Optimising camera and flight settings for ultrafine resolution mapping of artificial night-time lights using an unoccupied aerial system

Light pollution from artificial night-time lights (ANTLs) is a global health, economic, and environmental issue. Remote sensing and unoccupied aerial systems (UASs) provide efficient and cost-effective ways to study ANTL spatial patterns and dynamics over large areas. With ultrahigh-resolution image...

Full description

Saved in:
Bibliographic Details
Published inDrone systems and applications Vol. 12; pp. 1 - 11
Main Authors Bhattarai, Dipendra, Lucieer, Arko
Format Journal Article
LanguageEnglish
Published NRC Research Press 01.01.2024
Canadian Science Publishing
Subjects
Online AccessGet full text
ISSN2564-4939
2564-4939
DOI10.1139/dsa-2023-0086

Cover

Loading…
Abstract Light pollution from artificial night-time lights (ANTLs) is a global health, economic, and environmental issue. Remote sensing and unoccupied aerial systems (UASs) provide efficient and cost-effective ways to study ANTL spatial patterns and dynamics over large areas. With ultrahigh-resolution images that can identify individual light sources, UAS offers more detailed image than satellite imagery. However, standardisation and optimisation of camera and flight settings during the acquisition ANTL UAS images is lacking. The aim of this paper is to determine the camera and flight settings to capture high-quality ANTL using a DJI Matrice 300 RTK aircraft with a Zenmuse P1 camera. It emphasises the importance of selecting appropriate camera settings for high-quality ANTL images, which can benefit future research. Results show significant image quality gains when camera and flight settings are chosen appropriately in relation to the lighting conditions. We present three experiments demonstrating a range of camera settings, and we provide practical recommendations for high-quality night-time image collection. The optimal camera settings were determined to be an exposure time of 0.0166 s, ISO of 25600, and aperture of 2.97. This experiment produced outstanding results, with 85% of images having a blur extent below 0.40.
AbstractList Light pollution from artificial night-time lights (ANTLs) is a global health, economic, and environmental issue. Remote sensing and unoccupied aerial systems (UASs) provide efficient and cost-effective ways to study ANTL spatial patterns and dynamics over large areas. With ultrahigh-resolution images that can identify individual light sources, UAS offers more detailed image than satellite imagery. However, standardisation and optimisation of camera and flight settings during the acquisition ANTL UAS images is lacking. The aim of this paper is to determine the camera and flight settings to capture high-quality ANTL using a DJI Matrice 300 RTK aircraft with a Zenmuse P1 camera. It emphasises the importance of selecting appropriate camera settings for high-quality ANTL images, which can benefit future research. Results show significant image quality gains when camera and flight settings are chosen appropriately in relation to the lighting conditions. We present three experiments demonstrating a range of camera settings, and we provide practical recommendations for high-quality night-time image collection. The optimal camera settings were determined to be an exposure time of 0.0166 s, ISO of 25600, and aperture of 2.97. This experiment produced outstanding results, with 85% of images having a blur extent below 0.40.
Light pollution from artificial night-time lights (ANTLs) is a global health, economic, and environmental issue. Remote sensing and unoccupied aerial systems (UASs) provide efficient and cost-effective ways to study ANTL spatial patterns and dynamics over large areas. With ultrahigh-resolution images that can identify individual light sources, UAS offers more detailed image than satellite imagery. However, standardisation and optimisation of camera and flight settings during the acquisition ANTL UAS images is lacking. The aim of this paper is to determine the camera and flight settings to capture high-quality ANTL using a DJI Matrice 300 RTK aircraft with a Zenmuse P1 camera. It emphasises the importance of selecting appropriate camera settings for high-quality ANTL images, which can benefit future research. Results show significant image quality gains when camera and flight settings are chosen appropriately in relation to the lighting conditions. We present three experiments demonstrating a range of camera settings, and we provide practical recommendations for high-quality night-time image collection. The optimal camera settings were determined to be an exposure time of 0.0166 s, ISO of 25600, and aperture of 2.97. This experiment produced outstanding results, with 85% of images having a blur extent below 0.40. Key words: artificial night-time light, unoccupied aerial system, drones, camera settings, flight settings
Audience Trade
Author Bhattarai, Dipendra
Lucieer, Arko
Author_xml – sequence: 1
  givenname: Dipendra
  orcidid: 0000-0002-6816-7208
  surname: Bhattarai
  fullname: Bhattarai, Dipendra
– sequence: 2
  givenname: Arko
  surname: Lucieer
  fullname: Lucieer, Arko
BookMark eNp1UT1v3SAUtapUappmzI7U2SlgbOMxivoRKVKWdkYXuLwQ2WABHvIP-rOL34uitmrFALqcDzjnfXMWYsCmuWL0mrFu-mQztJzyrqVUDm-ac94PohVTN539dn7XXOb8RCnlcux43583Px_W4heffTgQAwsmIBAscbM_PBaSsZR6k4mLiWxzSeB8QJIwx3krPgaywLru3OgIpOKdNx5mEnZ2W4WRHIUy2Y4OEMgWojHb6tESwLSD83MuuHxo3jqYM16-7BfNjy-fv99-a-8fvt7d3ty3RtCptF2vO6e1ljg424MQUkshqR2l6BE0CKvHXhjNtNHUjSOnbOh5h8LJwVAruovm7qRrIzypNfkF0rOK4NVxENNB7R8xMyoh2YDA2WiqOncjVFdr6MiZRM4nrFofT1oHqHAfXKwJmZqmUTeSy5ow7VlFXf8DVZfFxZvaovN1_gehPRFMijkndK_PZFTtZatattrLVnvZFd_9hTe-wF5PNfLzf1i_AH6cscQ
CitedBy_id crossref_primary_10_3390_rs16244688
crossref_primary_10_3390_drones8090504
Cites_doi 10.1038/s41598-020-79084-6
10.1139/dsa-2023-0021
10.1046/j.1365-8711.2001.04882.x
10.1038/s41598-020-68667-y
10.3390/technologies10040093
10.1186/s13750-021-00246-8
10.1109/MetroAeroSpace.2018.8453573
10.1016/j.jenvman.2011.06.029
10.3390/fire4010014
10.1016/j.rse.2020.111942
10.1890/1540-9295(2004)002[0191:Elp]2.0.Co;2
10.1201/9781420083408-c6
10.1016/j.jag.2019.01.013
10.1111/brv.12036
10.1007/s11119-020-09707-5
10.3390/rs10071091
10.1016/j.jag.2018.01.004
10.1080/00049158.2021.2004687
10.1016/j.isprsjprs.2020.10.016
10.1126/science.179.4080.1285
10.3390/s19235091
10.1139/juvs-2018-0030
10.1111/1365-2664.13240
10.1016/j.tree.2010.09.007
10.1016/j.rse.2019.111443
10.3390/s23042180
ContentType Journal Article
Copyright COPYRIGHT 2024 NRC Research Press
Copyright_xml – notice: COPYRIGHT 2024 NRC Research Press
DBID AAYXX
CITATION
DOA
DOI 10.1139/dsa-2023-0086
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2564-4939
EndPage 11
ExternalDocumentID oai_doaj_org_article_4816ea217c7842f7ab8edc07218e229e
A828325051
10_1139_dsa_2023_0086
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID 5RP
AAFWJ
AAYXX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
GROUPED_DOAJ
IAO
ICD
IEA
ITC
M~E
PV9
RRP
ID FETCH-LOGICAL-c409t-35b3fbbb8e6fd5a448b8480d7845eaba4db754cb1bcb0f772016523e4f86c0d43
IEDL.DBID DOA
ISSN 2564-4939
IngestDate Wed Aug 27 01:29:53 EDT 2025
Tue Jun 17 21:58:56 EDT 2025
Tue Jun 10 21:01:26 EDT 2025
Thu Apr 24 22:53:01 EDT 2025
Thu Jul 10 07:37:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-35b3fbbb8e6fd5a448b8480d7845eaba4db754cb1bcb0f772016523e4f86c0d43
ORCID 0000-0002-6816-7208
OpenAccessLink https://doaj.org/article/4816ea217c7842f7ab8edc07218e229e
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_4816ea217c7842f7ab8edc07218e229e
gale_infotracmisc_A828325051
gale_infotracacademiconefile_A828325051
crossref_primary_10_1139_dsa_2023_0086
crossref_citationtrail_10_1139_dsa_2023_0086
PublicationCentury 2000
PublicationDate 2024-01-01
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Drone systems and applications
PublicationYear 2024
Publisher NRC Research Press
Canadian Science Publishing
Publisher_xml – name: NRC Research Press
– name: Canadian Science Publishing
References Haynes R. (refg15/ref15) 2023
refg18/ref18
refg20/ref20
refg22/ref22
refg31/ref31
refg9/ref9
refg25/ref25
refg6/ref6
Garth C. (refg12/ref12) 2021
refg14/ref14
refg8/ref8
refg2/ref2
refg17/ref17
refg19/ref19
refg30/ref30
refg21/ref21
Rajkhowa R. (refg26/ref26) 2014; 3
Lucieer A. (refg23/ref23) 2013
refg7/ref7
refg4/ref4
refg10/ref10
refg1/ref1
refg28/ref28
refg32/ref32
refg3/ref3
refg24/ref24
refg16/ref16
Fiorentin P. (refg11/ref11) 2018
Cimoli E. (refg5/ref5) 2019
refg13/ref13
refg27/ref27
References_xml – ident: refg6/ref6
  doi: 10.1038/s41598-020-79084-6
– ident: refg2/ref2
  doi: 10.1139/dsa-2023-0021
– ident: refg7/ref7
  doi: 10.1046/j.1365-8711.2001.04882.x
– ident: refg14/ref14
  doi: 10.1038/s41598-020-68667-y
– ident: refg28/ref28
  doi: 10.3390/technologies10040093
– ident: refg3/ref3
  doi: 10.1186/s13750-021-00246-8
– start-page: 274
  volume-title: 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace)
  year: 2018
  ident: refg11/ref11
  doi: 10.1109/MetroAeroSpace.2018.8453573
– ident: refg9/ref9
  doi: 10.1016/j.jenvman.2011.06.029
– ident: refg16/ref16
  doi: 10.3390/fire4010014
– ident: refg21/ref21
  doi: 10.1016/j.rse.2020.111942
– ident: refg22/ref22
  doi: 10.1890/1540-9295(2004)002[0191:Elp]2.0.Co;2
– ident: refg8/ref8
  doi: 10.1201/9781420083408-c6
– volume: 3
  start-page: 861
  year: 2014
  ident: refg26/ref26
  publication-title: Int. J. Sci. Res.
– ident: refg24/ref24
  doi: 10.1016/j.jag.2019.01.013
– ident: refg13/ref13
  doi: 10.1111/brv.12036
– ident: refg18/ref18
  doi: 10.1007/s11119-020-09707-5
– ident: refg1/ref1
  doi: 10.3390/rs10071091
– ident: refg30/ref30
  doi: 10.1016/j.jag.2018.01.004
– volume-title: Workshop on UAV-based Remote Sensing Methods for Monitoring Vegetation
  year: 2013
  ident: refg23/ref23
– ident: refg31/ref31
  doi: 10.1080/00049158.2021.2004687
– ident: refg19/ref19
  doi: 10.1016/j.isprsjprs.2020.10.016
– volume-title: Photograph of DJI Matrice 300 RTK with Zenmuse P1
  year: 2023
  ident: refg15/ref15
– ident: refg27/ref27
  doi: 10.1126/science.179.4080.1285
– ident: refg10/ref10
  doi: 10.3390/s19235091
– volume-title: Shedding light on the physical, biogeochemical and human dimensions of connectivity in changing polar seas
  year: 2019
  ident: refg5/ref5
– ident: refg25/ref25
  doi: 10.1139/juvs-2018-0030
– ident: refg4/ref4
  doi: 10.1111/1365-2664.13240
– volume-title: Night-time photographs of Hobart
  year: 2021
  ident: refg12/ref12
– ident: refg17/ref17
  doi: 10.1016/j.tree.2010.09.007
– ident: refg20/ref20
  doi: 10.1016/j.rse.2019.111443
– ident: refg32/ref32
  doi: 10.3390/s23042180
SSID ssj0002873255
Score 2.2833781
Snippet Light pollution from artificial night-time lights (ANTLs) is a global health, economic, and environmental issue. Remote sensing and unoccupied aerial systems...
SourceID doaj
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms artificial night-time light
camera settings
Drone aircraft
drones
Environmental aspects
Environmental monitoring
flight settings
Light pollution
Remote sensing
Technology application
unoccupied aerial system
Title Optimising camera and flight settings for ultrafine resolution mapping of artificial night-time lights using an unoccupied aerial system
URI https://doaj.org/article/4816ea217c7842f7ab8edc07218e229e
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07SwQxEA5ipYX4xPPFFKKNwdwm-ypVFBHURsEu5CnIuSf3aK392c5kV1kLsbE5uNu53WRmNvm-kHzD2GFhM4e8QnJXC8dVHgy3VkaeG4vTSVkNC0cHhW_viutHdfOUP_VKfdGesFYeuHXcqULzYBA4u7JSWSzxHsE7UvWqQpbVgUZfUYsemXpJS0alRLD8Jaop61M_NZxKhXMC8T8moaTV343IvbnlapWtdKAQztrGrLGF0Kyz5Z5U4Ab7uMd3G2OCX8AZWkkC03iIIyLXMA1p-_IUEILCfDSbmIh_BaTSXWbBqyEhhmcYR6A-t7oR0MqIUH15SDeawjw9wTQwb8YkQIwIFUzKUmhFnzfZ49Xlw8U176oocIfcbcZljr63Ft1WRJ8bpGO2UpXw6E6MjDXK2zJXzg6tsyIi2KYDTpkMKlaFE17JLbbYjJuwzUDEoiqjlNJapC25sMi-RBwKH50POFIN2MmXW7XrJMap0sVIJ6oha41R0BQFTVEYsKNv87dWW-M3w3OK0bcRSWKnHzBRdJco-q9EGbBjirCmFxcb5Ux3_gC7RhJY-qyiqk0ICIcDtvfDEoPrepd3_qM1u2wJu6faxZw9tjibzMM-wpuZPUiZjJ-375efR0r7VQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimising+camera+and+flight+settings+for+ultrafine+resolution+mapping+of+artificial+night-time+lights+using+an+unoccupied+aerial+system&rft.jtitle=Drone+systems+and+applications&rft.au=Bhattarai%2C+Dipendra&rft.au=Lucieer%2C+Arko&rft.date=2024-01-01&rft.pub=NRC+Research+Press&rft.issn=2564-4939&rft.eissn=2564-4939&rft.volume=12&rft.spage=1&rft_id=info:doi/10.1139%2Fdsa-2023-0086&rft.externalDocID=A828325051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2564-4939&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2564-4939&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2564-4939&client=summon