A Novel Machine Learning Approach for Predicting Neoadjuvant Chemotherapy Response in Breast Cancer: Integration of Multimodal Radiomics With Clinical and Molecular Subtype Markers

The primary objective of this paper is to develop a machine learning-based approach capable of predicting the treatment response of neoadjuvant chemotherapy (NAC) to enhance breast cancer treatment management. The proposed system aims to predict NAC outcomes across three categories: pathological com...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 104983 - 105003
Main Authors Gamal, Abdelrahman, Sharafeldeen, Ahmed, Alnaghy, Eman, Alghandour, Reham, Saleh Alghamdi, Norah, Ali, Khadiga M., Shamaa, Sameh, Aboueleneen, Amal, Elsaid Tolba, Ahmed, Elmougy, Samir, Ghazal, Mohammed, Contractor, Sohail, El-Baz, Ayman
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The primary objective of this paper is to develop a machine learning-based approach capable of predicting the treatment response of neoadjuvant chemotherapy (NAC) to enhance breast cancer treatment management. The proposed system aims to predict NAC outcomes across three categories: pathological complete response (CR), partial response (PR), and stable disease (SD), by analyzing multimodal magnetic resonance images with clinical and molecular subtype markers. To ensure the comprehensiveness of our system design, texture radiomics were extracted from T1, T2, and STIR MRI modalities, along with functional radiomics from diffusion-weighted MRI at various b-values. The main rationale behind employing multiple b-values in collecting DW-MRI is to effectively capture the complexities of blood diffusion within the tumor microstructure. The proposed system comprises several key steps: (i) extracting texture and functional radiomics from T1, T2, STIR MRI, and DW-MRI data; (ii) identifying the most significant radiomics correlated with NAC treatment using a genetic algorithm; (iii) initially predicting the PR from alternative treatment responses utilizing the extracted textures and functional radiomics; and (iv) subsequently integrating clinical and molecular subtype markers with imaging radiomics to differentiate between CR and SD. Our proposed system is trained and validated through the utilization of a leave-one-subject-out (LOSO) cross-validation approach on various MRI scans from 109 subjects, of whom 27 had complete responses, 54 had partial responses, and 28 had no responses. The performance of the proposed system was assessed through the utilization of Cohen's Kappa and accuracy metrics, achieving 81.31% and 88.07%, respectively. Our various experiments showed that integrating clinical and molecular subtype markers with radiomics highlights the proposed system's efficiency in evaluating the tumor's response to NAC efficiently, outperforming predictions based solely on individual radiomics.INDEX TERMS Breast cancer, neoadjuvant chemotherapy, MRI, DW-MRI, radiomics, tumor clinical markers, machine learning, treatment response prediction.
AbstractList The primary objective of this paper is to develop a machine learning-based approach capable of predicting the treatment response of neoadjuvant chemotherapy (NAC) to enhance breast cancer treatment management. The proposed system aims to predict NAC outcomes across three categories: pathological complete response (CR), partial response (PR), and stable disease (SD), by analyzing multimodal magnetic resonance images with clinical and molecular subtype markers. To ensure the comprehensiveness of our system design, texture radiomics were extracted from T1, T2, and STIR MRI modalities, along with functional radiomics from diffusion-weighted MRI at various b-values. The main rationale behind employing multiple b-values in collecting DW-MRI is to effectively capture the complexities of blood diffusion within the tumor microstructure. The proposed system comprises several key steps: (i) extracting texture and functional radiomics from T1, T2, STIR MRI, and DW-MRI data; (ii) identifying the most significant radiomics correlated with NAC treatment using a genetic algorithm; (iii) initially predicting the PR from alternative treatment responses utilizing the extracted textures and functional radiomics; and (iv) subsequently integrating clinical and molecular subtype markers with imaging radiomics to differentiate between CR and SD. Our proposed system is trained and validated through the utilization of a leave-one-subject-out (LOSO) cross-validation approach on various MRI scans from 109 subjects, of whom 27 had complete responses, 54 had partial responses, and 28 had no responses. The performance of the proposed system was assessed through the utilization of Cohen’s Kappa and accuracy metrics, achieving 81.31% and 88.07%, respectively. Our various experiments showed that integrating clinical and molecular subtype markers with radiomics highlights the proposed system’s efficiency in evaluating the tumor’s response to NAC efficiently, outperforming predictions based solely on individual radiomics.INDEX TERMS Breast cancer, neoadjuvant chemotherapy, MRI, DW-MRI, radiomics, tumor clinical markers, machine learning, treatment response prediction.
Author Aboueleneen, Amal
Elsaid Tolba, Ahmed
El-Baz, Ayman
Contractor, Sohail
Ghazal, Mohammed
Ali, Khadiga M.
Sharafeldeen, Ahmed
Alghandour, Reham
Shamaa, Sameh
Gamal, Abdelrahman
Saleh Alghamdi, Norah
Elmougy, Samir
Alnaghy, Eman
Author_xml – sequence: 1
  givenname: Abdelrahman
  surname: Gamal
  fullname: Gamal, Abdelrahman
  organization: Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
– sequence: 2
  givenname: Ahmed
  orcidid: 0000-0002-6838-8211
  surname: Sharafeldeen
  fullname: Sharafeldeen, Ahmed
  organization: Department of Bioengineering, University of Louisville, Louisville, KY, USA
– sequence: 3
  givenname: Eman
  surname: Alnaghy
  fullname: Alnaghy, Eman
  organization: Department of Radiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
– sequence: 4
  givenname: Reham
  surname: Alghandour
  fullname: Alghandour, Reham
  organization: Department of Oncology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
– sequence: 5
  givenname: Norah
  orcidid: 0000-0001-6421-6001
  surname: Saleh Alghamdi
  fullname: Saleh Alghamdi, Norah
  organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia
– sequence: 6
  givenname: Khadiga M.
  orcidid: 0000-0001-7556-7173
  surname: Ali
  fullname: Ali, Khadiga M.
  organization: Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
– sequence: 7
  givenname: Sameh
  surname: Shamaa
  fullname: Shamaa, Sameh
  organization: Department of Oncology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
– sequence: 8
  givenname: Amal
  surname: Aboueleneen
  fullname: Aboueleneen, Amal
  organization: Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
– sequence: 9
  givenname: Ahmed
  orcidid: 0009-0004-7134-2726
  surname: Elsaid Tolba
  fullname: Elsaid Tolba, Ahmed
  organization: Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
– sequence: 10
  givenname: Samir
  orcidid: 0000-0002-0765-5355
  surname: Elmougy
  fullname: Elmougy, Samir
  organization: Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
– sequence: 11
  givenname: Mohammed
  orcidid: 0000-0002-9045-6698
  surname: Ghazal
  fullname: Ghazal, Mohammed
  organization: Electrical, Computer and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi, United Arab Emirates
– sequence: 12
  givenname: Sohail
  surname: Contractor
  fullname: Contractor, Sohail
  organization: Department of Radiology, University of Louisville, Louisville, KY, USA
– sequence: 13
  givenname: Ayman
  orcidid: 0000-0001-7264-1323
  surname: El-Baz
  fullname: El-Baz, Ayman
  email: aselba01@louisville.edu
  organization: Department of Bioengineering, University of Louisville, Louisville, KY, USA
BookMark eNqFUcGO0zAQjdAisSz7BXCwxLnFseMk5laqBSq1C9qCOFoTZ9K6pHawnZX6X3wg7maFVlzwwR49z3tvNO9ldmGdxSx7ndN5nlP5brFc3my3c0ZZMecFZ4WQz7JLlpdyxgUvL57UL7LrEA40nTpBorrMfi_IrbvHnmxA741Fskbw1tgdWQyDdwkknfPkq8fW6HjGb9FBexjvwUay3OPRxT16GE7kDsPgbEBiLPngEUL6B6vRvycrG3HnIRpnievIZuyjOboWenIHrXFHowP5YeKeLHtjjU442JZsXI967MGT7djE04BpSP8TfXiVPe-gD3j9-F5l3z_efFt-nq2_fFotF-uZLqiMM14JLZEzqFi6OWt1DhVHAVXe8FwAF1XXlA3jVaURWtExxkVdsYbJAoVg_CpbTbqtg4MavDmCPykHRj0Azu8U-Gh0j6oVlOdQNBWVdTEZ1byggrUFh5LxpPV20kpb_TViiOrgRm_T-IrTWkompy4-dWnvQvDY_XXNqTqnraa01Tlt9Zh2Ysl_WNrEh21HD6b_D_fNxDWI-MStpCXLa_4HYQC7Ww
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_computers14020036
Cites_doi 10.1109/ICIP49359.2023.10222479
10.1088/1361-6560/ac8c82
10.1109/83.236536
10.1109/ICPR56361.2022.9956125
10.1016/S0146-664X(75)80008-6
10.1016/S0959-8049(03)00675-0
10.1002/mp.15399
10.1109/TSMC.1973.4309314
10.1016/j.imu.2019.100219
10.1007/s10549-017-4155-2
10.3322/caac.21820
10.3390/diagnostics12030696
10.1136/amiajnl-2012-001332
10.1016/j.breastdis.2016.10.018
10.1016/j.ejca.2021.01.028
10.1118/1.4933198
10.1016/S0960-9776(19)30256-5
10.1016/j.ejrad.2016.02.006
10.1093/annonc/mdj973
10.21037/gs-20-686
10.1097/RLI.0000000000000518
10.4048/jbc.2017.20.2.119
10.1038/35021093
10.1148/rycan.2021210008
10.7717/peerj-cs.1054
10.1007/s00330-021-08306-w
10.1158/1078-0432.CCR-19-3492
10.1073/pnas.191367098
10.1371/journal.pone.0280320
10.3390/cancers14143508
10.1038/s41598-023-51053-9
10.1148/rg.2021200134
10.3389/fonc.2022.748008
10.1038/s41586-021-04278-5
10.1007/s00521-021-06851-5
10.1001/jama.2018.19323
10.3390/cancers15215216
10.1038/s41598-021-83735-7
10.3389/fonc.2020.01410
10.1109/JBHI.2024.3355329
10.1038/sj.bjc.6602256
10.3389/fonc.2022.812463
10.1186/s13058-020-01291-w
10.3390/cancers14071727
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3432459
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 105003
ExternalDocumentID oai_doaj_org_article_d5031a4b70984dc1a73834052d43a623
10_1109_ACCESS_2024_3432459
10606218
Genre orig-research
GrantInformation_xml – fundername: Princess Nourah Bint Abdulrahman University Researchers Supporting Project, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
  grantid: PNURSP2024R40
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-375c9e32a72e3232dc1a73e5a71b315a357fb6b2377cead5f2235872b294e5523
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:31:27 EDT 2025
Mon Jun 30 17:09:02 EDT 2025
Tue Jul 01 03:02:43 EDT 2025
Thu Apr 24 23:10:49 EDT 2025
Wed Aug 27 02:35:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-375c9e32a72e3232dc1a73e5a71b315a357fb6b2377cead5f2235872b294e5523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6421-6001
0000-0002-6838-8211
0000-0002-0765-5355
0000-0001-7556-7173
0000-0002-9045-6698
0000-0001-7264-1323
0009-0004-7134-2726
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10606218
PQID 3089929623
PQPubID 4845423
PageCount 21
ParticipantIDs ieee_primary_10606218
doaj_primary_oai_doaj_org_article_d5031a4b70984dc1a73834052d43a623
crossref_primary_10_1109_ACCESS_2024_3432459
proquest_journals_3089929623
crossref_citationtrail_10_1109_ACCESS_2024_3432459
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref24
ref46
ref23
ref45
(ref5) 2024
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
Le Bihan (ref35) 1985; 93
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Mani (ref18)
ref40
References_xml – ident: ref4
  doi: 10.1109/ICIP49359.2023.10222479
– ident: ref11
  doi: 10.1088/1361-6560/ac8c82
– ident: ref36
  doi: 10.1109/83.236536
– ident: ref31
  doi: 10.1109/ICPR56361.2022.9956125
– ident: ref33
  doi: 10.1016/S0146-664X(75)80008-6
– ident: ref41
  doi: 10.1016/S0959-8049(03)00675-0
– ident: ref34
  doi: 10.1002/mp.15399
– ident: ref29
  doi: 10.1109/TSMC.1973.4309314
– volume-title: Cancer Statistics Center
  year: 2024
  ident: ref5
– ident: ref16
  doi: 10.1016/j.imu.2019.100219
– ident: ref43
  doi: 10.1007/s10549-017-4155-2
– ident: ref6
  doi: 10.3322/caac.21820
– ident: ref47
  doi: 10.3390/diagnostics12030696
– ident: ref19
  doi: 10.1136/amiajnl-2012-001332
– ident: ref42
  doi: 10.1016/j.breastdis.2016.10.018
– ident: ref14
  doi: 10.1016/j.ejca.2021.01.028
– ident: ref15
  doi: 10.1118/1.4933198
– ident: ref22
  doi: 10.1016/S0960-9776(19)30256-5
– ident: ref20
  doi: 10.1016/j.ejrad.2016.02.006
– ident: ref39
  doi: 10.1093/annonc/mdj973
– ident: ref45
  doi: 10.21037/gs-20-686
– ident: ref21
  doi: 10.1097/RLI.0000000000000518
– ident: ref44
  doi: 10.4048/jbc.2017.20.2.119
– ident: ref37
  doi: 10.1038/35021093
– ident: ref28
  doi: 10.1148/rycan.2021210008
– volume: 93
  start-page: 27
  issue: 5
  year: 1985
  ident: ref35
  article-title: Imagerie de diffusion in-vivo par résonance magnétique nucléaire
  publication-title: Comptes-Rendus de l’Académie des Sci.
– ident: ref3
  doi: 10.7717/peerj-cs.1054
– start-page: 868
  volume-title: Proc. AMIA. Annu. Symp.
  ident: ref18
  article-title: Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative mri and machine learning
– ident: ref10
  doi: 10.1007/s00330-021-08306-w
– ident: ref7
  doi: 10.1158/1078-0432.CCR-19-3492
– ident: ref38
  doi: 10.1073/pnas.191367098
– ident: ref24
  doi: 10.1371/journal.pone.0280320
– ident: ref23
  doi: 10.3390/cancers14143508
– ident: ref46
  doi: 10.1038/s41598-023-51053-9
– ident: ref27
  doi: 10.1148/rg.2021200134
– ident: ref13
  doi: 10.3389/fonc.2022.748008
– ident: ref8
  doi: 10.1038/s41586-021-04278-5
– ident: ref2
  doi: 10.1007/s00521-021-06851-5
– ident: ref9
  doi: 10.1001/jama.2018.19323
– ident: ref1
  doi: 10.3390/cancers15215216
– ident: ref30
  doi: 10.1038/s41598-021-83735-7
– ident: ref25
  doi: 10.3389/fonc.2020.01410
– ident: ref32
  doi: 10.1109/JBHI.2024.3355329
– ident: ref40
  doi: 10.1038/sj.bjc.6602256
– ident: ref12
  doi: 10.3389/fonc.2022.812463
– ident: ref17
  doi: 10.1186/s13058-020-01291-w
– ident: ref26
  doi: 10.3390/cancers14071727
SSID ssj0000816957
Score 2.365845
Snippet The primary objective of this paper is to develop a machine learning-based approach capable of predicting the treatment response of neoadjuvant chemotherapy...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104983
SubjectTerms Breast Cancer
Chemotherapy
DW-MRI
Feature extraction
Genetic algorithms
Health services
Image enhancement
Machine learning
Magnetic resonance imaging
Medical imaging
Medical treatment
MRI
Neoadjuvant Chemotherapy
Pathology
Radiomics
Systems design
Texture
Treatment Response Prediction
Tumor Clinical Markers
Tumors
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQknZDN03LHHqsm7Uelp3bZumSFnYpoSG5CcmS2w0bu2ycQP5Xf2BnbG0wFJJLLsbYEpI843lIM98w9smizsoyHxKtVJZI77MkVxbvqrSUusytqihReLHMTs_l90t1OSj1RTFhPTxw_-GOvEK2s9LpSZFLX6ZWo0-FVgb3UljU3SR9UecNnKlOBudpVigdYYbSSXE0nc1wRegQcvmFkikloZMOVFGH2B9LrPwnlztlM99lr6OVCNN-dnvsRajfsFcD7MC37O8Uls1dWMOiC4cMEJFSf8E0woQD2qPwY0MnMRTbDMvQWH91i6ZzC4QTEHOv7uGsj5MNsKrhhILU8T0xw-YYvkU0CaQeNBV06brXjce5nVm_oozmG7hYtb8h4ouuwdYeFtuau4ByiTZ5gVKC0NAcsfP515-z0ySWYEhKdPxaFD-qLILgVnO8Ct4TICirUydSZYXSlcscF1qXyJOq4pR6q7njhQwKndx9tlM3dXjHQKUiV1r6ULkgQ2pzb0U1qXInLBLQhTHjW2qYMuKTU5mMten8lElhehIaIqGJJByzzw-d_vTwHI83PyEyPzQlbO3uAXKciRxnnuK4MRsRkwzGQycQLaUxO9xyjYmC4MYIOlblBXY7eI6x37OXtJ5-D-iQ7bSb2_ABraLWfex-gH968gbQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Machine Learning Approach for Predicting Neoadjuvant Chemotherapy Response in Breast Cancer: Integration of Multimodal Radiomics With Clinical and Molecular Subtype Markers
URI https://ieeexplore.ieee.org/document/10606218
https://www.proquest.com/docview/3089929623
https://doaj.org/article/d5031a4b70984dc1a73834052d43a623
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYnuABBgxRGNM98EhK4h9xwltXMQ2kVmhiYm-RHTtQKAnqUiT2d-0P3J3jVhUIxEsVtbHqKJ_Pd-f7vmPspcE9K8-dT7RSeSKdy5NCGbxqslrqujCqIaLwbJ6fXcj3l-oyktUDF8Z7H4rP_Jguw1m-6-o1pcpwhaO7jXvSHtvDyG0ga20TKtRBolQ6Kgtlafl6Mp3iQ2AMyOWY-JOSBEl3dp8g0h-7qvxhisP-cvqAzTczG8pKvo3XvR3X17-JNv731A_Y_ehpwmSAxkN2x7eP2L0d_cHH7GYC8-6nX8IslFR6iGqrn2ESpcYBfVr4sKLTHKqPhrnvjPu6Rve7B9IaiPytX3A-1Np6WLRwQoXu-DsBavUG3kVFCkQAdA0Eyu_3zuHczo1bECv6Cj4t-i8QNUqXYFoHs03fXkDbRoliIFoROquH7OL07cfpWRLbOCQ1Bo89mjBVl15wozl-Cu7qzGjhldGZFZkyQunG5pYLrWvEtWo40Xc1t7yUXmGg_ITtt13rnzJQmSiUls431kufmcIZ0aRNYYXhaWn9iPHN663qqHFOrTaWVYh10rIaMFERJqqIiRF7tR30Y5D4-PftJ4Sb7a2kzx2-wPddxeVeOYXG0kir07KQwwMXAn1j7qQw6HGO2CFhZOf_BniM2NEGhlU0JleVoKNZXuKwZ38Z9pzdpSkOqaEjtt-v1v4FOku9PQ5JhuOwVG4BqOgTSw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELVgOQAHPhdRWGAOHElJ_BEn3LoVqy5sI7TaFXuL7NiBQklQN0WC38UPZCZxqwoE4hJFSaw4yvPM2J73hrHnBn1WmjofaaXSSDqXRpkyeFYnldRVZlRNROF5kc7O5ZsLdRHI6j0XxnvfJ5_5MZ32e_murda0VIYjHMNt9ElX2TV0_CoZ6FrbJRWqIZErHbSFkjh_OZlO8TNwFsjlmBiUkiRJd_xPL9Mf6qr8YYx7D3N0mxWbvg2JJZ_H686Oqx-_yTb-d-fvsFsh1oTJAI677Ipv7rGbOwqE99nPCRTtN7-EeZ9U6SHorX6ASRAbB4xq4d2K9nMoQxoK3xr3aY0BeAekNhAYXN_hdMi29bBo4JBS3fE-QWr1Co6DJgViANoaetLvl9Zh306NWxAv-hLeL7qPEFRKl2AaB_NN5V5A60ZLxUDEIgxX99n50euz6SwKhRyiCqePHRoxVeVecKM5HgV3VWK08MroxIpEGaF0bVPLhdYVIlvVnAi8mlueS69wqvyA7TVt4x8yUInIlJbO19ZLn5jMGVHHdWaF4XFu_Yjxze8tq6ByTsU2lmU_24nzcsBESZgoAyZG7MW20ddB5OPfjx8SbraPkkJ3fwH_dxkGfOkUmksjrY7zTA4fnAmMjrmTwmDMOWL7hJGd9w3wGLGDDQzLYE4uS0GbszzHZo_-0uwZuz47m5-UJ8fF28fsBnV3WCg6YHvdau2fYOjU2af9gPkFoaAVnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Machine+Learning+Approach+for+Predicting+Neoadjuvant+Chemotherapy+Response+in+Breast+Cancer%3A+Integration+of+Multimodal+Radiomics+With+Clinical+and+Molecular+Subtype+Markers&rft.jtitle=IEEE+access&rft.au=Gamal%2C+Abdelrahman&rft.au=Sharafeldeen%2C+Ahmed&rft.au=Alnaghy%2C+Eman&rft.au=Alghandour%2C+Reham&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=104983&rft.epage=105003&rft_id=info:doi/10.1109%2FACCESS.2024.3432459&rft.externalDocID=10606218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon