Interlayer fractional quantum Hall effect in a coupled graphene double layer

When a strong magnetic field is applied to a two-dimensional electron system, interactions between the electrons can cause fractional quantum Hall (FQH) effects 1 , 2 . Bringing two two-dimensional conductors close to each other, a new set of correlated states can emerge due to interactions between...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 15; no. 9; pp. 893 - 897
Main Authors Liu, Xiaomeng, Hao, Zeyu, Watanabe, Kenji, Taniguchi, Takashi, Halperin, Bertrand I., Kim, Philip
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.09.2019
Nature Publishing Group
Nature Publishing Group (NPG)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When a strong magnetic field is applied to a two-dimensional electron system, interactions between the electrons can cause fractional quantum Hall (FQH) effects 1 , 2 . Bringing two two-dimensional conductors close to each other, a new set of correlated states can emerge due to interactions between electrons in the same and opposite layers 3 – 6 . Here we report interlayer-correlated FQH states in a device consisting of two parallel graphene layers separated by a thin insulator. Current flow in one layer generates different quantized Hall signals in the two layers. This result is interpreted using composite fermion (CF) theory 7 with different intralayer and interlayer Chern–Simons gauge-field couplings. We observe FQH states corresponding to integer values of CF Landau level (LL) filling in both layers, as well as ‘semiquantized’ states, where a full CF LL couples to a continuously varying partially filled CF LL. We also find a quantized state between two coupled half-filled CF LLs and attribute it to an interlayer CF exciton condensate. Transport data reveal interlayer composite fermion fractional quantum Hall states in double-layer graphene. The authors also show that these can pair up to form an interlayer composite fermion exciton condensate.
AbstractList When a strong magnetic field is applied to a two-dimensional electron system, interactions between the electrons can cause fractional quantum Hall (FQH) effects1,2. Bringing two two-dimensional conductors close to each other, a new set of correlated states can emerge due to interactions between electrons in the same and opposite layers3–6. Here we report interlayer-correlated FQH states in a device consisting of two parallel graphene layers separated by a thin insulator. Current flow in one layer generates different quantized Hall signals in the two layers. This result is interpreted using composite fermion (CF) theory7 with different intralayer and interlayer Chern–Simons gauge-field couplings. We observe FQH states corresponding to integer values of CF Landau level (LL) filling in both layers, as well as ‘semiquantized’ states, where a full CF LL couples to a continuously varying partially filled CF LL. We also find a quantized state between two coupled half-filled CF LLs and attribute it to an interlayer CF exciton condensate.
Not provided.
When a strong magnetic field is applied to a two-dimensional electron system, interactions between the electrons can cause fractional quantum Hall (FQH) effects 1 , 2 . Bringing two two-dimensional conductors close to each other, a new set of correlated states can emerge due to interactions between electrons in the same and opposite layers 3 – 6 . Here we report interlayer-correlated FQH states in a device consisting of two parallel graphene layers separated by a thin insulator. Current flow in one layer generates different quantized Hall signals in the two layers. This result is interpreted using composite fermion (CF) theory 7 with different intralayer and interlayer Chern–Simons gauge-field couplings. We observe FQH states corresponding to integer values of CF Landau level (LL) filling in both layers, as well as ‘semiquantized’ states, where a full CF LL couples to a continuously varying partially filled CF LL. We also find a quantized state between two coupled half-filled CF LLs and attribute it to an interlayer CF exciton condensate. Transport data reveal interlayer composite fermion fractional quantum Hall states in double-layer graphene. The authors also show that these can pair up to form an interlayer composite fermion exciton condensate.
Author Kim, Philip
Watanabe, Kenji
Taniguchi, Takashi
Halperin, Bertrand I.
Liu, Xiaomeng
Hao, Zeyu
Author_xml – sequence: 1
  givenname: Xiaomeng
  surname: Liu
  fullname: Liu, Xiaomeng
  organization: Department of Physics, Harvard University
– sequence: 2
  givenname: Zeyu
  surname: Hao
  fullname: Hao, Zeyu
  organization: Department of Physics, Harvard University
– sequence: 3
  givenname: Kenji
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: National Institute for Material Science
– sequence: 4
  givenname: Takashi
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: National Institute for Material Science
– sequence: 5
  givenname: Bertrand I.
  surname: Halperin
  fullname: Halperin, Bertrand I.
  organization: Department of Physics, Harvard University
– sequence: 6
  givenname: Philip
  surname: Kim
  fullname: Kim, Philip
  email: pkim@physics.harvard.edu
  organization: Department of Physics, Harvard University
BackLink https://www.osti.gov/biblio/1611748$$D View this record in Osti.gov
BookMark eNp9kEFLwzAYhoNMcJv-AG9Bz9Wk6ZL2KEOdMPCi5_A1TbaOLumS9LB_b2ZFQdBLEsj7vHzfM0MT66xG6JqSO0pYeR8KuuAiI7TKyKLgGTlDUyqKRZYXJZ18vwW7QLMQdoQUOadsitYvNmrfwVF7bDyo2DoLHT4MYOOwxyvoOqyN0Sri1mLAyg19pxu88dBvtdW4cUPdafzZcInODXRBX33dc_T-9Pi2XGXr1-eX5cM6UwWpYsYEEFFxUxtIR6E0EaJuclULCiVQVjJVA00fZakLZWre5FwYwwxtOIWGszm6GXtdiK0Mqo1abZWzNo0pKadp2TKFbsdQ791h0CHKnRt8Wi7IPC9ZxXPORUqJMaW8C8FrI1MbnCxED20nKZEnv3L0K5NfefIrSSLpL7L37R788V8mH5mQsnaj_c9Mf0MfCNyPbg
CitedBy_id crossref_primary_10_1038_s41586_024_08274_3
crossref_primary_10_1021_acs_jpclett_2c01540
crossref_primary_10_1038_s41598_022_06486_z
crossref_primary_10_1016_j_matt_2021_08_020
crossref_primary_10_1126_science_abg1110
crossref_primary_10_1103_PhysRevB_104_245124
crossref_primary_10_1103_PhysRevLett_127_247701
crossref_primary_10_1038_s41467_023_37197_2
crossref_primary_10_1088_1674_1056_aba605
crossref_primary_10_1103_PhysRevB_101_085412
crossref_primary_10_1103_PhysRevB_111_035417
crossref_primary_10_1016_j_checat_2022_02_015
crossref_primary_10_1038_s41467_024_55486_2
crossref_primary_10_1103_PhysRevB_106_155132
crossref_primary_10_1140_epjc_s10052_020_7775_3
crossref_primary_10_1038_s41467_023_37644_0
crossref_primary_10_1016_j_matt_2022_04_033
crossref_primary_10_1021_acs_jpcc_0c01869
crossref_primary_10_1103_PhysRevResearch_2_033085
crossref_primary_10_1103_PhysRevB_109_035305
crossref_primary_10_1126_sciadv_aay8409
crossref_primary_10_1002_adfm_202214050
crossref_primary_10_1103_PhysRevB_105_125128
crossref_primary_10_1038_s41598_021_94563_0
crossref_primary_10_1088_2053_1583_ac5536
crossref_primary_10_1103_PhysRevB_105_184104
crossref_primary_10_1103_PhysRevLett_125_203901
crossref_primary_10_1038_s41567_022_01703_y
crossref_primary_10_21468_SciPostPhys_8_2_031
crossref_primary_10_1103_PhysRevLett_133_096301
crossref_primary_10_1088_0256_307X_39_1_017301
crossref_primary_10_1146_annurev_conmatphys_060120_092219
crossref_primary_10_5802_crphys_232
crossref_primary_10_1063_5_0153703
crossref_primary_10_1103_PhysRevB_107_115163
crossref_primary_10_7498_aps_70_20201419
crossref_primary_10_1021_acs_nanolett_2c03836
crossref_primary_10_21468_SciPostPhys_13_4_094
crossref_primary_10_1103_RevModPhys_92_045001
crossref_primary_10_31857_S123456782301010X
crossref_primary_10_1063_5_0034996
crossref_primary_10_1103_PhysRevB_108_085111
crossref_primary_10_1038_s41598_022_22812_x
crossref_primary_10_1007_s40042_021_00076_4
crossref_primary_10_1038_s42005_024_01759_7
crossref_primary_10_1103_PhysRevB_108_024502
crossref_primary_10_1103_PhysRevLett_132_176502
crossref_primary_10_1021_acs_nanolett_1c00360
crossref_primary_10_1134_S0021364022602974
crossref_primary_10_1103_PhysRevB_105_L140506
crossref_primary_10_1103_PhysRevB_103_L201118
crossref_primary_10_1002_inf2_12121
crossref_primary_10_1038_s41567_019_0572_y
crossref_primary_10_1063_5_0109404
crossref_primary_10_1103_PhysRevB_105_035405
crossref_primary_10_1103_PhysRevB_105_L121406
crossref_primary_10_1103_PhysRevB_101_195310
crossref_primary_10_1002_advs_202300574
crossref_primary_10_1103_PhysRevB_110_165126
Cites_doi 10.1038/nature23893
10.1103/PhysRevLett.68.1379
10.1038/nphys4140
10.1088/0953-8984/8/39/001
10.1103/PhysRevLett.68.1383
10.1103/PhysRevLett.63.199
10.1103/PhysRevLett.59.2784
10.1103/PhysRevLett.52.1583
10.1103/PhysRevB.64.085313
10.1103/PhysRevLett.93.036802
10.1103/PhysRevB.91.205139
10.1103/PhysRevB.82.233301
10.1146/annurev-conmatphys-031113-133832
10.1103/PhysRevB.39.1932
10.1103/PhysRevLett.48.1559
10.1103/PhysRevLett.84.5808
10.1038/nphys4116
10.1103/PhysRevB.47.4394
10.1103/PhysRevLett.93.036801
10.1103/PhysRevLett.88.126804
10.1103/PhysRevLett.50.1395
10.1017/CBO9780511607561
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
Copyright Nature Publishing Group Sep 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: Copyright Nature Publishing Group Sep 2019
CorporateAuthor Harvard Univ., Cambridge, MA (United States)
CorporateAuthor_xml – name: Harvard Univ., Cambridge, MA (United States)
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
OTOTI
DOI 10.1038/s41567-019-0546-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 897
ExternalDocumentID 1611748
10_1038_s41567_019_0546_0
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
Q9U
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OTOTI
ID FETCH-LOGICAL-c409t-37a0796fbfa6fb4ce077bd2cb71a8a1383cba1b4c88e4cfb6d267ff3f1d61ad63
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Fri May 19 01:10:12 EDT 2023
Sat Aug 23 14:06:12 EDT 2025
Tue Jul 01 00:25:39 EDT 2025
Thu Apr 24 23:02:10 EDT 2025
Fri Feb 21 02:37:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-37a0796fbfa6fb4ce077bd2cb71a8a1383cba1b4c88e4cfb6d267ff3f1d61ad63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC)
SC0012260
ORCID 0000-0003-3701-8119
0000000337018119
PQID 2283962667
PQPubID 27545
PageCount 5
ParticipantIDs osti_scitechconnect_1611748
proquest_journals_2283962667
crossref_citationtrail_10_1038_s41567_019_0546_0
crossref_primary_10_1038_s41567_019_0546_0
springer_journals_10_1038_s41567_019_0546_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Publishing Group (NPG)
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Publishing Group (NPG)
References Yoshioka, MacDonald, Girvin (CR17) 1989; 39
Eisenstein (CR5) 2014; 5
Jain (CR7) 1989; 63
Hill (CR24) 1996; 8
Barkeshli, Wen (CR19) 2010; 82
CR6
Tutuc, Shayegan, Huse (CR15) 2004; 93
Scarola, Jain (CR18) 2001; 64
Geraedts, Zaletel, Papić, Mong (CR20) 2015; 91
CR23
Halperin (CR8) 1984; 52
Suen, Engel, Santos, Shayegan, Tsui (CR9) 1992; 68
Chakraborty, Pietiläinen (CR4) 1987; 59
Liu, Watanabe, Taniguchi, Halperin, Kim (CR12) 2017; 13
He, Das Sarma, Xie (CR21) 1993; 47
Zibrov (CR22) 2017; 549
Li, Taniguchi, Watanabe, Hone, Dean (CR13) 2017; 13
Eisenstein, Boebinger, Pfeiffer, West, He (CR10) 1992; 68
Halperin (CR3) 1983; 56
Kellogg, Spielman, Eisenstein, Pfeiffer, West (CR11) 2002; 88
Laughlin (CR2) 1983; 50
Tsui, Stormer, Gossard (CR1) 1982; 48
Kellogg, Eisenstein, Pfeiffer, West (CR14) 2004; 93
Spielman, Eisenstein, Pfeiffer, West (CR16) 2000; 84
BI Halperin (546_CR8) 1984; 52
JK Jain (546_CR7) 1989; 63
BI Halperin (546_CR3) 1983; 56
M Kellogg (546_CR14) 2004; 93
E Tutuc (546_CR15) 2004; 93
YW Suen (546_CR9) 1992; 68
S He (546_CR21) 1993; 47
T Chakraborty (546_CR4) 1987; 59
M Barkeshli (546_CR19) 2010; 82
M Kellogg (546_CR11) 2002; 88
JP Eisenstein (546_CR10) 1992; 68
546_CR6
S Geraedts (546_CR20) 2015; 91
NPR Hill (546_CR24) 1996; 8
IB Spielman (546_CR16) 2000; 84
AA Zibrov (546_CR22) 2017; 549
RB Laughlin (546_CR2) 1983; 50
VW Scarola (546_CR18) 2001; 64
JI Li (546_CR13) 2017; 13
546_CR23
J Eisenstein (546_CR5) 2014; 5
DC Tsui (546_CR1) 1982; 48
D Yoshioka (546_CR17) 1989; 39
X Liu (546_CR12) 2017; 13
References_xml – volume: 549
  start-page: 360
  year: 2017
  end-page: 364
  ident: CR22
  article-title: Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level
  publication-title: Nature
  doi: 10.1038/nature23893
– volume: 68
  start-page: 1379
  year: 1992
  end-page: 1382
  ident: CR9
  article-title: Observation of a ν = 1/2 fractional quantum Hall state in a double-layer electron system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1379
– volume: 13
  start-page: 751
  year: 2017
  end-page: 755
  ident: CR13
  article-title: Excitonic superfluid phase in double bilayer graphene
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4140
– volume: 8
  start-page: L557
  year: 1996
  end-page: L562
  ident: CR24
  article-title: Frictional drag between parallel two-dimensional electron gases in a perpendicular magnetic field
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/8/39/001
– volume: 68
  start-page: 1383
  year: 1992
  end-page: 1386
  ident: CR10
  article-title: New fractional quantum Hall state in double-layer two-dimensional electron systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1383
– volume: 63
  start-page: 199
  year: 1989
  end-page: 202
  ident: CR7
  article-title: Composite-fermion approach for the fractional quantum Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.199
– volume: 59
  start-page: 2784
  year: 1987
  end-page: 2787
  ident: CR4
  article-title: Fractional quantum Hall effect at half-filled Landau level in a multiple-layer electron system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.2784
– volume: 52
  start-page: 1583
  year: 1984
  end-page: 1586
  ident: CR8
  article-title: Statistics of quasiparticles and the hierarchy of fractional quantized Hall states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.52.1583
– volume: 64
  start-page: 085313
  year: 2001
  ident: CR18
  article-title: Phase diagram of bilayer composite fermion states
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.085313
– volume: 93
  start-page: 036802
  year: 2004
  ident: CR15
  article-title: Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.036802
– volume: 91
  start-page: 205139
  year: 2015
  ident: CR20
  article-title: Competing Abelian and non-Abelian topological orders in  = 1/3 + 1/3 quantum Hall bilayers
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.205139
– volume: 82
  start-page: 233301
  year: 2010
  ident: CR19
  article-title: Non-Abelian two-component fractional quantum Hall states
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.233301
– volume: 5
  start-page: 159
  year: 2014
  end-page: 181
  ident: CR5
  article-title: Exciton condensation in bilayer quantum Hall systems
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031113-133832
– volume: 39
  start-page: 1932
  year: 1989
  end-page: 1935
  ident: CR17
  article-title: Fractional quantum Hall effect in two-layered systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.1932
– volume: 48
  start-page: 1559
  year: 1982
  end-page: 1562
  ident: CR1
  article-title: Two-dimensional magnetotransport in the extreme quantum limit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1559
– volume: 84
  start-page: 5808
  year: 2000
  end-page: 5811
  ident: CR16
  article-title: Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.5808
– ident: CR6
– volume: 13
  start-page: 746
  year: 2017
  end-page: 750
  ident: CR12
  article-title: Quantum Hall drag of exciton condensate in graphene
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4116
– volume: 47
  start-page: 4394
  year: 1993
  end-page: 4412
  ident: CR21
  article-title: Quantized Hall effect and quantum phase transitions in coupled two-layer electron systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.4394
– volume: 93
  start-page: 036801
  year: 2004
  ident: CR14
  article-title: Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.036801
– volume: 88
  start-page: 126804
  year: 2002
  ident: CR11
  article-title: Observation of quantized Hall drag in a strongly correlated bilayer electron system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.126804
– volume: 50
  start-page: 1395
  year: 1983
  end-page: 1398
  ident: CR2
  article-title: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.1395
– volume: 56
  start-page: 75
  year: 1983
  end-page: 104
  ident: CR3
  article-title: Theory of the quantized Hall conductance
  publication-title: Helv. Phys. Acta
– ident: CR23
– ident: 546_CR23
– volume: 59
  start-page: 2784
  year: 1987
  ident: 546_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.2784
– volume: 82
  start-page: 233301
  year: 2010
  ident: 546_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.233301
– volume: 8
  start-page: L557
  year: 1996
  ident: 546_CR24
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/8/39/001
– volume: 5
  start-page: 159
  year: 2014
  ident: 546_CR5
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031113-133832
– volume: 13
  start-page: 746
  year: 2017
  ident: 546_CR12
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4116
– volume: 68
  start-page: 1383
  year: 1992
  ident: 546_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1383
– volume: 52
  start-page: 1583
  year: 1984
  ident: 546_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.52.1583
– volume: 56
  start-page: 75
  year: 1983
  ident: 546_CR3
  publication-title: Helv. Phys. Acta
– volume: 48
  start-page: 1559
  year: 1982
  ident: 546_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1559
– volume: 68
  start-page: 1379
  year: 1992
  ident: 546_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1379
– volume: 13
  start-page: 751
  year: 2017
  ident: 546_CR13
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4140
– volume: 50
  start-page: 1395
  year: 1983
  ident: 546_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.1395
– volume: 93
  start-page: 036801
  year: 2004
  ident: 546_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.036801
– volume: 549
  start-page: 360
  year: 2017
  ident: 546_CR22
  publication-title: Nature
  doi: 10.1038/nature23893
– volume: 39
  start-page: 1932
  year: 1989
  ident: 546_CR17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.1932
– volume: 88
  start-page: 126804
  year: 2002
  ident: 546_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.126804
– volume: 93
  start-page: 036802
  year: 2004
  ident: 546_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.036802
– ident: 546_CR6
  doi: 10.1017/CBO9780511607561
– volume: 63
  start-page: 199
  year: 1989
  ident: 546_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.199
– volume: 91
  start-page: 205139
  year: 2015
  ident: 546_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.205139
– volume: 84
  start-page: 5808
  year: 2000
  ident: 546_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.5808
– volume: 64
  start-page: 085313
  year: 2001
  ident: 546_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.085313
– volume: 47
  start-page: 4394
  year: 1993
  ident: 546_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.4394
SSID ssj0042613
Score 2.5812418
Snippet When a strong magnetic field is applied to a two-dimensional electron system, interactions between the electrons can cause fractional quantum Hall (FQH)...
Not provided.
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 893
SubjectTerms 639/766
639/766/1130
639/766/119
639/766/119/2792
639/766/119/2794
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Conductors
Couplings
Electrons
Excitons
Fermions
Graphene
Interlayers
Letter
Magnetic fields
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum Hall effect
Theoretical
Thin films
Title Interlayer fractional quantum Hall effect in a coupled graphene double layer
URI https://link.springer.com/article/10.1038/s41567-019-0546-0
https://www.proquest.com/docview/2283962667
https://www.osti.gov/biblio/1611748
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSxxBEC7iLoKXEBODG83SB08Jg_Po155kN7hZgllEFLw1_YTAuLO6O__f6nlEFNzLXPoxUFVd_VXXC-CMmcwyJ2hCCy8TaliaGJoGlGXDbcq0ECHmO_9d8sUd_XPP7rsHt00XVtnrxEZRu8rGN_LzWKZlguibi4v1YxK7RkXvatdCYw-GqIKlHMBwdrm8vul1cbQPijYlkiU5FUXv1yzk-SaaLjHscpIgbEGz-tXNNKjwhL1CnW8cpc39M_8EHzvgSKYtpw_hg199hv0mgNNuvsBV87RXakTQJDy12Qo4_bFGytUPZKHLkrSxG-Tfimhiq3pdekeagtWo74iralN60uxwBHfzy9tfi6TrlJBYtM-2SFmdigkPJmj8UOtTIYzLrRGZljpDK9QaneGAlJ7aYLjLuQihCJnjmXa8-AqDVbXyx0AKJ0zg1oecGUq1x9VpbC2EFrhknukRpD2VlO3KiMduFqVq3NmFVC1hFRJWRcKqdAQ__i9ZtzU0dk0-iaRXCABiFVsbw33sViEwRSbKEZz2HFHdYduoF9EYwc-eSy_D7_7q2-7NTuAgb6QjBpSdwmD7VPvviEC2Zgx7cv57DMPpfDZbjjuhewbf0NnE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRVV7qUofYgstPrSXVhFJ_MoeqqoCtktZOIHEzfVTQgqbhd0I8af6Gzt2NkVUKjcuuTh2opnx-BvPC-AjN4XlTrKMUV9lzPA8MywPKMtG2JxrKUPMdz4-EZMz9vOcn6_B7z4XJoZV9joxKWrX2HhHvhvLtIwQfQv5bX6Vxa5R0bvat9DoxOLI396gybb4eriP_P1UluOD071JtuoqkFm0ZZb4FzqXIxFM0Phg1udSGldaIwtd6QItNmt0gQNV5ZkNRrhSyBBoKJwotBMU130C64ziSR4z08c_es0frRHaJWDyrGSS9l5UWu0uoqEUgzxHGYIkNOLvnYODBvfzPYz7j1s2nXbjl_BiBVPJ906uNmDNz17B0xQuahevYZouEmuNeJ2E6y43Al-_apFP7SWZ6LomXaQIuZgRTWzTzmvvSCqPjdqVuKY1tSdphTdw9igUfAuDWTPzm0CokyYI60PJDWPa4-w8NjJCe7_inush5D2VlF0VLY-9M2qVnOe0Uh1hFRJWRcKqfAif_06ZdxU7Hnp5K5JeIdyINXNtDC6yS4UwGJlYDWG754habe2FuhPEIXzpuXQ3_N9PvXt4sR14Njk9nqrp4cnRFjwvk6TEULZtGCyvW_8esc_SfEgCR-DXY0v4H4E8FU0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC7iBsWL-CRrovZBL8qw8-jH7EFETZaNiUsQA7m1_QRh3NlkdxD_mr_OqnkYIphbLnPp6Z6h6uvu-rqqqwBeCps54RVPeBHKhFuRJpanEbFspUuFUSrSfefPCzk_5Z_OxNkW_B7uwlBY5bAmtgu1rx2dkU8oTcsUrW-pJrEPizjZn71bnSdUQYo8rUM5jQ4iR-HXT6Rv67eH-6jrV3k-O_j6cZ70FQYSh7xmg39kUjWV0UaDD-5CqpT1ubMqM6XJkL05azJsKMvAXbTS51LFWMTMy8x4WeC4t2BbESsawfaHg8XJl2EfIG5SdNcxRZJzVQw-1aKcrIk2UcjnNEGTCSn9lV1xVOPsvmLx_uOkbfe-2X241xut7H2HsgewFZYP4XYbPOrWj-C4PVasDFrvLF50NyXw9fMGtdb8YHNTVayLG2Hfl8wwVzerKnjWJsvGtZb5urFVYO0Ij-H0RmT4BEbLehl2gBVe2ShdiLmwnJuAvVMqa4TsvxRBmDGkg5S061OYUyWNSreu9KLUnWA1ClaTYHU6htd_u6y6_B3XvbxLotdofFAGXUehRm6j0ShGJZZj2Bs0ovuJvtaXsBzDm0FLl83__dTT6wd7AXcQ3fr4cHG0C3fzFigU17YHo81FE56hIbSxz3vEMfh20yD_A_8jGt8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interlayer+fractional+quantum+Hall+effect+in+a+coupled+graphene+double+layer&rft.jtitle=Nature+physics&rft.au=Liu%2C+Xiaomeng&rft.au=Hao%2C+Zeyu&rft.au=Watanabe%2C+Kenji&rft.au=Taniguchi%2C+Takashi&rft.date=2019-09-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=15&rft.issue=9&rft.spage=893&rft.epage=897&rft_id=info:doi/10.1038%2Fs41567-019-0546-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon