inamdar, Chavan, Ahmed, Cho, Kim, Jo, Pawar, Park, Kim, Im (bib11) 2018; 2015 Kiruthiga, Nithya, Karvembu, Reddy (bib51) 2017; 256 Zheng, Gong, Li, Yang, Xu, Hu, Li, Gong, Zhen (bib24) 2017; 712 Zheng, Zhang, Guo (bib36) 2013; 534 Periasamy, Krishnakumar, Sathish, Devarajan, Siril, Chavali (bib18) 2018; 5 Chen, Wang, Deng, Xu, Wang (bib12) 2018; 6 Zheng, Lu, Guo, Zhang (bib37) 2013; 15 Ueda, Maeda, Huang, Higuchi, Izawa, Kamada, Hyodo, Shimizu (bib10) 2018; 273 Das, Verma (bib58) 2019; 168 Tang, Cao, Xiao, Zhang, Liu (bib54) 2017; 355 Ivanishcheva, Ivanishchev, Dixit (bib28) 2019; 150 Gao, Wang, Xie, Song, Wang, Wu, Qu, Chen, Shen (bib31) 2013; 1 Upadhyay, Altomare, Eugénio, Schmuki, Silva, Montemor (bib27) 2017; 232 Ma, Jing, Fan, Hou, Su, Fan, Shao (bib50) 2019; 15 Arnaiz, Nair, Mitra, Ajuria (bib56) 2019; 304 Liu, Sheng, Zhong, Zhou (bib34) 2018; 10 Zhang, Tian, Li, Dou, Wang, Qu, Zhao, Li (bib14) 2019; 200 Shao, Fan, Liu, Yang, Wang, Chen, Zhang (bib26) 2018; 765 Xu, Li, Wang, Cai, Li, Gao, Zhang, Huo, Chu (bib39) 2016; 8 Wu, Yu, Lian, Bao, Liu, Pei (bib6) 2010; 312 Zheng, Xi, Xu, Yu, Yang, Hu, Li, Zhen, Bashir, Liu (bib21) 2019; 772 Grey, Birch, Bougerol, Mills (bib7) 2006; 179 Qiu, Sun, Shen, Wang, Song, Yu, Tan, Zhao, Mai (bib25) 2016; 4 Xu, Ding, Wang, Zhang, Wang, Chen, Fang, Wu, Huo, Dai (bib29) 2015; 174 Yang, Liu (bib22) 2018; 383 Chang, Zhou, Wu, Ye, Zhou, Li, Zhu, Li, Nie, Du, Xu (bib49) 2018; 283 Li, Chang, Tang, Li, Qin, Hou, Chang (bib13) 2019; 298 Liu, Sheng, Zhong, Zhou (bib17) 2018; 141 Lin, Wan, Xiong, Wu, Cheong, Zhou, Wang, Peng, Chen, Li (bib33) 2018; 140 Tanner, Meethunkij, Altman (bib4) 2000; 104 Meng, Yang, Wu, Wan, Li, Lei, Sun, Liu (bib52) 2016; 30 Besnardiere, Ma, Torres-Pardo, Wallez, Kabbour, González-Calbet, Bardeleben, Fleury, Buissette, Sanchez, Mercier, Cassaignon, Portehault (bib8) 2019; 10 Su, Feng, Sloppy, Guo, Grimes (bib32) 2011; 11 Braglia, Ferrari, Djenizian, Kaciulis, Soltani, Vona, Knauth (bib42) 2017; 9 Wang, Fang, Shi, Huang, Rong, Que (bib55) 2018; 344 Zheng, Guo, Zhang (bib35) 2013; 15 Ding, Yu, Chen, Chen, Chen, Huang, Yang, Zou, Yang, Huang (bib57) 2019; 306 Shao, El-Kady, Sun, Li, Zhang, Zhu, Wang, Dunn, Kaner (bib2) 2018; 118 Chen, Shi, Zhu, Wang, Qiao, Zhang (bib3) 2015; 177 Wen, Granqvist, Niklasson (bib9) 2015; 14 Zuleta, Bjornbom, Lundblad, Nurk, Kasuk, Lust (bib41) 2006; 586 Yun, Park, Kim, Kim, Cheong, Bae, Han, Kim (bib43) 2019; 13 Ma, Hou, Zhang, Zhang, Liu, Wu, Guo (bib46) 2019; 315 Leng, Wang, Wang, Wu, Yan, Li, Guo, Liu, Zhang, Guo (bib1) 2019; 48 Wu, Yao (bib20) 2017; 42 Quan, Goubard-Bretesche, Hark, Kochovski, Mei, Pinna, Ballauff, Lu (bib53) 2019; 25 Ji, Chodankar, Jang, Kim (bib38) 2019; 299 Cong, Tian, Li, Zhao, Geng (bib16) 2014; 26 Mandal, Routh, Nandi (bib48) 2018; 14 Samal, Chakraborty, Saxena, Late, Rout (bib45) 2019; 7 Wen (10.1016/j.electacta.2020.135641_bib9) 2015; 14 Shao (10.1016/j.electacta.2020.135641_bib2) 2018; 118 Ma (10.1016/j.electacta.2020.135641_bib46) 2019; 315 Kiruthiga (10.1016/j.electacta.2020.135641_bib51) 2017; 256 Leng (10.1016/j.electacta.2020.135641_bib1) 2019; 48 Mandal (10.1016/j.electacta.2020.135641_bib48) 2018; 14 Zheng (10.1016/j.electacta.2020.135641_bib35) 2013; 15 Ueda (10.1016/j.electacta.2020.135641_bib10) 2018; 273 Su (10.1016/j.electacta.2020.135641_bib32) 2011; 11 Periasamy (10.1016/j.electacta.2020.135641_bib18) 2018; 5 Besnardiere (10.1016/j.electacta.2020.135641_bib8) 2019; 10 Qiu (10.1016/j.electacta.2020.135641_bib25) 2016; 4 Li (10.1016/j.electacta.2020.135641_bib13) 2019; 298 Gao (10.1016/j.electacta.2020.135641_bib31) 2013; 1 Wu (10.1016/j.electacta.2020.135641_bib6) 2010; 312 Penn (10.1016/j.electacta.2020.135641_bib59) 1998; 281 Zheng (10.1016/j.electacta.2020.135641_bib47) 2016; 290 Nayak (10.1016/j.electacta.2020.135641_bib19) 2017; 5 Yang (10.1016/j.electacta.2020.135641_bib22) 2018; 383 Xu (10.1016/j.electacta.2020.135641_bib39) 2016; 8 Zheng (10.1016/j.electacta.2020.135641_bib21) 2019; 772 Quan (10.1016/j.electacta.2020.135641_bib53) 2019; 25 Ji (10.1016/j.electacta.2020.135641_bib38) 2019; 299 Arnaiz (10.1016/j.electacta.2020.135641_bib56) 2019; 304 Chen (10.1016/j.electacta.2020.135641_bib12) 2018; 6 Zheng (10.1016/j.electacta.2020.135641_bib30) 2016; 18 Yun (10.1016/j.electacta.2020.135641_bib43) 2019; 13 Ma (10.1016/j.electacta.2020.135641_bib50) 2019; 15 Balaji (10.1016/j.electacta.2020.135641_bib15) 2009; 21 Zheng (10.1016/j.electacta.2020.135641_bib37) 2013; 15 Zheng (10.1016/j.electacta.2020.135641_bib36) 2013; 534 Inamdar (10.1016/j.electacta.2020.135641_bib11) 2018; 2015 Lin (10.1016/j.electacta.2020.135641_bib33) 2018; 140 Liu (10.1016/j.electacta.2020.135641_bib34) 2018; 10 Braglia (10.1016/j.electacta.2020.135641_bib42) 2017; 9 Grey (10.1016/j.electacta.2020.135641_bib7) 2006; 179 Xu (10.1016/j.electacta.2020.135641_bib44) 2018; 404 Zheng (10.1016/j.electacta.2020.135641_bib24) 2017; 712 Shao (10.1016/j.electacta.2020.135641_bib26) 2018; 765 Tang (10.1016/j.electacta.2020.135641_bib54) 2017; 355 Ivanishcheva (10.1016/j.electacta.2020.135641_bib28) 2019; 150 Upadhyay (10.1016/j.electacta.2020.135641_bib27) 2017; 232 Zhang (10.1016/j.electacta.2020.135641_bib14) 2019; 200 Shinde (10.1016/j.electacta.2020.135641_bib23) 2017; 224 Liu (10.1016/j.electacta.2020.135641_bib17) 2018; 141 Ding (10.1016/j.electacta.2020.135641_bib57) 2019; 306 Wang (10.1016/j.electacta.2020.135641_bib55) 2018; 344 Das (10.1016/j.electacta.2020.135641_bib58) 2019; 168 Chen (10.1016/j.electacta.2020.135641_bib3) 2015; 177 Xu (10.1016/j.electacta.2020.135641_bib29) 2015; 174 Samal (10.1016/j.electacta.2020.135641_bib45) 2019; 7 Pecquenard (10.1016/j.electacta.2020.135641_bib5) 1998; 135 Cong (10.1016/j.electacta.2020.135641_bib16) 2014; 26 Tanner (10.1016/j.electacta.2020.135641_bib4) 2000; 104 Wu (10.1016/j.electacta.2020.135641_bib20) 2017; 42 Nayak (10.1016/j.electacta.2020.135641_bib40) 2017; 5 Meng (10.1016/j.electacta.2020.135641_bib52) 2016; 30 Zuleta (10.1016/j.electacta.2020.135641_bib41) 2006; 586 Chang (10.1016/j.electacta.2020.135641_bib49) 2018; 283 |
References_xml | – volume: 283 start-page: 744 year: 2018 end-page: 754 ident: bib49 article-title: High-performance flexible-film supercapacitors of layered hydrous RuO publication-title: Electrochim. Acta – volume: 299 start-page: 245 year: 2019 end-page: 252 ident: bib38 article-title: High mass loading of h-WO publication-title: Electrochim. Acta – volume: 18 start-page: 3891 year: 2016 end-page: 3904 ident: bib30 article-title: Hydrothermal preparation, growth mechanism and supercapacitive properties of WO publication-title: CrystEngComm – volume: 135 start-page: 159 year: 1998 end-page: 168 ident: bib5 article-title: Orthorhombic WO publication-title: J. Solid State Chem. – volume: 13 start-page: 3141 year: 2019 end-page: 3150 ident: bib43 article-title: All-transparent stretchable electrochromic supercapacitor wearable patch device publication-title: ACS Nano – volume: 200 start-page: 109916 year: 2019 ident: bib14 article-title: Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO publication-title: Sol. Energy Mater. Sol. Cells – volume: 315 start-page: 114 year: 2019 end-page: 123 ident: bib46 article-title: Three-dimensional core-shell Fe publication-title: Electrochim. Acta – volume: 232 start-page: 192 year: 2017 end-page: 201 ident: bib27 article-title: On the supercapacitive behaviour of anodic porous WO publication-title: Electrochim. Acta – volume: 224 start-page: 397 year: 2017 end-page: 404 ident: bib23 article-title: Temperature dependent surface morphological modifications of hexagonal WO publication-title: Electrochim. Acta – volume: 772 start-page: 933 year: 2019 end-page: 942 ident: bib21 article-title: Facile preparation of WO publication-title: J. Alloy. Comp. – volume: 8 start-page: 16761 year: 2016 end-page: 16768 ident: bib39 article-title: High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO publication-title: Nanoscale – volume: 7 start-page: 2350 year: 2019 end-page: 2359 ident: bib45 article-title: Facile production of mesoporous WO publication-title: ACS Sustain. Chem. Eng. – volume: 383 start-page: 17 year: 2018 end-page: 23 ident: bib22 article-title: Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor publication-title: J. Power Sources – volume: 344 start-page: 311 year: 2018 end-page: 319 ident: bib55 article-title: Three-dimensional NiCo publication-title: Chem. Eng. J. – volume: 10 start-page: 4209 year: 2018 end-page: 4217 ident: bib34 article-title: Hybrid nanowires and nanoparticles of WO publication-title: Nanoscale – volume: 304 start-page: 437 year: 2019 end-page: 446 ident: bib56 article-title: Furfuryl alcohol derived high-end carbons for ultrafast dual carbon lithium ion capacitors publication-title: Electrochim. Acta – volume: 5 year: 2018 ident: bib18 article-title: Investigation of electrochemical properties of microwave irradiated tungsten oxide (WO publication-title: Mater. Res. Express – volume: 712 start-page: 345 year: 2017 end-page: 354 ident: bib24 article-title: Tertiary structure of cactus-likeWO publication-title: J. Alloy. Comp. – volume: 30 start-page: 831 year: 2016 end-page: 839 ident: bib52 article-title: Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor publication-title: Nano Energy – volume: 4 start-page: 7266 year: 2016 end-page: 7273 ident: bib25 article-title: WO publication-title: J. Mater. Chem. – volume: 141 start-page: 220 year: 2018 end-page: 229 ident: bib17 article-title: Dispersed and size-selected WO publication-title: Mater. Des. – volume: 306 start-page: 549 year: 2019 end-page: 557 ident: bib57 article-title: High-performance supercapacitors based on reduced graphene oxide-wrapped carbon nanoflower with efficient transport pathway of electrons and electrolyte ions publication-title: Electrochim. Acta – volume: 256 start-page: 221 year: 2017 end-page: 231 ident: bib51 article-title: Reduced graphene oxide embedded V publication-title: Electrochim. Acta – volume: 21 start-page: 1381 year: 2009 end-page: 1389 ident: bib15 article-title: Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the Li ion occupancy of four-coordinated square windows publication-title: Chem. Mater. – volume: 6 start-page: 8986 year: 2018 end-page: 8991 ident: bib12 article-title: Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor publication-title: J. Mater. Chem. – volume: 14 start-page: 996 year: 2015 end-page: 1002 ident: bib9 article-title: Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO publication-title: Nat. Mater. – volume: 179 start-page: 3860 year: 2006 end-page: 3869 ident: bib7 article-title: Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals publication-title: J. Solid State Chem. – volume: 104 start-page: 12315 year: 2000 end-page: 12323 ident: bib4 article-title: Identification of alcohol dehydration sites on an oxide surface by scanning tunneling microscopy publication-title: J. Phys. Chem. B – volume: 42 start-page: 143 year: 2017 end-page: 150 ident: bib20 article-title: Flexible electrode materials based on WO publication-title: Nano Energy – volume: 10 start-page: 327 year: 2019 ident: bib8 article-title: Structure and electrochromism of two-dimensional octahedral molecular sieve h’-WO publication-title: Nat. Commun. – volume: 140 start-page: 9078 year: 2018 end-page: 9082 ident: bib33 article-title: Quantitative study of charge carrier dynamics in well-defined WO publication-title: J. Am. Chem. Soc. – volume: 404 start-page: 47 year: 2018 end-page: 55 ident: bib44 article-title: Facile preparation of hierarchical vanadium pentoxide (V publication-title: J. Power Sources – volume: 281 start-page: 969 year: 1998 end-page: 971 ident: bib59 article-title: Imperfect oriented attachment: dislocation generation in defect-free nanocrystals publication-title: Science – volume: 48 start-page: 3015 year: 2019 end-page: 3072 ident: bib1 article-title: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion publication-title: Chem. Soc. Rev. – volume: 177 start-page: 327 year: 2015 end-page: 334 ident: bib3 article-title: Preparation of nitrogen and sulfur dual-doped mesoporous carbon for supercapacitor electrodes with long cycle stability publication-title: Electrochim. Acta – volume: 534 start-page: 45 year: 2013 end-page: 53 ident: bib36 article-title: Controllable preparation of WO publication-title: Thin Solid Films – volume: 2015 start-page: 233 year: 2018 end-page: 237 ident: bib11 article-title: Nanograin tungsten oxide with excess oxygen as a highly reversible anode material for high-performance Li-ion batteries publication-title: Mater. Lett. – volume: 26 start-page: 4260 year: 2014 end-page: 4267 ident: bib16 article-title: Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications publication-title: Adv. Mater. – volume: 174 start-page: 728 year: 2015 ident: bib29 article-title: Tungsten oxide nanofibers self-assembled mesoscopic microspheres as high-performance electrodes for supercapacitor publication-title: Electrochim. Acta – volume: 118 start-page: 9233 year: 2018 end-page: 9280 ident: bib2 article-title: Design and mechanisms of asymmetric supercapacitors publication-title: Chem. Rev. – volume: 168 start-page: 61 year: 2019 end-page: 69 ident: bib58 article-title: Synthesis of polymer composite based on polyaniline-acetylene black-copper ferrite for supercapacitor electrodes publication-title: Polymer – volume: 5 start-page: 10128 year: 2017 end-page: 10138 ident: bib19 article-title: High performance solid-state asymmetric supercapacitor using green synthesized graphene-WO publication-title: ACS Sustain. Chem. Eng. – volume: 5 start-page: 10128 year: 2017 end-page: 10138 ident: bib40 article-title: High performance solid-state asymmetric supercapacitor using green synthesized graphene-WO publication-title: ACS Sustain. Chem. Eng. – volume: 290 start-page: 53 year: 2016 end-page: 61 ident: bib47 article-title: Effect of thickness, component and porosity on the polarization resistance of BaCo publication-title: Solid State Ion. – volume: 765 start-page: 489 year: 2018 end-page: 496 ident: bib26 article-title: Hierarchical micro/nanostructured WO publication-title: J. Alloy. Comp. – volume: 15 year: 2019 ident: bib50 article-title: High-stability MnO publication-title: Small – volume: 298 start-page: 640 year: 2019 end-page: 649 ident: bib13 article-title: Preparation of oxygen-deficient WO publication-title: Electrochim. Acta – volume: 15 start-page: 5828 year: 2013 end-page: 5837 ident: bib37 article-title: Effect of substrate pre-treatment on controllable synthesis of hexagonal WO publication-title: CrystEngComm – volume: 586 start-page: 247 year: 2006 end-page: 259 ident: bib41 article-title: Determination of diffusion coefficients of BF publication-title: J. Electroanal. Chem. – volume: 355 start-page: 1 year: 2017 end-page: 7 ident: bib54 article-title: A novel high energy hybrid Li-ion capacitor with a three-dimensional hierarchical ternary nanostructure of hydrogen-treated TiO publication-title: J. Power Sources – volume: 15 start-page: 277 year: 2013 end-page: 284 ident: bib35 article-title: Hydrothermal preparation and optical properties of orientation-controlled WO publication-title: CrystEngComm – volume: 312 start-page: 3147 year: 2010 end-page: 3150 ident: bib6 article-title: Tetragonal tungsten oxide nanobelts synthesized by chemical vapor deposition publication-title: J. Cryst. Growth – volume: 11 start-page: 203 year: 2011 end-page: 208 ident: bib32 article-title: Vertically aligned WO publication-title: Nano Lett. – volume: 14 start-page: 1702881 year: 2018 ident: bib48 article-title: A new facile synthesis of tungsten oxide from tungsten disulfide: structure dependent supercapacitor and negative differential resistance properties publication-title: Small – volume: 25 start-page: 4757 year: 2019 end-page: 4766 ident: bib53 article-title: Highly dispersible hexagonal carbon-MoS publication-title: Chem. Eur J. – volume: 273 start-page: 826 year: 2018 end-page: 833 ident: bib10 article-title: Enhancement of methylmercaptan sensing response of WO publication-title: Sens. Actuators B Chem. – volume: 150 start-page: 489 year: 2019 end-page: 498 ident: bib28 article-title: Positive effect of surface modification with titanium carbosilicide on performance of lithium-transition metal phosphate cathode materials publication-title: Monatshefte für Chemie - Chemical Monthly – volume: 1 start-page: 7167 year: 2013 end-page: 7173 ident: bib31 article-title: High-performance energy-storage devices based on WO publication-title: J. Mater. Chem. – volume: 9 start-page: 22902 year: 2017 end-page: 22910 ident: bib42 article-title: Bottom-up electrochemical deposition of poly(styrene sulfonate) on nanoarchitectured electrodes publication-title: ACS Appl. Mater. Interfaces – volume: 299 start-page: 245 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib38 article-title: High mass loading of h-WO3 and a-MnO2 on flexible carbon cloth for high-energy aqueous asymmetric supercapacitor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.187 – volume: 26 start-page: 4260 year: 2014 ident: 10.1016/j.electacta.2020.135641_bib16 article-title: Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications publication-title: Adv. Mater. doi: 10.1002/adma.201400447 – volume: 5 start-page: 10128 year: 2017 ident: 10.1016/j.electacta.2020.135641_bib19 article-title: High performance solid-state asymmetric supercapacitor using green synthesized graphene-WO3 nanowires nanocomposite publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02135 – volume: 344 start-page: 311 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib55 article-title: Three-dimensional NiCo2O4@NiCo2O4 core–shell nanocones arrays for high-performance supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.061 – volume: 283 start-page: 744 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib49 article-title: High-performance flexible-film supercapacitors of layered hydrous RuO2/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) through vacuum filtration publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.06.044 – volume: 140 start-page: 9078 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib33 article-title: Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: insight into the crystal facet effect in photocatalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05293 – volume: 6 start-page: 8986 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib12 article-title: Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor publication-title: J. Mater. Chem. doi: 10.1039/C8TA01323C – volume: 2015 start-page: 233 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib11 article-title: Nanograin tungsten oxide with excess oxygen as a highly reversible anode material for high-performance Li-ion batteries publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.12.109 – volume: 42 start-page: 143 year: 2017 ident: 10.1016/j.electacta.2020.135641_bib20 article-title: Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.058 – volume: 150 start-page: 489 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib28 article-title: Positive effect of surface modification with titanium carbosilicide on performance of lithium-transition metal phosphate cathode materials publication-title: Monatshefte für Chemie - Chemical Monthly doi: 10.1007/s00706-018-2314-8 – volume: 534 start-page: 45 year: 2013 ident: 10.1016/j.electacta.2020.135641_bib36 article-title: Controllable preparation of WO3 nanorod arrays by hydrothermal method publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.01.102 – volume: 15 start-page: 5828 year: 2013 ident: 10.1016/j.electacta.2020.135641_bib37 article-title: Effect of substrate pre-treatment on controllable synthesis of hexagonal WO3 nanorod arrays and their electrochromic properties publication-title: CrystEngComm doi: 10.1039/c3ce40494c – volume: 11 start-page: 203 year: 2011 ident: 10.1016/j.electacta.2020.135641_bib32 article-title: Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties publication-title: Nano Lett. doi: 10.1021/nl1034573 – volume: 15 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib50 article-title: High-stability MnOx nanowires@C@MnOx nanosheet core-shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism publication-title: Small doi: 10.1002/smll.201900862 – volume: 25 start-page: 4757 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib53 article-title: Highly dispersible hexagonal carbon-MoS2-carbon nanoplates with hollow sandwich structures for supercapacitors publication-title: Chem. Eur J. doi: 10.1002/chem.201806060 – volume: 232 start-page: 192 year: 2017 ident: 10.1016/j.electacta.2020.135641_bib27 article-title: On the supercapacitive behaviour of anodic porous WO3-based negative electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.02.131 – volume: 355 start-page: 1 year: 2017 ident: 10.1016/j.electacta.2020.135641_bib54 article-title: A novel high energy hybrid Li-ion capacitor with a three-dimensional hierarchical ternary nanostructure of hydrogen-treated TiO2 nanoparticles/conductive polymer/carbon nanotubes anode and an activated carbon cathode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.04.053 – volume: 21 start-page: 1381 year: 2009 ident: 10.1016/j.electacta.2020.135641_bib15 article-title: Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the Li ion occupancy of four-coordinated square windows publication-title: Chem. Mater. doi: 10.1021/cm8034455 – volume: 315 start-page: 114 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib46 article-title: Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.05.073 – volume: 5 start-page: 10128 year: 2017 ident: 10.1016/j.electacta.2020.135641_bib40 article-title: High performance solid-state asymmetric supercapacitor using green synthesized graphene-WO3 nanowires nanocomposite publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02135 – volume: 179 start-page: 3860 year: 2006 ident: 10.1016/j.electacta.2020.135641_bib7 article-title: Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2006.08.030 – volume: 8 start-page: 16761 year: 2016 ident: 10.1016/j.electacta.2020.135641_bib39 article-title: High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes publication-title: Nanoscale doi: 10.1039/C6NR05480C – volume: 200 start-page: 109916 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib14 article-title: Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.109916 – volume: 772 start-page: 933 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib21 article-title: Facile preparation of WO3 nano-fibers with super large aspect ratio for high performance supercapacitor publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.09.085 – volume: 383 start-page: 17 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib22 article-title: Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.035 – volume: 13 start-page: 3141 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib43 article-title: All-transparent stretchable electrochromic supercapacitor wearable patch device publication-title: ACS Nano doi: 10.1021/acsnano.8b08560 – volume: 298 start-page: 640 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib13 article-title: Preparation of oxygen-deficient WO3-x nanosheets and their characterization as anode materials for high-performance Li-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.12.137 – volume: 10 start-page: 4209 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib34 article-title: Hybrid nanowires and nanoparticles of WO3 in a carbon aerogel for supercapacitor applications publication-title: Nanoscale doi: 10.1039/C7NR07191D – volume: 118 start-page: 9233 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib2 article-title: Design and mechanisms of asymmetric supercapacitors publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00252 – volume: 135 start-page: 159 year: 1998 ident: 10.1016/j.electacta.2020.135641_bib5 article-title: Orthorhombic WO3 formed via a Ti-Stabilized WO3·1/3 H2O phase publication-title: J. Solid State Chem. doi: 10.1006/jssc.1997.7618 – volume: 177 start-page: 327 year: 2015 ident: 10.1016/j.electacta.2020.135641_bib3 article-title: Preparation of nitrogen and sulfur dual-doped mesoporous carbon for supercapacitor electrodes with long cycle stability publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.01.093 – volume: 30 start-page: 831 year: 2016 ident: 10.1016/j.electacta.2020.135641_bib52 article-title: Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.012 – volume: 18 start-page: 3891 year: 2016 ident: 10.1016/j.electacta.2020.135641_bib30 article-title: Hydrothermal preparation, growth mechanism and supercapacitive properties of WO3 nanorod arrays grown directly on a Cu substrate publication-title: CrystEngComm doi: 10.1039/C6CE00316H – volume: 404 start-page: 47 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib44 article-title: Facile preparation of hierarchical vanadium pentoxide (V2O5)/titanium dioxide (TiO2) heterojunction composite nano-arrays for high performance supercapacitor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.005 – volume: 14 start-page: 1702881 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib48 article-title: A new facile synthesis of tungsten oxide from tungsten disulfide: structure dependent supercapacitor and negative differential resistance properties publication-title: Small doi: 10.1002/smll.201702881 – volume: 174 start-page: 728 year: 2015 ident: 10.1016/j.electacta.2020.135641_bib29 article-title: Tungsten oxide nanofibers self-assembled mesoscopic microspheres as high-performance electrodes for supercapacitor publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.06.044 – volume: 290 start-page: 53 year: 2016 ident: 10.1016/j.electacta.2020.135641_bib47 article-title: Effect of thickness, component and porosity on the polarization resistance of BaCo0.7Fe0.2Nb0.1O3-δ-Ce0.9Gd0.1O1.95 composite cathode publication-title: Solid State Ion. doi: 10.1016/j.ssi.2016.04.009 – volume: 256 start-page: 221 year: 2017 ident: 10.1016/j.electacta.2020.135641_bib51 article-title: Reduced graphene oxide embedded V2O5 nanorods and porous honey carbon as high performance electrodes for hybrid sodium-ion supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.10.049 – volume: 141 start-page: 220 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib17 article-title: Dispersed and size-selected WO3 nanoparticles in carbon aerogel for supercapacitor applications publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.12.038 – volume: 312 start-page: 3147 year: 2010 ident: 10.1016/j.electacta.2020.135641_bib6 article-title: Tetragonal tungsten oxide nanobelts synthesized by chemical vapor deposition publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2010.07.057 – volume: 586 start-page: 247 year: 2006 ident: 10.1016/j.electacta.2020.135641_bib41 article-title: Determination of diffusion coefficients of BF4- inside carbon nanopores using the single particle microelectrode technique publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2005.09.026 – volume: 9 start-page: 22902 year: 2017 ident: 10.1016/j.electacta.2020.135641_bib42 article-title: Bottom-up electrochemical deposition of poly(styrene sulfonate) on nanoarchitectured electrodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04335 – volume: 304 start-page: 437 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib56 article-title: Furfuryl alcohol derived high-end carbons for ultrafast dual carbon lithium ion capacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.029 – volume: 5 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib18 article-title: Investigation of electrochemical properties of microwave irradiated tungsten oxide (WO3) nanorod structures for supercapacitor electrode in KOH electrolyte publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aad1dc – volume: 765 start-page: 489 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib26 article-title: Hierarchical micro/nanostructured WO3 with structural water for high-performance pseudocapacitors publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2018.06.192 – volume: 712 start-page: 345 year: 2017 ident: 10.1016/j.electacta.2020.135641_bib24 article-title: Tertiary structure of cactus-likeWO3 spheres self-assembled on Cu foil for supercapacitive electrode materials publication-title: J. Alloy. Comp. doi: 10.1016/j.jallcom.2017.04.094 – volume: 224 start-page: 397 year: 2017 ident: 10.1016/j.electacta.2020.135641_bib23 article-title: Temperature dependent surface morphological modifications of hexagonal WO3 thin films for high performance supercapacitor application publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.066 – volume: 15 start-page: 277 year: 2013 ident: 10.1016/j.electacta.2020.135641_bib35 article-title: Hydrothermal preparation and optical properties of orientation-controlled WO3 nanorod arrays on ITO substrates publication-title: CrystEngComm doi: 10.1039/C2CE25996F – volume: 4 start-page: 7266 year: 2016 ident: 10.1016/j.electacta.2020.135641_bib25 article-title: WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis publication-title: J. Mater. Chem. doi: 10.1039/C6TA00237D – volume: 168 start-page: 61 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib58 article-title: Synthesis of polymer composite based on polyaniline-acetylene black-copper ferrite for supercapacitor electrodes publication-title: Polymer doi: 10.1016/j.polymer.2019.01.058 – volume: 7 start-page: 2350 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib45 article-title: Facile production of mesoporous WO3-rGO hybrids for high-performance supercapacitor electrodes: an experimental and computational study publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b05132 – volume: 281 start-page: 969 year: 1998 ident: 10.1016/j.electacta.2020.135641_bib59 article-title: Imperfect oriented attachment: dislocation generation in defect-free nanocrystals publication-title: Science doi: 10.1126/science.281.5379.969 – volume: 14 start-page: 996 year: 2015 ident: 10.1016/j.electacta.2020.135641_bib9 article-title: Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films publication-title: Nat. Mater. doi: 10.1038/nmat4368 – volume: 48 start-page: 3015 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib1 article-title: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00904J – volume: 273 start-page: 826 year: 2018 ident: 10.1016/j.electacta.2020.135641_bib10 article-title: Enhancement of methylmercaptan sensing response of WO3 semiconductor gas sensors by gas reactivity and gas diffusivity publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.06.122 – volume: 10 start-page: 327 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib8 article-title: Structure and electrochromism of two-dimensional octahedral molecular sieve h’-WO3 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07774-x – volume: 1 start-page: 7167 year: 2013 ident: 10.1016/j.electacta.2020.135641_bib31 article-title: High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes publication-title: J. Mater. Chem. doi: 10.1039/c3ta10831g – volume: 306 start-page: 549 year: 2019 ident: 10.1016/j.electacta.2020.135641_bib57 article-title: High-performance supercapacitors based on reduced graphene oxide-wrapped carbon nanoflower with efficient transport pathway of electrons and electrolyte ions publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.155 – volume: 104 start-page: 12315 year: 2000 ident: 10.1016/j.electacta.2020.135641_bib4 article-title: Identification of alcohol dehydration sites on an oxide surface by scanning tunneling microscopy publication-title: J. Phys. Chem. B doi: 10.1021/jp003217o |
SSID | ssj0007670 |
Score | 2.4922037 |
Snippet | Hexagonal tungsten trioxide (h-WO3) nano-materials can be widely used in many fields of optics, electrics and chemistry. In this work, three types of h-WO3... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 135641 |
SubjectTerms | Arrays Crystal structure Different crystallinities Electrode materials Electrodes Exposed faces Flux density Hydrothermal crystal growth Ion storage Morphology Nanoflake arrays Organic chemistry Polycrystals Single crystals Supercapacitor Supercapacitors Tungsten oxides Tungsten trioxide |
Title | Novel diverse-structured h-WO3 nanoflake arrays as electrode materials for high performance supercapacitors |
URI | https://dx.doi.org/10.1016/j.electacta.2020.135641 https://www.proquest.com/docview/2362972358 |
Volume | 334 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FD-pBtCpWa8nB6-pukn15K8VSFevForeQJ1bLtvQhePG3O9lHtYL0IOwl2WQJmdmZL2RmPoTOAQEHlkbMS0SaekyT1JMqdDeF0sbQR2h-XXDfj3oDdvscPtdQp8qFcWGVpe0vbHpurcuey3I3LyfDocvxDShzCQ6gpz4lruInY7HT8ovP7zCPOIr9isXAjV6J8cqpZgQ8cFAkOQdExIK_PNQvW507oO4e2i2RI24Xi9tHNZPV0VanImyro50ftQUP0Ft__G5GWOdxF8Yr6sQupkbjF-_pgeJMZGM7Em8Gi-lUfMywmOGSE0cbDDi2UE0MoBa7msZ48p1igGcLaCnws2ro2HoO0aB7_djpeSWzgqfgPDf3qLFEMxWYJAB4F0uVpMJXgBaslFYKRq0kOtQ2gu4wMXCkoNIyRrQyChAbo0doIxtn5hhhX-jUKhsHQUQYvJdaUso0jAY0ZQ1poKjaTa7KsuOO_WLEq_iyV74UA3di4IUYGshfTpwUlTfWT7mqxMVXlIiDf1g_uVkJmJf_8YwT8O-Oly1MTv7z7VO07Vp5KrzfRBsgcnMGYGYuW7m2ttBm--au1_8CAuf2Sw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqAcEKVFPBbwoT2mJLbzQuoBLaClwPYCKjfjp1hYZVcbHuLCn-ofZJwHL6niUCHlEju2ohl75rM8Mx_AN0TAkWMJDzKZ5wE3NA-Ujv1NoXIptlFWXRcc9ZPeCf91Gp9Owd82F8aHVTa2v7bplbVuWjYbaW6OBwOf4xsx7hMccJ2GjLYM1gf27hbPbeXP_R1U8ndK93aPu72goRYINB5orgJmHTVcRzaLEN-kSme5DDW6S6eUU5Izp6iJjUuwOc4sYmqmHOfUaKsRsnCG836AjxzNhadN-HH_FFeSJmnY0ib433sRVFZx20h88GRKK9KJhEf_comvnEPl8fbmYa6BqmS7lsZnmLLFAsx0W4a4BZh9VszwC1z2Rzd2SEwV6GGDujDt9cQach78-c1IIYuRG8pLS-RkIu9KIkvSkPAYSxA413uBIIomvogyGT_lNJDyGt80OnY98PRAX-HkXeS9CNPFqLBLQEJpcqddGkUJ5divjGKMG_wa4ZuzdBmSVppCN3XOPd3GULQBbRfiUQ3Cq0HUaliG8HHguC718faQrVZd4sWqFeiQ3h7caRUsGsNRCoqAwhPBxdnK_8y9ATO946NDcbjfP1iFT76nysMPOzCN6rdriKSu1Hq1cgmcvfdWeQAs5TMu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+diverse-structured+h-WO3+nanoflake+arrays+as+electrode+materials+for+high+performance+supercapacitors&rft.jtitle=Electrochimica+acta&rft.au=Zheng%2C+Feng&rft.au=Wang%2C+Jing&rft.au=Liu%2C+Wenbo&rft.au=Zhou%2C+Jianmin&rft.date=2020-02-20&rft.issn=0013-4686&rft.volume=334&rft.spage=135641&rft_id=info:doi/10.1016%2Fj.electacta.2020.135641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2020_135641 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |