Hollow nanotubes carbon@tellurium for high-performance Al-Te batteries
In Al-Te batteries, the dissolution of tellurium and tellurium chloroaluminate compounds during the electrochemical reaction will seriously affect its electrochemical performance. In order to avoid this problem, we prepared hollow nanotube carbon-coated tellurium electrode materials, whose coating w...
Saved in:
Published in | Electrochimica acta Vol. 401; p. 139498 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.01.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In Al-Te batteries, the dissolution of tellurium and tellurium chloroaluminate compounds during the electrochemical reaction will seriously affect its electrochemical performance. In order to avoid this problem, we prepared hollow nanotube carbon-coated tellurium electrode materials, whose coating will increase electronic conductivity and avoid the collapse of structure caused by volume expansion during charging and discharging. The most important thing is that the dissolution of the tellurium and tellurium chloroaluminate compounds is greatly reduced due to the presence of the carbon coating. In addition, the results of density functional theory (DFT) show that AlCl4− has a large adsorption energy and a low diffusion barrier on Te (101) surface, which makes it exhibits excellent electrochemical performance. Its first discharge specific capacity is 1131.9 mAh g−1 at 200 mA g−1 and the initial discharge voltage is about 1.45 V. In addition, after 1000 cycles, the discharge specific capacity is still 254.2 mAh g−1 at 500 mA g−1. Interestingly, the electrochemical performance of hollow nanotubes carbon-coated tellurium is superior to that the related aluminum-based batteries recorded in the literature. Therefore, our work will lay a certain experimental and theoretical basis for the optimization of charging and discharging performance of Al-Te and other related secondary rechargeable batteries.
[Display omitted] |
---|---|
AbstractList | In Al-Te batteries, the dissolution of tellurium and tellurium chloroaluminate compounds during the electrochemical reaction will seriously affect its electrochemical performance. In order to avoid this problem, we prepared hollow nanotube carbon-coated tellurium electrode materials, whose coating will increase electronic conductivity and avoid the collapse of structure caused by volume expansion during charging and discharging. The most important thing is that the dissolution of the tellurium and tellurium chloroaluminate compounds is greatly reduced due to the presence of the carbon coating. In addition, the results of density functional theory (DFT) show that AlCl4− has a large adsorption energy and a low diffusion barrier on Te (101) surface, which makes it exhibits excellent electrochemical performance. Its first discharge specific capacity is 1131.9 mAh g−1 at 200 mA g−1 and the initial discharge voltage is about 1.45 V. In addition, after 1000 cycles, the discharge specific capacity is still 254.2 mAh g−1 at 500 mA g−1. Interestingly, the electrochemical performance of hollow nanotubes carbon-coated tellurium is superior to that the related aluminum-based batteries recorded in the literature. Therefore, our work will lay a certain experimental and theoretical basis for the optimization of charging and discharging performance of Al-Te and other related secondary rechargeable batteries.
[Display omitted] In Al-Te batteries, the dissolution of tellurium and tellurium chloroaluminate compounds during the electrochemical reaction will seriously affect its electrochemical performance. In order to avoid this problem, we prepared hollow nanotube carbon-coated tellurium electrode materials, whose coating will increase electronic conductivity and avoid the collapse of structure caused by volume expansion during charging and discharging. The most important thing is that the dissolution of the tellurium and tellurium chloroaluminate compounds is greatly reduced due to the presence of the carbon coating. In addition, the results of density functional theory (DFT) show that AlCl4− has a large adsorption energy and a low diffusion barrier on Te (101) surface, which makes it exhibits excellent electrochemical performance. Its first discharge specific capacity is 1131.9 mAh g−1 at 200 mA g−1 and the initial discharge voltage is about 1.45 V. In addition, after 1000 cycles, the discharge specific capacity is still 254.2 mAh g−1 at 500 mA g−1. Interestingly, the electrochemical performance of hollow nanotubes carbon-coated tellurium is superior to that the related aluminum-based batteries recorded in the literature. Therefore, our work will lay a certain experimental and theoretical basis for the optimization of charging and discharging performance of Al-Te and other related secondary rechargeable batteries. |
ArticleNumber | 139498 |
Author | Zhang, Wenming Lv, Wenrong Wu, Gaohong Li, Zhanyu |
Author_xml | – sequence: 1 givenname: Zhanyu surname: Li fullname: Li, Zhanyu email: zyli@hbu.edu.cn – sequence: 2 givenname: Wenrong surname: Lv fullname: Lv, Wenrong – sequence: 3 givenname: Gaohong surname: Wu fullname: Wu, Gaohong – sequence: 4 givenname: Wenming surname: Zhang fullname: Zhang, Wenming email: wmzhanghbu@126.com |
BookMark | eNqNkE1LAzEQhoNUsK3-Bhc8b002u_k4CJZirVDwUs8hm53YlO2mJlnFf--WigcvCgMzh_d5B54JGnW-A4SuCZ4RTNjtbgYtmKSHmRW4IDNCZSnFGRoTwWlORSVHaIwxoXnJBLtAkxh3GGPOOB6j5cq3rf_IOt351NcQM6ND7bv7BG3bB9fvM-tDtnWv2_wAYbj3ujOQzdt8A1mtU4LgIF6ic6vbCFffe4pelg-bxSpfPz8-Lebr3JRYppxWkvOiKa0UNbdNTTgDiYHYghopRGOrhtuq1IZiKwSUteG6oI2wTOpSYEyn6ObUewj-rYeY1M73oRteqoIVWLKi4mxI3Z1SJvgYA1hlXNLJ-S4F7VpFsDqqUzv1o04d1amTuoHnv_hDcHsdPv9Bzk8kDBLeHQQVjYNBWOPCkFeNd392fAGJUJBQ |
CitedBy_id | crossref_primary_10_1016_j_scriptamat_2023_115751 crossref_primary_10_1016_j_cej_2024_158528 crossref_primary_10_1002_adma_202400263 crossref_primary_10_1002_slct_202204575 |
Cites_doi | 10.1038/nmat2612 10.1021/acs.chemmater.5b03983 10.1021/acsami.7b07503 10.1021/acsami.8b00100 10.1039/C9EE00862D 10.1021/acsaem.8b00905 10.1134/S001670290601006X 10.1039/C8EE00822A 10.1002/adma.201606132 10.1002/anie.201603531 10.1038/nchem.2085 10.1021/acsnano.7b05350 10.1002/adma.201601357 10.1002/aenm.201703137 10.1039/C9TA00762H 10.1016/j.ensm.2016.09.001 10.1002/ente.201402069 10.1016/j.jpowsour.2018.08.079 10.1039/C8SC01054D 10.1039/C6EE00724D 10.1038/nature14340 10.1038/ncomms14283 10.1021/jp0764539 10.1016/j.nanoen.2018.04.045 10.1002/aenm.201700561 10.1039/C7TA10632G 10.1039/C6EE02326F 10.1016/j.cej.2020.125679 10.1016/j.cej.2020.126000 10.1021/acsami.9b16597 10.1021/acsnano.6b04622 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jan 1, 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jan 1, 2022 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.electacta.2021.139498 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-3859 |
ExternalDocumentID | 10_1016_j_electacta_2021_139498 S0013468621017849 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSK SSZ T5K TWZ UPT WH7 XPP YK3 ZMT ~02 ~G- 29G 41~ 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 LPU R2- RIG SC5 SCB SCH SEW SSH T9H VH1 WUQ XOL ZY4 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c409t-359772d4f98b7fdb176e90e1f23c988df5d7f54ac30f88e4bc7a23d8f69a48003 |
IEDL.DBID | .~1 |
ISSN | 0013-4686 |
IngestDate | Sun Jul 13 04:25:35 EDT 2025 Tue Jul 01 03:02:30 EDT 2025 Thu Apr 24 22:54:41 EDT 2025 Fri Feb 23 02:40:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reaction mechanism Density functional theory Aluminum-tellurium batteries Hollow nanotubes Carbon coating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-359772d4f98b7fdb176e90e1f23c988df5d7f54ac30f88e4bc7a23d8f69a48003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2620962576 |
PQPubID | 2045485 |
ParticipantIDs | proquest_journals_2620962576 crossref_citationtrail_10_1016_j_electacta_2021_139498 crossref_primary_10_1016_j_electacta_2021_139498 elsevier_sciencedirect_doi_10_1016_j_electacta_2021_139498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Electrochimica acta |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Li, Niu, Liu, Li, Kang (bib0014) 2018; 10 He, Chen, Lv, Wen, Wang, Zhang, Li, Qin, He (bib0030) 2016; 10 VahidMohammadi, Hadjikhani, Shahbazmohamadi, Beidaghi (bib0033) 2018; 11 Li, Liu, Niu, Li, Kang (bib0031) 2018; 14 Elia, Marquardt, Hoeppner, Fantini, Lin, Knipping, Peters, Drillet, Passerini, Hahn (bib0009) 2016; 28 Jiang, Li, Huang, Li, Zeng, Yang, Li, Wang, Wang, Zhao (bib0012) 2017; 9 Sun, Bonnick, Duffort, Liu, Rong, Persson, Ceder, Nazar (bib0006) 2016; 9 Zhang, Zhang, Wang, Li, Jiao (bib0013) 2018; 6 Zhang, Jiao, Tu, Song, Xiao, Li, Wang, Lei, Tian, Chen, Fang (bib0027) 2019; 12 Yu, Manthiram (bib0024) 2017; 7 Jiao, Tian, Li, Fu, Jiao (bib0026) 2018; 1 Zhang, Yin, You, Yan, Guo (bib0025) 2014; 2 Wu, Yushin (bib0002) 2017; 10 Li, Wang, Zhang, Li, Chen, Lu (bib0020) 2018; 30 Hu, Luo, Ye, Zhu, Lyu, Wang (bib0015) 2017; 29 Lin, Gong, Lu, Wu, Wang, Guan, Angell, Chen, Yang, Hwang, Dai (bib0010) 2015; 520 Sun, Duffort, Mehdi, Browning, Nazar (bib0007) 2016; 28 Yaroshevsky (bib0008) 2006; 44 Li, Liu, Huo, Li, Kang (bib0029) 2019; 49 Huang, Liu, Liu, Zhang, Noonan, Yu (bib0023) 2018; 9 Zhao, Yin, Zhang, Zhang, Fang, Wang, Wei, Chen, Zhang, Sun, Li (bib0021) 2018; 49 Delmas (bib0003) 2018; 8 Brezesinski, Wang, Tolbert, Dunn (bib0032) 2010; 9 Cai, Zhao, Hu, Li, Li, Guo, Li, Xue, Xing, Yan, Wang (bib0017) 2018; 11 Xi, Wang, Wang, Qian, Xiao (bib0028) 2008; 112 Larcher, Tarascon (bib0001) 2015; 7 Xing, Du, Cai, Li, Zhou, Chai, Xue, Yan (bib0016) 2018; 401 Gu, Wang, Wu, Bai, Li, Wu (bib0019) 2017; 6 Li, Wang, Li, Zhang (bib0005) 2020; 400 Gao, Li, Wang, Hu, Han, Fan, Suo, Pearse, Lee, Rubloff, Gaskell, Noked, Wang (bib0022) 2016; 55 Li, Wang, Zhang, Yang (bib0004) 2020; 398 Wang, Wei, Lin, Pan, Chou, Chen, Gong, Wu, Yuan, Angell, Hsieh, Chen, Wen, Chen, Hwang, Chen, Dai (bib0011) 2017; 8 Li, Tu, Wang, Jiao (bib0018) 2019; 7 Brezesinski (10.1016/j.electacta.2021.139498_bib0032) 2010; 9 Li (10.1016/j.electacta.2021.139498_bib0029) 2019; 49 Huang (10.1016/j.electacta.2021.139498_bib0023) 2018; 9 Li (10.1016/j.electacta.2021.139498_bib0005) 2020; 400 Zhang (10.1016/j.electacta.2021.139498_bib0013) 2018; 6 Lin (10.1016/j.electacta.2021.139498_bib0010) 2015; 520 He (10.1016/j.electacta.2021.139498_bib0030) 2016; 10 Gao (10.1016/j.electacta.2021.139498_bib0022) 2016; 55 Yaroshevsky (10.1016/j.electacta.2021.139498_bib0008) 2006; 44 Larcher (10.1016/j.electacta.2021.139498_bib0001) 2015; 7 Li (10.1016/j.electacta.2021.139498_bib0004) 2020; 398 Li (10.1016/j.electacta.2021.139498_bib0020) 2018; 30 Wu (10.1016/j.electacta.2021.139498_bib0002) 2017; 10 Sun (10.1016/j.electacta.2021.139498_bib0006) 2016; 9 Gu (10.1016/j.electacta.2021.139498_bib0019) 2017; 6 Li (10.1016/j.electacta.2021.139498_bib0014) 2018; 10 Xi (10.1016/j.electacta.2021.139498_bib0028) 2008; 112 VahidMohammadi (10.1016/j.electacta.2021.139498_bib0033) 2018; 11 Hu (10.1016/j.electacta.2021.139498_bib0015) 2017; 29 Sun (10.1016/j.electacta.2021.139498_bib0007) 2016; 28 Li (10.1016/j.electacta.2021.139498_bib0018) 2019; 7 Jiang (10.1016/j.electacta.2021.139498_bib0012) 2017; 9 Zhang (10.1016/j.electacta.2021.139498_bib0027) 2019; 12 Cai (10.1016/j.electacta.2021.139498_bib0017) 2018; 11 Elia (10.1016/j.electacta.2021.139498_bib0009) 2016; 28 Xing (10.1016/j.electacta.2021.139498_bib0016) 2018; 401 Zhao (10.1016/j.electacta.2021.139498_bib0021) 2018; 49 Li (10.1016/j.electacta.2021.139498_bib0031) 2018; 14 Zhang (10.1016/j.electacta.2021.139498_bib0025) 2014; 2 Delmas (10.1016/j.electacta.2021.139498_bib0003) 2018; 8 Yu (10.1016/j.electacta.2021.139498_bib0024) 2017; 7 Wang (10.1016/j.electacta.2021.139498_bib0011) 2017; 8 Jiao (10.1016/j.electacta.2021.139498_bib0026) 2018; 1 |
References_xml | – volume: 9 start-page: 146 year: 2010 end-page: 151 ident: bib0032 article-title: Ordered mesoporous alpha-MoO publication-title: Nat. Mater. – volume: 28 start-page: 7564 year: 2016 end-page: 7579 ident: bib0009 article-title: An overview and future perspectives of aluminum batteries publication-title: Adv. Mater. – volume: 398 year: 2020 ident: bib0004 article-title: Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries publication-title: Chem. Eng. J. – volume: 520 start-page: 325 year: 2015 end-page: 328 ident: bib0010 article-title: An ultrafast rechargeable aluminium-ion battery publication-title: Nature – volume: 10 start-page: 9451 year: 2018 end-page: 9459 ident: bib0014 article-title: Rechargeable aluminum-ion battery based on MoS publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 9 year: 2017 end-page: 17 ident: bib0019 article-title: Confirming reversible Al publication-title: Energy Storage Mater. – volume: 9 start-page: 28486 year: 2017 end-page: 28494 ident: bib0012 article-title: Investigation of the reversible intercalation/deintercalation of Al into the Novel Li publication-title: ACS Appl. Mater. Interfaces – volume: 14 year: 2018 ident: bib0031 article-title: A novel graphite-graphite dual ion battery using an AlCl publication-title: Small – volume: 49 start-page: 137 year: 2018 end-page: 146 ident: bib0021 article-title: Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li-Se and Na-Se batteries publication-title: Nano Energy – volume: 10 start-page: 8837 year: 2016 end-page: 8842 ident: bib0030 article-title: Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li-Te batteries publication-title: ACS Nano – volume: 44 start-page: 48 year: 2006 end-page: 55 ident: bib0008 article-title: Abundances of chemical elements in the Earth's crust publication-title: Geochem. Int. – volume: 29 year: 2017 ident: bib0015 article-title: An innovative freeze-dried reduced graphene oxide supported SnS publication-title: Adv. Mater. – volume: 49 start-page: 45709 year: 2019 end-page: 45716 ident: bib0029 article-title: Novel one-dimensional hollow carbon nanotubes/selenium composite for high performance Al-Se batteries publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 5178 year: 2018 end-page: 5182 ident: bib0023 article-title: Rechargeable aluminum-selenium batteries with high capacity publication-title: Chem. Sci. – volume: 112 start-page: 965 year: 2008 end-page: 971 ident: bib0028 article-title: Te/carbon and Se/carbon nanocables: size-controlled publication-title: J. Phys. Chem. C – volume: 2 start-page: 757 year: 2014 end-page: 762 ident: bib0025 article-title: A high-capacity tellurium@carbon anode material for lithium-ion batteries publication-title: Energy Technol. – volume: 11 start-page: 2341 year: 2018 end-page: 2347 ident: bib0017 article-title: Stable CoSe publication-title: Energy Environ. Sci. – volume: 10 start-page: 435 year: 2017 end-page: 459 ident: bib0002 article-title: Conversion cathodes for rechargeable lithium and lithium-ion batteries publication-title: Energy Environ. Sci. – volume: 8 year: 2018 ident: bib0003 article-title: Sodium and Sodium-Ion Batteries: 50 years of research publication-title: Adv. Energy Mater. – volume: 7 start-page: 19 year: 2015 end-page: 29 ident: bib0001 article-title: Towards greener and more sustainable batteries for electrical energy storage publication-title: Nat. Chem – volume: 7 start-page: 8368 year: 2019 end-page: 8375 ident: bib0018 article-title: Cu publication-title: J. Mater. Chem. A – volume: 1 start-page: 4924 year: 2018 end-page: 4930 ident: bib0026 article-title: A rechargeable Al-Te battery publication-title: ACS Appl. Energy Mater. – volume: 12 start-page: 1918 year: 2019 end-page: 1927 ident: bib0027 article-title: Rechargeable ultrahigh-capacity tellurium-aluminum batteries publication-title: Energy Environ. Sci. – volume: 28 start-page: 534 year: 2016 end-page: 542 ident: bib0007 article-title: Investigation of the mechanism of mg insertion in birnessite in nonaqueous and aqueous rechargeable Mg-Ion batteries publication-title: Chem. Mater. – volume: 6 start-page: 3084 year: 2018 end-page: 3090 ident: bib0013 article-title: Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries publication-title: J. Mater. Chem. A – volume: 30 year: 2018 ident: bib0020 article-title: Revisiting the role of polysulfides in lithium-sulfur batteries publication-title: Adv. Mater. – volume: 11 start-page: 11135 year: 2018 end-page: 11144 ident: bib0033 article-title: Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries publication-title: ACS Nano – volume: 7 year: 2017 ident: bib0024 article-title: Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum-sulfur chemistry publication-title: Adv. Energy Mater. – volume: 8 start-page: 14283 year: 2017 ident: bib0011 article-title: Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode publication-title: Nat. Commun. – volume: 55 start-page: 9898 year: 2016 end-page: 9901 ident: bib0022 article-title: A rechargeable Al/S battery with an ionic-liquid electrolyte publication-title: Angew. Chem. Int. Ed. – volume: 400 year: 2020 ident: bib0005 article-title: Reduced graphene oxide (rGO) coated porous nanosphere TiO publication-title: Chem. Eng. J. – volume: 9 start-page: 2273 year: 2016 end-page: 2277 ident: bib0006 article-title: A high capacity thiospinel cathode for Mg batteries publication-title: Energy Environ. Sci. – volume: 401 start-page: 6 year: 2018 end-page: 12 ident: bib0016 article-title: Carbon-encapsulated CoSe nanoparticles derived from metal-organic frameworks as advanced cathode material for Al-ion battery publication-title: J. Power Sources – volume: 9 start-page: 146 year: 2010 ident: 10.1016/j.electacta.2021.139498_bib0032 article-title: Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors publication-title: Nat. Mater. doi: 10.1038/nmat2612 – volume: 28 start-page: 534 year: 2016 ident: 10.1016/j.electacta.2021.139498_bib0007 article-title: Investigation of the mechanism of mg insertion in birnessite in nonaqueous and aqueous rechargeable Mg-Ion batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b03983 – volume: 9 start-page: 28486 year: 2017 ident: 10.1016/j.electacta.2021.139498_bib0012 article-title: Investigation of the reversible intercalation/deintercalation of Al into the Novel Li3VO4@C microsphere composite cathode material for aluminum-ion Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07503 – volume: 10 start-page: 9451 year: 2018 ident: 10.1016/j.electacta.2021.139498_bib0014 article-title: Rechargeable aluminum-ion battery based on MoS2 microsphere cathode publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00100 – volume: 14 year: 2018 ident: 10.1016/j.electacta.2021.139498_bib0031 article-title: A novel graphite-graphite dual ion battery using an AlCl3-[EMIm]Cl liquid electrolyte publication-title: Small – volume: 12 start-page: 1918 year: 2019 ident: 10.1016/j.electacta.2021.139498_bib0027 article-title: Rechargeable ultrahigh-capacity tellurium-aluminum batteries publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00862D – volume: 1 start-page: 4924 year: 2018 ident: 10.1016/j.electacta.2021.139498_bib0026 article-title: A rechargeable Al-Te battery publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00905 – volume: 44 start-page: 48 year: 2006 ident: 10.1016/j.electacta.2021.139498_bib0008 article-title: Abundances of chemical elements in the Earth's crust publication-title: Geochem. Int. doi: 10.1134/S001670290601006X – volume: 11 start-page: 2341 year: 2018 ident: 10.1016/j.electacta.2021.139498_bib0017 article-title: Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00822A – volume: 29 year: 2017 ident: 10.1016/j.electacta.2021.139498_bib0015 article-title: An innovative freeze-dried reduced graphene oxide supported SnS2 cathode active material for aluminum-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201606132 – volume: 55 start-page: 9898 year: 2016 ident: 10.1016/j.electacta.2021.139498_bib0022 article-title: A rechargeable Al/S battery with an ionic-liquid electrolyte publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201603531 – volume: 7 start-page: 19 year: 2015 ident: 10.1016/j.electacta.2021.139498_bib0001 article-title: Towards greener and more sustainable batteries for electrical energy storage publication-title: Nat. Chem doi: 10.1038/nchem.2085 – volume: 11 start-page: 11135 year: 2018 ident: 10.1016/j.electacta.2021.139498_bib0033 article-title: Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries publication-title: ACS Nano doi: 10.1021/acsnano.7b05350 – volume: 28 start-page: 7564 year: 2016 ident: 10.1016/j.electacta.2021.139498_bib0009 article-title: An overview and future perspectives of aluminum batteries publication-title: Adv. Mater. doi: 10.1002/adma.201601357 – volume: 8 year: 2018 ident: 10.1016/j.electacta.2021.139498_bib0003 article-title: Sodium and Sodium-Ion Batteries: 50 years of research publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703137 – volume: 30 year: 2018 ident: 10.1016/j.electacta.2021.139498_bib0020 article-title: Revisiting the role of polysulfides in lithium-sulfur batteries publication-title: Adv. Mater. – volume: 7 start-page: 8368 year: 2019 ident: 10.1016/j.electacta.2021.139498_bib0018 article-title: Cu3P as a novel cathode material for rechargeable aluminum-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00762H – volume: 6 start-page: 9 year: 2017 ident: 10.1016/j.electacta.2021.139498_bib0019 article-title: Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.09.001 – volume: 2 start-page: 757 year: 2014 ident: 10.1016/j.electacta.2021.139498_bib0025 article-title: A high-capacity tellurium@carbon anode material for lithium-ion batteries publication-title: Energy Technol. doi: 10.1002/ente.201402069 – volume: 401 start-page: 6 year: 2018 ident: 10.1016/j.electacta.2021.139498_bib0016 article-title: Carbon-encapsulated CoSe nanoparticles derived from metal-organic frameworks as advanced cathode material for Al-ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.08.079 – volume: 9 start-page: 5178 year: 2018 ident: 10.1016/j.electacta.2021.139498_bib0023 article-title: Rechargeable aluminum-selenium batteries with high capacity publication-title: Chem. Sci. doi: 10.1039/C8SC01054D – volume: 9 start-page: 2273 year: 2016 ident: 10.1016/j.electacta.2021.139498_bib0006 article-title: A high capacity thiospinel cathode for Mg batteries publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00724D – volume: 520 start-page: 325 year: 2015 ident: 10.1016/j.electacta.2021.139498_bib0010 article-title: An ultrafast rechargeable aluminium-ion battery publication-title: Nature doi: 10.1038/nature14340 – volume: 8 start-page: 14283 year: 2017 ident: 10.1016/j.electacta.2021.139498_bib0011 article-title: Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode publication-title: Nat. Commun. doi: 10.1038/ncomms14283 – volume: 112 start-page: 965 year: 2008 ident: 10.1016/j.electacta.2021.139498_bib0028 article-title: Te/carbon and Se/carbon nanocables: size-controlled in situ hydrothermal synthesis and applications in preparing metal M/carbon nanocables (M=tellurides and selenides) publication-title: J. Phys. Chem. C doi: 10.1021/jp0764539 – volume: 49 start-page: 137 year: 2018 ident: 10.1016/j.electacta.2021.139498_bib0021 article-title: Heteroatoms dual-doped hierarchical porous carbon-selenium composite for durable Li-Se and Na-Se batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.045 – volume: 7 year: 2017 ident: 10.1016/j.electacta.2021.139498_bib0024 article-title: Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum-sulfur chemistry publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700561 – volume: 6 start-page: 3084 year: 2018 ident: 10.1016/j.electacta.2021.139498_bib0013 article-title: Porous CuO microsphere architectures as high-performance cathode materials for aluminum-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10632G – volume: 10 start-page: 435 year: 2017 ident: 10.1016/j.electacta.2021.139498_bib0002 article-title: Conversion cathodes for rechargeable lithium and lithium-ion batteries publication-title: Energy Environ. Sci. doi: 10.1039/C6EE02326F – volume: 398 year: 2020 ident: 10.1016/j.electacta.2021.139498_bib0004 article-title: Two-dimensional Ti3C2@CTAB-Se (MXene) composite cathode material for high-performance rechargeable aluminum batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125679 – volume: 400 year: 2020 ident: 10.1016/j.electacta.2021.139498_bib0005 article-title: Reduced graphene oxide (rGO) coated porous nanosphere TiO2@Se composite as cathode material for high-performance reversible Al-Se batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126000 – volume: 49 start-page: 45709 year: 2019 ident: 10.1016/j.electacta.2021.139498_bib0029 article-title: Novel one-dimensional hollow carbon nanotubes/selenium composite for high performance Al-Se batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16597 – volume: 10 start-page: 8837 year: 2016 ident: 10.1016/j.electacta.2021.139498_bib0030 article-title: Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li-Te batteries publication-title: ACS Nano doi: 10.1021/acsnano.6b04622 |
SSID | ssj0007670 |
Score | 2.4086597 |
Snippet | In Al-Te batteries, the dissolution of tellurium and tellurium chloroaluminate compounds during the electrochemical reaction will seriously affect its... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 139498 |
SubjectTerms | Aluminum Aluminum-tellurium batteries Batteries Carbon Carbon coating Charging Coated electrodes Density functional theory Diffusion barriers Discharge Dissolution Electrochemical analysis Electrode materials Hollow nanotubes Nanotubes Optimization Reaction mechanism Rechargeable batteries Tellurium |
Title | Hollow nanotubes carbon@tellurium for high-performance Al-Te batteries |
URI | https://dx.doi.org/10.1016/j.electacta.2021.139498 https://www.proquest.com/docview/2620962576 |
Volume | 401 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPagH0apYrSUHr2mTzSS78WQplqrYUwu9LdkXVGpa2hRv_nZ382itIB6EkEPIhDAzOzuzzPcNQndchyLWGFzgwF3AHFwqpDC3kAYcY59Ti3d-HUXDCTxPw2kN9SssjG2rLGN_EdPzaF0-6Zba7C5nM4vx9QOwAAfrVRQsiA-AWC_vfO7aPEhEvGqKgX17r8crHzWTmMsUitjvmGwIYvrbDvUjVucb0OAUnZSZo9Mrfu4M1VTaQIf9amBbAx1_4xY8R4OhsfDiw0mTdJFtuFo7IlnxRfpgYSOb1Wzz7ph81bF0xe5yhx5wenN3rBye026aKvoCTQaP4_7QLYcmuMKUapkbWEI5LEHHlBMtuU8iFXvK1zgQMaVSh5LoEBIReJpSBVyQBAeS6ihOwGSPwSWqp4tUXSEHS6EBYh4SHZm8LuTKM8s_SKQxvE-kbqKoUhQTJaO4HWwxZ1Xr2BvbaphZDbNCw03kbQWXBanG3yL3lSXYnn8wE_r_Fm5VtmPlEl0zy8QfR7beuv7Pt2_QEbaIiPxUpoXq2Wqjbk2ekvF27ohtdNB7ehmOvgC5Dui4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS-RAFH5oe1APw7ihTo_WQY_RpFJJqgRhxLFp11ML3srUBi1tuukF8eKfmj84r9KJG4gHEUIOgSrCVy9vCe_7HsCOcokWjrKAKaYCRhULuDYabwmPFaWR4p7vfHmVtq_Z2U1yMwP_ai6Mb6usfP_Up5feunqyX6G5P-h2Pcc3ipknOHir4kxUnZXn9vEB67bR4elfPORdSlsnneN2UI0WCDQWNOMg9rJr1DAnuMqcUVGWWhHayNFYC86NS0zmEpbrOHScW6Z0ltPYcJeKnGGOFeO-szDH0F34sQl7Ty99JVmahfXYBP96b5rKytk2OV5YmdJoD9MvJvhHIfFdcCgjXusn_KhSVXI0RWMJZmyxDPPH9YS4ZVh8JWa4Aq02mlT_gRR50R9PlB0RnQ9Vv_jjeSqTYXdyTzBBJl4fORi80BXIUS_oWKJKnU8s21fh-lugXING0S_sOhBqtGNMqCRzKSaSibIh-ps4N2hpUWbcBqQ1UFJXEuZ-kkZP1r1qd_IZYekRllOENyB8XjiYqnh8vuSgPgn5xiAlxprPFzfrs5OVTxhJL_0vUl_gbX5l722Yb3cuL-TF6dX5L1igno5R_hJqQmM8nNjfmCSN1VZplARuv_sr-A8_LCR_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hollow+nanotubes+carbon%40tellurium+for+high-performance+Al-Te+batteries&rft.jtitle=Electrochimica+acta&rft.au=Li%2C+Zhanyu&rft.au=Lv%2C+Wenrong&rft.au=Wu%2C+Gaohong&rft.au=Zhang%2C+Wenming&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0013-4686&rft.eissn=1873-3859&rft.volume=401&rft_id=info:doi/10.1016%2Fj.electacta.2021.139498&rft.externalDocID=S0013468621017849 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-4686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-4686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-4686&client=summon |