Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film

[Display omitted] •TiO2/g-C3N4 thin film electrode was fabricated via a surface hybridization and dip-coating method.•The surface hybrid heterojunction of TiO2/g-C3N4 greatly improves its photocatalytic and photoelectrocatalytic activity.•The synergistic effects between the electrocatalytic and phot...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 201; pp. 600 - 606
Main Authors Wei, Zhen, Liang, Fenfen, Liu, Yanfang, Luo, Wenjiao, Wang, Jun, Yao, Wenqing, Zhu, Yongfa
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •TiO2/g-C3N4 thin film electrode was fabricated via a surface hybridization and dip-coating method.•The surface hybrid heterojunction of TiO2/g-C3N4 greatly improves its photocatalytic and photoelectrocatalytic activity.•The synergistic effects between the electrocatalytic and photocatalytic oxidation processes in photoelectrocatalytic were illustrated.•Coking wastewater and phenol can be mineralized by TiO2/g-C3N4 photoelectrocatalytic processes. TiO2/g-C3N4 (TCN) thin film electrode was fabricated via a surface hybridization and dip-coating method. Phenol could be completely mineralized and the pollutants in coking wastewater could be degraded quickly by TCN under simulated solar light and electric field. The characteristics of the photoelectrocatalytic (PEC) degradation of phenol-containing coking wastewater were investigated under visible light, ultraviolet light and simulated solar irradiation. The results showed that phenol was degraded completely by the TCN-0.3 with a 1.5V bias in 1.5h under simulated solar irradiation with 100% TOC removal rate. 45% of the TOC for the coking wastewater was removed by the TCN-0.3 with a 1.5V bias under 5.0h simulated solar irradiation, which was 2.45 and 5.69 times as high as that of the pure TiO2 and g-C3N4, respectively. The surface hybrid heterojunction formed between TiO2 and g-C3N4 promotes the migration of the photogenerated electrons and holes and greatly improves the degradation efficiency with applied potential. The significant synergistic effect between the electrocatalytic and photocatalytic oxidation processes in PEC is conducive to electron-hole pair separation, producing the more active substances, such as hydroxyl radicals, and increases the degree of degradation and mineralization of phenolic compounds.
AbstractList [Display omitted] •TiO2/g-C3N4 thin film electrode was fabricated via a surface hybridization and dip-coating method.•The surface hybrid heterojunction of TiO2/g-C3N4 greatly improves its photocatalytic and photoelectrocatalytic activity.•The synergistic effects between the electrocatalytic and photocatalytic oxidation processes in photoelectrocatalytic were illustrated.•Coking wastewater and phenol can be mineralized by TiO2/g-C3N4 photoelectrocatalytic processes. TiO2/g-C3N4 (TCN) thin film electrode was fabricated via a surface hybridization and dip-coating method. Phenol could be completely mineralized and the pollutants in coking wastewater could be degraded quickly by TCN under simulated solar light and electric field. The characteristics of the photoelectrocatalytic (PEC) degradation of phenol-containing coking wastewater were investigated under visible light, ultraviolet light and simulated solar irradiation. The results showed that phenol was degraded completely by the TCN-0.3 with a 1.5V bias in 1.5h under simulated solar irradiation with 100% TOC removal rate. 45% of the TOC for the coking wastewater was removed by the TCN-0.3 with a 1.5V bias under 5.0h simulated solar irradiation, which was 2.45 and 5.69 times as high as that of the pure TiO2 and g-C3N4, respectively. The surface hybrid heterojunction formed between TiO2 and g-C3N4 promotes the migration of the photogenerated electrons and holes and greatly improves the degradation efficiency with applied potential. The significant synergistic effect between the electrocatalytic and photocatalytic oxidation processes in PEC is conducive to electron-hole pair separation, producing the more active substances, such as hydroxyl radicals, and increases the degree of degradation and mineralization of phenolic compounds.
Author Liang, Fenfen
Yao, Wenqing
Zhu, Yongfa
Luo, Wenjiao
Liu, Yanfang
Wang, Jun
Wei, Zhen
Author_xml – sequence: 1
  givenname: Zhen
  surname: Wei
  fullname: Wei, Zhen
  organization: Department of Chemistry, Tsinghua University, Beijing, 100084, China
– sequence: 2
  givenname: Fenfen
  surname: Liang
  fullname: Liang, Fenfen
  organization: Department of Chemistry, Tsinghua University, Beijing, 100084, China
– sequence: 3
  givenname: Yanfang
  surname: Liu
  fullname: Liu, Yanfang
  organization: China Sinopec Research Institute of Petroleum Processing, Beijing, 100083, China
– sequence: 4
  givenname: Wenjiao
  surname: Luo
  fullname: Luo, Wenjiao
  organization: Department of Chemistry, Tsinghua University, Beijing, 100084, China
– sequence: 5
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: Department of Chemistry, Tsinghua University, Beijing, 100084, China
– sequence: 6
  givenname: Wenqing
  surname: Yao
  fullname: Yao, Wenqing
  organization: Department of Chemistry, Tsinghua University, Beijing, 100084, China
– sequence: 7
  givenname: Yongfa
  surname: Zhu
  fullname: Zhu, Yongfa
  email: zhuyf@tsinghua.edu.cn
  organization: Department of Chemistry, Tsinghua University, Beijing, 100084, China
BookMark eNqFkMtOwzAQRS1UJNrCH7DwDyQd22masEBCFS-poizK2nLsSeMqtYtjqPr3pJQVC1iNrkbnauaMyMB5h4RcM0gZsHyySdVOq1ilvE8plCmAOCNDVsxEIopCDMgQSp4nQszEBRl13QYAuODFkLy_Nj56bFHH4PsO1R6i1dTgOiijovWO-pruGnS-TbR3UVln3ZruVRdxryIGWh3oyi75ZJ3MxUtGm0MVrKEN9jvfxfCh40dAGhvraG3b7SU5r1Xb4dXPHJO3h_vV_ClZLB-f53eLRGdQxkRkZc4BkIlZVecKTcVAcyZgpgttqqlSFc8gMyUr6qmuilznHMs6B1YyY6YoxiQ79er-jC5gLXfBblU4SAbyqE1u5EmbPGqTUMpeW4_d_MK0jd8iYlC2_Q--PcHYP_ZpMchOW3QajQ29YWm8_bvgC8CskAQ
CitedBy_id crossref_primary_10_1016_j_chemosphere_2021_131737
crossref_primary_10_1016_j_jallcom_2019_153139
crossref_primary_10_1016_j_jwpe_2025_106975
crossref_primary_10_1002_admt_202100687
crossref_primary_10_1016_j_jhazmat_2020_122559
crossref_primary_10_1021_acsami_0c12828
crossref_primary_10_1007_s11467_020_1021_1
crossref_primary_10_3390_ma12203369
crossref_primary_10_1016_j_apcatb_2018_03_069
crossref_primary_10_1002_aenm_201900364
crossref_primary_10_1149_1945_7111_ac4b21
crossref_primary_10_1021_acs_jpcc_6b11938
crossref_primary_10_1016_j_apsusc_2017_06_299
crossref_primary_10_1016_j_jphotochem_2021_113291
crossref_primary_10_3390_nano9040488
crossref_primary_10_1039_C6NJ03922G
crossref_primary_10_1016_j_ijhydene_2021_11_133
crossref_primary_10_2139_ssrn_4063034
crossref_primary_10_1016_j_apsusc_2020_146219
crossref_primary_10_1016_j_catcom_2017_07_017
crossref_primary_10_1007_s10971_023_06263_y
crossref_primary_10_1016_j_psep_2021_05_015
crossref_primary_10_1080_09593330_2021_1921052
crossref_primary_10_1039_D2RA07626H
crossref_primary_10_1016_j_jcis_2020_05_031
crossref_primary_10_1021_acs_langmuir_0c00847
crossref_primary_10_1007_s42452_020_2190_9
crossref_primary_10_1016_j_ijhydene_2017_02_171
crossref_primary_10_1016_j_apsusc_2018_05_082
crossref_primary_10_1016_j_jhazmat_2019_120815
crossref_primary_10_1007_s11356_019_07112_8
crossref_primary_10_3390_catal8120576
crossref_primary_10_1016_j_solener_2020_02_037
crossref_primary_10_1016_j_apsusc_2018_04_011
crossref_primary_10_1016_j_jece_2023_109541
crossref_primary_10_1039_D1CY00307K
crossref_primary_10_1016_j_cej_2021_132092
crossref_primary_10_1016_j_cattod_2024_115154
crossref_primary_10_1016_j_jallcom_2020_156446
crossref_primary_10_1016_j_materresbull_2019_110642
crossref_primary_10_1039_C8DT01348A
crossref_primary_10_1016_j_jhazmat_2022_130601
crossref_primary_10_1016_j_jece_2022_107889
crossref_primary_10_1016_j_watres_2019_115105
crossref_primary_10_1016_j_apcatb_2020_118745
crossref_primary_10_1016_j_materresbull_2018_02_019
crossref_primary_10_1016_j_apcatb_2021_120548
crossref_primary_10_1016_j_seppur_2019_115764
crossref_primary_10_1111_ijac_14405
crossref_primary_10_3934_matersci_2023049
crossref_primary_10_1007_s11431_018_9447_y
crossref_primary_10_1007_s11356_021_12606_5
crossref_primary_10_1016_j_seppur_2022_122174
crossref_primary_10_1016_j_enmm_2022_100737
crossref_primary_10_1016_j_microc_2023_109680
crossref_primary_10_1016_j_apcatb_2020_119710
crossref_primary_10_1021_acssuschemeng_8b02287
crossref_primary_10_1016_j_apsusc_2021_150597
crossref_primary_10_1021_acssuschemeng_8b00782
crossref_primary_10_1080_15569543_2019_1573433
crossref_primary_10_1016_j_envpol_2019_04_010
crossref_primary_10_2139_ssrn_4092949
crossref_primary_10_3390_molecules29020289
crossref_primary_10_2139_ssrn_4111107
crossref_primary_10_1039_D4NR05353B
crossref_primary_10_1016_j_apsusc_2022_153401
crossref_primary_10_1016_j_apcatb_2019_01_088
crossref_primary_10_1016_j_seppur_2022_121673
crossref_primary_10_1016_j_apcatb_2020_119604
crossref_primary_10_1016_j_scitotenv_2021_148462
crossref_primary_10_1007_s10854_018_9672_1
crossref_primary_10_1016_j_apcatb_2017_12_070
crossref_primary_10_1016_j_jece_2023_110992
crossref_primary_10_1016_j_matchemphys_2021_124246
crossref_primary_10_1016_j_molstruc_2020_128872
crossref_primary_10_1016_j_cej_2019_04_089
crossref_primary_10_1016_j_ijhydene_2019_09_114
crossref_primary_10_1016_j_cej_2024_155551
crossref_primary_10_1016_j_apcatb_2017_08_004
crossref_primary_10_1016_j_envpol_2019_113702
crossref_primary_10_1016_j_jclepro_2018_06_289
crossref_primary_10_1016_j_jhazmat_2018_12_095
crossref_primary_10_1021_acs_iecr_0c01682
crossref_primary_10_1016_j_jece_2019_103248
crossref_primary_10_1039_C8NJ04557G
crossref_primary_10_1016_j_jece_2020_103666
crossref_primary_10_1016_j_seppur_2022_121798
crossref_primary_10_1016_j_surfin_2022_102360
crossref_primary_10_1016_j_apsusc_2019_144241
crossref_primary_10_1016_j_cej_2021_128612
crossref_primary_10_1016_j_cej_2022_137053
crossref_primary_10_1007_s00604_025_07088_y
crossref_primary_10_1016_j_seppur_2021_119769
crossref_primary_10_1016_j_apcata_2021_118460
crossref_primary_10_1016_j_mssp_2020_104954
crossref_primary_10_1016_j_colsurfa_2017_10_053
crossref_primary_10_1016_j_tsf_2021_138632
crossref_primary_10_1088_1361_6641_ab1701
crossref_primary_10_1016_j_jiec_2020_01_012
crossref_primary_10_1039_C8CY01551A
crossref_primary_10_1016_j_apsusc_2017_11_254
crossref_primary_10_1016_j_heliyon_2022_e12685
crossref_primary_10_1007_s10971_019_05172_3
crossref_primary_10_1016_j_envint_2021_106572
crossref_primary_10_1039_D1NJ01973B
crossref_primary_10_1007_s11356_024_34073_4
crossref_primary_10_1016_j_jhazmat_2020_122139
crossref_primary_10_1016_j_apcatb_2020_118897
crossref_primary_10_1016_j_biortech_2017_08_119
crossref_primary_10_1016_j_jes_2024_06_039
crossref_primary_10_1016_j_apcatb_2018_01_033
crossref_primary_10_1016_j_cej_2019_122269
crossref_primary_10_1016_j_crci_2017_05_004
crossref_primary_10_1016_j_cej_2019_03_140
crossref_primary_10_1007_s41061_022_00409_2
crossref_primary_10_1016_j_carbon_2017_11_078
crossref_primary_10_1149_2_0361914jes
crossref_primary_10_1016_j_apcatb_2018_02_056
crossref_primary_10_1016_j_chemosphere_2020_128730
crossref_primary_10_1016_j_chemphys_2022_111558
crossref_primary_10_1039_D3EN00077J
crossref_primary_10_1016_j_cclet_2019_12_015
crossref_primary_10_3390_w15152837
crossref_primary_10_1016_j_chemphys_2021_111141
crossref_primary_10_1016_j_conbuildmat_2025_140588
crossref_primary_10_1016_j_scitotenv_2020_137985
crossref_primary_10_1016_j_jhazmat_2020_123470
crossref_primary_10_1007_s11595_022_2516_0
crossref_primary_10_1007_s11356_023_26056_8
crossref_primary_10_1016_j_apsusc_2017_11_229
crossref_primary_10_1016_j_chemosphere_2020_126381
crossref_primary_10_1021_acs_est_7b04865
crossref_primary_10_1016_j_dwt_2025_101057
crossref_primary_10_1021_acsami_7b03073
crossref_primary_10_1016_j_jece_2022_107380
crossref_primary_10_1016_j_jallcom_2020_155612
crossref_primary_10_1016_j_molliq_2020_114479
crossref_primary_10_1016_j_jhazmat_2017_10_044
crossref_primary_10_1016_j_matlet_2018_01_098
crossref_primary_10_3390_molecules26072062
crossref_primary_10_1007_s10853_019_03636_z
crossref_primary_10_1016_j_apcatb_2018_12_029
crossref_primary_10_1016_j_apcatb_2022_121292
crossref_primary_10_1016_j_jpcs_2021_110252
crossref_primary_10_1007_s12221_023_00061_7
crossref_primary_10_1016_j_jcis_2018_04_106
crossref_primary_10_1039_D2VA00143H
crossref_primary_10_1016_j_cej_2018_09_097
crossref_primary_10_1007_s11356_018_3450_8
crossref_primary_10_1007_s11356_020_11220_1
crossref_primary_10_1016_j_apcatb_2017_03_061
crossref_primary_10_1016_j_scitotenv_2021_145840
crossref_primary_10_1016_j_ecoenv_2020_111866
crossref_primary_10_1016_j_cclet_2020_03_026
crossref_primary_10_1038_s41598_017_09826_6
crossref_primary_10_3390_catal14050333
crossref_primary_10_1016_j_apsusc_2020_148487
crossref_primary_10_1016_j_mcat_2017_04_004
crossref_primary_10_1016_j_materresbull_2016_12_009
crossref_primary_10_1016_j_seppur_2021_120435
crossref_primary_10_3390_molecules29163805
crossref_primary_10_1007_s11356_018_2201_1
crossref_primary_10_1016_j_seppur_2022_122346
crossref_primary_10_20964_2017_04_58
crossref_primary_10_1016_j_jenvman_2023_118545
crossref_primary_10_1021_acs_iecr_1c00509
crossref_primary_10_1049_mnl_2017_0414
crossref_primary_10_1021_acs_energyfuels_0c01354
crossref_primary_10_1016_j_mcat_2019_110718
crossref_primary_10_1016_j_molstruc_2020_129660
crossref_primary_10_1016_j_jcis_2017_04_047
crossref_primary_10_1016_j_jtice_2019_04_032
crossref_primary_10_1016_j_apsusc_2021_149085
crossref_primary_10_1016_j_jcis_2020_07_071
crossref_primary_10_1039_D1RA01890F
crossref_primary_10_1002_jctb_6439
crossref_primary_10_1016_j_apsusc_2020_147181
crossref_primary_10_1016_j_cplett_2021_139027
crossref_primary_10_1016_j_jece_2024_112186
crossref_primary_10_1016_j_apcatb_2018_01_070
crossref_primary_10_1016_j_jclepro_2021_127915
crossref_primary_10_1016_j_apcatb_2018_01_074
crossref_primary_10_1016_j_jcat_2023_08_003
crossref_primary_10_5004_dwt_2019_23673
crossref_primary_10_1016_j_matlet_2019_05_065
crossref_primary_10_2166_wst_2019_295
crossref_primary_10_1016_j_rechem_2022_100699
crossref_primary_10_1007_s10800_017_1103_0
crossref_primary_10_1007_s11356_022_19269_w
crossref_primary_10_1016_j_apsusc_2021_151287
crossref_primary_10_1016_j_cej_2019_03_197
crossref_primary_10_1021_acsaem_8b00524
crossref_primary_10_1021_acs_est_2c04139
crossref_primary_10_1002_jctb_7543
crossref_primary_10_1039_D0NJ02101F
crossref_primary_10_1016_j_optmat_2023_113974
crossref_primary_10_1016_j_jhazmat_2019_121248
crossref_primary_10_1016_j_cej_2017_07_170
crossref_primary_10_1016_j_jallcom_2017_08_081
crossref_primary_10_1021_jacsau_4c00950
crossref_primary_10_1016_j_jece_2022_108790
crossref_primary_10_1016_j_watres_2017_08_053
crossref_primary_10_1016_j_cattod_2019_01_035
crossref_primary_10_1016_j_chemosphere_2020_128004
crossref_primary_10_1016_j_jhazmat_2017_06_011
crossref_primary_10_1016_j_gee_2021_05_002
crossref_primary_10_1002_cctc_202100833
crossref_primary_10_1007_s11164_020_04379_2
crossref_primary_10_1007_s43630_022_00226_y
crossref_primary_10_1016_j_apcatb_2019_117880
crossref_primary_10_1016_j_scib_2019_05_006
crossref_primary_10_1016_j_cej_2020_127195
crossref_primary_10_1016_j_apcatb_2019_118190
crossref_primary_10_1016_j_chemosphere_2022_134375
crossref_primary_10_1016_j_pnsc_2019_05_003
crossref_primary_10_1007_s11356_022_22749_8
crossref_primary_10_1088_1361_6463_aab05d
crossref_primary_10_1111_jace_17928
crossref_primary_10_1016_j_apsusc_2020_148835
crossref_primary_10_1016_j_apcatb_2017_07_030
crossref_primary_10_1016_j_solmat_2020_110556
crossref_primary_10_1007_s10570_021_04318_3
crossref_primary_10_1002_cctc_202100166
crossref_primary_10_1016_j_apcatb_2019_117759
crossref_primary_10_1016_j_electacta_2018_12_086
crossref_primary_10_1016_j_optmat_2022_113185
crossref_primary_10_1016_j_cplett_2022_140253
crossref_primary_10_1016_j_enmm_2018_07_010
crossref_primary_10_1016_j_apcatb_2017_08_076
crossref_primary_10_1002_advs_202308519
crossref_primary_10_1002_cey2_66
crossref_primary_10_1016_j_apsusc_2022_154312
crossref_primary_10_1016_j_jclepro_2018_08_189
crossref_primary_10_1007_s11356_020_11987_3
crossref_primary_10_1016_j_jphotochem_2022_114044
crossref_primary_10_1016_j_apcatb_2017_01_024
crossref_primary_10_1016_j_jclepro_2019_119744
crossref_primary_10_1016_j_mcat_2018_07_026
crossref_primary_10_1016_j_mcat_2018_07_027
crossref_primary_10_1039_D1NR02418C
crossref_primary_10_1557_jmr_2018_354
crossref_primary_10_1016_j_jcis_2017_04_080
crossref_primary_10_1038_s41598_019_42438_w
crossref_primary_10_1016_j_solener_2019_06_037
crossref_primary_10_1142_S1793292021500739
crossref_primary_10_1016_j_cej_2018_04_182
crossref_primary_10_1021_acsomega_9b02148
crossref_primary_10_2166_wst_2021_497
crossref_primary_10_1016_j_apsusc_2018_02_080
crossref_primary_10_1039_C7RA07399B
crossref_primary_10_1016_j_colsurfa_2020_124511
crossref_primary_10_1016_j_cej_2022_140198
crossref_primary_10_1088_1361_6463_aac7d5
crossref_primary_10_1016_j_jelechem_2020_114008
crossref_primary_10_1016_j_clay_2019_105253
crossref_primary_10_1016_j_jelechem_2017_09_003
crossref_primary_10_1016_j_diamond_2023_109988
crossref_primary_10_1016_j_solener_2018_09_041
crossref_primary_10_1039_D1MA00660F
crossref_primary_10_1039_D1NA00460C
crossref_primary_10_1016_j_apsusc_2020_148616
crossref_primary_10_3390_catal9040390
crossref_primary_10_1002_slct_202100916
crossref_primary_10_1016_j_jics_2021_100251
crossref_primary_10_1016_j_jics_2021_100133
crossref_primary_10_1007_s10854_020_03953_z
crossref_primary_10_1016_j_matlet_2021_130432
crossref_primary_10_1002_slct_201701589
crossref_primary_10_1016_j_jece_2021_105996
Cites_doi 10.1016/j.jhazmat.2006.12.075
10.1016/j.jhazmat.2013.09.013
10.1039/c3ta13188b
10.1021/ja103798k
10.1021/acs.jpclett.6b01287
10.1002/adma.201500033
10.1016/j.elecom.2007.03.017
10.1016/j.apcatb.2015.05.009
10.1016/j.jhazmat.2006.01.022
10.1016/j.chemosphere.2011.01.007
10.1016/j.jphotochemrev.2012.07.001
10.1039/C4DT01347F
10.1016/j.apsusc.2015.08.240
10.1016/j.jhazmat.2015.10.013
10.1016/j.jphotochem.2015.11.008
10.1021/es0158197
10.1016/j.biortech.2014.05.036
10.1021/cr5001892
10.1039/c2nr11938b
10.1016/j.apsusc.2016.07.154
10.1016/j.apcatb.2014.01.046
10.1016/j.biortech.2012.01.184
10.1061/(ASCE)0733-9372(1997)123:9(876)
10.1002/anie.201004975
10.1021/es502471h
10.1039/C4CP01401D
10.1016/j.jhazmat.2016.04.011
10.1021/es052029e
10.1021/jp904320d
10.1039/C5NR02345A
10.1002/smll.201200564
10.1002/adfm.201102306
10.1021/acs.chemrev.6b00075
10.1016/j.chemosphere.2016.07.064
10.1016/j.jhazmat.2008.11.119
10.1021/ja809307s
10.1016/j.molcata.2012.11.007
10.1016/j.jhazmat.2012.09.050
10.1038/nmat2317
10.1021/acs.jpcc.5b06347
10.1002/adma.201303116
10.1016/j.solmat.2016.07.007
10.1039/C4CP01489H
10.1021/cm902130z
10.1016/j.apcatb.2013.09.002
10.1039/c3ta00059a
10.1002/aenm.201300611
10.1016/j.jcat.2010.10.011
10.2166/wst.2002.0270
10.1039/C5CC07567J
10.1016/S0013-4686(97)85475-8
10.1023/A:1004007730721
10.1016/j.apcatb.2013.09.037
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2016.09.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
EndPage 606
ExternalDocumentID 10_1016_j_apcatb_2016_09_003
S0926337316306750
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XFK
XPP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c409t-3496200e137bf6aedb10c21307c8cdb5aab2404d918f5cb86c62e9f60191dd5e3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Thu Apr 24 22:56:38 EDT 2025
Tue Jul 01 03:10:35 EDT 2025
Sat Mar 02 16:00:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Surface hybrid heterojunction
Degradation phenolic compounds
Synergistic effect
Photoelectrocatalytic
Coking wastewater
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-3496200e137bf6aedb10c21307c8cdb5aab2404d918f5cb86c62e9f60191dd5e3
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_apcatb_2016_09_003
crossref_citationtrail_10_1016_j_apcatb_2016_09_003
elsevier_sciencedirect_doi_10_1016_j_apcatb_2016_09_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-01
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhou, Chen, Yang, Dong, Zhang, Qin (bib0095) 2016; 157
Yu, Xu, Wei, Wu (bib0245) 2016; 302
Zhang, Xiao, Li, Zeng, Zheng, Wan (bib0200) 2016; 389
Liang, Zhu (bib0240) 2016; 180
Wang, Hu, Guo, Huang, Liu (bib0020) 2012; 110
Lai, Zhao, Wang, Ni (bib0030) 2007; 147
Li, Liu, Li, Chen (bib0190) 2016; 317
Sillanpä&#x00E4, Kurniawan, Lo (bib0035) 2011; 83
Baram, Starosvetsky, Starosvetsky, Epshtein, Armon, Ein-Eli (bib0090) 2007; 9
Zhang, Xu, Zong, Zhu (bib0175) 2014; 147
Zhang, Wang, Lu, Wang, Cong (bib0065) 2016; 162
Xu, Zhang, Shi, Zhu (bib0170) 2013; 1
Paramasivam, Jha, Liu, Schmuki (bib0100) 2012; 8
Lu, Zhang, Wan (bib0165) 2015; 358
Liu, Wang, Xu, Chen, Fu (bib0265) 2013; 368
Li, Liu, Zhang, An, Zhang, Carroll, Zhao (bib0080) 2011; 277
Sun, Li, Nie, Shi, Wong, Zhao, An (bib0075) 2014; 48
Zhao, Zhu (bib0180) 2006; 40
Zhai, Zhu, Lu, Ren, Wang, Du, Yang (bib0055) 2014; 16
Liu, Niu, Sun, Smith, Chen, Lu, Cheng (bib0140) 2010; 132
Zhang, Wei, An (bib0010) 2015; 17
Wei, Liu, Wang, Zong, Yao, Wang, Zhu (bib0260) 2015; 7
Zhang, Tay, Qian, Gu (bib0025) 1997; 123
Zhou, Yi, Xing, Shang, Zhang, Zhang (bib0105) 2016; 52
Li, Jin, Fang, Yang, Yang, Liu, Xing, Song (bib0195) 2016; 313
Pan, Xu, Wang, Li, Zhu (bib0155) 2012; 22
Pan, Xi, Li, Wang, Chen, Lu, Wu (bib0125) 2013; 1
Wang, Maeda, Chen, Takanabe, Domen, Hou, Fu, Antonietti (bib0130) 2009; 131
Gao, Sun, Hu, Ai, Zhang, Feng, Li, Peng (bib0210) 2009; 113
Schneider, Matsuoka, Takeuchi, Zhang, Horiuchi, Anpo, Bahnemann (bib0050) 2014; 114
Mahiroglu, Tarlan-Yel, Sevimli (bib0045) 2009; 166
Sun, Sun, Gao, Cheng, Liu, Lei, Wei, Xie (bib0230) 2014; 4
Hou, Wen, Cui, Guo, Chen (bib0215) 2013; 25
Lee, Jun, Hong, Thomas, Jin (bib0145) 2010; 49
Chen, Wang, Ren, Ding, Zhu (bib0160) 2014; 43
Lu, Zhu (bib0225) 2014; 16
Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib0135) 2009; 8
Tang, Luo, Teng, Liu, Xu, Zhang, Chen (bib0120) 2012; 241
Dong, Xing, Zhang (bib0115) 2016; 7
Song, Zhang, Sun, Cui, Lin (bib0110) 2012; 4
Chen, Jun, Takanabe, Maeda, Domen, Fu, Antonietti, Wang (bib0235) 2009; 21
Pelegrini, Reyes, Duran, Zamora, De Andrade (bib0275) 2000; 30
Ong, Tan, Ng, Yong, Chai (bib0150) 2016; 116
Simond, Schaller, Comninellis (bib0270) 1997; 42
Shi, Qu, Ma, Zhou (bib0005) 2014; 166
Ochiai, Fujishima (bib0060) 2012; 13
Wang, Jin, An, Wang, Feng, Li (bib0220) 2015; 119
Zhai, Zhu, Ren, Yao, Du, Yang (bib0070) 2013; 263
Wang, Shi, Lin, Zhu (bib0185) 2011; 4
Nie, Li, Gao, Sun, Liu, Zhao, Wong, An (bib0085) 2014; 147
Cao, Low, Yu, Jaroniec (bib0250) 2015; 27
Du, Zhou, Lei (bib0015) 2006; 136
Lee, Choi (bib0255) 2002; 36
Aydin, Altinbas, Sevimli, Ozturk, Sarikaya (bib0040) 2002; 46
Bai, Wang, Wang, Yao, Zhu (bib0205) 2014; 152
Pan (10.1016/j.apcatb.2016.09.003_bib0155) 2012; 22
Paramasivam (10.1016/j.apcatb.2016.09.003_bib0100) 2012; 8
Lee (10.1016/j.apcatb.2016.09.003_bib0255) 2002; 36
Liu (10.1016/j.apcatb.2016.09.003_bib0265) 2013; 368
Pelegrini (10.1016/j.apcatb.2016.09.003_bib0275) 2000; 30
Lu (10.1016/j.apcatb.2016.09.003_bib0165) 2015; 358
Lee (10.1016/j.apcatb.2016.09.003_bib0145) 2010; 49
Lai (10.1016/j.apcatb.2016.09.003_bib0030) 2007; 147
Wei (10.1016/j.apcatb.2016.09.003_bib0260) 2015; 7
Lu (10.1016/j.apcatb.2016.09.003_bib0225) 2014; 16
Ochiai (10.1016/j.apcatb.2016.09.003_bib0060) 2012; 13
Simond (10.1016/j.apcatb.2016.09.003_bib0270) 1997; 42
Zhai (10.1016/j.apcatb.2016.09.003_bib0070) 2013; 263
Schneider (10.1016/j.apcatb.2016.09.003_bib0050) 2014; 114
Dong (10.1016/j.apcatb.2016.09.003_bib0115) 2016; 7
Liang (10.1016/j.apcatb.2016.09.003_bib0240) 2016; 180
Aydin (10.1016/j.apcatb.2016.09.003_bib0040) 2002; 46
Li (10.1016/j.apcatb.2016.09.003_bib0080) 2011; 277
Pan (10.1016/j.apcatb.2016.09.003_bib0125) 2013; 1
Wang (10.1016/j.apcatb.2016.09.003_bib0135) 2009; 8
Zhao (10.1016/j.apcatb.2016.09.003_bib0180) 2006; 40
Li (10.1016/j.apcatb.2016.09.003_bib0195) 2016; 313
Du (10.1016/j.apcatb.2016.09.003_bib0015) 2006; 136
Sillanpä&#x00E4 (10.1016/j.apcatb.2016.09.003_bib0035) 2011; 83
Chen (10.1016/j.apcatb.2016.09.003_bib0235) 2009; 21
Baram (10.1016/j.apcatb.2016.09.003_bib0090) 2007; 9
Zhang (10.1016/j.apcatb.2016.09.003_bib0065) 2016; 162
Zhang (10.1016/j.apcatb.2016.09.003_bib0025) 1997; 123
Zhou (10.1016/j.apcatb.2016.09.003_bib0105) 2016; 52
Liu (10.1016/j.apcatb.2016.09.003_bib0140) 2010; 132
Yu (10.1016/j.apcatb.2016.09.003_bib0245) 2016; 302
Hou (10.1016/j.apcatb.2016.09.003_bib0215) 2013; 25
Cao (10.1016/j.apcatb.2016.09.003_bib0250) 2015; 27
Zhou (10.1016/j.apcatb.2016.09.003_bib0095) 2016; 157
Tang (10.1016/j.apcatb.2016.09.003_bib0120) 2012; 241
Wang (10.1016/j.apcatb.2016.09.003_bib0130) 2009; 131
Sun (10.1016/j.apcatb.2016.09.003_bib0075) 2014; 48
Zhang (10.1016/j.apcatb.2016.09.003_bib0010) 2015; 17
Ong (10.1016/j.apcatb.2016.09.003_bib0150) 2016; 116
Zhang (10.1016/j.apcatb.2016.09.003_bib0200) 2016; 389
Bai (10.1016/j.apcatb.2016.09.003_bib0205) 2014; 152
Gao (10.1016/j.apcatb.2016.09.003_bib0210) 2009; 113
Mahiroglu (10.1016/j.apcatb.2016.09.003_bib0045) 2009; 166
Zhang (10.1016/j.apcatb.2016.09.003_bib0175) 2014; 147
Song (10.1016/j.apcatb.2016.09.003_bib0110) 2012; 4
Wang (10.1016/j.apcatb.2016.09.003_bib0185) 2011; 4
Wang (10.1016/j.apcatb.2016.09.003_bib0020) 2012; 110
Wang (10.1016/j.apcatb.2016.09.003_bib0220) 2015; 119
Nie (10.1016/j.apcatb.2016.09.003_bib0085) 2014; 147
Xu (10.1016/j.apcatb.2016.09.003_bib0170) 2013; 1
Sun (10.1016/j.apcatb.2016.09.003_bib0230) 2014; 4
Chen (10.1016/j.apcatb.2016.09.003_bib0160) 2014; 43
Shi (10.1016/j.apcatb.2016.09.003_bib0005) 2014; 166
Li (10.1016/j.apcatb.2016.09.003_bib0190) 2016; 317
Zhai (10.1016/j.apcatb.2016.09.003_bib0055) 2014; 16
References_xml – volume: 4
  start-page: 1800
  year: 2012
  end-page: 1804
  ident: bib0110
  publication-title: Nanoscale
– volume: 27
  start-page: 2150
  year: 2015
  end-page: 2176
  ident: bib0250
  publication-title: Adv. Mater.
– volume: 114
  start-page: 9919
  year: 2014
  end-page: 9986
  ident: bib0050
  publication-title: Chem. Rev.
– volume: 358
  start-page: 223
  year: 2015
  end-page: 230
  ident: bib0165
  publication-title: Appl. Surf. Sci.
– volume: 113
  start-page: 20481
  year: 2009
  end-page: 20485
  ident: bib0210
  publication-title: J. Phys. Chem. C
– volume: 36
  start-page: 3872
  year: 2002
  end-page: 3878
  ident: bib0255
  publication-title: Environ. Sci. Technol.
– volume: 8
  start-page: 3073
  year: 2012
  end-page: 3103
  ident: bib0100
  publication-title: Small
– volume: 40
  start-page: 3367
  year: 2006
  end-page: 3372
  ident: bib0180
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: 953
  year: 2000
  end-page: 958
  ident: bib0275
  publication-title: J. Appl. Electrochem.
– volume: 21
  start-page: 4093
  year: 2009
  end-page: 4095
  ident: bib0235
  publication-title: Chem. Mater.
– volume: 132
  start-page: 11642
  year: 2010
  end-page: 11648
  ident: bib0140
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 1518
  year: 2012
  end-page: 1524
  ident: bib0155
  publication-title: Adv. Funct. Mater.
– volume: 152
  start-page: 262
  year: 2014
  end-page: 270
  ident: bib0205
  publication-title: Appl. Catal. B
– volume: 83
  start-page: 1443
  year: 2011
  end-page: 1460
  ident: bib0035
  publication-title: Chemosphere
– volume: 4
  start-page: 1300611
  year: 2014
  ident: bib0230
  publication-title: Adv. Energy Mater.
– volume: 277
  start-page: 88
  year: 2011
  end-page: 94
  ident: bib0080
  publication-title: J. Catal.
– volume: 317
  start-page: 151
  year: 2016
  end-page: 160
  ident: bib0190
  publication-title: J. Photochem. Photobiol. A: Chem.
– volume: 7
  start-page: 13943
  year: 2015
  end-page: 13950
  ident: bib0260
  publication-title: Nanoscale
– volume: 166
  start-page: 79
  year: 2014
  end-page: 86
  ident: bib0005
  publication-title: Bioresour. Technol.
– volume: 313
  start-page: 219
  year: 2016
  end-page: 228
  ident: bib0195
  publication-title: J. Hazard. Mater.
– volume: 241
  start-page: 323
  year: 2012
  end-page: 330
  ident: bib0120
  publication-title: J. Hazard. Mater.
– volume: 17
  start-page: 975
  year: 2015
  end-page: 984
  ident: bib0010
  publication-title: Environ. Sci.: Processes Impacts
– volume: 162
  start-page: 55
  year: 2016
  end-page: 63
  ident: bib0065
  publication-title: Chemosphere
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  ident: bib0135
  publication-title: Nat. Mater.
– volume: 46
  start-page: 323
  year: 2002
  end-page: 330
  ident: bib0040
  publication-title: Water Sci. Technol.
– volume: 147
  start-page: 562
  year: 2014
  end-page: 570
  ident: bib0085
  publication-title: Appl. Catal. B
– volume: 180
  start-page: 324
  year: 2016
  end-page: 329
  ident: bib0240
  publication-title: Appl. Catal. B
– volume: 136
  start-page: 859
  year: 2006
  end-page: 865
  ident: bib0015
  publication-title: J. Hazard. Mater.
– volume: 131
  start-page: 1680
  year: 2009
  end-page: 1681
  ident: bib0130
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 13105
  year: 2014
  end-page: 13114
  ident: bib0160
  publication-title: Dalton Trans.
– volume: 116
  start-page: 7159
  year: 2016
  end-page: 7329
  ident: bib0150
  publication-title: Chem. Rev.
– volume: 123
  start-page: 876
  year: 1997
  end-page: 883
  ident: bib0025
  publication-title: J. Environ. Eng.
– volume: 110
  start-page: 120
  year: 2012
  end-page: 124
  ident: bib0020
  publication-title: Bioresour. Technol.
– volume: 49
  start-page: 9706
  year: 2010
  end-page: 9710
  ident: bib0145
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 14800
  year: 2014
  end-page: 14807
  ident: bib0055
  publication-title: Phys. Chem. Chem. Phys.
– volume: 48
  start-page: 9412
  year: 2014
  end-page: 9419
  ident: bib0075
  publication-title: Environ. Sci. Technol.
– volume: 166
  start-page: 782
  year: 2009
  end-page: 787
  ident: bib0045
  publication-title: J. Hazard. Mater.
– volume: 9
  start-page: 1684
  year: 2007
  end-page: 1688
  ident: bib0090
  publication-title: Electrochem. Commun.
– volume: 1
  start-page: 3551
  year: 2013
  end-page: 3555
  ident: bib0125
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 6291
  year: 2013
  end-page: 6297
  ident: bib0215
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2922
  year: 2011
  end-page: 2929
  ident: bib0185
  publication-title: Environ. Sci. Technol.
– volume: 147
  start-page: 232
  year: 2007
  end-page: 239
  ident: bib0030
  publication-title: J. Hazard. Mater.
– volume: 119
  start-page: 22460
  year: 2015
  end-page: 22464
  ident: bib0220
  publication-title: J. Phys. Chem. C
– volume: 368
  start-page: 9
  year: 2013
  end-page: 15
  ident: bib0265
  publication-title: J. Mol. Catal. A: Chem.
– volume: 302
  start-page: 468
  year: 2016
  end-page: 474
  ident: bib0245
  publication-title: J. Hazard. Mater.
– volume: 389
  start-page: 496
  year: 2016
  end-page: 506
  ident: bib0200
  publication-title: Appl. Surf. Sci.
– volume: 1
  start-page: 14766
  year: 2013
  end-page: 14772
  ident: bib0170
  publication-title: J. Mater. Chem. A
– volume: 52
  start-page: 1689
  year: 2016
  end-page: 1692
  ident: bib0105
  publication-title: Chem. Commun.
– volume: 7
  start-page: 2962
  year: 2016
  end-page: 2966
  ident: bib0115
  publication-title: J. Phys. Chem. Lett.
– volume: 147
  start-page: 229
  year: 2014
  end-page: 235
  ident: bib0175
  publication-title: Appl. Catal. B
– volume: 157
  start-page: 399
  year: 2016
  end-page: 405
  ident: bib0095
  publication-title: Sol. Energ. Mater. Sol. Cells
– volume: 263
  start-page: 291
  year: 2013
  end-page: 298
  ident: bib0070
  publication-title: J. Hazard. Mater.
– volume: 16
  start-page: 16509
  year: 2014
  end-page: 16514
  ident: bib0225
  publication-title: Phys. Chem. Chem. Phys.
– volume: 42
  start-page: 2009
  year: 1997
  end-page: 2012
  ident: bib0270
  publication-title: Electrochim. Acta
– volume: 13
  start-page: 247
  year: 2012
  end-page: 262
  ident: bib0060
  publication-title: J. Photochem. Photobiol. C
– volume: 147
  start-page: 232
  year: 2007
  ident: 10.1016/j.apcatb.2016.09.003_bib0030
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.12.075
– volume: 263
  start-page: 291
  year: 2013
  ident: 10.1016/j.apcatb.2016.09.003_bib0070
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.09.013
– volume: 1
  start-page: 14766
  year: 2013
  ident: 10.1016/j.apcatb.2016.09.003_bib0170
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13188b
– volume: 17
  start-page: 975
  year: 2015
  ident: 10.1016/j.apcatb.2016.09.003_bib0010
  publication-title: Environ. Sci.: Processes Impacts
– volume: 132
  start-page: 11642
  year: 2010
  ident: 10.1016/j.apcatb.2016.09.003_bib0140
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja103798k
– volume: 7
  start-page: 2962
  year: 2016
  ident: 10.1016/j.apcatb.2016.09.003_bib0115
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01287
– volume: 27
  start-page: 2150
  year: 2015
  ident: 10.1016/j.apcatb.2016.09.003_bib0250
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500033
– volume: 9
  start-page: 1684
  year: 2007
  ident: 10.1016/j.apcatb.2016.09.003_bib0090
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2007.03.017
– volume: 180
  start-page: 324
  year: 2016
  ident: 10.1016/j.apcatb.2016.09.003_bib0240
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.05.009
– volume: 136
  start-page: 859
  year: 2006
  ident: 10.1016/j.apcatb.2016.09.003_bib0015
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.01.022
– volume: 83
  start-page: 1443
  year: 2011
  ident: 10.1016/j.apcatb.2016.09.003_bib0035
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.01.007
– volume: 13
  start-page: 247
  year: 2012
  ident: 10.1016/j.apcatb.2016.09.003_bib0060
  publication-title: J. Photochem. Photobiol. C
  doi: 10.1016/j.jphotochemrev.2012.07.001
– volume: 43
  start-page: 13105
  year: 2014
  ident: 10.1016/j.apcatb.2016.09.003_bib0160
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT01347F
– volume: 358
  start-page: 223
  year: 2015
  ident: 10.1016/j.apcatb.2016.09.003_bib0165
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.08.240
– volume: 302
  start-page: 468
  year: 2016
  ident: 10.1016/j.apcatb.2016.09.003_bib0245
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2015.10.013
– volume: 317
  start-page: 151
  year: 2016
  ident: 10.1016/j.apcatb.2016.09.003_bib0190
  publication-title: J. Photochem. Photobiol. A: Chem.
  doi: 10.1016/j.jphotochem.2015.11.008
– volume: 36
  start-page: 3872
  year: 2002
  ident: 10.1016/j.apcatb.2016.09.003_bib0255
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0158197
– volume: 166
  start-page: 79
  year: 2014
  ident: 10.1016/j.apcatb.2016.09.003_bib0005
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.05.036
– volume: 114
  start-page: 9919
  year: 2014
  ident: 10.1016/j.apcatb.2016.09.003_bib0050
  publication-title: Chem. Rev.
  doi: 10.1021/cr5001892
– volume: 4
  start-page: 1800
  year: 2012
  ident: 10.1016/j.apcatb.2016.09.003_bib0110
  publication-title: Nanoscale
  doi: 10.1039/c2nr11938b
– volume: 389
  start-page: 496
  year: 2016
  ident: 10.1016/j.apcatb.2016.09.003_bib0200
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.07.154
– volume: 152
  start-page: 262
  year: 2014
  ident: 10.1016/j.apcatb.2016.09.003_bib0205
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.01.046
– volume: 110
  start-page: 120
  year: 2012
  ident: 10.1016/j.apcatb.2016.09.003_bib0020
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.184
– volume: 123
  start-page: 876
  year: 1997
  ident: 10.1016/j.apcatb.2016.09.003_bib0025
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(1997)123:9(876)
– volume: 49
  start-page: 9706
  year: 2010
  ident: 10.1016/j.apcatb.2016.09.003_bib0145
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201004975
– volume: 48
  start-page: 9412
  year: 2014
  ident: 10.1016/j.apcatb.2016.09.003_bib0075
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es502471h
– volume: 16
  start-page: 14800
  year: 2014
  ident: 10.1016/j.apcatb.2016.09.003_bib0055
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP01401D
– volume: 313
  start-page: 219
  year: 2016
  ident: 10.1016/j.apcatb.2016.09.003_bib0195
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.04.011
– volume: 40
  start-page: 3367
  year: 2006
  ident: 10.1016/j.apcatb.2016.09.003_bib0180
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es052029e
– volume: 113
  start-page: 20481
  year: 2009
  ident: 10.1016/j.apcatb.2016.09.003_bib0210
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp904320d
– volume: 7
  start-page: 13943
  year: 2015
  ident: 10.1016/j.apcatb.2016.09.003_bib0260
  publication-title: Nanoscale
  doi: 10.1039/C5NR02345A
– volume: 8
  start-page: 3073
  year: 2012
  ident: 10.1016/j.apcatb.2016.09.003_bib0100
  publication-title: Small
  doi: 10.1002/smll.201200564
– volume: 22
  start-page: 1518
  year: 2012
  ident: 10.1016/j.apcatb.2016.09.003_bib0155
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102306
– volume: 116
  start-page: 7159
  year: 2016
  ident: 10.1016/j.apcatb.2016.09.003_bib0150
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00075
– volume: 162
  start-page: 55
  year: 2016
  ident: 10.1016/j.apcatb.2016.09.003_bib0065
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.07.064
– volume: 166
  start-page: 782
  year: 2009
  ident: 10.1016/j.apcatb.2016.09.003_bib0045
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.11.119
– volume: 131
  start-page: 1680
  year: 2009
  ident: 10.1016/j.apcatb.2016.09.003_bib0130
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809307s
– volume: 368
  start-page: 9
  year: 2013
  ident: 10.1016/j.apcatb.2016.09.003_bib0265
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2012.11.007
– volume: 241
  start-page: 323
  year: 2012
  ident: 10.1016/j.apcatb.2016.09.003_bib0120
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.09.050
– volume: 8
  start-page: 76
  year: 2009
  ident: 10.1016/j.apcatb.2016.09.003_bib0135
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 119
  start-page: 22460
  year: 2015
  ident: 10.1016/j.apcatb.2016.09.003_bib0220
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b06347
– volume: 25
  start-page: 6291
  year: 2013
  ident: 10.1016/j.apcatb.2016.09.003_bib0215
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303116
– volume: 157
  start-page: 399
  year: 2016
  ident: 10.1016/j.apcatb.2016.09.003_bib0095
  publication-title: Sol. Energ. Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.07.007
– volume: 4
  start-page: 2922
  year: 2011
  ident: 10.1016/j.apcatb.2016.09.003_bib0185
  publication-title: Environ. Sci. Technol.
– volume: 16
  start-page: 16509
  year: 2014
  ident: 10.1016/j.apcatb.2016.09.003_bib0225
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP01489H
– volume: 21
  start-page: 4093
  year: 2009
  ident: 10.1016/j.apcatb.2016.09.003_bib0235
  publication-title: Chem. Mater.
  doi: 10.1021/cm902130z
– volume: 147
  start-page: 229
  year: 2014
  ident: 10.1016/j.apcatb.2016.09.003_bib0175
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2013.09.002
– volume: 1
  start-page: 3551
  year: 2013
  ident: 10.1016/j.apcatb.2016.09.003_bib0125
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta00059a
– volume: 4
  start-page: 1300611
  year: 2014
  ident: 10.1016/j.apcatb.2016.09.003_bib0230
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300611
– volume: 277
  start-page: 88
  year: 2011
  ident: 10.1016/j.apcatb.2016.09.003_bib0080
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2010.10.011
– volume: 46
  start-page: 323
  year: 2002
  ident: 10.1016/j.apcatb.2016.09.003_bib0040
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2002.0270
– volume: 52
  start-page: 1689
  year: 2016
  ident: 10.1016/j.apcatb.2016.09.003_bib0105
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07567J
– volume: 42
  start-page: 2009
  year: 1997
  ident: 10.1016/j.apcatb.2016.09.003_bib0270
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(97)85475-8
– volume: 30
  start-page: 953
  year: 2000
  ident: 10.1016/j.apcatb.2016.09.003_bib0275
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/A:1004007730721
– volume: 147
  start-page: 562
  year: 2014
  ident: 10.1016/j.apcatb.2016.09.003_bib0085
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2013.09.037
SSID ssj0002328
Score 2.6233504
Snippet [Display omitted] •TiO2/g-C3N4 thin film electrode was fabricated via a surface hybridization and dip-coating method.•The surface hybrid heterojunction of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 600
SubjectTerms Coking wastewater
Degradation phenolic compounds
Photoelectrocatalytic
Surface hybrid heterojunction
Synergistic effect
Title Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film
URI https://dx.doi.org/10.1016/j.apcatb.2016.09.003
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heqAcULuAgLbIh17NJs7DyRGtQEtRt0iAxC3yK2zQslkgqNpLf3tnnKRADyBxjewomrHnEX3zfQDfkyyQOaZ1LqTOsEEJE7xzueFWZypPbOqEn-L_OUnHl_GPq-RqBUb9LAzBKrvY38Z0H627J8POmsNFVQ3Pg1ykUUTKS77spb49jiWd8oM_TzAPrBh8NMbFnFb343Me46UWRjWaAF6pZzvtpbP-T0_PUs7xJ9joakV22H7OZ1hx8wGsjXqJtgGsP2MTHMD20dPQGm7rbu3DJtydTeum7gRv_P-aJb6RWeKJaCWVWF0yAnvVM07Y9VY1gv1WD_RrDS3P9JJdVL_E8JqPoknMpksa9GJTwtLULQXt471jzbSas7Ka3W7B5fHRxWjMO6kFbrDBazjRxuN9cWEkdZkqZ3UYGIH5TZrMWJ0opTH1xzYPszIxOktNKlxeYjeXh9YmLtqG1Xk9dzvAnNSWvB8HBrsPK5U2JjFRqjJZWmHFLkS9hQvT8ZCTHMas6AFnN0Xrl4L8UgQ58ZfuAv-3a9HycLyxXvbOK16cpwJTxas799698wt8FJT0Pab7K6yi9d03LFkave_P5D58ODw5HU_-AgHf7SY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6hcAAOVQkgaCnsoddV7HXWjyOKQOEVKjVI3Kx9mRiFOBRXVf49M_YaaA-t1Ku1Y1k7u_Owvvk-gK8yDZIM0zoXiU6xQQkl3rnMcKtTlUkbO9FM8V9P4vHt8OJO3q3BqJuFIVilj_1tTG-itX8y8Ls5WJbl4HuQiTiKSHmpKXuxb18ndirZg_WT88vx5DUgY9HQBGRcz8mgm6BrYF5qaVStCeMVN4SnnXrWnxnqXdY5-wgffLnITtov2oY1t-jDxqhTaevD1jtCwT7snb7NraGZv7jPO_D0bVbVlde8aX7ZrPCNzBJVRKuqxKqCEd6rmnOCr7fCEeyXeqa_a7j5TK_YtLwRg3s-iiZDNlvRrBebEZymallof_5wrJ6VC1aU88dduD07nY7G3KstcIM9Xs2JOR6vjAujRBexclaHgRGY4hKTGqulUhqz_9BmYVpIo9PYxMJlBTZ0WWitdNEe9BbVwu0Dc4m2dACGgcEGxCZKGyNNFKs0Kayw4gCibodz46nISRFjnneYs4e89UtOfsmDjChMD4C_Wi1bKo5_rE865-W_Hakcs8VfLT_9t-UxbIyn11f51fnk8jNsCqoBGoj3IfTQE-4LVjC1PvIn9AUexe_X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoelectrocatalytic+degradation+of+phenol-containing+wastewater+by+TiO2%2Fg-C3N4+hybrid+heterostructure+thin+film&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Wei%2C+Zhen&rft.au=Liang%2C+Fenfen&rft.au=Liu%2C+Yanfang&rft.au=Luo%2C+Wenjiao&rft.date=2017-02-01&rft.issn=0926-3373&rft.volume=201&rft.spage=600&rft.epage=606&rft_id=info:doi/10.1016%2Fj.apcatb.2016.09.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2016_09_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon