Hollow nanotubes carbon@tellurium for high-performance Al-Te batteries

In Al-Te batteries, the dissolution of tellurium and tellurium chloroaluminate compounds during the electrochemical reaction will seriously affect its electrochemical performance. In order to avoid this problem, we prepared hollow nanotube carbon-coated tellurium electrode materials, whose coating w...

Full description

Saved in:
Bibliographic Details
Published inElectrochimica acta Vol. 401; p. 139498
Main Authors Li, Zhanyu, Lv, Wenrong, Wu, Gaohong, Zhang, Wenming
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In Al-Te batteries, the dissolution of tellurium and tellurium chloroaluminate compounds during the electrochemical reaction will seriously affect its electrochemical performance. In order to avoid this problem, we prepared hollow nanotube carbon-coated tellurium electrode materials, whose coating will increase electronic conductivity and avoid the collapse of structure caused by volume expansion during charging and discharging. The most important thing is that the dissolution of the tellurium and tellurium chloroaluminate compounds is greatly reduced due to the presence of the carbon coating. In addition, the results of density functional theory (DFT) show that AlCl4− has a large adsorption energy and a low diffusion barrier on Te (101) surface, which makes it exhibits excellent electrochemical performance. Its first discharge specific capacity is 1131.9 mAh g−1 at 200 mA g−1 and the initial discharge voltage is about 1.45 V. In addition, after 1000 cycles, the discharge specific capacity is still 254.2 mAh g−1 at 500 mA g−1. Interestingly, the electrochemical performance of hollow nanotubes carbon-coated tellurium is superior to that the related aluminum-based batteries recorded in the literature. Therefore, our work will lay a certain experimental and theoretical basis for the optimization of charging and discharging performance of Al-Te and other related secondary rechargeable batteries. [Display omitted]
AbstractList In Al-Te batteries, the dissolution of tellurium and tellurium chloroaluminate compounds during the electrochemical reaction will seriously affect its electrochemical performance. In order to avoid this problem, we prepared hollow nanotube carbon-coated tellurium electrode materials, whose coating will increase electronic conductivity and avoid the collapse of structure caused by volume expansion during charging and discharging. The most important thing is that the dissolution of the tellurium and tellurium chloroaluminate compounds is greatly reduced due to the presence of the carbon coating. In addition, the results of density functional theory (DFT) show that AlCl4− has a large adsorption energy and a low diffusion barrier on Te (101) surface, which makes it exhibits excellent electrochemical performance. Its first discharge specific capacity is 1131.9 mAh g−1 at 200 mA g−1 and the initial discharge voltage is about 1.45 V. In addition, after 1000 cycles, the discharge specific capacity is still 254.2 mAh g−1 at 500 mA g−1. Interestingly, the electrochemical performance of hollow nanotubes carbon-coated tellurium is superior to that the related aluminum-based batteries recorded in the literature. Therefore, our work will lay a certain experimental and theoretical basis for the optimization of charging and discharging performance of Al-Te and other related secondary rechargeable batteries. [Display omitted]
In Al-Te batteries, the dissolution of tellurium and tellurium chloroaluminate compounds during the electrochemical reaction will seriously affect its electrochemical performance. In order to avoid this problem, we prepared hollow nanotube carbon-coated tellurium electrode materials, whose coating will increase electronic conductivity and avoid the collapse of structure caused by volume expansion during charging and discharging. The most important thing is that the dissolution of the tellurium and tellurium chloroaluminate compounds is greatly reduced due to the presence of the carbon coating. In addition, the results of density functional theory (DFT) show that AlCl4− has a large adsorption energy and a low diffusion barrier on Te (101) surface, which makes it exhibits excellent electrochemical performance. Its first discharge specific capacity is 1131.9 mAh g−1 at 200 mA g−1 and the initial discharge voltage is about 1.45 V. In addition, after 1000 cycles, the discharge specific capacity is still 254.2 mAh g−1 at 500 mA g−1. Interestingly, the electrochemical performance of hollow nanotubes carbon-coated tellurium is superior to that the related aluminum-based batteries recorded in the literature. Therefore, our work will lay a certain experimental and theoretical basis for the optimization of charging and discharging performance of Al-Te and other related secondary rechargeable batteries.
ArticleNumber 139498
Author Zhang, Wenming
Lv, Wenrong
Wu, Gaohong
Li, Zhanyu
Author_xml – sequence: 1
  givenname: Zhanyu
  surname: Li
  fullname: Li, Zhanyu
  email: zyli@hbu.edu.cn
– sequence: 2
  givenname: Wenrong
  surname: Lv
  fullname: Lv, Wenrong
– sequence: 3
  givenname: Gaohong
  surname: Wu
  fullname: Wu, Gaohong
– sequence: 4
  givenname: Wenming
  surname: Zhang
  fullname: Zhang, Wenming
  email: wmzhanghbu@126.com
BookMark eNqNkE1LAzEQhoNUsK3-Bhc8b002u_k4CJZirVDwUs8hm53YlO2mJlnFf--WigcvCgMzh_d5B54JGnW-A4SuCZ4RTNjtbgYtmKSHmRW4IDNCZSnFGRoTwWlORSVHaIwxoXnJBLtAkxh3GGPOOB6j5cq3rf_IOt351NcQM6ND7bv7BG3bB9fvM-tDtnWv2_wAYbj3ujOQzdt8A1mtU4LgIF6ic6vbCFffe4pelg-bxSpfPz8-Lebr3JRYppxWkvOiKa0UNbdNTTgDiYHYghopRGOrhtuq1IZiKwSUteG6oI2wTOpSYEyn6ObUewj-rYeY1M73oRteqoIVWLKi4mxI3Z1SJvgYA1hlXNLJ-S4F7VpFsDqqUzv1o04d1amTuoHnv_hDcHsdPv9Bzk8kDBLeHQQVjYNBWOPCkFeNd392fAGJUJBQ
CitedBy_id crossref_primary_10_1016_j_scriptamat_2023_115751
crossref_primary_10_1016_j_cej_2024_158528
crossref_primary_10_1002_adma_202400263
crossref_primary_10_1002_slct_202204575
Cites_doi 10.1038/nmat2612
10.1021/acs.chemmater.5b03983
10.1021/acsami.7b07503
10.1021/acsami.8b00100
10.1039/C9EE00862D
10.1021/acsaem.8b00905
10.1134/S001670290601006X
10.1039/C8EE00822A
10.1002/adma.201606132
10.1002/anie.201603531
10.1038/nchem.2085
10.1021/acsnano.7b05350
10.1002/adma.201601357
10.1002/aenm.201703137
10.1039/C9TA00762H
10.1016/j.ensm.2016.09.001
10.1002/ente.201402069
10.1016/j.jpowsour.2018.08.079
10.1039/C8SC01054D
10.1039/C6EE00724D
10.1038/nature14340
10.1038/ncomms14283
10.1021/jp0764539
10.1016/j.nanoen.2018.04.045
10.1002/aenm.201700561
10.1039/C7TA10632G
10.1039/C6EE02326F
10.1016/j.cej.2020.125679
10.1016/j.cej.2020.126000
10.1021/acsami.9b16597
10.1021/acsnano.6b04622
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jan 1, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 1, 2022
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.electacta.2021.139498
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-3859
ExternalDocumentID 10_1016_j_electacta_2021_139498
S0013468621017849
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSK
SSZ
T5K
TWZ
UPT
WH7
XPP
YK3
ZMT
~02
~G-
29G
41~
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
LPU
R2-
RIG
SC5
SCB
SCH
SEW
SSH
T9H
VH1
WUQ
XOL
ZY4
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c409t-359772d4f98b7fdb176e90e1f23c988df5d7f54ac30f88e4bc7a23d8f69a48003
IEDL.DBID .~1
ISSN 0013-4686
IngestDate Sun Jul 13 04:25:35 EDT 2025
Tue Jul 01 03:02:30 EDT 2025
Thu Apr 24 22:54:41 EDT 2025
Fri Feb 23 02:40:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reaction mechanism
Density functional theory
Aluminum-tellurium batteries
Hollow nanotubes
Carbon coating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-359772d4f98b7fdb176e90e1f23c988df5d7f54ac30f88e4bc7a23d8f69a48003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2620962576
PQPubID 2045485
ParticipantIDs proquest_journals_2620962576
crossref_citationtrail_10_1016_j_electacta_2021_139498
crossref_primary_10_1016_j_electacta_2021_139498
elsevier_sciencedirect_doi_10_1016_j_electacta_2021_139498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Electrochimica acta
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, Niu, Liu, Li, Kang (bib0014) 2018; 10
He, Chen, Lv, Wen, Wang, Zhang, Li, Qin, He (bib0030) 2016; 10
VahidMohammadi, Hadjikhani, Shahbazmohamadi, Beidaghi (bib0033) 2018; 11
Li, Liu, Niu, Li, Kang (bib0031) 2018; 14
Elia, Marquardt, Hoeppner, Fantini, Lin, Knipping, Peters, Drillet, Passerini, Hahn (bib0009) 2016; 28
Jiang, Li, Huang, Li, Zeng, Yang, Li, Wang, Wang, Zhao (bib0012) 2017; 9
Sun, Bonnick, Duffort, Liu, Rong, Persson, Ceder, Nazar (bib0006) 2016; 9
Zhang, Zhang, Wang, Li, Jiao (bib0013) 2018; 6
Zhang, Jiao, Tu, Song, Xiao, Li, Wang, Lei, Tian, Chen, Fang (bib0027) 2019; 12
Yu, Manthiram (bib0024) 2017; 7
Jiao, Tian, Li, Fu, Jiao (bib0026) 2018; 1
Zhang, Yin, You, Yan, Guo (bib0025) 2014; 2
Wu, Yushin (bib0002) 2017; 10
Li, Wang, Zhang, Li, Chen, Lu (bib0020) 2018; 30
Hu, Luo, Ye, Zhu, Lyu, Wang (bib0015) 2017; 29
Lin, Gong, Lu, Wu, Wang, Guan, Angell, Chen, Yang, Hwang, Dai (bib0010) 2015; 520
Sun, Duffort, Mehdi, Browning, Nazar (bib0007) 2016; 28
Yaroshevsky (bib0008) 2006; 44
Li, Liu, Huo, Li, Kang (bib0029) 2019; 49
Huang, Liu, Liu, Zhang, Noonan, Yu (bib0023) 2018; 9
Zhao, Yin, Zhang, Zhang, Fang, Wang, Wei, Chen, Zhang, Sun, Li (bib0021) 2018; 49
Delmas (bib0003) 2018; 8
Brezesinski, Wang, Tolbert, Dunn (bib0032) 2010; 9
Cai, Zhao, Hu, Li, Li, Guo, Li, Xue, Xing, Yan, Wang (bib0017) 2018; 11
Xi, Wang, Wang, Qian, Xiao (bib0028) 2008; 112
Larcher, Tarascon (bib0001) 2015; 7
Xing, Du, Cai, Li, Zhou, Chai, Xue, Yan (bib0016) 2018; 401
Gu, Wang, Wu, Bai, Li, Wu (bib0019) 2017; 6
Li, Wang, Li, Zhang (bib0005) 2020; 400
Gao, Li, Wang, Hu, Han, Fan, Suo, Pearse, Lee, Rubloff, Gaskell, Noked, Wang (bib0022) 2016; 55
Li, Wang, Zhang, Yang (bib0004) 2020; 398
Wang, Wei, Lin, Pan, Chou, Chen, Gong, Wu, Yuan, Angell, Hsieh, Chen, Wen, Chen, Hwang, Chen, Dai (bib0011) 2017; 8
Li, Tu, Wang, Jiao (bib0018) 2019; 7
Brezesinski (10.1016/j.electacta.2021.139498_bib0032) 2010; 9
Li (10.1016/j.electacta.2021.139498_bib0029) 2019; 49
Huang (10.1016/j.electacta.2021.139498_bib0023) 2018; 9
Li (10.1016/j.electacta.2021.139498_bib0005) 2020; 400
Zhang (10.1016/j.electacta.2021.139498_bib0013) 2018; 6
Lin (10.1016/j.electacta.2021.139498_bib0010) 2015; 520
He (10.1016/j.electacta.2021.139498_bib0030) 2016; 10
Gao (10.1016/j.electacta.2021.139498_bib0022) 2016; 55
Yaroshevsky (10.1016/j.electacta.2021.139498_bib0008) 2006; 44
Larcher (10.1016/j.electacta.2021.139498_bib0001) 2015; 7
Li (10.1016/j.electacta.2021.139498_bib0004) 2020; 398
Li (10.1016/j.electacta.2021.139498_bib0020) 2018; 30
Wu (10.1016/j.electacta.2021.139498_bib0002) 2017; 10
Sun (10.1016/j.electacta.2021.139498_bib0006) 2016; 9
Gu (10.1016/j.electacta.2021.139498_bib0019) 2017; 6
Li (10.1016/j.electacta.2021.139498_bib0014) 2018; 10
Xi (10.1016/j.electacta.2021.139498_bib0028) 2008; 112
VahidMohammadi (10.1016/j.electacta.2021.139498_bib0033) 2018; 11
Hu (10.1016/j.electacta.2021.139498_bib0015) 2017; 29
Sun (10.1016/j.electacta.2021.139498_bib0007) 2016; 28
Li (10.1016/j.electacta.2021.139498_bib0018) 2019; 7
Jiang (10.1016/j.electacta.2021.139498_bib0012) 2017; 9
Zhang (10.1016/j.electacta.2021.139498_bib0027) 2019; 12
Cai (10.1016/j.electacta.2021.139498_bib0017) 2018; 11
Elia (10.1016/j.electacta.2021.139498_bib0009) 2016; 28
Xing (10.1016/j.electacta.2021.139498_bib0016) 2018; 401
Zhao (10.1016/j.electacta.2021.139498_bib0021) 2018; 49
Li (10.1016/j.electacta.2021.139498_bib0031) 2018; 14
Zhang (10.1016/j.electacta.2021.139498_bib0025) 2014; 2
Delmas (10.1016/j.electacta.2021.139498_bib0003) 2018; 8
Yu (10.1016/j.electacta.2021.139498_bib0024) 2017; 7
Wang (10.1016/j.electacta.2021.139498_bib0011) 2017; 8
Jiao (10.1016/j.electacta.2021.139498_bib0026) 2018; 1
References_xml – volume: 9
  start-page: 146
  year: 2010
  end-page: 151
  ident: bib0032
  article-title: Ordered mesoporous alpha-MoO
  publication-title: Nat. Mater.
– volume: 28
  start-page: 7564
  year: 2016
  end-page: 7579
  ident: bib0009
  article-title: An overview and future perspectives of aluminum batteries
  publication-title: Adv. Mater.
– volume: 398
  year: 2020
  ident: bib0004
  article-title: Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries
  publication-title: Chem. Eng. J.
– volume: 520
  start-page: 325
  year: 2015
  end-page: 328
  ident: bib0010
  article-title: An ultrafast rechargeable aluminium-ion battery
  publication-title: Nature
– volume: 10
  start-page: 9451
  year: 2018
  end-page: 9459
  ident: bib0014
  article-title: Rechargeable aluminum-ion battery based on MoS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 9
  year: 2017
  end-page: 17
  ident: bib0019
  article-title: Confirming reversible Al
  publication-title: Energy Storage Mater.
– volume: 9
  start-page: 28486
  year: 2017
  end-page: 28494
  ident: bib0012
  article-title: Investigation of the reversible intercalation/deintercalation of Al into the Novel Li
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  year: 2018
  ident: bib0031
  article-title: A novel graphite-graphite dual ion battery using an AlCl
  publication-title: Small
– volume: 49
  start-page: 137
  year: 2018
  end-page: 146
  ident: bib0021
  article-title: Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li-Se and Na-Se batteries
  publication-title: Nano Energy
– volume: 10
  start-page: 8837
  year: 2016
  end-page: 8842
  ident: bib0030
  article-title: Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li-Te batteries
  publication-title: ACS Nano
– volume: 44
  start-page: 48
  year: 2006
  end-page: 55
  ident: bib0008
  article-title: Abundances of chemical elements in the Earth's crust
  publication-title: Geochem. Int.
– volume: 29
  year: 2017
  ident: bib0015
  article-title: An innovative freeze-dried reduced graphene oxide supported SnS
  publication-title: Adv. Mater.
– volume: 49
  start-page: 45709
  year: 2019
  end-page: 45716
  ident: bib0029
  article-title: Novel one-dimensional hollow carbon nanotubes/selenium composite for high performance Al-Se batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 5178
  year: 2018
  end-page: 5182
  ident: bib0023
  article-title: Rechargeable aluminum-selenium batteries with high capacity
  publication-title: Chem. Sci.
– volume: 112
  start-page: 965
  year: 2008
  end-page: 971
  ident: bib0028
  article-title: Te/carbon and Se/carbon nanocables: size-controlled
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 757
  year: 2014
  end-page: 762
  ident: bib0025
  article-title: A high-capacity tellurium@carbon anode material for lithium-ion batteries
  publication-title: Energy Technol.
– volume: 11
  start-page: 2341
  year: 2018
  end-page: 2347
  ident: bib0017
  article-title: Stable CoSe
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 435
  year: 2017
  end-page: 459
  ident: bib0002
  article-title: Conversion cathodes for rechargeable lithium and lithium-ion batteries
  publication-title: Energy Environ. Sci.
– volume: 8
  year: 2018
  ident: bib0003
  article-title: Sodium and Sodium-Ion Batteries: 50 years of research
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 19
  year: 2015
  end-page: 29
  ident: bib0001
  article-title: Towards greener and more sustainable batteries for electrical energy storage
  publication-title: Nat. Chem
– volume: 7
  start-page: 8368
  year: 2019
  end-page: 8375
  ident: bib0018
  article-title: Cu
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 4924
  year: 2018
  end-page: 4930
  ident: bib0026
  article-title: A rechargeable Al-Te battery
  publication-title: ACS Appl. Energy Mater.
– volume: 12
  start-page: 1918
  year: 2019
  end-page: 1927
  ident: bib0027
  article-title: Rechargeable ultrahigh-capacity tellurium-aluminum batteries
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 534
  year: 2016
  end-page: 542
  ident: bib0007
  article-title: Investigation of the mechanism of mg insertion in birnessite in nonaqueous and aqueous rechargeable Mg-Ion batteries
  publication-title: Chem. Mater.
– volume: 6
  start-page: 3084
  year: 2018
  end-page: 3090
  ident: bib0013
  article-title: Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 30
  year: 2018
  ident: bib0020
  article-title: Revisiting the role of polysulfides in lithium-sulfur batteries
  publication-title: Adv. Mater.
– volume: 11
  start-page: 11135
  year: 2018
  end-page: 11144
  ident: bib0033
  article-title: Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries
  publication-title: ACS Nano
– volume: 7
  year: 2017
  ident: bib0024
  article-title: Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum-sulfur chemistry
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 14283
  year: 2017
  ident: bib0011
  article-title: Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode
  publication-title: Nat. Commun.
– volume: 55
  start-page: 9898
  year: 2016
  end-page: 9901
  ident: bib0022
  article-title: A rechargeable Al/S battery with an ionic-liquid electrolyte
  publication-title: Angew. Chem. Int. Ed.
– volume: 400
  year: 2020
  ident: bib0005
  article-title: Reduced graphene oxide (rGO) coated porous nanosphere TiO
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 2273
  year: 2016
  end-page: 2277
  ident: bib0006
  article-title: A high capacity thiospinel cathode for Mg batteries
  publication-title: Energy Environ. Sci.
– volume: 401
  start-page: 6
  year: 2018
  end-page: 12
  ident: bib0016
  article-title: Carbon-encapsulated CoSe nanoparticles derived from metal-organic frameworks as advanced cathode material for Al-ion battery
  publication-title: J. Power Sources
– volume: 9
  start-page: 146
  year: 2010
  ident: 10.1016/j.electacta.2021.139498_bib0032
  article-title: Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2612
– volume: 28
  start-page: 534
  year: 2016
  ident: 10.1016/j.electacta.2021.139498_bib0007
  article-title: Investigation of the mechanism of mg insertion in birnessite in nonaqueous and aqueous rechargeable Mg-Ion batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b03983
– volume: 9
  start-page: 28486
  year: 2017
  ident: 10.1016/j.electacta.2021.139498_bib0012
  article-title: Investigation of the reversible intercalation/deintercalation of Al into the Novel Li3VO4@C microsphere composite cathode material for aluminum-ion Batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07503
– volume: 10
  start-page: 9451
  year: 2018
  ident: 10.1016/j.electacta.2021.139498_bib0014
  article-title: Rechargeable aluminum-ion battery based on MoS2 microsphere cathode
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00100
– volume: 14
  year: 2018
  ident: 10.1016/j.electacta.2021.139498_bib0031
  article-title: A novel graphite-graphite dual ion battery using an AlCl3-[EMIm]Cl liquid electrolyte
  publication-title: Small
– volume: 12
  start-page: 1918
  year: 2019
  ident: 10.1016/j.electacta.2021.139498_bib0027
  article-title: Rechargeable ultrahigh-capacity tellurium-aluminum batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00862D
– volume: 1
  start-page: 4924
  year: 2018
  ident: 10.1016/j.electacta.2021.139498_bib0026
  article-title: A rechargeable Al-Te battery
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00905
– volume: 44
  start-page: 48
  year: 2006
  ident: 10.1016/j.electacta.2021.139498_bib0008
  article-title: Abundances of chemical elements in the Earth's crust
  publication-title: Geochem. Int.
  doi: 10.1134/S001670290601006X
– volume: 11
  start-page: 2341
  year: 2018
  ident: 10.1016/j.electacta.2021.139498_bib0017
  article-title: Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00822A
– volume: 29
  year: 2017
  ident: 10.1016/j.electacta.2021.139498_bib0015
  article-title: An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606132
– volume: 55
  start-page: 9898
  year: 2016
  ident: 10.1016/j.electacta.2021.139498_bib0022
  article-title: A rechargeable Al/S battery with an ionic-liquid electrolyte
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201603531
– volume: 7
  start-page: 19
  year: 2015
  ident: 10.1016/j.electacta.2021.139498_bib0001
  article-title: Towards greener and more sustainable batteries for electrical energy storage
  publication-title: Nat. Chem
  doi: 10.1038/nchem.2085
– volume: 11
  start-page: 11135
  year: 2018
  ident: 10.1016/j.electacta.2021.139498_bib0033
  article-title: Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05350
– volume: 28
  start-page: 7564
  year: 2016
  ident: 10.1016/j.electacta.2021.139498_bib0009
  article-title: An overview and future perspectives of aluminum batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601357
– volume: 8
  year: 2018
  ident: 10.1016/j.electacta.2021.139498_bib0003
  article-title: Sodium and Sodium-Ion Batteries: 50 years of research
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703137
– volume: 30
  year: 2018
  ident: 10.1016/j.electacta.2021.139498_bib0020
  article-title: Revisiting the role of polysulfides in lithium-sulfur batteries
  publication-title: Adv. Mater.
– volume: 7
  start-page: 8368
  year: 2019
  ident: 10.1016/j.electacta.2021.139498_bib0018
  article-title: Cu3P as a novel cathode material for rechargeable aluminum-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00762H
– volume: 6
  start-page: 9
  year: 2017
  ident: 10.1016/j.electacta.2021.139498_bib0019
  article-title: Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2016.09.001
– volume: 2
  start-page: 757
  year: 2014
  ident: 10.1016/j.electacta.2021.139498_bib0025
  article-title: A high-capacity tellurium@carbon anode material for lithium-ion batteries
  publication-title: Energy Technol.
  doi: 10.1002/ente.201402069
– volume: 401
  start-page: 6
  year: 2018
  ident: 10.1016/j.electacta.2021.139498_bib0016
  article-title: Carbon-encapsulated CoSe nanoparticles derived from metal-organic frameworks as advanced cathode material for Al-ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.08.079
– volume: 9
  start-page: 5178
  year: 2018
  ident: 10.1016/j.electacta.2021.139498_bib0023
  article-title: Rechargeable aluminum-selenium batteries with high capacity
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC01054D
– volume: 9
  start-page: 2273
  year: 2016
  ident: 10.1016/j.electacta.2021.139498_bib0006
  article-title: A high capacity thiospinel cathode for Mg batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00724D
– volume: 520
  start-page: 325
  year: 2015
  ident: 10.1016/j.electacta.2021.139498_bib0010
  article-title: An ultrafast rechargeable aluminium-ion battery
  publication-title: Nature
  doi: 10.1038/nature14340
– volume: 8
  start-page: 14283
  year: 2017
  ident: 10.1016/j.electacta.2021.139498_bib0011
  article-title: Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14283
– volume: 112
  start-page: 965
  year: 2008
  ident: 10.1016/j.electacta.2021.139498_bib0028
  article-title: Te/carbon and Se/carbon nanocables: size-controlled in situ hydrothermal synthesis and applications in preparing metal M/carbon nanocables (M=tellurides and selenides)
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0764539
– volume: 49
  start-page: 137
  year: 2018
  ident: 10.1016/j.electacta.2021.139498_bib0021
  article-title: Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li-Se and Na-Se batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.045
– volume: 7
  year: 2017
  ident: 10.1016/j.electacta.2021.139498_bib0024
  article-title: Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum-sulfur chemistry
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700561
– volume: 6
  start-page: 3084
  year: 2018
  ident: 10.1016/j.electacta.2021.139498_bib0013
  article-title: Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10632G
– volume: 10
  start-page: 435
  year: 2017
  ident: 10.1016/j.electacta.2021.139498_bib0002
  article-title: Conversion cathodes for rechargeable lithium and lithium-ion batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE02326F
– volume: 398
  year: 2020
  ident: 10.1016/j.electacta.2021.139498_bib0004
  article-title: Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125679
– volume: 400
  year: 2020
  ident: 10.1016/j.electacta.2021.139498_bib0005
  article-title: Reduced graphene oxide (rGO) coated porous nanosphere TiO2@Se composite as cathode material for high-performance reversible Al-Se batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126000
– volume: 49
  start-page: 45709
  year: 2019
  ident: 10.1016/j.electacta.2021.139498_bib0029
  article-title: Novel one-dimensional hollow carbon nanotubes/selenium composite for high performance Al-Se batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16597
– volume: 10
  start-page: 8837
  year: 2016
  ident: 10.1016/j.electacta.2021.139498_bib0030
  article-title: Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li-Te batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04622
SSID ssj0007670
Score 2.4086597
Snippet In Al-Te batteries, the dissolution of tellurium and tellurium chloroaluminate compounds during the electrochemical reaction will seriously affect its...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139498
SubjectTerms Aluminum
Aluminum-tellurium batteries
Batteries
Carbon
Carbon coating
Charging
Coated electrodes
Density functional theory
Diffusion barriers
Discharge
Dissolution
Electrochemical analysis
Electrode materials
Hollow nanotubes
Nanotubes
Optimization
Reaction mechanism
Rechargeable batteries
Tellurium
Title Hollow nanotubes carbon@tellurium for high-performance Al-Te batteries
URI https://dx.doi.org/10.1016/j.electacta.2021.139498
https://www.proquest.com/docview/2620962576
Volume 401
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPagH0apYrSUHr2mTzSS78WQplqrYUwu9LdkXVGpa2hRv_nZ382itIB6EkEPIhDAzOzuzzPcNQndchyLWGFzgwF3AHFwqpDC3kAYcY59Ti3d-HUXDCTxPw2kN9SssjG2rLGN_EdPzaF0-6Zba7C5nM4vx9QOwAAfrVRQsiA-AWC_vfO7aPEhEvGqKgX17r8crHzWTmMsUitjvmGwIYvrbDvUjVucb0OAUnZSZo9Mrfu4M1VTaQIf9amBbAx1_4xY8R4OhsfDiw0mTdJFtuFo7IlnxRfpgYSOb1Wzz7ph81bF0xe5yhx5wenN3rBye026aKvoCTQaP4_7QLYcmuMKUapkbWEI5LEHHlBMtuU8iFXvK1zgQMaVSh5LoEBIReJpSBVyQBAeS6ihOwGSPwSWqp4tUXSEHS6EBYh4SHZm8LuTKM8s_SKQxvE-kbqKoUhQTJaO4HWwxZ1Xr2BvbaphZDbNCw03kbQWXBanG3yL3lSXYnn8wE_r_Fm5VtmPlEl0zy8QfR7beuv7Pt2_QEbaIiPxUpoXq2Wqjbk2ekvF27ohtdNB7ehmOvgC5Dui4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS-RAFH5oe1APw7ihTo_WQY_RpFJJqgRhxLFp11ML3srUBi1tuukF8eKfmj84r9KJG4gHEUIOgSrCVy9vCe_7HsCOcokWjrKAKaYCRhULuDYabwmPFaWR4p7vfHmVtq_Z2U1yMwP_ai6Mb6usfP_Up5feunqyX6G5P-h2Pcc3ipknOHir4kxUnZXn9vEB67bR4elfPORdSlsnneN2UI0WCDQWNOMg9rJr1DAnuMqcUVGWWhHayNFYC86NS0zmEpbrOHScW6Z0ltPYcJeKnGGOFeO-szDH0F34sQl7Ty99JVmahfXYBP96b5rKytk2OV5YmdJoD9MvJvhHIfFdcCgjXusn_KhSVXI0RWMJZmyxDPPH9YS4ZVh8JWa4Aq02mlT_gRR50R9PlB0RnQ9Vv_jjeSqTYXdyTzBBJl4fORi80BXIUS_oWKJKnU8s21fh-lugXING0S_sOhBqtGNMqCRzKSaSibIh-ps4N2hpUWbcBqQ1UFJXEuZ-kkZP1r1qd_IZYekRllOENyB8XjiYqnh8vuSgPgn5xiAlxprPFzfrs5OVTxhJL_0vUl_gbX5l722Yb3cuL-TF6dX5L1igno5R_hJqQmM8nNjfmCSN1VZplARuv_sr-A8_LCR_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hollow+nanotubes+carbon%40tellurium+for+high-performance+Al-Te+batteries&rft.jtitle=Electrochimica+acta&rft.au=Li%2C+Zhanyu&rft.au=Lv%2C+Wenrong&rft.au=Wu%2C+Gaohong&rft.au=Zhang%2C+Wenming&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=401&rft_id=info:doi/10.1016%2Fj.electacta.2021.139498&rft.externalDocID=S0013468621017849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon