Novel diverse-structured h-WO3 nanoflake arrays as electrode materials for high performance supercapacitors

Hexagonal tungsten trioxide (h-WO3) nano-materials can be widely used in many fields of optics, electrics and chemistry. In this work, three types of h-WO3 (single crystal, polycrystal and hierarchical) nanoflake arrays (WNFs) are synthesized through a simple hydrothermal method. The morphologies, c...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 334; p. 135641
Main Authors Zheng, Feng, Wang, Jing, Liu, Wenbo, Zhou, Jianmin, Li, Hui, Yu, Yi, Hu, Pengfei, Yan, Wei, Liu, Yang, Li, Rong, Zhen, Qiang, Zhang, Jiujun
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 20.02.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hexagonal tungsten trioxide (h-WO3) nano-materials can be widely used in many fields of optics, electrics and chemistry. In this work, three types of h-WO3 (single crystal, polycrystal and hierarchical) nanoflake arrays (WNFs) are synthesized through a simple hydrothermal method. The morphologies, crystalline degree and exposed faces of these WNFs can be controlled with simple adjustments of reaction parameters. The relationships between the crystal structures and supercapacitive properties of these WNFs are systematically investigated and the results show that: the single crystal WNFs with a fast electron transmitting channel exhibits a high rate performance at high voltage scan rate, while the polycrystal and hierarchical WNFs with more oxygen vacancies and ion storage spaces have relatively high specific capacitances at low scan rate. These WNFs are used to fabricate supercapacitors, which show specific energy density as high as 88.2 W h kg−1 at a power density of 400 W kg−1. It is concluded that the electrode materials should have single structure facilitating the electrons transfer at current collector side and a porous structure for ion storage at the electrolyte side. [Display omitted] •Three different types of h-WO3 nanoflake arrays (WNFs) are synthesized on Cu foils.•The WNFs has a high specific capacitance of 538 F g−1 at 0.5 A g−1.•The WNFs shows an energy density of 88.2 W h kg−1 at a power density of 400 W kg−1.•The single structure facilitates the electrons transfer at the current collector side.•The porous structure could accommodate more ions at the electrolyte side.
AbstractList Hexagonal tungsten trioxide (h-WO3) nano-materials can be widely used in many fields of optics, electrics and chemistry. In this work, three types of h-WO3 (single crystal, polycrystal and hierarchical) nanoflake arrays (WNFs) are synthesized through a simple hydrothermal method. The morphologies, crystalline degree and exposed faces of these WNFs can be controlled with simple adjustments of reaction parameters. The relationships between the crystal structures and supercapacitive properties of these WNFs are systematically investigated and the results show that: the single crystal WNFs with a fast electron transmitting channel exhibits a high rate performance at high voltage scan rate, while the polycrystal and hierarchical WNFs with more oxygen vacancies and ion storage spaces have relatively high specific capacitances at low scan rate. These WNFs are used to fabricate supercapacitors, which show specific energy density as high as 88.2 W h kg−1 at a power density of 400 W kg−1. It is concluded that the electrode materials should have single structure facilitating the electrons transfer at current collector side and a porous structure for ion storage at the electrolyte side. [Display omitted] •Three different types of h-WO3 nanoflake arrays (WNFs) are synthesized on Cu foils.•The WNFs has a high specific capacitance of 538 F g−1 at 0.5 A g−1.•The WNFs shows an energy density of 88.2 W h kg−1 at a power density of 400 W kg−1.•The single structure facilitates the electrons transfer at the current collector side.•The porous structure could accommodate more ions at the electrolyte side.
Hexagonal tungsten trioxide (h-WO3) nano-materials can be widely used in many fields of optics, electrics and chemistry. In this work, three types of h-WO3 (single crystal, polycrystal and hierarchical) nanoflake arrays (WNFs) are synthesized through a simple hydrothermal method. The morphologies, crystalline degree and exposed faces of these WNFs can be controlled with simple adjustments of reaction parameters. The relationships between the crystal structures and supercapacitive properties of these WNFs are systematically investigated and the results show that: the single crystal WNFs with a fast electron transmitting channel exhibits a high rate performance at high voltage scan rate, while the polycrystal and hierarchical WNFs with more oxygen vacancies and ion storage spaces have relatively high specific capacitances at low scan rate. These WNFs are used to fabricate supercapacitors, which show specific energy density as high as 88.2 W h kg−1 at a power density of 400 W kg−1. It is concluded that the electrode materials should have single structure facilitating the electrons transfer at current collector side and a porous structure for ion storage at the electrolyte side.
ArticleNumber 135641
Author Li, Rong
Yu, Yi
Zheng, Feng
Zhen, Qiang
Yan, Wei
Zhang, Jiujun
Li, Hui
Liu, Yang
Zhou, Jianmin
Wang, Jing
Hu, Pengfei
Liu, Wenbo
Author_xml – sequence: 1
  givenname: Feng
  surname: Zheng
  fullname: Zheng, Feng
  organization: Nano-science and Nano-technology Research Center, Shanghai University, Shanghai, 200444, PR China
– sequence: 2
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
  organization: Nano-science and Nano-technology Research Center, Shanghai University, Shanghai, 200444, PR China
– sequence: 3
  givenname: Wenbo
  surname: Liu
  fullname: Liu, Wenbo
  organization: Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, PR China
– sequence: 4
  givenname: Jianmin
  surname: Zhou
  fullname: Zhou, Jianmin
  organization: Nano-science and Nano-technology Research Center, Shanghai University, Shanghai, 200444, PR China
– sequence: 5
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: Nano-science and Nano-technology Research Center, Shanghai University, Shanghai, 200444, PR China
– sequence: 6
  givenname: Yi
  surname: Yu
  fullname: Yu, Yi
  organization: Zhejiang University/University of Illinois at Urbana-Champaign Institude, Zhejiang University, Zhejiang, 314400, PR China
– sequence: 7
  givenname: Pengfei
  surname: Hu
  fullname: Hu, Pengfei
  organization: Laboratory for Microstructures, Shanghai University, Shanghai, 200444, PR China
– sequence: 8
  givenname: Wei
  surname: Yan
  fullname: Yan, Wei
  organization: Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, PR China
– sequence: 9
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  email: yangliu8651@shu.edu.cn
  organization: Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, PR China
– sequence: 10
  givenname: Rong
  surname: Li
  fullname: Li, Rong
  email: li-rong@shu.edu.cn
  organization: Nano-science and Nano-technology Research Center, Shanghai University, Shanghai, 200444, PR China
– sequence: 11
  givenname: Qiang
  surname: Zhen
  fullname: Zhen, Qiang
  organization: Nano-science and Nano-technology Research Center, Shanghai University, Shanghai, 200444, PR China
– sequence: 12
  givenname: Jiujun
  surname: Zhang
  fullname: Zhang, Jiujun
  organization: Institute for Sustainable Energy, Shanghai University, Shanghai, 200444, PR China
BookMark eNqNkE1rGzEQhkVxoHaS3xBBz-voYz_kQw_GtEkgNJeWHIVWGtVy1it3pDXk30eJQw-9NDAwH7zvzPAsyGyMIxByxdmSM95e75YwgM2mxFIwUaayaWv-icy56mQlVbOakTljXFZ1q9rPZJHSjjHWtR2bk6cf8QgDdeEImKBKGSebJwRHt9Xjg6SjGaMfzBNQg2ieEzWJvt3D6IDuTQYMZkjUR6Tb8HtLD4Cl3pvRAk1T6aw5GBtyxHRBznzRwuV7Pie_vn_7ubmt7h9u7jbr-8rWbJUrCV642nJQXHLW9VatDLOsU77vfW9q6XvhGufbMm4UNKqRva9r4SxY2YhanpMvp70HjH8mSFnv4oRjOamFbMWqE7JRRfX1pLIYU0LwunxpcohjRhMGzZl-5at3-i9f_cpXn_gWf_eP_4Bhb_D5A871yQkFwjEA6mQDFGAuYNFrF8N_d7wAm_We1g
CitedBy_id crossref_primary_10_1039_D0NA00423E
crossref_primary_10_1016_j_ijhydene_2022_11_221
crossref_primary_10_1002_ente_202300574
crossref_primary_10_1016_j_electacta_2025_145965
crossref_primary_10_1134_S0036023624700554
crossref_primary_10_1016_j_jallcom_2021_160762
crossref_primary_10_1016_j_jhazmat_2022_128811
crossref_primary_10_1021_acsomega_3c05677
crossref_primary_10_1016_j_jallcom_2022_168620
crossref_primary_10_1016_j_mcat_2021_111545
crossref_primary_10_1039_D3RA04108E
crossref_primary_10_1007_s42114_025_01268_3
crossref_primary_10_1016_j_matchemphys_2023_127915
crossref_primary_10_1039_D1QI01027A
crossref_primary_10_31857_S0044457X24080046
crossref_primary_10_1002_aenm_202400702
crossref_primary_10_1039_D1NR02384E
crossref_primary_10_1039_D1QM00678A
crossref_primary_10_1186_s12951_023_01962_8
crossref_primary_10_1007_s10854_022_08302_w
crossref_primary_10_1007_s42247_024_00760_8
crossref_primary_10_1016_j_jmst_2021_02_037
crossref_primary_10_1016_j_renene_2024_120599
crossref_primary_10_2139_ssrn_4136972
crossref_primary_10_1002_sstr_202300201
crossref_primary_10_1016_j_electacta_2020_136626
crossref_primary_10_1039_D4TA08492F
crossref_primary_10_1016_j_jallcom_2023_172570
crossref_primary_10_1007_s43207_022_00211_2
crossref_primary_10_1002_celc_202200122
crossref_primary_10_1016_j_inoche_2024_113872
crossref_primary_10_1016_j_surfin_2022_102567
crossref_primary_10_1016_j_jallcom_2023_169047
crossref_primary_10_1016_j_materresbull_2023_112328
crossref_primary_10_1038_s41598_022_25707_z
crossref_primary_10_1016_j_susmat_2024_e01097
crossref_primary_10_3390_nano13081418
crossref_primary_10_1016_j_jallcom_2024_176963
crossref_primary_10_1016_j_jallcom_2020_154992
crossref_primary_10_1021_acsaenm_3c00654
crossref_primary_10_3390_nano11030692
Cites_doi 10.1016/j.electacta.2018.12.187
10.1002/adma.201400447
10.1021/acssuschemeng.7b02135
10.1016/j.cej.2018.03.061
10.1016/j.electacta.2018.06.044
10.1021/jacs.8b05293
10.1039/C8TA01323C
10.1016/j.matlet.2017.12.109
10.1016/j.nanoen.2017.10.058
10.1007/s00706-018-2314-8
10.1016/j.tsf.2013.01.102
10.1039/c3ce40494c
10.1021/nl1034573
10.1002/smll.201900862
10.1002/chem.201806060
10.1016/j.electacta.2017.02.131
10.1016/j.jpowsour.2017.04.053
10.1021/cm8034455
10.1016/j.electacta.2019.05.073
10.1016/j.jssc.2006.08.030
10.1039/C6NR05480C
10.1016/j.solmat.2019.109916
10.1016/j.jallcom.2018.09.085
10.1016/j.jpowsour.2018.02.035
10.1021/acsnano.8b08560
10.1016/j.electacta.2018.12.137
10.1039/C7NR07191D
10.1021/acs.chemrev.8b00252
10.1006/jssc.1997.7618
10.1016/j.electacta.2015.01.093
10.1016/j.nanoen.2016.09.012
10.1039/C6CE00316H
10.1016/j.jpowsour.2018.10.005
10.1002/smll.201702881
10.1016/j.electacta.2015.06.044
10.1016/j.ssi.2016.04.009
10.1016/j.electacta.2017.10.049
10.1016/j.matdes.2017.12.038
10.1016/j.jcrysgro.2010.07.057
10.1016/j.jelechem.2005.09.026
10.1021/acsami.7b04335
10.1016/j.electacta.2019.03.029
10.1088/2053-1591/aad1dc
10.1016/j.jallcom.2018.06.192
10.1016/j.jallcom.2017.04.094
10.1016/j.electacta.2016.12.066
10.1039/C2CE25996F
10.1039/C6TA00237D
10.1016/j.polymer.2019.01.058
10.1021/acssuschemeng.8b05132
10.1126/science.281.5379.969
10.1038/nmat4368
10.1039/C8CS00904J
10.1016/j.snb.2018.06.122
10.1038/s41467-018-07774-x
10.1039/c3ta10831g
10.1016/j.electacta.2019.03.155
10.1021/jp003217o
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Feb 20, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 20, 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2020.135641
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2020_135641
S0013468620300323
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
RIG
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c409t-3ef2d4c1e813107bc89a0c078fbbfba43fb2d5df69a058e5853bf442dcec35243
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Mon Jul 14 10:34:12 EDT 2025
Tue Jul 01 03:02:08 EDT 2025
Thu Apr 24 22:55:41 EDT 2025
Fri Feb 23 02:49:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Exposed faces
Supercapacitor
Nanoflake arrays
Different crystallinities
Tungsten trioxide
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-3ef2d4c1e813107bc89a0c078fbbfba43fb2d5df69a058e5853bf442dcec35243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2362972358
PQPubID 2045485
ParticipantIDs proquest_journals_2362972358
crossref_citationtrail_10_1016_j_electacta_2020_135641
crossref_primary_10_1016_j_electacta_2020_135641
elsevier_sciencedirect_doi_10_1016_j_electacta_2020_135641
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-20
PublicationDateYYYYMMDD 2020-02-20
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-20
  day: 20
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Pecquenard, Lecacheux, Livage, Julien (bib5) 1998; 135
Zheng, Song, Lu, Li, Bu, Liu, Li, Hu, Zhen (bib30) 2016; 18
Nayak, Das, Pradhan (bib19) 2017; 5
Penn, Banfield (bib59) 1998; 281
Zheng, Wang, Song, Li, Li, Li, Zhen (bib47) 2016; 290
Balaji, Djaoued, Albert, Ferguson, Bruning (bib15) 2009; 21
Nayak, Das, Pradhan (bib40) 2017; 5
Shinde, Lokhande, Chodankar, Patil, Kim, Lokhande (bib23) 2017; 224
Xu, Zheng, Xi, Yu, Chen, Yang, Hu, Zhen, Bashir (bib44) 2018; 404
Inamdar, Chavan, Ahmed, Cho, Kim, Jo, Pawar, Park, Kim, Im (bib11) 2018; 2015
Kiruthiga, Nithya, Karvembu, Reddy (bib51) 2017; 256
Zheng, Gong, Li, Yang, Xu, Hu, Li, Gong, Zhen (bib24) 2017; 712
Zheng, Zhang, Guo (bib36) 2013; 534
Periasamy, Krishnakumar, Sathish, Devarajan, Siril, Chavali (bib18) 2018; 5
Chen, Wang, Deng, Xu, Wang (bib12) 2018; 6
Zheng, Lu, Guo, Zhang (bib37) 2013; 15
Ueda, Maeda, Huang, Higuchi, Izawa, Kamada, Hyodo, Shimizu (bib10) 2018; 273
Das, Verma (bib58) 2019; 168
Tang, Cao, Xiao, Zhang, Liu (bib54) 2017; 355
Ivanishcheva, Ivanishchev, Dixit (bib28) 2019; 150
Gao, Wang, Xie, Song, Wang, Wu, Qu, Chen, Shen (bib31) 2013; 1
Upadhyay, Altomare, Eugénio, Schmuki, Silva, Montemor (bib27) 2017; 232
Ma, Jing, Fan, Hou, Su, Fan, Shao (bib50) 2019; 15
Arnaiz, Nair, Mitra, Ajuria (bib56) 2019; 304
Liu, Sheng, Zhong, Zhou (bib34) 2018; 10
Zhang, Tian, Li, Dou, Wang, Qu, Zhao, Li (bib14) 2019; 200
Shao, Fan, Liu, Yang, Wang, Chen, Zhang (bib26) 2018; 765
Xu, Li, Wang, Cai, Li, Gao, Zhang, Huo, Chu (bib39) 2016; 8
Wu, Yu, Lian, Bao, Liu, Pei (bib6) 2010; 312
Zheng, Xi, Xu, Yu, Yang, Hu, Li, Zhen, Bashir, Liu (bib21) 2019; 772
Grey, Birch, Bougerol, Mills (bib7) 2006; 179
Qiu, Sun, Shen, Wang, Song, Yu, Tan, Zhao, Mai (bib25) 2016; 4
Xu, Ding, Wang, Zhang, Wang, Chen, Fang, Wu, Huo, Dai (bib29) 2015; 174
Yang, Liu (bib22) 2018; 383
Chang, Zhou, Wu, Ye, Zhou, Li, Zhu, Li, Nie, Du, Xu (bib49) 2018; 283
Li, Chang, Tang, Li, Qin, Hou, Chang (bib13) 2019; 298
Liu, Sheng, Zhong, Zhou (bib17) 2018; 141
Lin, Wan, Xiong, Wu, Cheong, Zhou, Wang, Peng, Chen, Li (bib33) 2018; 140
Tanner, Meethunkij, Altman (bib4) 2000; 104
Meng, Yang, Wu, Wan, Li, Lei, Sun, Liu (bib52) 2016; 30
Besnardiere, Ma, Torres-Pardo, Wallez, Kabbour, González-Calbet, Bardeleben, Fleury, Buissette, Sanchez, Mercier, Cassaignon, Portehault (bib8) 2019; 10
Su, Feng, Sloppy, Guo, Grimes (bib32) 2011; 11
Braglia, Ferrari, Djenizian, Kaciulis, Soltani, Vona, Knauth (bib42) 2017; 9
Wang, Fang, Shi, Huang, Rong, Que (bib55) 2018; 344
Zheng, Guo, Zhang (bib35) 2013; 15
Ding, Yu, Chen, Chen, Chen, Huang, Yang, Zou, Yang, Huang (bib57) 2019; 306
Shao, El-Kady, Sun, Li, Zhang, Zhu, Wang, Dunn, Kaner (bib2) 2018; 118
Chen, Shi, Zhu, Wang, Qiao, Zhang (bib3) 2015; 177
Wen, Granqvist, Niklasson (bib9) 2015; 14
Zuleta, Bjornbom, Lundblad, Nurk, Kasuk, Lust (bib41) 2006; 586
Yun, Park, Kim, Kim, Cheong, Bae, Han, Kim (bib43) 2019; 13
Ma, Hou, Zhang, Zhang, Liu, Wu, Guo (bib46) 2019; 315
Leng, Wang, Wang, Wu, Yan, Li, Guo, Liu, Zhang, Guo (bib1) 2019; 48
Wu, Yao (bib20) 2017; 42
Quan, Goubard-Bretesche, Hark, Kochovski, Mei, Pinna, Ballauff, Lu (bib53) 2019; 25
Ji, Chodankar, Jang, Kim (bib38) 2019; 299
Cong, Tian, Li, Zhao, Geng (bib16) 2014; 26
Mandal, Routh, Nandi (bib48) 2018; 14
Samal, Chakraborty, Saxena, Late, Rout (bib45) 2019; 7
Wen (10.1016/j.electacta.2020.135641_bib9) 2015; 14
Shao (10.1016/j.electacta.2020.135641_bib2) 2018; 118
Ma (10.1016/j.electacta.2020.135641_bib46) 2019; 315
Kiruthiga (10.1016/j.electacta.2020.135641_bib51) 2017; 256
Leng (10.1016/j.electacta.2020.135641_bib1) 2019; 48
Mandal (10.1016/j.electacta.2020.135641_bib48) 2018; 14
Zheng (10.1016/j.electacta.2020.135641_bib35) 2013; 15
Ueda (10.1016/j.electacta.2020.135641_bib10) 2018; 273
Su (10.1016/j.electacta.2020.135641_bib32) 2011; 11
Periasamy (10.1016/j.electacta.2020.135641_bib18) 2018; 5
Besnardiere (10.1016/j.electacta.2020.135641_bib8) 2019; 10
Qiu (10.1016/j.electacta.2020.135641_bib25) 2016; 4
Li (10.1016/j.electacta.2020.135641_bib13) 2019; 298
Gao (10.1016/j.electacta.2020.135641_bib31) 2013; 1
Wu (10.1016/j.electacta.2020.135641_bib6) 2010; 312
Penn (10.1016/j.electacta.2020.135641_bib59) 1998; 281
Zheng (10.1016/j.electacta.2020.135641_bib47) 2016; 290
Nayak (10.1016/j.electacta.2020.135641_bib19) 2017; 5
Yang (10.1016/j.electacta.2020.135641_bib22) 2018; 383
Xu (10.1016/j.electacta.2020.135641_bib39) 2016; 8
Zheng (10.1016/j.electacta.2020.135641_bib21) 2019; 772
Quan (10.1016/j.electacta.2020.135641_bib53) 2019; 25
Ji (10.1016/j.electacta.2020.135641_bib38) 2019; 299
Arnaiz (10.1016/j.electacta.2020.135641_bib56) 2019; 304
Chen (10.1016/j.electacta.2020.135641_bib12) 2018; 6
Zheng (10.1016/j.electacta.2020.135641_bib30) 2016; 18
Yun (10.1016/j.electacta.2020.135641_bib43) 2019; 13
Ma (10.1016/j.electacta.2020.135641_bib50) 2019; 15
Balaji (10.1016/j.electacta.2020.135641_bib15) 2009; 21
Zheng (10.1016/j.electacta.2020.135641_bib37) 2013; 15
Zheng (10.1016/j.electacta.2020.135641_bib36) 2013; 534
Inamdar (10.1016/j.electacta.2020.135641_bib11) 2018; 2015
Lin (10.1016/j.electacta.2020.135641_bib33) 2018; 140
Liu (10.1016/j.electacta.2020.135641_bib34) 2018; 10
Braglia (10.1016/j.electacta.2020.135641_bib42) 2017; 9
Grey (10.1016/j.electacta.2020.135641_bib7) 2006; 179
Xu (10.1016/j.electacta.2020.135641_bib44) 2018; 404
Zheng (10.1016/j.electacta.2020.135641_bib24) 2017; 712
Shao (10.1016/j.electacta.2020.135641_bib26) 2018; 765
Tang (10.1016/j.electacta.2020.135641_bib54) 2017; 355
Ivanishcheva (10.1016/j.electacta.2020.135641_bib28) 2019; 150
Upadhyay (10.1016/j.electacta.2020.135641_bib27) 2017; 232
Zhang (10.1016/j.electacta.2020.135641_bib14) 2019; 200
Shinde (10.1016/j.electacta.2020.135641_bib23) 2017; 224
Liu (10.1016/j.electacta.2020.135641_bib17) 2018; 141
Ding (10.1016/j.electacta.2020.135641_bib57) 2019; 306
Wang (10.1016/j.electacta.2020.135641_bib55) 2018; 344
Das (10.1016/j.electacta.2020.135641_bib58) 2019; 168
Chen (10.1016/j.electacta.2020.135641_bib3) 2015; 177
Xu (10.1016/j.electacta.2020.135641_bib29) 2015; 174
Samal (10.1016/j.electacta.2020.135641_bib45) 2019; 7
Pecquenard (10.1016/j.electacta.2020.135641_bib5) 1998; 135
Cong (10.1016/j.electacta.2020.135641_bib16) 2014; 26
Tanner (10.1016/j.electacta.2020.135641_bib4) 2000; 104
Wu (10.1016/j.electacta.2020.135641_bib20) 2017; 42
Nayak (10.1016/j.electacta.2020.135641_bib40) 2017; 5
Meng (10.1016/j.electacta.2020.135641_bib52) 2016; 30
Zuleta (10.1016/j.electacta.2020.135641_bib41) 2006; 586
Chang (10.1016/j.electacta.2020.135641_bib49) 2018; 283
References_xml – volume: 283
  start-page: 744
  year: 2018
  end-page: 754
  ident: bib49
  article-title: High-performance flexible-film supercapacitors of layered hydrous RuO
  publication-title: Electrochim. Acta
– volume: 299
  start-page: 245
  year: 2019
  end-page: 252
  ident: bib38
  article-title: High mass loading of h-WO
  publication-title: Electrochim. Acta
– volume: 18
  start-page: 3891
  year: 2016
  end-page: 3904
  ident: bib30
  article-title: Hydrothermal preparation, growth mechanism and supercapacitive properties of WO
  publication-title: CrystEngComm
– volume: 135
  start-page: 159
  year: 1998
  end-page: 168
  ident: bib5
  article-title: Orthorhombic WO
  publication-title: J. Solid State Chem.
– volume: 13
  start-page: 3141
  year: 2019
  end-page: 3150
  ident: bib43
  article-title: All-transparent stretchable electrochromic supercapacitor wearable patch device
  publication-title: ACS Nano
– volume: 200
  start-page: 109916
  year: 2019
  ident: bib14
  article-title: Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 315
  start-page: 114
  year: 2019
  end-page: 123
  ident: bib46
  article-title: Three-dimensional core-shell Fe
  publication-title: Electrochim. Acta
– volume: 232
  start-page: 192
  year: 2017
  end-page: 201
  ident: bib27
  article-title: On the supercapacitive behaviour of anodic porous WO
  publication-title: Electrochim. Acta
– volume: 224
  start-page: 397
  year: 2017
  end-page: 404
  ident: bib23
  article-title: Temperature dependent surface morphological modifications of hexagonal WO
  publication-title: Electrochim. Acta
– volume: 772
  start-page: 933
  year: 2019
  end-page: 942
  ident: bib21
  article-title: Facile preparation of WO
  publication-title: J. Alloy. Comp.
– volume: 8
  start-page: 16761
  year: 2016
  end-page: 16768
  ident: bib39
  article-title: High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO
  publication-title: Nanoscale
– volume: 7
  start-page: 2350
  year: 2019
  end-page: 2359
  ident: bib45
  article-title: Facile production of mesoporous WO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 383
  start-page: 17
  year: 2018
  end-page: 23
  ident: bib22
  article-title: Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor
  publication-title: J. Power Sources
– volume: 344
  start-page: 311
  year: 2018
  end-page: 319
  ident: bib55
  article-title: Three-dimensional NiCo
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 4209
  year: 2018
  end-page: 4217
  ident: bib34
  article-title: Hybrid nanowires and nanoparticles of WO
  publication-title: Nanoscale
– volume: 304
  start-page: 437
  year: 2019
  end-page: 446
  ident: bib56
  article-title: Furfuryl alcohol derived high-end carbons for ultrafast dual carbon lithium ion capacitors
  publication-title: Electrochim. Acta
– volume: 5
  year: 2018
  ident: bib18
  article-title: Investigation of electrochemical properties of microwave irradiated tungsten oxide (WO
  publication-title: Mater. Res. Express
– volume: 712
  start-page: 345
  year: 2017
  end-page: 354
  ident: bib24
  article-title: Tertiary structure of cactus-likeWO
  publication-title: J. Alloy. Comp.
– volume: 30
  start-page: 831
  year: 2016
  end-page: 839
  ident: bib52
  article-title: Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor
  publication-title: Nano Energy
– volume: 4
  start-page: 7266
  year: 2016
  end-page: 7273
  ident: bib25
  article-title: WO
  publication-title: J. Mater. Chem.
– volume: 141
  start-page: 220
  year: 2018
  end-page: 229
  ident: bib17
  article-title: Dispersed and size-selected WO
  publication-title: Mater. Des.
– volume: 306
  start-page: 549
  year: 2019
  end-page: 557
  ident: bib57
  article-title: High-performance supercapacitors based on reduced graphene oxide-wrapped carbon nanoflower with efficient transport pathway of electrons and electrolyte ions
  publication-title: Electrochim. Acta
– volume: 256
  start-page: 221
  year: 2017
  end-page: 231
  ident: bib51
  article-title: Reduced graphene oxide embedded V
  publication-title: Electrochim. Acta
– volume: 21
  start-page: 1381
  year: 2009
  end-page: 1389
  ident: bib15
  article-title: Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the Li ion occupancy of four-coordinated square windows
  publication-title: Chem. Mater.
– volume: 6
  start-page: 8986
  year: 2018
  end-page: 8991
  ident: bib12
  article-title: Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor
  publication-title: J. Mater. Chem.
– volume: 14
  start-page: 996
  year: 2015
  end-page: 1002
  ident: bib9
  article-title: Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO
  publication-title: Nat. Mater.
– volume: 179
  start-page: 3860
  year: 2006
  end-page: 3869
  ident: bib7
  article-title: Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals
  publication-title: J. Solid State Chem.
– volume: 104
  start-page: 12315
  year: 2000
  end-page: 12323
  ident: bib4
  article-title: Identification of alcohol dehydration sites on an oxide surface by scanning tunneling microscopy
  publication-title: J. Phys. Chem. B
– volume: 42
  start-page: 143
  year: 2017
  end-page: 150
  ident: bib20
  article-title: Flexible electrode materials based on WO
  publication-title: Nano Energy
– volume: 10
  start-page: 327
  year: 2019
  ident: bib8
  article-title: Structure and electrochromism of two-dimensional octahedral molecular sieve h’-WO
  publication-title: Nat. Commun.
– volume: 140
  start-page: 9078
  year: 2018
  end-page: 9082
  ident: bib33
  article-title: Quantitative study of charge carrier dynamics in well-defined WO
  publication-title: J. Am. Chem. Soc.
– volume: 404
  start-page: 47
  year: 2018
  end-page: 55
  ident: bib44
  article-title: Facile preparation of hierarchical vanadium pentoxide (V
  publication-title: J. Power Sources
– volume: 281
  start-page: 969
  year: 1998
  end-page: 971
  ident: bib59
  article-title: Imperfect oriented attachment: dislocation generation in defect-free nanocrystals
  publication-title: Science
– volume: 48
  start-page: 3015
  year: 2019
  end-page: 3072
  ident: bib1
  article-title: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion
  publication-title: Chem. Soc. Rev.
– volume: 177
  start-page: 327
  year: 2015
  end-page: 334
  ident: bib3
  article-title: Preparation of nitrogen and sulfur dual-doped mesoporous carbon for supercapacitor electrodes with long cycle stability
  publication-title: Electrochim. Acta
– volume: 534
  start-page: 45
  year: 2013
  end-page: 53
  ident: bib36
  article-title: Controllable preparation of WO
  publication-title: Thin Solid Films
– volume: 2015
  start-page: 233
  year: 2018
  end-page: 237
  ident: bib11
  article-title: Nanograin tungsten oxide with excess oxygen as a highly reversible anode material for high-performance Li-ion batteries
  publication-title: Mater. Lett.
– volume: 26
  start-page: 4260
  year: 2014
  end-page: 4267
  ident: bib16
  article-title: Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications
  publication-title: Adv. Mater.
– volume: 174
  start-page: 728
  year: 2015
  ident: bib29
  article-title: Tungsten oxide nanofibers self-assembled mesoscopic microspheres as high-performance electrodes for supercapacitor
  publication-title: Electrochim. Acta
– volume: 118
  start-page: 9233
  year: 2018
  end-page: 9280
  ident: bib2
  article-title: Design and mechanisms of asymmetric supercapacitors
  publication-title: Chem. Rev.
– volume: 168
  start-page: 61
  year: 2019
  end-page: 69
  ident: bib58
  article-title: Synthesis of polymer composite based on polyaniline-acetylene black-copper ferrite for supercapacitor electrodes
  publication-title: Polymer
– volume: 5
  start-page: 10128
  year: 2017
  end-page: 10138
  ident: bib19
  article-title: High performance solid-state asymmetric supercapacitor using green synthesized graphene-WO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 5
  start-page: 10128
  year: 2017
  end-page: 10138
  ident: bib40
  article-title: High performance solid-state asymmetric supercapacitor using green synthesized graphene-WO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 290
  start-page: 53
  year: 2016
  end-page: 61
  ident: bib47
  article-title: Effect of thickness, component and porosity on the polarization resistance of BaCo
  publication-title: Solid State Ion.
– volume: 765
  start-page: 489
  year: 2018
  end-page: 496
  ident: bib26
  article-title: Hierarchical micro/nanostructured WO
  publication-title: J. Alloy. Comp.
– volume: 15
  year: 2019
  ident: bib50
  article-title: High-stability MnO
  publication-title: Small
– volume: 298
  start-page: 640
  year: 2019
  end-page: 649
  ident: bib13
  article-title: Preparation of oxygen-deficient WO
  publication-title: Electrochim. Acta
– volume: 15
  start-page: 5828
  year: 2013
  end-page: 5837
  ident: bib37
  article-title: Effect of substrate pre-treatment on controllable synthesis of hexagonal WO
  publication-title: CrystEngComm
– volume: 586
  start-page: 247
  year: 2006
  end-page: 259
  ident: bib41
  article-title: Determination of diffusion coefficients of BF
  publication-title: J. Electroanal. Chem.
– volume: 355
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib54
  article-title: A novel high energy hybrid Li-ion capacitor with a three-dimensional hierarchical ternary nanostructure of hydrogen-treated TiO
  publication-title: J. Power Sources
– volume: 15
  start-page: 277
  year: 2013
  end-page: 284
  ident: bib35
  article-title: Hydrothermal preparation and optical properties of orientation-controlled WO
  publication-title: CrystEngComm
– volume: 312
  start-page: 3147
  year: 2010
  end-page: 3150
  ident: bib6
  article-title: Tetragonal tungsten oxide nanobelts synthesized by chemical vapor deposition
  publication-title: J. Cryst. Growth
– volume: 11
  start-page: 203
  year: 2011
  end-page: 208
  ident: bib32
  article-title: Vertically aligned WO
  publication-title: Nano Lett.
– volume: 14
  start-page: 1702881
  year: 2018
  ident: bib48
  article-title: A new facile synthesis of tungsten oxide from tungsten disulfide: structure dependent supercapacitor and negative differential resistance properties
  publication-title: Small
– volume: 25
  start-page: 4757
  year: 2019
  end-page: 4766
  ident: bib53
  article-title: Highly dispersible hexagonal carbon-MoS
  publication-title: Chem. Eur J.
– volume: 273
  start-page: 826
  year: 2018
  end-page: 833
  ident: bib10
  article-title: Enhancement of methylmercaptan sensing response of WO
  publication-title: Sens. Actuators B Chem.
– volume: 150
  start-page: 489
  year: 2019
  end-page: 498
  ident: bib28
  article-title: Positive effect of surface modification with titanium carbosilicide on performance of lithium-transition metal phosphate cathode materials
  publication-title: Monatshefte für Chemie - Chemical Monthly
– volume: 1
  start-page: 7167
  year: 2013
  end-page: 7173
  ident: bib31
  article-title: High-performance energy-storage devices based on WO
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 22902
  year: 2017
  end-page: 22910
  ident: bib42
  article-title: Bottom-up electrochemical deposition of poly(styrene sulfonate) on nanoarchitectured electrodes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 299
  start-page: 245
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib38
  article-title: High mass loading of h-WO3 and a-MnO2 on flexible carbon cloth for high-energy aqueous asymmetric supercapacitor
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.187
– volume: 26
  start-page: 4260
  year: 2014
  ident: 10.1016/j.electacta.2020.135641_bib16
  article-title: Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400447
– volume: 5
  start-page: 10128
  year: 2017
  ident: 10.1016/j.electacta.2020.135641_bib19
  article-title: High performance solid-state asymmetric supercapacitor using green synthesized graphene-WO3 nanowires nanocomposite
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02135
– volume: 344
  start-page: 311
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib55
  article-title: Three-dimensional NiCo2O4@NiCo2O4 core–shell nanocones arrays for high-performance supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.061
– volume: 283
  start-page: 744
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib49
  article-title: High-performance flexible-film supercapacitors of layered hydrous RuO2/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) through vacuum filtration
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.06.044
– volume: 140
  start-page: 9078
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib33
  article-title: Quantitative study of charge carrier dynamics in well-defined WO3 nanowires and nanosheets: insight into the crystal facet effect in photocatalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05293
– volume: 6
  start-page: 8986
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib12
  article-title: Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA01323C
– volume: 2015
  start-page: 233
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib11
  article-title: Nanograin tungsten oxide with excess oxygen as a highly reversible anode material for high-performance Li-ion batteries
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.12.109
– volume: 42
  start-page: 143
  year: 2017
  ident: 10.1016/j.electacta.2020.135641_bib20
  article-title: Flexible electrode materials based on WO3 nanotube bundles for high performance energy storage devices
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.058
– volume: 150
  start-page: 489
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib28
  article-title: Positive effect of surface modification with titanium carbosilicide on performance of lithium-transition metal phosphate cathode materials
  publication-title: Monatshefte für Chemie - Chemical Monthly
  doi: 10.1007/s00706-018-2314-8
– volume: 534
  start-page: 45
  year: 2013
  ident: 10.1016/j.electacta.2020.135641_bib36
  article-title: Controllable preparation of WO3 nanorod arrays by hydrothermal method
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.01.102
– volume: 15
  start-page: 5828
  year: 2013
  ident: 10.1016/j.electacta.2020.135641_bib37
  article-title: Effect of substrate pre-treatment on controllable synthesis of hexagonal WO3 nanorod arrays and their electrochromic properties
  publication-title: CrystEngComm
  doi: 10.1039/c3ce40494c
– volume: 11
  start-page: 203
  year: 2011
  ident: 10.1016/j.electacta.2020.135641_bib32
  article-title: Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties
  publication-title: Nano Lett.
  doi: 10.1021/nl1034573
– volume: 15
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib50
  article-title: High-stability MnOx nanowires@C@MnOx nanosheet core-shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism
  publication-title: Small
  doi: 10.1002/smll.201900862
– volume: 25
  start-page: 4757
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib53
  article-title: Highly dispersible hexagonal carbon-MoS2-carbon nanoplates with hollow sandwich structures for supercapacitors
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201806060
– volume: 232
  start-page: 192
  year: 2017
  ident: 10.1016/j.electacta.2020.135641_bib27
  article-title: On the supercapacitive behaviour of anodic porous WO3-based negative electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.02.131
– volume: 355
  start-page: 1
  year: 2017
  ident: 10.1016/j.electacta.2020.135641_bib54
  article-title: A novel high energy hybrid Li-ion capacitor with a three-dimensional hierarchical ternary nanostructure of hydrogen-treated TiO2 nanoparticles/conductive polymer/carbon nanotubes anode and an activated carbon cathode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.04.053
– volume: 21
  start-page: 1381
  year: 2009
  ident: 10.1016/j.electacta.2020.135641_bib15
  article-title: Hexagonal tungsten oxide based electrochromic devices: spectroscopic evidence for the Li ion occupancy of four-coordinated square windows
  publication-title: Chem. Mater.
  doi: 10.1021/cm8034455
– volume: 315
  start-page: 114
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib46
  article-title: Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.05.073
– volume: 5
  start-page: 10128
  year: 2017
  ident: 10.1016/j.electacta.2020.135641_bib40
  article-title: High performance solid-state asymmetric supercapacitor using green synthesized graphene-WO3 nanowires nanocomposite
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02135
– volume: 179
  start-page: 3860
  year: 2006
  ident: 10.1016/j.electacta.2020.135641_bib7
  article-title: Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2006.08.030
– volume: 8
  start-page: 16761
  year: 2016
  ident: 10.1016/j.electacta.2020.135641_bib39
  article-title: High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes
  publication-title: Nanoscale
  doi: 10.1039/C6NR05480C
– volume: 200
  start-page: 109916
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib14
  article-title: Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.109916
– volume: 772
  start-page: 933
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib21
  article-title: Facile preparation of WO3 nano-fibers with super large aspect ratio for high performance supercapacitor
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.09.085
– volume: 383
  start-page: 17
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib22
  article-title: Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.035
– volume: 13
  start-page: 3141
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib43
  article-title: All-transparent stretchable electrochromic supercapacitor wearable patch device
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08560
– volume: 298
  start-page: 640
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib13
  article-title: Preparation of oxygen-deficient WO3-x nanosheets and their characterization as anode materials for high-performance Li-ion batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.12.137
– volume: 10
  start-page: 4209
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib34
  article-title: Hybrid nanowires and nanoparticles of WO3 in a carbon aerogel for supercapacitor applications
  publication-title: Nanoscale
  doi: 10.1039/C7NR07191D
– volume: 118
  start-page: 9233
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib2
  article-title: Design and mechanisms of asymmetric supercapacitors
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00252
– volume: 135
  start-page: 159
  year: 1998
  ident: 10.1016/j.electacta.2020.135641_bib5
  article-title: Orthorhombic WO3 formed via a Ti-Stabilized WO3·1/3 H2O phase
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1997.7618
– volume: 177
  start-page: 327
  year: 2015
  ident: 10.1016/j.electacta.2020.135641_bib3
  article-title: Preparation of nitrogen and sulfur dual-doped mesoporous carbon for supercapacitor electrodes with long cycle stability
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.01.093
– volume: 30
  start-page: 831
  year: 2016
  ident: 10.1016/j.electacta.2020.135641_bib52
  article-title: Hierarchical mesoporous NiO nanoarrays with ultrahigh capacitance for aqueous hybrid supercapacitor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.012
– volume: 18
  start-page: 3891
  year: 2016
  ident: 10.1016/j.electacta.2020.135641_bib30
  article-title: Hydrothermal preparation, growth mechanism and supercapacitive properties of WO3 nanorod arrays grown directly on a Cu substrate
  publication-title: CrystEngComm
  doi: 10.1039/C6CE00316H
– volume: 404
  start-page: 47
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib44
  article-title: Facile preparation of hierarchical vanadium pentoxide (V2O5)/titanium dioxide (TiO2) heterojunction composite nano-arrays for high performance supercapacitor
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.005
– volume: 14
  start-page: 1702881
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib48
  article-title: A new facile synthesis of tungsten oxide from tungsten disulfide: structure dependent supercapacitor and negative differential resistance properties
  publication-title: Small
  doi: 10.1002/smll.201702881
– volume: 174
  start-page: 728
  year: 2015
  ident: 10.1016/j.electacta.2020.135641_bib29
  article-title: Tungsten oxide nanofibers self-assembled mesoscopic microspheres as high-performance electrodes for supercapacitor
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.06.044
– volume: 290
  start-page: 53
  year: 2016
  ident: 10.1016/j.electacta.2020.135641_bib47
  article-title: Effect of thickness, component and porosity on the polarization resistance of BaCo0.7Fe0.2Nb0.1O3-δ-Ce0.9Gd0.1O1.95 composite cathode
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2016.04.009
– volume: 256
  start-page: 221
  year: 2017
  ident: 10.1016/j.electacta.2020.135641_bib51
  article-title: Reduced graphene oxide embedded V2O5 nanorods and porous honey carbon as high performance electrodes for hybrid sodium-ion supercapacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.10.049
– volume: 141
  start-page: 220
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib17
  article-title: Dispersed and size-selected WO3 nanoparticles in carbon aerogel for supercapacitor applications
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.12.038
– volume: 312
  start-page: 3147
  year: 2010
  ident: 10.1016/j.electacta.2020.135641_bib6
  article-title: Tetragonal tungsten oxide nanobelts synthesized by chemical vapor deposition
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2010.07.057
– volume: 586
  start-page: 247
  year: 2006
  ident: 10.1016/j.electacta.2020.135641_bib41
  article-title: Determination of diffusion coefficients of BF4- inside carbon nanopores using the single particle microelectrode technique
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2005.09.026
– volume: 9
  start-page: 22902
  year: 2017
  ident: 10.1016/j.electacta.2020.135641_bib42
  article-title: Bottom-up electrochemical deposition of poly(styrene sulfonate) on nanoarchitectured electrodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04335
– volume: 304
  start-page: 437
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib56
  article-title: Furfuryl alcohol derived high-end carbons for ultrafast dual carbon lithium ion capacitors
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.03.029
– volume: 5
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib18
  article-title: Investigation of electrochemical properties of microwave irradiated tungsten oxide (WO3) nanorod structures for supercapacitor electrode in KOH electrolyte
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aad1dc
– volume: 765
  start-page: 489
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib26
  article-title: Hierarchical micro/nanostructured WO3 with structural water for high-performance pseudocapacitors
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2018.06.192
– volume: 712
  start-page: 345
  year: 2017
  ident: 10.1016/j.electacta.2020.135641_bib24
  article-title: Tertiary structure of cactus-likeWO3 spheres self-assembled on Cu foil for supercapacitive electrode materials
  publication-title: J. Alloy. Comp.
  doi: 10.1016/j.jallcom.2017.04.094
– volume: 224
  start-page: 397
  year: 2017
  ident: 10.1016/j.electacta.2020.135641_bib23
  article-title: Temperature dependent surface morphological modifications of hexagonal WO3 thin films for high performance supercapacitor application
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.066
– volume: 15
  start-page: 277
  year: 2013
  ident: 10.1016/j.electacta.2020.135641_bib35
  article-title: Hydrothermal preparation and optical properties of orientation-controlled WO3 nanorod arrays on ITO substrates
  publication-title: CrystEngComm
  doi: 10.1039/C2CE25996F
– volume: 4
  start-page: 7266
  year: 2016
  ident: 10.1016/j.electacta.2020.135641_bib25
  article-title: WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA00237D
– volume: 168
  start-page: 61
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib58
  article-title: Synthesis of polymer composite based on polyaniline-acetylene black-copper ferrite for supercapacitor electrodes
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.01.058
– volume: 7
  start-page: 2350
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib45
  article-title: Facile production of mesoporous WO3-rGO hybrids for high-performance supercapacitor electrodes: an experimental and computational study
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05132
– volume: 281
  start-page: 969
  year: 1998
  ident: 10.1016/j.electacta.2020.135641_bib59
  article-title: Imperfect oriented attachment: dislocation generation in defect-free nanocrystals
  publication-title: Science
  doi: 10.1126/science.281.5379.969
– volume: 14
  start-page: 996
  year: 2015
  ident: 10.1016/j.electacta.2020.135641_bib9
  article-title: Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4368
– volume: 48
  start-page: 3015
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib1
  article-title: Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00904J
– volume: 273
  start-page: 826
  year: 2018
  ident: 10.1016/j.electacta.2020.135641_bib10
  article-title: Enhancement of methylmercaptan sensing response of WO3 semiconductor gas sensors by gas reactivity and gas diffusivity
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.06.122
– volume: 10
  start-page: 327
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib8
  article-title: Structure and electrochromism of two-dimensional octahedral molecular sieve h’-WO3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07774-x
– volume: 1
  start-page: 7167
  year: 2013
  ident: 10.1016/j.electacta.2020.135641_bib31
  article-title: High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes
  publication-title: J. Mater. Chem.
  doi: 10.1039/c3ta10831g
– volume: 306
  start-page: 549
  year: 2019
  ident: 10.1016/j.electacta.2020.135641_bib57
  article-title: High-performance supercapacitors based on reduced graphene oxide-wrapped carbon nanoflower with efficient transport pathway of electrons and electrolyte ions
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.03.155
– volume: 104
  start-page: 12315
  year: 2000
  ident: 10.1016/j.electacta.2020.135641_bib4
  article-title: Identification of alcohol dehydration sites on an oxide surface by scanning tunneling microscopy
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp003217o
SSID ssj0007670
Score 2.4922037
Snippet Hexagonal tungsten trioxide (h-WO3) nano-materials can be widely used in many fields of optics, electrics and chemistry. In this work, three types of h-WO3...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 135641
SubjectTerms Arrays
Crystal structure
Different crystallinities
Electrode materials
Electrodes
Exposed faces
Flux density
Hydrothermal crystal growth
Ion storage
Morphology
Nanoflake arrays
Organic chemistry
Polycrystals
Single crystals
Supercapacitor
Supercapacitors
Tungsten oxides
Tungsten trioxide
Title Novel diverse-structured h-WO3 nanoflake arrays as electrode materials for high performance supercapacitors
URI https://dx.doi.org/10.1016/j.electacta.2020.135641
https://www.proquest.com/docview/2362972358
Volume 334
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FD-pBtCpWa8nB6-pukn15K8VSFevForeQJ1bLtvQhePG3O9lHtYL0IOwl2WQJmdmZL2RmPoTOAQEHlkbMS0SaekyT1JMqdDeF0sbQR2h-XXDfj3oDdvscPtdQp8qFcWGVpe0vbHpurcuey3I3LyfDocvxDShzCQ6gpz4lruInY7HT8ovP7zCPOIr9isXAjV6J8cqpZgQ8cFAkOQdExIK_PNQvW507oO4e2i2RI24Xi9tHNZPV0VanImyro50ftQUP0Ft__G5GWOdxF8Yr6sQupkbjF-_pgeJMZGM7Em8Gi-lUfMywmOGSE0cbDDi2UE0MoBa7msZ48p1igGcLaCnws2ro2HoO0aB7_djpeSWzgqfgPDf3qLFEMxWYJAB4F0uVpMJXgBaslFYKRq0kOtQ2gu4wMXCkoNIyRrQyChAbo0doIxtn5hhhX-jUKhsHQUQYvJdaUso0jAY0ZQ1poKjaTa7KsuOO_WLEq_iyV74UA3di4IUYGshfTpwUlTfWT7mqxMVXlIiDf1g_uVkJmJf_8YwT8O-Oly1MTv7z7VO07Vp5KrzfRBsgcnMGYGYuW7m2ttBm--au1_8CAuf2Sw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ReqAcEKVFPBbwoT2mJLbzQuoBLaClwPYCKjfjp1hYZVcbHuLCn-ofZJwHL6niUCHlEju2ohl75rM8Mx_AN0TAkWMJDzKZ5wE3NA-Ujv1NoXIptlFWXRcc9ZPeCf91Gp9Owd82F8aHVTa2v7bplbVuWjYbaW6OBwOf4xsx7hMccJ2GjLYM1gf27hbPbeXP_R1U8ndK93aPu72goRYINB5orgJmHTVcRzaLEN-kSme5DDW6S6eUU5Izp6iJjUuwOc4sYmqmHOfUaKsRsnCG836AjxzNhadN-HH_FFeSJmnY0ib433sRVFZx20h88GRKK9KJhEf_comvnEPl8fbmYa6BqmS7lsZnmLLFAsx0W4a4BZh9VszwC1z2Rzd2SEwV6GGDujDt9cQach78-c1IIYuRG8pLS-RkIu9KIkvSkPAYSxA413uBIIomvogyGT_lNJDyGt80OnY98PRAX-HkXeS9CNPFqLBLQEJpcqddGkUJ5divjGKMG_wa4ZuzdBmSVppCN3XOPd3GULQBbRfiUQ3Cq0HUaliG8HHguC718faQrVZd4sWqFeiQ3h7caRUsGsNRCoqAwhPBxdnK_8y9ATO946NDcbjfP1iFT76nysMPOzCN6rdriKSu1Hq1cgmcvfdWeQAs5TMu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+diverse-structured+h-WO3+nanoflake+arrays+as+electrode+materials+for+high+performance+supercapacitors&rft.jtitle=Electrochimica+acta&rft.au=Zheng%2C+Feng&rft.au=Wang%2C+Jing&rft.au=Liu%2C+Wenbo&rft.au=Zhou%2C+Jianmin&rft.date=2020-02-20&rft.issn=0013-4686&rft.volume=334&rft.spage=135641&rft_id=info:doi/10.1016%2Fj.electacta.2020.135641&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_electacta_2020_135641
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon