Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film
[Display omitted] •TiO2/g-C3N4 thin film electrode was fabricated via a surface hybridization and dip-coating method.•The surface hybrid heterojunction of TiO2/g-C3N4 greatly improves its photocatalytic and photoelectrocatalytic activity.•The synergistic effects between the electrocatalytic and phot...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 201; pp. 600 - 606 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•TiO2/g-C3N4 thin film electrode was fabricated via a surface hybridization and dip-coating method.•The surface hybrid heterojunction of TiO2/g-C3N4 greatly improves its photocatalytic and photoelectrocatalytic activity.•The synergistic effects between the electrocatalytic and photocatalytic oxidation processes in photoelectrocatalytic were illustrated.•Coking wastewater and phenol can be mineralized by TiO2/g-C3N4 photoelectrocatalytic processes.
TiO2/g-C3N4 (TCN) thin film electrode was fabricated via a surface hybridization and dip-coating method. Phenol could be completely mineralized and the pollutants in coking wastewater could be degraded quickly by TCN under simulated solar light and electric field. The characteristics of the photoelectrocatalytic (PEC) degradation of phenol-containing coking wastewater were investigated under visible light, ultraviolet light and simulated solar irradiation. The results showed that phenol was degraded completely by the TCN-0.3 with a 1.5V bias in 1.5h under simulated solar irradiation with 100% TOC removal rate. 45% of the TOC for the coking wastewater was removed by the TCN-0.3 with a 1.5V bias under 5.0h simulated solar irradiation, which was 2.45 and 5.69 times as high as that of the pure TiO2 and g-C3N4, respectively. The surface hybrid heterojunction formed between TiO2 and g-C3N4 promotes the migration of the photogenerated electrons and holes and greatly improves the degradation efficiency with applied potential. The significant synergistic effect between the electrocatalytic and photocatalytic oxidation processes in PEC is conducive to electron-hole pair separation, producing the more active substances, such as hydroxyl radicals, and increases the degree of degradation and mineralization of phenolic compounds. |
---|---|
AbstractList | [Display omitted]
•TiO2/g-C3N4 thin film electrode was fabricated via a surface hybridization and dip-coating method.•The surface hybrid heterojunction of TiO2/g-C3N4 greatly improves its photocatalytic and photoelectrocatalytic activity.•The synergistic effects between the electrocatalytic and photocatalytic oxidation processes in photoelectrocatalytic were illustrated.•Coking wastewater and phenol can be mineralized by TiO2/g-C3N4 photoelectrocatalytic processes.
TiO2/g-C3N4 (TCN) thin film electrode was fabricated via a surface hybridization and dip-coating method. Phenol could be completely mineralized and the pollutants in coking wastewater could be degraded quickly by TCN under simulated solar light and electric field. The characteristics of the photoelectrocatalytic (PEC) degradation of phenol-containing coking wastewater were investigated under visible light, ultraviolet light and simulated solar irradiation. The results showed that phenol was degraded completely by the TCN-0.3 with a 1.5V bias in 1.5h under simulated solar irradiation with 100% TOC removal rate. 45% of the TOC for the coking wastewater was removed by the TCN-0.3 with a 1.5V bias under 5.0h simulated solar irradiation, which was 2.45 and 5.69 times as high as that of the pure TiO2 and g-C3N4, respectively. The surface hybrid heterojunction formed between TiO2 and g-C3N4 promotes the migration of the photogenerated electrons and holes and greatly improves the degradation efficiency with applied potential. The significant synergistic effect between the electrocatalytic and photocatalytic oxidation processes in PEC is conducive to electron-hole pair separation, producing the more active substances, such as hydroxyl radicals, and increases the degree of degradation and mineralization of phenolic compounds. |
Author | Liang, Fenfen Yao, Wenqing Zhu, Yongfa Luo, Wenjiao Liu, Yanfang Wang, Jun Wei, Zhen |
Author_xml | – sequence: 1 givenname: Zhen surname: Wei fullname: Wei, Zhen organization: Department of Chemistry, Tsinghua University, Beijing, 100084, China – sequence: 2 givenname: Fenfen surname: Liang fullname: Liang, Fenfen organization: Department of Chemistry, Tsinghua University, Beijing, 100084, China – sequence: 3 givenname: Yanfang surname: Liu fullname: Liu, Yanfang organization: China Sinopec Research Institute of Petroleum Processing, Beijing, 100083, China – sequence: 4 givenname: Wenjiao surname: Luo fullname: Luo, Wenjiao organization: Department of Chemistry, Tsinghua University, Beijing, 100084, China – sequence: 5 givenname: Jun surname: Wang fullname: Wang, Jun organization: Department of Chemistry, Tsinghua University, Beijing, 100084, China – sequence: 6 givenname: Wenqing surname: Yao fullname: Yao, Wenqing organization: Department of Chemistry, Tsinghua University, Beijing, 100084, China – sequence: 7 givenname: Yongfa surname: Zhu fullname: Zhu, Yongfa email: zhuyf@tsinghua.edu.cn organization: Department of Chemistry, Tsinghua University, Beijing, 100084, China |
BookMark | eNqFkMtOwzAQRS1UJNrCH7DwDyQd22masEBCFS-poizK2nLsSeMqtYtjqPr3pJQVC1iNrkbnauaMyMB5h4RcM0gZsHyySdVOq1ilvE8plCmAOCNDVsxEIopCDMgQSp4nQszEBRl13QYAuODFkLy_Nj56bFHH4PsO1R6i1dTgOiijovWO-pruGnS-TbR3UVln3ZruVRdxryIGWh3oyi75ZJ3MxUtGm0MVrKEN9jvfxfCh40dAGhvraG3b7SU5r1Xb4dXPHJO3h_vV_ClZLB-f53eLRGdQxkRkZc4BkIlZVecKTcVAcyZgpgttqqlSFc8gMyUr6qmuilznHMs6B1YyY6YoxiQ79er-jC5gLXfBblU4SAbyqE1u5EmbPGqTUMpeW4_d_MK0jd8iYlC2_Q--PcHYP_ZpMchOW3QajQ29YWm8_bvgC8CskAQ |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2021_131737 crossref_primary_10_1016_j_jallcom_2019_153139 crossref_primary_10_1016_j_jwpe_2025_106975 crossref_primary_10_1002_admt_202100687 crossref_primary_10_1016_j_jhazmat_2020_122559 crossref_primary_10_1021_acsami_0c12828 crossref_primary_10_1007_s11467_020_1021_1 crossref_primary_10_3390_ma12203369 crossref_primary_10_1016_j_apcatb_2018_03_069 crossref_primary_10_1002_aenm_201900364 crossref_primary_10_1149_1945_7111_ac4b21 crossref_primary_10_1021_acs_jpcc_6b11938 crossref_primary_10_1016_j_apsusc_2017_06_299 crossref_primary_10_1016_j_jphotochem_2021_113291 crossref_primary_10_3390_nano9040488 crossref_primary_10_1039_C6NJ03922G crossref_primary_10_1016_j_ijhydene_2021_11_133 crossref_primary_10_2139_ssrn_4063034 crossref_primary_10_1016_j_apsusc_2020_146219 crossref_primary_10_1016_j_catcom_2017_07_017 crossref_primary_10_1007_s10971_023_06263_y crossref_primary_10_1016_j_psep_2021_05_015 crossref_primary_10_1080_09593330_2021_1921052 crossref_primary_10_1039_D2RA07626H crossref_primary_10_1016_j_jcis_2020_05_031 crossref_primary_10_1021_acs_langmuir_0c00847 crossref_primary_10_1007_s42452_020_2190_9 crossref_primary_10_1016_j_ijhydene_2017_02_171 crossref_primary_10_1016_j_apsusc_2018_05_082 crossref_primary_10_1016_j_jhazmat_2019_120815 crossref_primary_10_1007_s11356_019_07112_8 crossref_primary_10_3390_catal8120576 crossref_primary_10_1016_j_solener_2020_02_037 crossref_primary_10_1016_j_apsusc_2018_04_011 crossref_primary_10_1016_j_jece_2023_109541 crossref_primary_10_1039_D1CY00307K crossref_primary_10_1016_j_cej_2021_132092 crossref_primary_10_1016_j_cattod_2024_115154 crossref_primary_10_1016_j_jallcom_2020_156446 crossref_primary_10_1016_j_materresbull_2019_110642 crossref_primary_10_1039_C8DT01348A crossref_primary_10_1016_j_jhazmat_2022_130601 crossref_primary_10_1016_j_jece_2022_107889 crossref_primary_10_1016_j_watres_2019_115105 crossref_primary_10_1016_j_apcatb_2020_118745 crossref_primary_10_1016_j_materresbull_2018_02_019 crossref_primary_10_1016_j_apcatb_2021_120548 crossref_primary_10_1016_j_seppur_2019_115764 crossref_primary_10_1111_ijac_14405 crossref_primary_10_3934_matersci_2023049 crossref_primary_10_1007_s11431_018_9447_y crossref_primary_10_1007_s11356_021_12606_5 crossref_primary_10_1016_j_seppur_2022_122174 crossref_primary_10_1016_j_enmm_2022_100737 crossref_primary_10_1016_j_microc_2023_109680 crossref_primary_10_1016_j_apcatb_2020_119710 crossref_primary_10_1021_acssuschemeng_8b02287 crossref_primary_10_1016_j_apsusc_2021_150597 crossref_primary_10_1021_acssuschemeng_8b00782 crossref_primary_10_1080_15569543_2019_1573433 crossref_primary_10_1016_j_envpol_2019_04_010 crossref_primary_10_2139_ssrn_4092949 crossref_primary_10_3390_molecules29020289 crossref_primary_10_2139_ssrn_4111107 crossref_primary_10_1039_D4NR05353B crossref_primary_10_1016_j_apsusc_2022_153401 crossref_primary_10_1016_j_apcatb_2019_01_088 crossref_primary_10_1016_j_seppur_2022_121673 crossref_primary_10_1016_j_apcatb_2020_119604 crossref_primary_10_1016_j_scitotenv_2021_148462 crossref_primary_10_1007_s10854_018_9672_1 crossref_primary_10_1016_j_apcatb_2017_12_070 crossref_primary_10_1016_j_jece_2023_110992 crossref_primary_10_1016_j_matchemphys_2021_124246 crossref_primary_10_1016_j_molstruc_2020_128872 crossref_primary_10_1016_j_cej_2019_04_089 crossref_primary_10_1016_j_ijhydene_2019_09_114 crossref_primary_10_1016_j_cej_2024_155551 crossref_primary_10_1016_j_apcatb_2017_08_004 crossref_primary_10_1016_j_envpol_2019_113702 crossref_primary_10_1016_j_jclepro_2018_06_289 crossref_primary_10_1016_j_jhazmat_2018_12_095 crossref_primary_10_1021_acs_iecr_0c01682 crossref_primary_10_1016_j_jece_2019_103248 crossref_primary_10_1039_C8NJ04557G crossref_primary_10_1016_j_jece_2020_103666 crossref_primary_10_1016_j_seppur_2022_121798 crossref_primary_10_1016_j_surfin_2022_102360 crossref_primary_10_1016_j_apsusc_2019_144241 crossref_primary_10_1016_j_cej_2021_128612 crossref_primary_10_1016_j_cej_2022_137053 crossref_primary_10_1007_s00604_025_07088_y crossref_primary_10_1016_j_seppur_2021_119769 crossref_primary_10_1016_j_apcata_2021_118460 crossref_primary_10_1016_j_mssp_2020_104954 crossref_primary_10_1016_j_colsurfa_2017_10_053 crossref_primary_10_1016_j_tsf_2021_138632 crossref_primary_10_1088_1361_6641_ab1701 crossref_primary_10_1016_j_jiec_2020_01_012 crossref_primary_10_1039_C8CY01551A crossref_primary_10_1016_j_apsusc_2017_11_254 crossref_primary_10_1016_j_heliyon_2022_e12685 crossref_primary_10_1007_s10971_019_05172_3 crossref_primary_10_1016_j_envint_2021_106572 crossref_primary_10_1039_D1NJ01973B crossref_primary_10_1007_s11356_024_34073_4 crossref_primary_10_1016_j_jhazmat_2020_122139 crossref_primary_10_1016_j_apcatb_2020_118897 crossref_primary_10_1016_j_biortech_2017_08_119 crossref_primary_10_1016_j_jes_2024_06_039 crossref_primary_10_1016_j_apcatb_2018_01_033 crossref_primary_10_1016_j_cej_2019_122269 crossref_primary_10_1016_j_crci_2017_05_004 crossref_primary_10_1016_j_cej_2019_03_140 crossref_primary_10_1007_s41061_022_00409_2 crossref_primary_10_1016_j_carbon_2017_11_078 crossref_primary_10_1149_2_0361914jes crossref_primary_10_1016_j_apcatb_2018_02_056 crossref_primary_10_1016_j_chemosphere_2020_128730 crossref_primary_10_1016_j_chemphys_2022_111558 crossref_primary_10_1039_D3EN00077J crossref_primary_10_1016_j_cclet_2019_12_015 crossref_primary_10_3390_w15152837 crossref_primary_10_1016_j_chemphys_2021_111141 crossref_primary_10_1016_j_conbuildmat_2025_140588 crossref_primary_10_1016_j_scitotenv_2020_137985 crossref_primary_10_1016_j_jhazmat_2020_123470 crossref_primary_10_1007_s11595_022_2516_0 crossref_primary_10_1007_s11356_023_26056_8 crossref_primary_10_1016_j_apsusc_2017_11_229 crossref_primary_10_1016_j_chemosphere_2020_126381 crossref_primary_10_1021_acs_est_7b04865 crossref_primary_10_1016_j_dwt_2025_101057 crossref_primary_10_1021_acsami_7b03073 crossref_primary_10_1016_j_jece_2022_107380 crossref_primary_10_1016_j_jallcom_2020_155612 crossref_primary_10_1016_j_molliq_2020_114479 crossref_primary_10_1016_j_jhazmat_2017_10_044 crossref_primary_10_1016_j_matlet_2018_01_098 crossref_primary_10_3390_molecules26072062 crossref_primary_10_1007_s10853_019_03636_z crossref_primary_10_1016_j_apcatb_2018_12_029 crossref_primary_10_1016_j_apcatb_2022_121292 crossref_primary_10_1016_j_jpcs_2021_110252 crossref_primary_10_1007_s12221_023_00061_7 crossref_primary_10_1016_j_jcis_2018_04_106 crossref_primary_10_1039_D2VA00143H crossref_primary_10_1016_j_cej_2018_09_097 crossref_primary_10_1007_s11356_018_3450_8 crossref_primary_10_1007_s11356_020_11220_1 crossref_primary_10_1016_j_apcatb_2017_03_061 crossref_primary_10_1016_j_scitotenv_2021_145840 crossref_primary_10_1016_j_ecoenv_2020_111866 crossref_primary_10_1016_j_cclet_2020_03_026 crossref_primary_10_1038_s41598_017_09826_6 crossref_primary_10_3390_catal14050333 crossref_primary_10_1016_j_apsusc_2020_148487 crossref_primary_10_1016_j_mcat_2017_04_004 crossref_primary_10_1016_j_materresbull_2016_12_009 crossref_primary_10_1016_j_seppur_2021_120435 crossref_primary_10_3390_molecules29163805 crossref_primary_10_1007_s11356_018_2201_1 crossref_primary_10_1016_j_seppur_2022_122346 crossref_primary_10_20964_2017_04_58 crossref_primary_10_1016_j_jenvman_2023_118545 crossref_primary_10_1021_acs_iecr_1c00509 crossref_primary_10_1049_mnl_2017_0414 crossref_primary_10_1021_acs_energyfuels_0c01354 crossref_primary_10_1016_j_mcat_2019_110718 crossref_primary_10_1016_j_molstruc_2020_129660 crossref_primary_10_1016_j_jcis_2017_04_047 crossref_primary_10_1016_j_jtice_2019_04_032 crossref_primary_10_1016_j_apsusc_2021_149085 crossref_primary_10_1016_j_jcis_2020_07_071 crossref_primary_10_1039_D1RA01890F crossref_primary_10_1002_jctb_6439 crossref_primary_10_1016_j_apsusc_2020_147181 crossref_primary_10_1016_j_cplett_2021_139027 crossref_primary_10_1016_j_jece_2024_112186 crossref_primary_10_1016_j_apcatb_2018_01_070 crossref_primary_10_1016_j_jclepro_2021_127915 crossref_primary_10_1016_j_apcatb_2018_01_074 crossref_primary_10_1016_j_jcat_2023_08_003 crossref_primary_10_5004_dwt_2019_23673 crossref_primary_10_1016_j_matlet_2019_05_065 crossref_primary_10_2166_wst_2019_295 crossref_primary_10_1016_j_rechem_2022_100699 crossref_primary_10_1007_s10800_017_1103_0 crossref_primary_10_1007_s11356_022_19269_w crossref_primary_10_1016_j_apsusc_2021_151287 crossref_primary_10_1016_j_cej_2019_03_197 crossref_primary_10_1021_acsaem_8b00524 crossref_primary_10_1021_acs_est_2c04139 crossref_primary_10_1002_jctb_7543 crossref_primary_10_1039_D0NJ02101F crossref_primary_10_1016_j_optmat_2023_113974 crossref_primary_10_1016_j_jhazmat_2019_121248 crossref_primary_10_1016_j_cej_2017_07_170 crossref_primary_10_1016_j_jallcom_2017_08_081 crossref_primary_10_1021_jacsau_4c00950 crossref_primary_10_1016_j_jece_2022_108790 crossref_primary_10_1016_j_watres_2017_08_053 crossref_primary_10_1016_j_cattod_2019_01_035 crossref_primary_10_1016_j_chemosphere_2020_128004 crossref_primary_10_1016_j_jhazmat_2017_06_011 crossref_primary_10_1016_j_gee_2021_05_002 crossref_primary_10_1002_cctc_202100833 crossref_primary_10_1007_s11164_020_04379_2 crossref_primary_10_1007_s43630_022_00226_y crossref_primary_10_1016_j_apcatb_2019_117880 crossref_primary_10_1016_j_scib_2019_05_006 crossref_primary_10_1016_j_cej_2020_127195 crossref_primary_10_1016_j_apcatb_2019_118190 crossref_primary_10_1016_j_chemosphere_2022_134375 crossref_primary_10_1016_j_pnsc_2019_05_003 crossref_primary_10_1007_s11356_022_22749_8 crossref_primary_10_1088_1361_6463_aab05d crossref_primary_10_1111_jace_17928 crossref_primary_10_1016_j_apsusc_2020_148835 crossref_primary_10_1016_j_apcatb_2017_07_030 crossref_primary_10_1016_j_solmat_2020_110556 crossref_primary_10_1007_s10570_021_04318_3 crossref_primary_10_1002_cctc_202100166 crossref_primary_10_1016_j_apcatb_2019_117759 crossref_primary_10_1016_j_electacta_2018_12_086 crossref_primary_10_1016_j_optmat_2022_113185 crossref_primary_10_1016_j_cplett_2022_140253 crossref_primary_10_1016_j_enmm_2018_07_010 crossref_primary_10_1016_j_apcatb_2017_08_076 crossref_primary_10_1002_advs_202308519 crossref_primary_10_1002_cey2_66 crossref_primary_10_1016_j_apsusc_2022_154312 crossref_primary_10_1016_j_jclepro_2018_08_189 crossref_primary_10_1007_s11356_020_11987_3 crossref_primary_10_1016_j_jphotochem_2022_114044 crossref_primary_10_1016_j_apcatb_2017_01_024 crossref_primary_10_1016_j_jclepro_2019_119744 crossref_primary_10_1016_j_mcat_2018_07_026 crossref_primary_10_1016_j_mcat_2018_07_027 crossref_primary_10_1039_D1NR02418C crossref_primary_10_1557_jmr_2018_354 crossref_primary_10_1016_j_jcis_2017_04_080 crossref_primary_10_1038_s41598_019_42438_w crossref_primary_10_1016_j_solener_2019_06_037 crossref_primary_10_1142_S1793292021500739 crossref_primary_10_1016_j_cej_2018_04_182 crossref_primary_10_1021_acsomega_9b02148 crossref_primary_10_2166_wst_2021_497 crossref_primary_10_1016_j_apsusc_2018_02_080 crossref_primary_10_1039_C7RA07399B crossref_primary_10_1016_j_colsurfa_2020_124511 crossref_primary_10_1016_j_cej_2022_140198 crossref_primary_10_1088_1361_6463_aac7d5 crossref_primary_10_1016_j_jelechem_2020_114008 crossref_primary_10_1016_j_clay_2019_105253 crossref_primary_10_1016_j_jelechem_2017_09_003 crossref_primary_10_1016_j_diamond_2023_109988 crossref_primary_10_1016_j_solener_2018_09_041 crossref_primary_10_1039_D1MA00660F crossref_primary_10_1039_D1NA00460C crossref_primary_10_1016_j_apsusc_2020_148616 crossref_primary_10_3390_catal9040390 crossref_primary_10_1002_slct_202100916 crossref_primary_10_1016_j_jics_2021_100251 crossref_primary_10_1016_j_jics_2021_100133 crossref_primary_10_1007_s10854_020_03953_z crossref_primary_10_1016_j_matlet_2021_130432 crossref_primary_10_1002_slct_201701589 crossref_primary_10_1016_j_jece_2021_105996 |
Cites_doi | 10.1016/j.jhazmat.2006.12.075 10.1016/j.jhazmat.2013.09.013 10.1039/c3ta13188b 10.1021/ja103798k 10.1021/acs.jpclett.6b01287 10.1002/adma.201500033 10.1016/j.elecom.2007.03.017 10.1016/j.apcatb.2015.05.009 10.1016/j.jhazmat.2006.01.022 10.1016/j.chemosphere.2011.01.007 10.1016/j.jphotochemrev.2012.07.001 10.1039/C4DT01347F 10.1016/j.apsusc.2015.08.240 10.1016/j.jhazmat.2015.10.013 10.1016/j.jphotochem.2015.11.008 10.1021/es0158197 10.1016/j.biortech.2014.05.036 10.1021/cr5001892 10.1039/c2nr11938b 10.1016/j.apsusc.2016.07.154 10.1016/j.apcatb.2014.01.046 10.1016/j.biortech.2012.01.184 10.1061/(ASCE)0733-9372(1997)123:9(876) 10.1002/anie.201004975 10.1021/es502471h 10.1039/C4CP01401D 10.1016/j.jhazmat.2016.04.011 10.1021/es052029e 10.1021/jp904320d 10.1039/C5NR02345A 10.1002/smll.201200564 10.1002/adfm.201102306 10.1021/acs.chemrev.6b00075 10.1016/j.chemosphere.2016.07.064 10.1016/j.jhazmat.2008.11.119 10.1021/ja809307s 10.1016/j.molcata.2012.11.007 10.1016/j.jhazmat.2012.09.050 10.1038/nmat2317 10.1021/acs.jpcc.5b06347 10.1002/adma.201303116 10.1016/j.solmat.2016.07.007 10.1039/C4CP01489H 10.1021/cm902130z 10.1016/j.apcatb.2013.09.002 10.1039/c3ta00059a 10.1002/aenm.201300611 10.1016/j.jcat.2010.10.011 10.2166/wst.2002.0270 10.1039/C5CC07567J 10.1016/S0013-4686(97)85475-8 10.1023/A:1004007730721 10.1016/j.apcatb.2013.09.037 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apcatb.2016.09.003 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
EndPage | 606 |
ExternalDocumentID | 10_1016_j_apcatb_2016_09_003 S0926337316306750 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c409t-3496200e137bf6aedb10c21307c8cdb5aab2404d918f5cb86c62e9f60191dd5e3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Thu Apr 24 22:56:38 EDT 2025 Tue Jul 01 03:10:35 EDT 2025 Sat Mar 02 16:00:20 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Surface hybrid heterojunction Degradation phenolic compounds Synergistic effect Photoelectrocatalytic Coking wastewater |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-3496200e137bf6aedb10c21307c8cdb5aab2404d918f5cb86c62e9f60191dd5e3 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_apcatb_2016_09_003 crossref_citationtrail_10_1016_j_apcatb_2016_09_003 elsevier_sciencedirect_doi_10_1016_j_apcatb_2016_09_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-01 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhou, Chen, Yang, Dong, Zhang, Qin (bib0095) 2016; 157 Yu, Xu, Wei, Wu (bib0245) 2016; 302 Zhang, Xiao, Li, Zeng, Zheng, Wan (bib0200) 2016; 389 Liang, Zhu (bib0240) 2016; 180 Wang, Hu, Guo, Huang, Liu (bib0020) 2012; 110 Lai, Zhao, Wang, Ni (bib0030) 2007; 147 Li, Liu, Li, Chen (bib0190) 2016; 317 Sillanpää, Kurniawan, Lo (bib0035) 2011; 83 Baram, Starosvetsky, Starosvetsky, Epshtein, Armon, Ein-Eli (bib0090) 2007; 9 Zhang, Xu, Zong, Zhu (bib0175) 2014; 147 Zhang, Wang, Lu, Wang, Cong (bib0065) 2016; 162 Xu, Zhang, Shi, Zhu (bib0170) 2013; 1 Paramasivam, Jha, Liu, Schmuki (bib0100) 2012; 8 Lu, Zhang, Wan (bib0165) 2015; 358 Liu, Wang, Xu, Chen, Fu (bib0265) 2013; 368 Li, Liu, Zhang, An, Zhang, Carroll, Zhao (bib0080) 2011; 277 Sun, Li, Nie, Shi, Wong, Zhao, An (bib0075) 2014; 48 Zhao, Zhu (bib0180) 2006; 40 Zhai, Zhu, Lu, Ren, Wang, Du, Yang (bib0055) 2014; 16 Liu, Niu, Sun, Smith, Chen, Lu, Cheng (bib0140) 2010; 132 Zhang, Wei, An (bib0010) 2015; 17 Wei, Liu, Wang, Zong, Yao, Wang, Zhu (bib0260) 2015; 7 Zhang, Tay, Qian, Gu (bib0025) 1997; 123 Zhou, Yi, Xing, Shang, Zhang, Zhang (bib0105) 2016; 52 Li, Jin, Fang, Yang, Yang, Liu, Xing, Song (bib0195) 2016; 313 Pan, Xu, Wang, Li, Zhu (bib0155) 2012; 22 Pan, Xi, Li, Wang, Chen, Lu, Wu (bib0125) 2013; 1 Wang, Maeda, Chen, Takanabe, Domen, Hou, Fu, Antonietti (bib0130) 2009; 131 Gao, Sun, Hu, Ai, Zhang, Feng, Li, Peng (bib0210) 2009; 113 Schneider, Matsuoka, Takeuchi, Zhang, Horiuchi, Anpo, Bahnemann (bib0050) 2014; 114 Mahiroglu, Tarlan-Yel, Sevimli (bib0045) 2009; 166 Sun, Sun, Gao, Cheng, Liu, Lei, Wei, Xie (bib0230) 2014; 4 Hou, Wen, Cui, Guo, Chen (bib0215) 2013; 25 Lee, Jun, Hong, Thomas, Jin (bib0145) 2010; 49 Chen, Wang, Ren, Ding, Zhu (bib0160) 2014; 43 Lu, Zhu (bib0225) 2014; 16 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib0135) 2009; 8 Tang, Luo, Teng, Liu, Xu, Zhang, Chen (bib0120) 2012; 241 Dong, Xing, Zhang (bib0115) 2016; 7 Song, Zhang, Sun, Cui, Lin (bib0110) 2012; 4 Chen, Jun, Takanabe, Maeda, Domen, Fu, Antonietti, Wang (bib0235) 2009; 21 Pelegrini, Reyes, Duran, Zamora, De Andrade (bib0275) 2000; 30 Ong, Tan, Ng, Yong, Chai (bib0150) 2016; 116 Simond, Schaller, Comninellis (bib0270) 1997; 42 Shi, Qu, Ma, Zhou (bib0005) 2014; 166 Ochiai, Fujishima (bib0060) 2012; 13 Wang, Jin, An, Wang, Feng, Li (bib0220) 2015; 119 Zhai, Zhu, Ren, Yao, Du, Yang (bib0070) 2013; 263 Wang, Shi, Lin, Zhu (bib0185) 2011; 4 Nie, Li, Gao, Sun, Liu, Zhao, Wong, An (bib0085) 2014; 147 Cao, Low, Yu, Jaroniec (bib0250) 2015; 27 Du, Zhou, Lei (bib0015) 2006; 136 Lee, Choi (bib0255) 2002; 36 Aydin, Altinbas, Sevimli, Ozturk, Sarikaya (bib0040) 2002; 46 Bai, Wang, Wang, Yao, Zhu (bib0205) 2014; 152 Pan (10.1016/j.apcatb.2016.09.003_bib0155) 2012; 22 Paramasivam (10.1016/j.apcatb.2016.09.003_bib0100) 2012; 8 Lee (10.1016/j.apcatb.2016.09.003_bib0255) 2002; 36 Liu (10.1016/j.apcatb.2016.09.003_bib0265) 2013; 368 Pelegrini (10.1016/j.apcatb.2016.09.003_bib0275) 2000; 30 Lu (10.1016/j.apcatb.2016.09.003_bib0165) 2015; 358 Lee (10.1016/j.apcatb.2016.09.003_bib0145) 2010; 49 Lai (10.1016/j.apcatb.2016.09.003_bib0030) 2007; 147 Wei (10.1016/j.apcatb.2016.09.003_bib0260) 2015; 7 Lu (10.1016/j.apcatb.2016.09.003_bib0225) 2014; 16 Ochiai (10.1016/j.apcatb.2016.09.003_bib0060) 2012; 13 Simond (10.1016/j.apcatb.2016.09.003_bib0270) 1997; 42 Zhai (10.1016/j.apcatb.2016.09.003_bib0070) 2013; 263 Schneider (10.1016/j.apcatb.2016.09.003_bib0050) 2014; 114 Dong (10.1016/j.apcatb.2016.09.003_bib0115) 2016; 7 Liang (10.1016/j.apcatb.2016.09.003_bib0240) 2016; 180 Aydin (10.1016/j.apcatb.2016.09.003_bib0040) 2002; 46 Li (10.1016/j.apcatb.2016.09.003_bib0080) 2011; 277 Pan (10.1016/j.apcatb.2016.09.003_bib0125) 2013; 1 Wang (10.1016/j.apcatb.2016.09.003_bib0135) 2009; 8 Zhao (10.1016/j.apcatb.2016.09.003_bib0180) 2006; 40 Li (10.1016/j.apcatb.2016.09.003_bib0195) 2016; 313 Du (10.1016/j.apcatb.2016.09.003_bib0015) 2006; 136 Sillanpää (10.1016/j.apcatb.2016.09.003_bib0035) 2011; 83 Chen (10.1016/j.apcatb.2016.09.003_bib0235) 2009; 21 Baram (10.1016/j.apcatb.2016.09.003_bib0090) 2007; 9 Zhang (10.1016/j.apcatb.2016.09.003_bib0065) 2016; 162 Zhang (10.1016/j.apcatb.2016.09.003_bib0025) 1997; 123 Zhou (10.1016/j.apcatb.2016.09.003_bib0105) 2016; 52 Liu (10.1016/j.apcatb.2016.09.003_bib0140) 2010; 132 Yu (10.1016/j.apcatb.2016.09.003_bib0245) 2016; 302 Hou (10.1016/j.apcatb.2016.09.003_bib0215) 2013; 25 Cao (10.1016/j.apcatb.2016.09.003_bib0250) 2015; 27 Zhou (10.1016/j.apcatb.2016.09.003_bib0095) 2016; 157 Tang (10.1016/j.apcatb.2016.09.003_bib0120) 2012; 241 Wang (10.1016/j.apcatb.2016.09.003_bib0130) 2009; 131 Sun (10.1016/j.apcatb.2016.09.003_bib0075) 2014; 48 Zhang (10.1016/j.apcatb.2016.09.003_bib0010) 2015; 17 Ong (10.1016/j.apcatb.2016.09.003_bib0150) 2016; 116 Zhang (10.1016/j.apcatb.2016.09.003_bib0200) 2016; 389 Bai (10.1016/j.apcatb.2016.09.003_bib0205) 2014; 152 Gao (10.1016/j.apcatb.2016.09.003_bib0210) 2009; 113 Mahiroglu (10.1016/j.apcatb.2016.09.003_bib0045) 2009; 166 Zhang (10.1016/j.apcatb.2016.09.003_bib0175) 2014; 147 Song (10.1016/j.apcatb.2016.09.003_bib0110) 2012; 4 Wang (10.1016/j.apcatb.2016.09.003_bib0185) 2011; 4 Wang (10.1016/j.apcatb.2016.09.003_bib0020) 2012; 110 Wang (10.1016/j.apcatb.2016.09.003_bib0220) 2015; 119 Nie (10.1016/j.apcatb.2016.09.003_bib0085) 2014; 147 Xu (10.1016/j.apcatb.2016.09.003_bib0170) 2013; 1 Sun (10.1016/j.apcatb.2016.09.003_bib0230) 2014; 4 Chen (10.1016/j.apcatb.2016.09.003_bib0160) 2014; 43 Shi (10.1016/j.apcatb.2016.09.003_bib0005) 2014; 166 Li (10.1016/j.apcatb.2016.09.003_bib0190) 2016; 317 Zhai (10.1016/j.apcatb.2016.09.003_bib0055) 2014; 16 |
References_xml | – volume: 4 start-page: 1800 year: 2012 end-page: 1804 ident: bib0110 publication-title: Nanoscale – volume: 27 start-page: 2150 year: 2015 end-page: 2176 ident: bib0250 publication-title: Adv. Mater. – volume: 114 start-page: 9919 year: 2014 end-page: 9986 ident: bib0050 publication-title: Chem. Rev. – volume: 358 start-page: 223 year: 2015 end-page: 230 ident: bib0165 publication-title: Appl. Surf. Sci. – volume: 113 start-page: 20481 year: 2009 end-page: 20485 ident: bib0210 publication-title: J. Phys. Chem. C – volume: 36 start-page: 3872 year: 2002 end-page: 3878 ident: bib0255 publication-title: Environ. Sci. Technol. – volume: 8 start-page: 3073 year: 2012 end-page: 3103 ident: bib0100 publication-title: Small – volume: 40 start-page: 3367 year: 2006 end-page: 3372 ident: bib0180 publication-title: Environ. Sci. Technol. – volume: 30 start-page: 953 year: 2000 end-page: 958 ident: bib0275 publication-title: J. Appl. Electrochem. – volume: 21 start-page: 4093 year: 2009 end-page: 4095 ident: bib0235 publication-title: Chem. Mater. – volume: 132 start-page: 11642 year: 2010 end-page: 11648 ident: bib0140 publication-title: J. Am. Chem. Soc. – volume: 22 start-page: 1518 year: 2012 end-page: 1524 ident: bib0155 publication-title: Adv. Funct. Mater. – volume: 152 start-page: 262 year: 2014 end-page: 270 ident: bib0205 publication-title: Appl. Catal. B – volume: 83 start-page: 1443 year: 2011 end-page: 1460 ident: bib0035 publication-title: Chemosphere – volume: 4 start-page: 1300611 year: 2014 ident: bib0230 publication-title: Adv. Energy Mater. – volume: 277 start-page: 88 year: 2011 end-page: 94 ident: bib0080 publication-title: J. Catal. – volume: 317 start-page: 151 year: 2016 end-page: 160 ident: bib0190 publication-title: J. Photochem. Photobiol. A: Chem. – volume: 7 start-page: 13943 year: 2015 end-page: 13950 ident: bib0260 publication-title: Nanoscale – volume: 166 start-page: 79 year: 2014 end-page: 86 ident: bib0005 publication-title: Bioresour. Technol. – volume: 313 start-page: 219 year: 2016 end-page: 228 ident: bib0195 publication-title: J. Hazard. Mater. – volume: 241 start-page: 323 year: 2012 end-page: 330 ident: bib0120 publication-title: J. Hazard. Mater. – volume: 17 start-page: 975 year: 2015 end-page: 984 ident: bib0010 publication-title: Environ. Sci.: Processes Impacts – volume: 162 start-page: 55 year: 2016 end-page: 63 ident: bib0065 publication-title: Chemosphere – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: bib0135 publication-title: Nat. Mater. – volume: 46 start-page: 323 year: 2002 end-page: 330 ident: bib0040 publication-title: Water Sci. Technol. – volume: 147 start-page: 562 year: 2014 end-page: 570 ident: bib0085 publication-title: Appl. Catal. B – volume: 180 start-page: 324 year: 2016 end-page: 329 ident: bib0240 publication-title: Appl. Catal. B – volume: 136 start-page: 859 year: 2006 end-page: 865 ident: bib0015 publication-title: J. Hazard. Mater. – volume: 131 start-page: 1680 year: 2009 end-page: 1681 ident: bib0130 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 13105 year: 2014 end-page: 13114 ident: bib0160 publication-title: Dalton Trans. – volume: 116 start-page: 7159 year: 2016 end-page: 7329 ident: bib0150 publication-title: Chem. Rev. – volume: 123 start-page: 876 year: 1997 end-page: 883 ident: bib0025 publication-title: J. Environ. Eng. – volume: 110 start-page: 120 year: 2012 end-page: 124 ident: bib0020 publication-title: Bioresour. Technol. – volume: 49 start-page: 9706 year: 2010 end-page: 9710 ident: bib0145 publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 14800 year: 2014 end-page: 14807 ident: bib0055 publication-title: Phys. Chem. Chem. Phys. – volume: 48 start-page: 9412 year: 2014 end-page: 9419 ident: bib0075 publication-title: Environ. Sci. Technol. – volume: 166 start-page: 782 year: 2009 end-page: 787 ident: bib0045 publication-title: J. Hazard. Mater. – volume: 9 start-page: 1684 year: 2007 end-page: 1688 ident: bib0090 publication-title: Electrochem. Commun. – volume: 1 start-page: 3551 year: 2013 end-page: 3555 ident: bib0125 publication-title: J. Mater. Chem. A – volume: 25 start-page: 6291 year: 2013 end-page: 6297 ident: bib0215 publication-title: Adv. Mater. – volume: 4 start-page: 2922 year: 2011 end-page: 2929 ident: bib0185 publication-title: Environ. Sci. Technol. – volume: 147 start-page: 232 year: 2007 end-page: 239 ident: bib0030 publication-title: J. Hazard. Mater. – volume: 119 start-page: 22460 year: 2015 end-page: 22464 ident: bib0220 publication-title: J. Phys. Chem. C – volume: 368 start-page: 9 year: 2013 end-page: 15 ident: bib0265 publication-title: J. Mol. Catal. A: Chem. – volume: 302 start-page: 468 year: 2016 end-page: 474 ident: bib0245 publication-title: J. Hazard. Mater. – volume: 389 start-page: 496 year: 2016 end-page: 506 ident: bib0200 publication-title: Appl. Surf. Sci. – volume: 1 start-page: 14766 year: 2013 end-page: 14772 ident: bib0170 publication-title: J. Mater. Chem. A – volume: 52 start-page: 1689 year: 2016 end-page: 1692 ident: bib0105 publication-title: Chem. Commun. – volume: 7 start-page: 2962 year: 2016 end-page: 2966 ident: bib0115 publication-title: J. Phys. Chem. Lett. – volume: 147 start-page: 229 year: 2014 end-page: 235 ident: bib0175 publication-title: Appl. Catal. B – volume: 157 start-page: 399 year: 2016 end-page: 405 ident: bib0095 publication-title: Sol. Energ. Mater. Sol. Cells – volume: 263 start-page: 291 year: 2013 end-page: 298 ident: bib0070 publication-title: J. Hazard. Mater. – volume: 16 start-page: 16509 year: 2014 end-page: 16514 ident: bib0225 publication-title: Phys. Chem. Chem. Phys. – volume: 42 start-page: 2009 year: 1997 end-page: 2012 ident: bib0270 publication-title: Electrochim. Acta – volume: 13 start-page: 247 year: 2012 end-page: 262 ident: bib0060 publication-title: J. Photochem. Photobiol. C – volume: 147 start-page: 232 year: 2007 ident: 10.1016/j.apcatb.2016.09.003_bib0030 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.12.075 – volume: 263 start-page: 291 year: 2013 ident: 10.1016/j.apcatb.2016.09.003_bib0070 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.09.013 – volume: 1 start-page: 14766 year: 2013 ident: 10.1016/j.apcatb.2016.09.003_bib0170 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13188b – volume: 17 start-page: 975 year: 2015 ident: 10.1016/j.apcatb.2016.09.003_bib0010 publication-title: Environ. Sci.: Processes Impacts – volume: 132 start-page: 11642 year: 2010 ident: 10.1016/j.apcatb.2016.09.003_bib0140 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja103798k – volume: 7 start-page: 2962 year: 2016 ident: 10.1016/j.apcatb.2016.09.003_bib0115 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01287 – volume: 27 start-page: 2150 year: 2015 ident: 10.1016/j.apcatb.2016.09.003_bib0250 publication-title: Adv. Mater. doi: 10.1002/adma.201500033 – volume: 9 start-page: 1684 year: 2007 ident: 10.1016/j.apcatb.2016.09.003_bib0090 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2007.03.017 – volume: 180 start-page: 324 year: 2016 ident: 10.1016/j.apcatb.2016.09.003_bib0240 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.05.009 – volume: 136 start-page: 859 year: 2006 ident: 10.1016/j.apcatb.2016.09.003_bib0015 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.01.022 – volume: 83 start-page: 1443 year: 2011 ident: 10.1016/j.apcatb.2016.09.003_bib0035 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.01.007 – volume: 13 start-page: 247 year: 2012 ident: 10.1016/j.apcatb.2016.09.003_bib0060 publication-title: J. Photochem. Photobiol. C doi: 10.1016/j.jphotochemrev.2012.07.001 – volume: 43 start-page: 13105 year: 2014 ident: 10.1016/j.apcatb.2016.09.003_bib0160 publication-title: Dalton Trans. doi: 10.1039/C4DT01347F – volume: 358 start-page: 223 year: 2015 ident: 10.1016/j.apcatb.2016.09.003_bib0165 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.08.240 – volume: 302 start-page: 468 year: 2016 ident: 10.1016/j.apcatb.2016.09.003_bib0245 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2015.10.013 – volume: 317 start-page: 151 year: 2016 ident: 10.1016/j.apcatb.2016.09.003_bib0190 publication-title: J. Photochem. Photobiol. A: Chem. doi: 10.1016/j.jphotochem.2015.11.008 – volume: 36 start-page: 3872 year: 2002 ident: 10.1016/j.apcatb.2016.09.003_bib0255 publication-title: Environ. Sci. Technol. doi: 10.1021/es0158197 – volume: 166 start-page: 79 year: 2014 ident: 10.1016/j.apcatb.2016.09.003_bib0005 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.05.036 – volume: 114 start-page: 9919 year: 2014 ident: 10.1016/j.apcatb.2016.09.003_bib0050 publication-title: Chem. Rev. doi: 10.1021/cr5001892 – volume: 4 start-page: 1800 year: 2012 ident: 10.1016/j.apcatb.2016.09.003_bib0110 publication-title: Nanoscale doi: 10.1039/c2nr11938b – volume: 389 start-page: 496 year: 2016 ident: 10.1016/j.apcatb.2016.09.003_bib0200 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.07.154 – volume: 152 start-page: 262 year: 2014 ident: 10.1016/j.apcatb.2016.09.003_bib0205 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.01.046 – volume: 110 start-page: 120 year: 2012 ident: 10.1016/j.apcatb.2016.09.003_bib0020 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.184 – volume: 123 start-page: 876 year: 1997 ident: 10.1016/j.apcatb.2016.09.003_bib0025 publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(1997)123:9(876) – volume: 49 start-page: 9706 year: 2010 ident: 10.1016/j.apcatb.2016.09.003_bib0145 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201004975 – volume: 48 start-page: 9412 year: 2014 ident: 10.1016/j.apcatb.2016.09.003_bib0075 publication-title: Environ. Sci. Technol. doi: 10.1021/es502471h – volume: 16 start-page: 14800 year: 2014 ident: 10.1016/j.apcatb.2016.09.003_bib0055 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP01401D – volume: 313 start-page: 219 year: 2016 ident: 10.1016/j.apcatb.2016.09.003_bib0195 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.04.011 – volume: 40 start-page: 3367 year: 2006 ident: 10.1016/j.apcatb.2016.09.003_bib0180 publication-title: Environ. Sci. Technol. doi: 10.1021/es052029e – volume: 113 start-page: 20481 year: 2009 ident: 10.1016/j.apcatb.2016.09.003_bib0210 publication-title: J. Phys. Chem. C doi: 10.1021/jp904320d – volume: 7 start-page: 13943 year: 2015 ident: 10.1016/j.apcatb.2016.09.003_bib0260 publication-title: Nanoscale doi: 10.1039/C5NR02345A – volume: 8 start-page: 3073 year: 2012 ident: 10.1016/j.apcatb.2016.09.003_bib0100 publication-title: Small doi: 10.1002/smll.201200564 – volume: 22 start-page: 1518 year: 2012 ident: 10.1016/j.apcatb.2016.09.003_bib0155 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102306 – volume: 116 start-page: 7159 year: 2016 ident: 10.1016/j.apcatb.2016.09.003_bib0150 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00075 – volume: 162 start-page: 55 year: 2016 ident: 10.1016/j.apcatb.2016.09.003_bib0065 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.07.064 – volume: 166 start-page: 782 year: 2009 ident: 10.1016/j.apcatb.2016.09.003_bib0045 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.11.119 – volume: 131 start-page: 1680 year: 2009 ident: 10.1016/j.apcatb.2016.09.003_bib0130 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809307s – volume: 368 start-page: 9 year: 2013 ident: 10.1016/j.apcatb.2016.09.003_bib0265 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2012.11.007 – volume: 241 start-page: 323 year: 2012 ident: 10.1016/j.apcatb.2016.09.003_bib0120 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.09.050 – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.apcatb.2016.09.003_bib0135 publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 119 start-page: 22460 year: 2015 ident: 10.1016/j.apcatb.2016.09.003_bib0220 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b06347 – volume: 25 start-page: 6291 year: 2013 ident: 10.1016/j.apcatb.2016.09.003_bib0215 publication-title: Adv. Mater. doi: 10.1002/adma.201303116 – volume: 157 start-page: 399 year: 2016 ident: 10.1016/j.apcatb.2016.09.003_bib0095 publication-title: Sol. Energ. Mater. Sol. Cells doi: 10.1016/j.solmat.2016.07.007 – volume: 4 start-page: 2922 year: 2011 ident: 10.1016/j.apcatb.2016.09.003_bib0185 publication-title: Environ. Sci. Technol. – volume: 16 start-page: 16509 year: 2014 ident: 10.1016/j.apcatb.2016.09.003_bib0225 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP01489H – volume: 21 start-page: 4093 year: 2009 ident: 10.1016/j.apcatb.2016.09.003_bib0235 publication-title: Chem. Mater. doi: 10.1021/cm902130z – volume: 147 start-page: 229 year: 2014 ident: 10.1016/j.apcatb.2016.09.003_bib0175 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.09.002 – volume: 1 start-page: 3551 year: 2013 ident: 10.1016/j.apcatb.2016.09.003_bib0125 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta00059a – volume: 4 start-page: 1300611 year: 2014 ident: 10.1016/j.apcatb.2016.09.003_bib0230 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300611 – volume: 277 start-page: 88 year: 2011 ident: 10.1016/j.apcatb.2016.09.003_bib0080 publication-title: J. Catal. doi: 10.1016/j.jcat.2010.10.011 – volume: 46 start-page: 323 year: 2002 ident: 10.1016/j.apcatb.2016.09.003_bib0040 publication-title: Water Sci. Technol. doi: 10.2166/wst.2002.0270 – volume: 52 start-page: 1689 year: 2016 ident: 10.1016/j.apcatb.2016.09.003_bib0105 publication-title: Chem. Commun. doi: 10.1039/C5CC07567J – volume: 42 start-page: 2009 year: 1997 ident: 10.1016/j.apcatb.2016.09.003_bib0270 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(97)85475-8 – volume: 30 start-page: 953 year: 2000 ident: 10.1016/j.apcatb.2016.09.003_bib0275 publication-title: J. Appl. Electrochem. doi: 10.1023/A:1004007730721 – volume: 147 start-page: 562 year: 2014 ident: 10.1016/j.apcatb.2016.09.003_bib0085 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.09.037 |
SSID | ssj0002328 |
Score | 2.6233504 |
Snippet | [Display omitted]
•TiO2/g-C3N4 thin film electrode was fabricated via a surface hybridization and dip-coating method.•The surface hybrid heterojunction of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 600 |
SubjectTerms | Coking wastewater Degradation phenolic compounds Photoelectrocatalytic Surface hybrid heterojunction Synergistic effect |
Title | Photoelectrocatalytic degradation of phenol-containing wastewater by TiO2/g-C3N4 hybrid heterostructure thin film |
URI | https://dx.doi.org/10.1016/j.apcatb.2016.09.003 |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4heqAcULuAgLbIh17NJs7DyRGtQEtRt0iAxC3yK2zQslkgqNpLf3tnnKRADyBxjewomrHnEX3zfQDfkyyQOaZ1LqTOsEEJE7xzueFWZypPbOqEn-L_OUnHl_GPq-RqBUb9LAzBKrvY38Z0H627J8POmsNFVQ3Pg1ykUUTKS77spb49jiWd8oM_TzAPrBh8NMbFnFb343Me46UWRjWaAF6pZzvtpbP-T0_PUs7xJ9joakV22H7OZ1hx8wGsjXqJtgGsP2MTHMD20dPQGm7rbu3DJtydTeum7gRv_P-aJb6RWeKJaCWVWF0yAnvVM07Y9VY1gv1WD_RrDS3P9JJdVL_E8JqPoknMpksa9GJTwtLULQXt471jzbSas7Ka3W7B5fHRxWjMO6kFbrDBazjRxuN9cWEkdZkqZ3UYGIH5TZrMWJ0opTH1xzYPszIxOktNKlxeYjeXh9YmLtqG1Xk9dzvAnNSWvB8HBrsPK5U2JjFRqjJZWmHFLkS9hQvT8ZCTHMas6AFnN0Xrl4L8UgQ58ZfuAv-3a9HycLyxXvbOK16cpwJTxas799698wt8FJT0Pab7K6yi9d03LFkave_P5D58ODw5HU_-AgHf7SY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB6hcAAOVQkgaCnsoddV7HXWjyOKQOEVKjVI3Kx9mRiFOBRXVf49M_YaaA-t1Ku1Y1k7u_Owvvk-gK8yDZIM0zoXiU6xQQkl3rnMcKtTlUkbO9FM8V9P4vHt8OJO3q3BqJuFIVilj_1tTG-itX8y8Ls5WJbl4HuQiTiKSHmpKXuxb18ndirZg_WT88vx5DUgY9HQBGRcz8mgm6BrYF5qaVStCeMVN4SnnXrWnxnqXdY5-wgffLnITtov2oY1t-jDxqhTaevD1jtCwT7snb7NraGZv7jPO_D0bVbVlde8aX7ZrPCNzBJVRKuqxKqCEd6rmnOCr7fCEeyXeqa_a7j5TK_YtLwRg3s-iiZDNlvRrBebEZymallof_5wrJ6VC1aU88dduD07nY7G3KstcIM9Xs2JOR6vjAujRBexclaHgRGY4hKTGqulUhqz_9BmYVpIo9PYxMJlBTZ0WWitdNEe9BbVwu0Dc4m2dACGgcEGxCZKGyNNFKs0Kayw4gCibodz46nISRFjnneYs4e89UtOfsmDjChMD4C_Wi1bKo5_rE865-W_Hakcs8VfLT_9t-UxbIyn11f51fnk8jNsCqoBGoj3IfTQE-4LVjC1PvIn9AUexe_X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photoelectrocatalytic+degradation+of+phenol-containing+wastewater+by+TiO2%2Fg-C3N4+hybrid+heterostructure+thin+film&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Wei%2C+Zhen&rft.au=Liang%2C+Fenfen&rft.au=Liu%2C+Yanfang&rft.au=Luo%2C+Wenjiao&rft.date=2017-02-01&rft.issn=0926-3373&rft.volume=201&rft.spage=600&rft.epage=606&rft_id=info:doi/10.1016%2Fj.apcatb.2016.09.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2016_09_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |