A Novel Machine Learning Approach for Predicting Neoadjuvant Chemotherapy Response in Breast Cancer: Integration of Multimodal Radiomics With Clinical and Molecular Subtype Markers
The primary objective of this paper is to develop a machine learning-based approach capable of predicting the treatment response of neoadjuvant chemotherapy (NAC) to enhance breast cancer treatment management. The proposed system aims to predict NAC outcomes across three categories: pathological com...
Saved in:
Published in | IEEE access Vol. 12; pp. 104983 - 105003 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The primary objective of this paper is to develop a machine learning-based approach capable of predicting the treatment response of neoadjuvant chemotherapy (NAC) to enhance breast cancer treatment management. The proposed system aims to predict NAC outcomes across three categories: pathological complete response (CR), partial response (PR), and stable disease (SD), by analyzing multimodal magnetic resonance images with clinical and molecular subtype markers. To ensure the comprehensiveness of our system design, texture radiomics were extracted from T1, T2, and STIR MRI modalities, along with functional radiomics from diffusion-weighted MRI at various b-values. The main rationale behind employing multiple b-values in collecting DW-MRI is to effectively capture the complexities of blood diffusion within the tumor microstructure. The proposed system comprises several key steps: (i) extracting texture and functional radiomics from T1, T2, STIR MRI, and DW-MRI data; (ii) identifying the most significant radiomics correlated with NAC treatment using a genetic algorithm; (iii) initially predicting the PR from alternative treatment responses utilizing the extracted textures and functional radiomics; and (iv) subsequently integrating clinical and molecular subtype markers with imaging radiomics to differentiate between CR and SD. Our proposed system is trained and validated through the utilization of a leave-one-subject-out (LOSO) cross-validation approach on various MRI scans from 109 subjects, of whom 27 had complete responses, 54 had partial responses, and 28 had no responses. The performance of the proposed system was assessed through the utilization of Cohen's Kappa and accuracy metrics, achieving 81.31% and 88.07%, respectively. Our various experiments showed that integrating clinical and molecular subtype markers with radiomics highlights the proposed system's efficiency in evaluating the tumor's response to NAC efficiently, outperforming predictions based solely on individual radiomics.INDEX TERMS Breast cancer, neoadjuvant chemotherapy, MRI, DW-MRI, radiomics, tumor clinical markers, machine learning, treatment response prediction. |
---|---|
AbstractList | The primary objective of this paper is to develop a machine learning-based approach capable of predicting the treatment response of neoadjuvant chemotherapy (NAC) to enhance breast cancer treatment management. The proposed system aims to predict NAC outcomes across three categories: pathological complete response (CR), partial response (PR), and stable disease (SD), by analyzing multimodal magnetic resonance images with clinical and molecular subtype markers. To ensure the comprehensiveness of our system design, texture radiomics were extracted from T1, T2, and STIR MRI modalities, along with functional radiomics from diffusion-weighted MRI at various b-values. The main rationale behind employing multiple b-values in collecting DW-MRI is to effectively capture the complexities of blood diffusion within the tumor microstructure. The proposed system comprises several key steps: (i) extracting texture and functional radiomics from T1, T2, STIR MRI, and DW-MRI data; (ii) identifying the most significant radiomics correlated with NAC treatment using a genetic algorithm; (iii) initially predicting the PR from alternative treatment responses utilizing the extracted textures and functional radiomics; and (iv) subsequently integrating clinical and molecular subtype markers with imaging radiomics to differentiate between CR and SD. Our proposed system is trained and validated through the utilization of a leave-one-subject-out (LOSO) cross-validation approach on various MRI scans from 109 subjects, of whom 27 had complete responses, 54 had partial responses, and 28 had no responses. The performance of the proposed system was assessed through the utilization of Cohen’s Kappa and accuracy metrics, achieving 81.31% and 88.07%, respectively. Our various experiments showed that integrating clinical and molecular subtype markers with radiomics highlights the proposed system’s efficiency in evaluating the tumor’s response to NAC efficiently, outperforming predictions based solely on individual radiomics.INDEX TERMS Breast cancer, neoadjuvant chemotherapy, MRI, DW-MRI, radiomics, tumor clinical markers, machine learning, treatment response prediction. |
Author | Aboueleneen, Amal Elsaid Tolba, Ahmed El-Baz, Ayman Contractor, Sohail Ghazal, Mohammed Ali, Khadiga M. Sharafeldeen, Ahmed Alghandour, Reham Shamaa, Sameh Gamal, Abdelrahman Saleh Alghamdi, Norah Elmougy, Samir Alnaghy, Eman |
Author_xml | – sequence: 1 givenname: Abdelrahman surname: Gamal fullname: Gamal, Abdelrahman organization: Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt – sequence: 2 givenname: Ahmed orcidid: 0000-0002-6838-8211 surname: Sharafeldeen fullname: Sharafeldeen, Ahmed organization: Department of Bioengineering, University of Louisville, Louisville, KY, USA – sequence: 3 givenname: Eman surname: Alnaghy fullname: Alnaghy, Eman organization: Department of Radiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt – sequence: 4 givenname: Reham surname: Alghandour fullname: Alghandour, Reham organization: Department of Oncology, Faculty of Medicine, Mansoura University, Mansoura, Egypt – sequence: 5 givenname: Norah orcidid: 0000-0001-6421-6001 surname: Saleh Alghamdi fullname: Saleh Alghamdi, Norah organization: Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia – sequence: 6 givenname: Khadiga M. orcidid: 0000-0001-7556-7173 surname: Ali fullname: Ali, Khadiga M. organization: Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt – sequence: 7 givenname: Sameh surname: Shamaa fullname: Shamaa, Sameh organization: Department of Oncology, Faculty of Medicine, Mansoura University, Mansoura, Egypt – sequence: 8 givenname: Amal surname: Aboueleneen fullname: Aboueleneen, Amal organization: Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt – sequence: 9 givenname: Ahmed orcidid: 0009-0004-7134-2726 surname: Elsaid Tolba fullname: Elsaid Tolba, Ahmed organization: Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt – sequence: 10 givenname: Samir orcidid: 0000-0002-0765-5355 surname: Elmougy fullname: Elmougy, Samir organization: Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt – sequence: 11 givenname: Mohammed orcidid: 0000-0002-9045-6698 surname: Ghazal fullname: Ghazal, Mohammed organization: Electrical, Computer and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi, United Arab Emirates – sequence: 12 givenname: Sohail surname: Contractor fullname: Contractor, Sohail organization: Department of Radiology, University of Louisville, Louisville, KY, USA – sequence: 13 givenname: Ayman orcidid: 0000-0001-7264-1323 surname: El-Baz fullname: El-Baz, Ayman email: aselba01@louisville.edu organization: Department of Bioengineering, University of Louisville, Louisville, KY, USA |
BookMark | eNqFUcGO0zAQjdAisSz7BXCwxLnFseMk5laqBSq1C9qCOFoTZ9K6pHawnZX6X3wg7maFVlzwwR49z3tvNO9ldmGdxSx7ndN5nlP5brFc3my3c0ZZMecFZ4WQz7JLlpdyxgUvL57UL7LrEA40nTpBorrMfi_IrbvHnmxA741Fskbw1tgdWQyDdwkknfPkq8fW6HjGb9FBexjvwUay3OPRxT16GE7kDsPgbEBiLPngEUL6B6vRvycrG3HnIRpnievIZuyjOboWenIHrXFHowP5YeKeLHtjjU442JZsXI967MGT7djE04BpSP8TfXiVPe-gD3j9-F5l3z_efFt-nq2_fFotF-uZLqiMM14JLZEzqFi6OWt1DhVHAVXe8FwAF1XXlA3jVaURWtExxkVdsYbJAoVg_CpbTbqtg4MavDmCPykHRj0Azu8U-Gh0j6oVlOdQNBWVdTEZ1byggrUFh5LxpPV20kpb_TViiOrgRm_T-IrTWkompy4-dWnvQvDY_XXNqTqnraa01Tlt9Zh2Ysl_WNrEh21HD6b_D_fNxDWI-MStpCXLa_4HYQC7Ww |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_computers14020036 |
Cites_doi | 10.1109/ICIP49359.2023.10222479 10.1088/1361-6560/ac8c82 10.1109/83.236536 10.1109/ICPR56361.2022.9956125 10.1016/S0146-664X(75)80008-6 10.1016/S0959-8049(03)00675-0 10.1002/mp.15399 10.1109/TSMC.1973.4309314 10.1016/j.imu.2019.100219 10.1007/s10549-017-4155-2 10.3322/caac.21820 10.3390/diagnostics12030696 10.1136/amiajnl-2012-001332 10.1016/j.breastdis.2016.10.018 10.1016/j.ejca.2021.01.028 10.1118/1.4933198 10.1016/S0960-9776(19)30256-5 10.1016/j.ejrad.2016.02.006 10.1093/annonc/mdj973 10.21037/gs-20-686 10.1097/RLI.0000000000000518 10.4048/jbc.2017.20.2.119 10.1038/35021093 10.1148/rycan.2021210008 10.7717/peerj-cs.1054 10.1007/s00330-021-08306-w 10.1158/1078-0432.CCR-19-3492 10.1073/pnas.191367098 10.1371/journal.pone.0280320 10.3390/cancers14143508 10.1038/s41598-023-51053-9 10.1148/rg.2021200134 10.3389/fonc.2022.748008 10.1038/s41586-021-04278-5 10.1007/s00521-021-06851-5 10.1001/jama.2018.19323 10.3390/cancers15215216 10.1038/s41598-021-83735-7 10.3389/fonc.2020.01410 10.1109/JBHI.2024.3355329 10.1038/sj.bjc.6602256 10.3389/fonc.2022.812463 10.1186/s13058-020-01291-w 10.3390/cancers14071727 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3432459 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 105003 |
ExternalDocumentID | oai_doaj_org_article_d5031a4b70984dc1a73834052d43a623 10_1109_ACCESS_2024_3432459 10606218 |
Genre | orig-research |
GrantInformation_xml | – fundername: Princess Nourah Bint Abdulrahman University Researchers Supporting Project, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia grantid: PNURSP2024R40 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-375c9e32a72e3232dc1a73e5a71b315a357fb6b2377cead5f2235872b294e5523 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:31:27 EDT 2025 Mon Jun 30 17:09:02 EDT 2025 Tue Jul 01 03:02:43 EDT 2025 Thu Apr 24 23:10:49 EDT 2025 Wed Aug 27 02:35:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-375c9e32a72e3232dc1a73e5a71b315a357fb6b2377cead5f2235872b294e5523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6421-6001 0000-0002-6838-8211 0000-0002-0765-5355 0000-0001-7556-7173 0000-0002-9045-6698 0000-0001-7264-1323 0009-0004-7134-2726 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10606218 |
PQID | 3089929623 |
PQPubID | 4845423 |
PageCount | 21 |
ParticipantIDs | ieee_primary_10606218 doaj_primary_oai_doaj_org_article_d5031a4b70984dc1a73834052d43a623 crossref_primary_10_1109_ACCESS_2024_3432459 proquest_journals_3089929623 crossref_citationtrail_10_1109_ACCESS_2024_3432459 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref24 ref46 ref23 ref45 (ref5) 2024 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 Le Bihan (ref35) 1985; 93 ref29 ref8 ref7 ref9 ref4 ref3 ref6 Mani (ref18) ref40 |
References_xml | – ident: ref4 doi: 10.1109/ICIP49359.2023.10222479 – ident: ref11 doi: 10.1088/1361-6560/ac8c82 – ident: ref36 doi: 10.1109/83.236536 – ident: ref31 doi: 10.1109/ICPR56361.2022.9956125 – ident: ref33 doi: 10.1016/S0146-664X(75)80008-6 – ident: ref41 doi: 10.1016/S0959-8049(03)00675-0 – ident: ref34 doi: 10.1002/mp.15399 – ident: ref29 doi: 10.1109/TSMC.1973.4309314 – volume-title: Cancer Statistics Center year: 2024 ident: ref5 – ident: ref16 doi: 10.1016/j.imu.2019.100219 – ident: ref43 doi: 10.1007/s10549-017-4155-2 – ident: ref6 doi: 10.3322/caac.21820 – ident: ref47 doi: 10.3390/diagnostics12030696 – ident: ref19 doi: 10.1136/amiajnl-2012-001332 – ident: ref42 doi: 10.1016/j.breastdis.2016.10.018 – ident: ref14 doi: 10.1016/j.ejca.2021.01.028 – ident: ref15 doi: 10.1118/1.4933198 – ident: ref22 doi: 10.1016/S0960-9776(19)30256-5 – ident: ref20 doi: 10.1016/j.ejrad.2016.02.006 – ident: ref39 doi: 10.1093/annonc/mdj973 – ident: ref45 doi: 10.21037/gs-20-686 – ident: ref21 doi: 10.1097/RLI.0000000000000518 – ident: ref44 doi: 10.4048/jbc.2017.20.2.119 – ident: ref37 doi: 10.1038/35021093 – ident: ref28 doi: 10.1148/rycan.2021210008 – volume: 93 start-page: 27 issue: 5 year: 1985 ident: ref35 article-title: Imagerie de diffusion in-vivo par résonance magnétique nucléaire publication-title: Comptes-Rendus de l’Académie des Sci. – ident: ref3 doi: 10.7717/peerj-cs.1054 – start-page: 868 volume-title: Proc. AMIA. Annu. Symp. ident: ref18 article-title: Early prediction of the response of breast tumors to neoadjuvant chemotherapy using quantitative mri and machine learning – ident: ref10 doi: 10.1007/s00330-021-08306-w – ident: ref7 doi: 10.1158/1078-0432.CCR-19-3492 – ident: ref38 doi: 10.1073/pnas.191367098 – ident: ref24 doi: 10.1371/journal.pone.0280320 – ident: ref23 doi: 10.3390/cancers14143508 – ident: ref46 doi: 10.1038/s41598-023-51053-9 – ident: ref27 doi: 10.1148/rg.2021200134 – ident: ref13 doi: 10.3389/fonc.2022.748008 – ident: ref8 doi: 10.1038/s41586-021-04278-5 – ident: ref2 doi: 10.1007/s00521-021-06851-5 – ident: ref9 doi: 10.1001/jama.2018.19323 – ident: ref1 doi: 10.3390/cancers15215216 – ident: ref30 doi: 10.1038/s41598-021-83735-7 – ident: ref25 doi: 10.3389/fonc.2020.01410 – ident: ref32 doi: 10.1109/JBHI.2024.3355329 – ident: ref40 doi: 10.1038/sj.bjc.6602256 – ident: ref12 doi: 10.3389/fonc.2022.812463 – ident: ref17 doi: 10.1186/s13058-020-01291-w – ident: ref26 doi: 10.3390/cancers14071727 |
SSID | ssj0000816957 |
Score | 2.365845 |
Snippet | The primary objective of this paper is to develop a machine learning-based approach capable of predicting the treatment response of neoadjuvant chemotherapy... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104983 |
SubjectTerms | Breast Cancer Chemotherapy DW-MRI Feature extraction Genetic algorithms Health services Image enhancement Machine learning Magnetic resonance imaging Medical imaging Medical treatment MRI Neoadjuvant Chemotherapy Pathology Radiomics Systems design Texture Treatment Response Prediction Tumor Clinical Markers Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp_ZQknZDN03LHHqsm7Uelp3bZumSFnYpoSG5CcmS2w0bu2ycQP5Xf2BnbG0wFJJLLsbYEpI843lIM98w9smizsoyHxKtVJZI77MkVxbvqrSUusytqihReLHMTs_l90t1OSj1RTFhPTxw_-GOvEK2s9LpSZFLX6ZWo0-FVgb3UljU3SR9UecNnKlOBudpVigdYYbSSXE0nc1wRegQcvmFkikloZMOVFGH2B9LrPwnlztlM99lr6OVCNN-dnvsRajfsFcD7MC37O8Uls1dWMOiC4cMEJFSf8E0woQD2qPwY0MnMRTbDMvQWH91i6ZzC4QTEHOv7uGsj5MNsKrhhILU8T0xw-YYvkU0CaQeNBV06brXjce5nVm_oozmG7hYtb8h4ouuwdYeFtuau4ByiTZ5gVKC0NAcsfP515-z0ySWYEhKdPxaFD-qLILgVnO8Ct4TICirUydSZYXSlcscF1qXyJOq4pR6q7njhQwKndx9tlM3dXjHQKUiV1r6ULkgQ2pzb0U1qXInLBLQhTHjW2qYMuKTU5mMten8lElhehIaIqGJJByzzw-d_vTwHI83PyEyPzQlbO3uAXKciRxnnuK4MRsRkwzGQycQLaUxO9xyjYmC4MYIOlblBXY7eI6x37OXtJ5-D-iQ7bSb2_ABraLWfex-gH968gbQ priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel Machine Learning Approach for Predicting Neoadjuvant Chemotherapy Response in Breast Cancer: Integration of Multimodal Radiomics With Clinical and Molecular Subtype Markers |
URI | https://ieeexplore.ieee.org/document/10606218 https://www.proquest.com/docview/3089929623 https://doaj.org/article/d5031a4b70984dc1a73834052d43a623 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYnuABBgxRGNM98EhK4h9xwltXMQ2kVmhiYm-RHTtQKAnqUiT2d-0P3J3jVhUIxEsVtbHqKJ_Pd-f7vmPspcE9K8-dT7RSeSKdy5NCGbxqslrqujCqIaLwbJ6fXcj3l-oyktUDF8Z7H4rP_Jguw1m-6-o1pcpwhaO7jXvSHtvDyG0ga20TKtRBolQ6Kgtlafl6Mp3iQ2AMyOWY-JOSBEl3dp8g0h-7qvxhisP-cvqAzTczG8pKvo3XvR3X17-JNv731A_Y_ehpwmSAxkN2x7eP2L0d_cHH7GYC8-6nX8IslFR6iGqrn2ESpcYBfVr4sKLTHKqPhrnvjPu6Rve7B9IaiPytX3A-1Np6WLRwQoXu-DsBavUG3kVFCkQAdA0Eyu_3zuHczo1bECv6Cj4t-i8QNUqXYFoHs03fXkDbRoliIFoROquH7OL07cfpWRLbOCQ1Bo89mjBVl15wozl-Cu7qzGjhldGZFZkyQunG5pYLrWvEtWo40Xc1t7yUXmGg_ITtt13rnzJQmSiUls431kufmcIZ0aRNYYXhaWn9iPHN663qqHFOrTaWVYh10rIaMFERJqqIiRF7tR30Y5D4-PftJ4Sb7a2kzx2-wPddxeVeOYXG0kir07KQwwMXAn1j7qQw6HGO2CFhZOf_BniM2NEGhlU0JleVoKNZXuKwZ38Z9pzdpSkOqaEjtt-v1v4FOku9PQ5JhuOwVG4BqOgTSw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELVgOQAHPhdRWGAOHElJ_BEn3LoVqy5sI7TaFXuL7NiBQklQN0WC38UPZCZxqwoE4hJFSaw4yvPM2J73hrHnBn1WmjofaaXSSDqXRpkyeFYnldRVZlRNROF5kc7O5ZsLdRHI6j0XxnvfJ5_5MZ32e_murda0VIYjHMNt9ElX2TV0_CoZ6FrbJRWqIZErHbSFkjh_OZlO8TNwFsjlmBiUkiRJd_xPL9Mf6qr8YYx7D3N0mxWbvg2JJZ_H686Oqx-_yTb-d-fvsFsh1oTJAI677Ipv7rGbOwqE99nPCRTtN7-EeZ9U6SHorX6ASRAbB4xq4d2K9nMoQxoK3xr3aY0BeAekNhAYXN_hdMi29bBo4JBS3fE-QWr1Co6DJgViANoaetLvl9Zh306NWxAv-hLeL7qPEFRKl2AaB_NN5V5A60ZLxUDEIgxX99n50euz6SwKhRyiCqePHRoxVeVecKM5HgV3VWK08MroxIpEGaF0bVPLhdYVIlvVnAi8mlueS69wqvyA7TVt4x8yUInIlJbO19ZLn5jMGVHHdWaF4XFu_Yjxze8tq6ByTsU2lmU_24nzcsBESZgoAyZG7MW20ddB5OPfjx8SbraPkkJ3fwH_dxkGfOkUmksjrY7zTA4fnAmMjrmTwmDMOWL7hJGd9w3wGLGDDQzLYE4uS0GbszzHZo_-0uwZuz47m5-UJ8fF28fsBnV3WCg6YHvdau2fYOjU2af9gPkFoaAVnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Machine+Learning+Approach+for+Predicting+Neoadjuvant+Chemotherapy+Response+in+Breast+Cancer%3A+Integration+of+Multimodal+Radiomics+With+Clinical+and+Molecular+Subtype+Markers&rft.jtitle=IEEE+access&rft.au=Gamal%2C+Abdelrahman&rft.au=Sharafeldeen%2C+Ahmed&rft.au=Alnaghy%2C+Eman&rft.au=Alghandour%2C+Reham&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=104983&rft.epage=105003&rft_id=info:doi/10.1109%2FACCESS.2024.3432459&rft.externalDocID=10606218 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |