Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight

Solar driven water evaporation and distillation is an ancient technology, but has been rejuvenated by nano-enabled photothermal materials in the past 4 years. The nano-enabled state-of-the-art photothermal materials are able to harvest a full solar spectrum and convert it to heat with extremely high...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science. Nano Vol. 5; no. 5; pp. 178 - 189
Main Author Wang, Peng
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solar driven water evaporation and distillation is an ancient technology, but has been rejuvenated by nano-enabled photothermal materials in the past 4 years. The nano-enabled state-of-the-art photothermal materials are able to harvest a full solar spectrum and convert it to heat with extremely high efficiency. Moreover, photothermal structures with heat loss management have evolved in parallel. These together have led to the steadily and significantly improved energy efficiency of solar evaporation and distillation in the past 4 years. Some unprecedented clean water production rates have been reported in small-scale and fully solar-driven devices. This frontier presents a timely and systematic review of the impressive developments in photothermal nanomaterial discovery, selection, optimization, and photothermal structural designs along with their applications especially in clean water production. The current challenges and future perspectives are provided. This article helps inspire more research efforts from environmental nano communities to push forward practical solar-driven clean water production. This frontier reviews impressive progresses of nano-enabled solar-driven water evaporation and clean water production made in the past 4 years.
AbstractList Solar driven water evaporation and distillation is an ancient technology, but has been rejuvenated by nano-enabled photothermal materials in the past 4 years. The nano-enabled state-of-the-art photothermal materials are able to harvest a full solar spectrum and convert it to heat with extremely high efficiency. Moreover, photothermal structures with heat loss management have evolved in parallel. These together have led to the steadily and significantly improved energy efficiency of solar evaporation and distillation in the past 4 years. Some unprecedented clean water production rates have been reported in small-scale and fully solar-driven devices. This frontier presents a timely and systematic review of the impressive developments in photothermal nanomaterial discovery, selection, optimization, and photothermal structural designs along with their applications especially in clean water production. The current challenges and future perspectives are provided. This article helps inspire more research efforts from environmental nano communities to push forward practical solar-driven clean water production.
Solar driven water evaporation and distillation is an ancient technology, but has been rejuvenated by nano-enabled photothermal materials in the past 4 years. The nano-enabled state-of-the-art photothermal materials are able to harvest a full solar spectrum and convert it to heat with extremely high efficiency. Moreover, photothermal structures with heat loss management have evolved in parallel. These together have led to the steadily and significantly improved energy efficiency of solar evaporation and distillation in the past 4 years. Some unprecedented clean water production rates have been reported in small-scale and fully solar-driven devices. This frontier presents a timely and systematic review of the impressive developments in photothermal nanomaterial discovery, selection, optimization, and photothermal structural designs along with their applications especially in clean water production. The current challenges and future perspectives are provided. This article helps inspire more research efforts from environmental nano communities to push forward practical solar-driven clean water production. This frontier reviews impressive progresses of nano-enabled solar-driven water evaporation and clean water production made in the past 4 years.
Author Wang, Peng
AuthorAffiliation Division of Biological and Environmental Science and Engineering
KAUST Solar Center (KSC)
Water Desalination and Reuse Center
King Abdullah University of Science and Technology
AuthorAffiliation_xml – name: KAUST Solar Center (KSC)
– name: King Abdullah University of Science and Technology
– name: Division of Biological and Environmental Science and Engineering
– name: Water Desalination and Reuse Center
Author_xml – sequence: 1
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
BookMark eNp9kctOAyEUhonRxFs37k0w7kxGYYAp48409ZIY3eh6cspAi5nCCLTGV_CpxdbUxBhXQL7vP3AO-2jbeacROqLknBJWXyipHSFUVLCF9koiaCFpRbc3e8F20SDGF5IlWgpWDffQx3iuw9S6KbZuqWOyU0g-4KiD1fESp5nGwUaNvcEOnC-0g0mnW9zPfPKZhjl0eA4p-9BFbHL27euE9RJ6HyBZ7zC4FqtOg_tmffDtQq3Q5B3HhevsdJYO0Y7JNfTgez1Az9fjp9Ftcf94cze6ui8UJ3UqGCVGDKGS0FaMUi4ZZaqSHKBWhpdDJk1dK1FDy2VtyrateZklxaWBSSUFO0Cn67r5Ga-L3HPz4hfB5SubknAih1yIKltkbangYwzaNMqmVTspgO0aSpqvoTcjOX5YDf0qR85-Rfpg5xDe_5aP13KIauP9_GDmJ__xpm8N-wQPsJtR
CitedBy_id crossref_primary_10_1007_s11705_020_1937_6
crossref_primary_10_1016_j_desal_2024_118344
crossref_primary_10_1021_acsami_9b10076
crossref_primary_10_1016_j_solmat_2021_111436
crossref_primary_10_1016_j_matpr_2023_01_222
crossref_primary_10_1007_s42864_020_00062_6
crossref_primary_10_1021_acsestwater_1c00261
crossref_primary_10_1002_advs_202104181
crossref_primary_10_1016_j_apsusc_2024_161624
crossref_primary_10_1021_acsami_0c06836
crossref_primary_10_1007_s13201_024_02281_5
crossref_primary_10_1021_acs_est_9b01142
crossref_primary_10_3934_energy_2023016
crossref_primary_10_1007_s00339_019_2839_7
crossref_primary_10_1002_solr_202100427
crossref_primary_10_1002_adsu_201900045
crossref_primary_10_1039_D3NR04951E
crossref_primary_10_1002_adfm_202007855
crossref_primary_10_1021_acsenergylett_1c00869
crossref_primary_10_1016_j_scitotenv_2019_134136
crossref_primary_10_1016_j_cej_2021_132624
crossref_primary_10_1021_acs_accounts_9b00012
crossref_primary_10_1016_j_watres_2022_119276
crossref_primary_10_1038_s44221_023_00099_0
crossref_primary_10_1126_sciadv_aax0763
crossref_primary_10_1016_j_watres_2021_117299
crossref_primary_10_1021_acsaenm_2c00157
crossref_primary_10_1002_advs_202407771
crossref_primary_10_1016_j_apmt_2019_07_011
crossref_primary_10_1073_pnas_2321429121
crossref_primary_10_1021_acsami_8b07150
crossref_primary_10_1016_j_nanoen_2020_104857
crossref_primary_10_1016_j_applthermaleng_2022_119948
crossref_primary_10_1007_s10934_020_00950_9
crossref_primary_10_2166_wst_2024_260
crossref_primary_10_1021_acsami_0c01707
crossref_primary_10_3390_cryst11121489
crossref_primary_10_1016_j_joule_2021_01_012
crossref_primary_10_1016_j_cej_2022_140209
crossref_primary_10_1557_mrs_2018_325
crossref_primary_10_1002_cssc_201900175
crossref_primary_10_1039_D2TA04909K
crossref_primary_10_1007_s11431_022_2305_y
crossref_primary_10_1016_j_seppur_2023_123201
crossref_primary_10_1002_adfm_201903255
crossref_primary_10_1002_adsu_202000126
crossref_primary_10_1016_j_cej_2023_146200
crossref_primary_10_1007_s11426_022_1409_3
crossref_primary_10_1016_j_jhazmat_2021_127367
crossref_primary_10_1021_acsami_1c12562
crossref_primary_10_1002_solr_202000232
crossref_primary_10_4139_sfj_74_234
crossref_primary_10_1016_j_cej_2023_143281
crossref_primary_10_1038_s41893_018_0186_x
crossref_primary_10_1021_acs_langmuir_5c00154
crossref_primary_10_1016_j_carbon_2021_01_140
crossref_primary_10_1002_advs_201902236
crossref_primary_10_1021_acsnano_1c01590
crossref_primary_10_1016_j_jechem_2023_01_009
crossref_primary_10_1007_s11705_023_2339_3
crossref_primary_10_1002_adfm_202307533
crossref_primary_10_1016_j_solener_2024_112468
crossref_primary_10_3390_nano13071260
crossref_primary_10_1021_acs_iecr_1c02751
crossref_primary_10_1021_acs_est_8b02852
crossref_primary_10_1002_smll_202002550
crossref_primary_10_1038_s41565_019_0461_7
crossref_primary_10_1002_adma_201900498
crossref_primary_10_1016_j_mtcomm_2025_111972
crossref_primary_10_1002_adma_201908537
crossref_primary_10_1002_advs_201900883
crossref_primary_10_1016_j_jcis_2020_10_002
crossref_primary_10_1002_adfm_202007110
crossref_primary_10_1016_j_enconman_2019_04_069
crossref_primary_10_1016_j_scib_2020_04_036
crossref_primary_10_1016_j_jmrt_2023_04_047
crossref_primary_10_1016_j_cej_2024_149764
crossref_primary_10_1021_accountsmr_0c00104
crossref_primary_10_1021_acssuschemeng_0c08981
crossref_primary_10_1016_j_pmatsci_2024_101407
crossref_primary_10_1016_j_cej_2021_131008
crossref_primary_10_1002_adma_202313090
crossref_primary_10_1016_j_desal_2023_116492
crossref_primary_10_1002_advs_202002501
crossref_primary_10_1016_j_watres_2020_115581
crossref_primary_10_1038_s41598_021_88006_z
crossref_primary_10_1002_solr_201800206
crossref_primary_10_1002_smll_202200175
crossref_primary_10_1016_j_desal_2021_115192
crossref_primary_10_2139_ssrn_4127873
crossref_primary_10_1016_j_jtice_2020_03_015
crossref_primary_10_1002_solr_202201098
crossref_primary_10_1002_advs_202204508
crossref_primary_10_3390_cryst11121509
crossref_primary_10_1073_pnas_2003362117
crossref_primary_10_1002_smtd_202001200
crossref_primary_10_1111_jace_18487
crossref_primary_10_1016_j_dwt_2024_100803
crossref_primary_10_1021_acsami_0c21831
crossref_primary_10_1134_S1070363222120465
crossref_primary_10_1016_j_nanoen_2022_108155
crossref_primary_10_1016_j_pmatsci_2024_101309
crossref_primary_10_2166_ws_2019_070
crossref_primary_10_1016_j_cej_2023_147158
crossref_primary_10_1021_acsanm_9b02058
crossref_primary_10_1016_j_compositesb_2022_110111
crossref_primary_10_1002_eom2_12140
crossref_primary_10_3390_ma16083105
crossref_primary_10_1016_j_nanoen_2020_104465
crossref_primary_10_1016_j_nanoen_2021_105979
crossref_primary_10_1002_solr_202200202
crossref_primary_10_1021_acs_est_8b02772
crossref_primary_10_1038_s42004_024_01366_1
crossref_primary_10_1016_j_coche_2021_100709
crossref_primary_10_1016_j_desal_2023_117114
crossref_primary_10_1007_s12274_019_2608_0
crossref_primary_10_1021_acsomega_9b03718
crossref_primary_10_1016_j_apcatb_2020_118695
crossref_primary_10_1126_sciadv_aax5015
crossref_primary_10_1016_j_joule_2018_12_023
crossref_primary_10_1002_cssc_202300845
crossref_primary_10_1021_acsnano_2c09025
crossref_primary_10_1021_acsami_3c11841
crossref_primary_10_1002_adsu_202100500
crossref_primary_10_1016_j_cej_2024_156702
crossref_primary_10_3390_nano10061199
crossref_primary_10_1038_s43246_024_00534_z
crossref_primary_10_1021_acsami_4c00707
crossref_primary_10_1016_j_applthermaleng_2020_116515
crossref_primary_10_1016_j_jcis_2022_01_080
crossref_primary_10_1016_j_solener_2021_10_046
crossref_primary_10_1021_acsami_3c00830
crossref_primary_10_7498_aps_68_20190476
crossref_primary_10_1016_j_jece_2021_105272
crossref_primary_10_3389_fmats_2019_00049
crossref_primary_10_3390_polym15122742
crossref_primary_10_1016_j_mtener_2022_101135
crossref_primary_10_1016_j_scib_2019_08_022
crossref_primary_10_1021_acsnano_2c02520
crossref_primary_10_1002_cssc_202401224
crossref_primary_10_1016_j_apmt_2019_100486
crossref_primary_10_1021_acsami_1c10665
crossref_primary_10_1002_aenm_201900310
crossref_primary_10_1002_agt2_535
crossref_primary_10_1021_acs_est_1c05777
crossref_primary_10_1016_j_jcis_2023_06_205
crossref_primary_10_1021_acsanm_1c02936
crossref_primary_10_1002_solr_202200480
crossref_primary_10_1016_j_jallcom_2020_153998
crossref_primary_10_1021_acs_est_0c07191
crossref_primary_10_1016_j_cej_2024_153536
crossref_primary_10_1039_D1NR04197E
crossref_primary_10_1016_j_apenergy_2023_121779
crossref_primary_10_1016_j_chemosphere_2020_128916
crossref_primary_10_1016_j_apenergy_2019_114410
crossref_primary_10_1016_j_applthermaleng_2022_118941
crossref_primary_10_1016_j_xcrp_2021_100561
crossref_primary_10_1016_j_egyr_2020_02_005
crossref_primary_10_1021_acsami_0c06181
crossref_primary_10_1021_acsomega_3c03268
crossref_primary_10_1021_acsami_0c15694
crossref_primary_10_1016_j_jece_2022_107690
crossref_primary_10_1021_acs_inorgchem_3c03750
crossref_primary_10_1016_j_coche_2019_07_004
crossref_primary_10_1002_aesr_202000056
crossref_primary_10_1002_cssc_202301755
crossref_primary_10_1002_solr_202300382
crossref_primary_10_1016_j_desal_2023_116868
crossref_primary_10_1021_acs_est_2c02067
crossref_primary_10_1002_smll_202408293
crossref_primary_10_1002_adma_202000922
crossref_primary_10_1016_j_jmst_2024_06_024
crossref_primary_10_1002_solr_202300347
crossref_primary_10_1021_acs_est_9b07903
crossref_primary_10_1016_j_matlet_2021_129796
crossref_primary_10_1016_j_chemosphere_2022_135205
crossref_primary_10_1016_j_carbon_2021_04_077
crossref_primary_10_1002_gch2_201900004
crossref_primary_10_1016_j_desal_2020_114911
crossref_primary_10_20517_energymater_2024_60
crossref_primary_10_3390_nano10122510
crossref_primary_10_1021_acs_est_2c01874
crossref_primary_10_1039_D0TA08539A
crossref_primary_10_1021_acsami_9b16043
crossref_primary_10_1016_j_jece_2024_114680
crossref_primary_10_1002_gch2_202000055
crossref_primary_10_1073_pnas_1905311116
crossref_primary_10_1002_gch2_202000054
crossref_primary_10_1007_s42976_021_00190_w
crossref_primary_10_1002_ente_202100679
crossref_primary_10_1016_j_apsusc_2021_149697
crossref_primary_10_1002_solr_202100053
crossref_primary_10_1002_advs_202301421
Cites_doi 10.1016/j.desal.2016.11.001
10.1039/C6EE00971A
10.1039/C7CC01427A
10.1021/acs.chemmater.7b01838
10.1039/C6RA26286D
10.1038/nnano.2017.102
10.1002/adfm.201600564
10.1039/C7TA08972D
10.1002/adma.201701756
10.1016/j.rser.2014.09.002
10.1039/c3ee43825b
10.1103/PhysRevB.57.1390
10.1002/aenm.201701028
10.1021/acssuschemeng.6b03207
10.1002/aenm.201701616
10.1021/nl5016975
10.1039/C6TA09810J
10.1002/adsu.201700046
10.1038/srep17276
10.1016/j.watres.2017.10.015
10.1038/nphoton.2016.75
10.1039/C7SC02967E
10.1021/acsami.7b01992
10.1002/adma.201606762
10.1002/aenm.201601811
10.1038/ncomms10103
10.1016/j.desal.2011.08.027
10.1021/acsnano.7b01965
10.1093/nsr/nwx051
10.1002/adma.201603504
10.1021/acs.est.7b03040
10.1039/c1ee01532j
10.1039/C7EE01804E
10.1021/acs.jpcc.6b08975
10.1002/adma.201702590
10.1073/pnas.1701835114
10.1021/nn505970n
10.1021/acs.jpcc.5b09604
10.1016/j.carbon.2016.11.071
10.1038/srep13600
10.1002/gch2.201700094
10.1021/acs.nanolett.5b04320
10.1016/j.solener.2003.08.039
10.1039/C4MH00140K
10.1002/smll.201601723
10.1016/j.solener.2003.08.002
10.1002/anie.201701321
10.1002/adma.201704107
10.1016/j.nanoen.2016.12.031
10.1002/adsu.201600013
10.1002/adma.201502362
10.1016/j.nanoen.2017.09.005
10.1021/acsnano.7b08196
10.1016/j.solener.2003.07.005
10.1021/acs.chemmater.7b01280
10.1002/adma.201501832
10.1021/acsami.6b04606
10.1016/j.ces.2014.05.057
10.1002/adsu.201700145
10.1016/j.rser.2013.12.052
10.1039/C6TA01205A
10.1016/j.rser.2012.04.059
10.1021/acsami.6b11466
10.1002/adma.201500135
10.1002/adma.201603730
10.1039/C7RA03007J
10.3390/ma9080613
10.1021/nn304948h
10.1039/C7TA01361B
10.1039/C7TA00882A
10.1016/j.nanoen.2015.08.021
10.1002/aenm.201702149
10.1039/C4NR00708E
10.1016/S0376-7388(98)00349-4
10.1039/C7TA03262E
10.1021/jp400770x
10.1021/acsami.5b03435
10.1002/smll.201401071
10.1021/ar7002804
10.1021/acssuschemeng.5b01274
10.1021/nl8036905
10.1039/C2CS35367A
10.1016/j.enconman.2016.09.015
10.1126/sciadv.1501227
10.1021/acsami.5b09996
10.1038/ncomms5449
10.1016/j.joule.2017.10.018
10.1021/acs.est.7b04442
10.1002/adma.201601819
10.1002/aenm.201702884
10.1038/nenergy.2016.126
10.1002/adma.201604031
10.1002/adma.201700981
10.1021/acsnano.6b08415
10.1016/S0011-9164(98)00056-3
10.1016/j.joule.2017.09.011
10.1073/pnas.1613031113
10.1021/acs.nanolett.5b03901
10.1039/C6NR03662G
10.1016/j.desal.2011.03.042
10.1039/C7EN00760D
10.1021/acsami.7b01307
10.1039/C7TA04555G
10.1039/C7TA04834C
10.1021/nl4003238
10.1002/gch2.201600003
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1039/c8en00156a
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2051-8161
EndPage 189
ExternalDocumentID 10_1039_C8EN00156A
c8en00156a
GroupedDBID -JG
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
H~N
J3I
RCNCU
RPMJG
RRC
RSCEA
0R~
4.4
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ADMRA
AENGV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
BLAPV
CITATION
EBS
ECGLT
EJD
GGIMP
H13
HZ~
J3G
J3H
O-G
O9-
RAOCF
RVUXY
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c409t-310f57a68ad631148313c684aa9cf42738f99c59ad489f2dd942483c48fab6853
ISSN 2051-8153
IngestDate Mon Jun 30 12:02:03 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
Tue Jul 01 02:35:34 EDT 2025
Wed Jun 05 04:41:51 EDT 2019
Mon Jan 28 17:14:24 EST 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c409t-310f57a68ad631148313c684aa9cf42738f99c59ad489f2dd942483c48fab6853
Notes Professor Peng Wang is currently an associate professor in the Environmental Science and Engineering program at KAUST. He received his Ph.D. degree from the University of California, Santa Barbara (UCSB) in 2008. His research focuses on rational design, synthesis, and application of nanomaterials toward sustainable-energy driven clean water production.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0856-0865
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2018/en/c8en00156a
PQID 2040874556
PQPubID 2047519
PageCount 12
ParticipantIDs crossref_primary_10_1039_C8EN00156A
proquest_journals_2040874556
crossref_citationtrail_10_1039_C8EN00156A
rsc_primary_c8en00156a
ProviderPackageCode J3I
ACLDK
RRC
AEFDR
RPMJG
-JG
AGSTE
RCNCU
AUDPV
EF-
BSQNT
EE0
RSCEA
ADSRN
C6K
H~N
ABGFH
AAEMU
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Environmental science. Nano
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Liu (C8EN00156A-(cit4)/*[position()=1]) 2017; 41
Liu (C8EN00156A-(cit41)/*[position()=1]) 2015; 7
Yang (C8EN00156A-(cit37)/*[position()=1]) 2018; 12
Li (C8EN00156A-(cit97)/*[position()=1]) 2018; 5
Tiwari (C8EN00156A-(cit94)/*[position()=1]) 2003; 75
Ye (C8EN00156A-(cit79)/*[position()=1]) 2017; 7
Jaque (C8EN00156A-(cit1)/*[position()=1]) 2014; 6
Zhao (C8EN00156A-(cit96)/*[position()=1]) 2015; 5
Zhu (C8EN00156A-(cit99)/*[position()=1]) 2016; 8
Cai (C8EN00156A-(cit17)/*[position()=1]) 2015; 2
Liu (C8EN00156A-(cit53)/*[position()=1]) 2017; 9
Ghasemi (C8EN00156A-(cit45)/*[position()=1]) 2014; 5
Xu (C8EN00156A-(cit100)/*[position()=1]) 2018
Zhang (C8EN00156A-(cit88)/*[position()=1]) 2015; 27
Wang (C8EN00156A-(cit51)/*[position()=1]) 2016; 4
Ishii (C8EN00156A-(cit84)/*[position()=1]) 2016; 120
Zhu (C8EN00156A-(cit113)/*[position()=1]) 2018
Lou (C8EN00156A-(cit46)/*[position()=1]) 2016; 8
Westerhoff (C8EN00156A-(cit12)/*[position()=1]) 2016; 3
Rodrigues (C8EN00156A-(cit11)/*[position()=1]) 2017; 4
Hedayati (C8EN00156A-(cit16)/*[position()=1]) 2016; 9
Gao (C8EN00156A-(cit85)/*[position()=1]) 2017; 29
Zhou (C8EN00156A-(cit40)/*[position()=1]) 2016; 26
Yang (C8EN00156A-(cit111)/*[position()=1]) 2017; 10
Chen (C8EN00156A-(cit52)/*[position()=1]) 2017; 29
Gao (C8EN00156A-(cit112)/*[position()=1]) 2016; 9
Deng (C8EN00156A-(cit6)/*[position()=1]) 2017; 5
Martínez-Díez (C8EN00156A-(cit102)/*[position()=1]) 1999; 156
Loeb (C8EN00156A-(cit62)/*[position()=1]) 2018; 52
Wu (C8EN00156A-(cit104)/*[position()=1]) 2017; 5
Liu (C8EN00156A-(cit73)/*[position()=1]) 2017; 1
Ni (C8EN00156A-(cit95)/*[position()=1]) 2015; 17
Muftah (C8EN00156A-(cit9)/*[position()=1]) 2014; 32
Sun (C8EN00156A-(cit74)/*[position()=1]) 2017; 56
Chang (C8EN00156A-(cit15)/*[position()=1]) 2018
Zhu (C8EN00156A-(cit20)/*[position()=1]) 2018; 8
Neumann (C8EN00156A-(cit63)/*[position()=1]) 2013; 7
Richardson (C8EN00156A-(cit26)/*[position()=1]) 2009; 9
Jia (C8EN00156A-(cit58)/*[position()=1]) 2017; 1
Liu (C8EN00156A-(cit49)/*[position()=1]) 2017; 1
Dao (C8EN00156A-(cit5)/*[position()=1]) 2018; 2
Zhu (C8EN00156A-(cit27)/*[position()=1]) 2017; 4
Xu (C8EN00156A-(cit59)/*[position()=1]) 2017; 29
Eliodoro Chiavazzo (C8EN00156A-(cit105)/*[position()=1]) 2018
Sharon (C8EN00156A-(cit10)/*[position()=1]) 2015; 41
Wang (C8EN00156A-(cit50)/*[position()=1]) 2017; 5
Jiang (C8EN00156A-(cit54)/*[position()=1]) 2017; 1
Tian (C8EN00156A-(cit71)/*[position()=1]) 2016; 16
Fath (C8EN00156A-(cit93)/*[position()=1]) 1998; 116
Shi (C8EN00156A-(cit32)/*[position()=1]) 2017; 5
Fujiwara (C8EN00156A-(cit110)/*[position()=1]) 2017; 404
Zhou (C8EN00156A-(cit72)/*[position()=1]) 2017; 32
Zhou (C8EN00156A-(cit22)/*[position()=1]) 2016; 2
Alkhudhiri (C8EN00156A-(cit101)/*[position()=1]) 2012; 287
Jiang (C8EN00156A-(cit83)/*[position()=1]) 2013; 117
Fang (C8EN00156A-(cit65)/*[position()=1]) 2013; 13
Liu (C8EN00156A-(cit68)/*[position()=1]) 2016; 8
Cao (C8EN00156A-(cit3)/*[position()=1]) 2014; 7
Finnerty (C8EN00156A-(cit29)/*[position()=1]) 2017; 51
Wang (C8EN00156A-(cit34)/*[position()=1]) 2017; 5
Wu (C8EN00156A-(cit91)/*[position()=1]) 2017; 1
Fan (C8EN00156A-(cit19)/*[position()=1]) 2016; 8
Dongare (C8EN00156A-(cit106)/*[position()=1]) 2017; 114
Chen (C8EN00156A-(cit92)/*[position()=1]) 2018; 9
Hogan (C8EN00156A-(cit64)/*[position()=1]) 2014; 14
Jain (C8EN00156A-(cit2)/*[position()=1]) 2008; 41
Huang (C8EN00156A-(cit89)/*[position()=1]) 2017; 7
Wang (C8EN00156A-(cit25)/*[position()=1]) 2017; 29
Chen (C8EN00156A-(cit21)/*[position()=1]) 2013; 42
Zhou (C8EN00156A-(cit23)/*[position()=1]) 2016; 10
Zeng (C8EN00156A-(cit39)/*[position()=1]) 2014; 116
Zhang (C8EN00156A-(cit86)/*[position()=1]) 2016; 12
Wang (C8EN00156A-(cit44)/*[position()=1]) 2017; 29
Zhu (C8EN00156A-(cit78)/*[position()=1]) 2016; 8
Umlauff (C8EN00156A-(cit77)/*[position()=1]) 1998; 57
Zeng (C8EN00156A-(cit38)/*[position()=1]) 2011; 4
Kabeel (C8EN00156A-(cit8)/*[position()=1]) 2011; 276
Liu (C8EN00156A-(cit67)/*[position()=1]) 2015; 27
Bjorkland (C8EN00156A-(cit28)/*[position()=1]) 2017; 4
Fu (C8EN00156A-(cit30)/*[position()=1]) 2017; 5
Li (C8EN00156A-(cit24)/*[position()=1]) 2017; 11
Delyannis (C8EN00156A-(cit7)/*[position()=1]) 2003; 75
Chen (C8EN00156A-(cit75)/*[position()=1]) 2016; 127
Ding (C8EN00156A-(cit80)/*[position()=1]) 2017; 53
Liu (C8EN00156A-(cit57)/*[position()=1]) 2018; 8
Li (C8EN00156A-(cit48)/*[position()=1]) 2016; 113
Li (C8EN00156A-(cit114)/*[position()=1]) 2013; 19
Gueymard (C8EN00156A-(cit14)/*[position()=1]) 2004; 76
Dudchenko (C8EN00156A-(cit107)/*[position()=1]) 2017; 12
Ni (C8EN00156A-(cit98)/*[position()=1]) 2016; 1
Hu (C8EN00156A-(cit31)/*[position()=1]) 2017; 29
Bae (C8EN00156A-(cit70)/*[position()=1]) 2015; 6
Wang (C8EN00156A-(cit33)/*[position()=1]) 2017; 114
Xue (C8EN00156A-(cit56)/*[position()=1]) 2017; 9
Li (C8EN00156A-(cit60)/*[position()=1]) 2017; 29
Wang (C8EN00156A-(cit36)/*[position()=1]) 2018; 6
Zhu (C8EN00156A-(cit55)/*[position()=1]) 2017; 29
Fujiwara (C8EN00156A-(cit109)/*[position()=1]) 2017; 127
Zhang (C8EN00156A-(cit35)/*[position()=1]) 2017; 11
Jiang (C8EN00156A-(cit47)/*[position()=1]) 2016; 28
Wang (C8EN00156A-(cit13)/*[position()=1]) 2017; 4
Jain (C8EN00156A-(cit61)/*[position()=1]) 2008; 41
Zielinski (C8EN00156A-(cit76)/*[position()=1]) 2016; 16
Hua (C8EN00156A-(cit87)/*[position()=1]) 2017; 121
Shi (C8EN00156A-(cit82)/*[position()=1]) 2018; 2
Politano (C8EN00156A-(cit103)/*[position()=1]) 2017; 29
Yu (C8EN00156A-(cit69)/*[position()=1]) 2015; 5
Ito (C8EN00156A-(cit42)/*[position()=1]) 2015; 27
Fujiwara (C8EN00156A-(cit108)/*[position()=1]) 2015; 9
Jiang (C8EN00156A-(cit90)/*[position()=1]) 2017; 5
Ren (C8EN00156A-(cit18)/*[position()=1]) 2017; 29
Chen (C8EN00156A-(cit81)/*[position()=1]) 2017; 7
Wang (C8EN00156A-(cit66)/*[position()=1]) 2014; 10
Sajadi (C8EN00156A-(cit43)/*[position()=1]) 2016; 4
References_xml – issn: 2018
  publication-title: Passive high-yield seawater desalination at below one sun by modular and low-cost distillation
  doi: Eliodoro Chiavazzo Viglino Fasano Asinari
– volume: 3
  start-page: 1241
  year: 2016
  ident: C8EN00156A-(cit12)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 404
  start-page: 79
  year: 2017
  ident: C8EN00156A-(cit110)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.11.001
– volume: 9
  start-page: 3151
  year: 2016
  ident: C8EN00156A-(cit112)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00971A
– volume-title: Passive high-yield seawater desalination at below one sun by modular and low-cost distillation
  year: 2018
  ident: C8EN00156A-(cit105)/*[position()=1]
– volume: 53
  start-page: 6744
  year: 2017
  ident: C8EN00156A-(cit80)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01427A
– volume: 29
  start-page: 5777
  year: 2017
  ident: C8EN00156A-(cit85)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01838
– volume: 7
  start-page: 9495
  year: 2017
  ident: C8EN00156A-(cit89)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA26286D
– volume: 12
  start-page: 557
  year: 2017
  ident: C8EN00156A-(cit107)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.102
– volume: 26
  start-page: 5368
  year: 2016
  ident: C8EN00156A-(cit40)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600564
– volume: 6
  start-page: 963
  year: 2018
  ident: C8EN00156A-(cit36)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08972D
– volume: 29
  start-page: 1701756
  issue: 3
  year: 2017
  ident: C8EN00156A-(cit52)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701756
– volume: 41
  start-page: 1080
  year: 2015
  ident: C8EN00156A-(cit10)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2014.09.002
– volume: 7
  start-page: 1615
  year: 2014
  ident: C8EN00156A-(cit3)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43825b
– volume: 57
  start-page: 1390
  year: 1998
  ident: C8EN00156A-(cit77)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.57.1390
– volume: 8
  start-page: 1701028
  issue: 4
  year: 2018
  ident: C8EN00156A-(cit20)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701028
– volume: 5
  start-page: 4665
  year: 2017
  ident: C8EN00156A-(cit30)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.6b03207
– volume: 8
  start-page: 1701616
  issue: 8
  year: 2018
  ident: C8EN00156A-(cit57)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701616
– volume: 14
  start-page: 4640
  year: 2014
  ident: C8EN00156A-(cit64)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl5016975
– volume: 5
  start-page: 16212
  year: 2017
  ident: C8EN00156A-(cit32)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA09810J
– volume: 1
  start-page: 1700046
  year: 2017
  ident: C8EN00156A-(cit91)/*[position()=1]
  publication-title: Advanced Sustainable Systems
  doi: 10.1002/adsu.201700046
– volume: 5
  start-page: 17276
  year: 2015
  ident: C8EN00156A-(cit96)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep17276
– volume: 127
  start-page: 96
  year: 2017
  ident: C8EN00156A-(cit109)/*[position()=1]
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.10.015
– volume: 10
  start-page: 393
  year: 2016
  ident: C8EN00156A-(cit23)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.75
– volume: 4
  start-page: 2267
  year: 2017
  ident: C8EN00156A-(cit27)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 9
  start-page: 623
  year: 2018
  ident: C8EN00156A-(cit92)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02967E
– volume: 9
  start-page: 15052
  year: 2017
  ident: C8EN00156A-(cit56)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01992
– volume: 29
  start-page: 1606762
  issue: 28
  year: 2017
  ident: C8EN00156A-(cit59)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606762
– volume: 7
  start-page: 1601811
  year: 2017
  ident: C8EN00156A-(cit79)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601811
– volume: 6
  start-page: 10103
  year: 2015
  ident: C8EN00156A-(cit70)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10103
– volume: 4
  start-page: 782
  year: 2017
  ident: C8EN00156A-(cit13)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 287
  start-page: 2
  year: 2012
  ident: C8EN00156A-(cit101)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.08.027
– volume: 11
  start-page: 5087
  year: 2017
  ident: C8EN00156A-(cit35)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01965
– volume: 5
  start-page: 70
  issue: 1
  year: 2018
  ident: C8EN00156A-(cit97)/*[position()=1]
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx051
– volume: 29
  start-page: 1603504
  year: 2017
  ident: C8EN00156A-(cit103)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603504
– volume: 51
  start-page: 11701
  year: 2017
  ident: C8EN00156A-(cit29)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b03040
– volume: 4
  start-page: 4074
  year: 2011
  ident: C8EN00156A-(cit38)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01532j
– volume: 10
  start-page: 1923
  year: 2017
  ident: C8EN00156A-(cit111)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01804E
– volume: 121
  start-page: 60
  year: 2017
  ident: C8EN00156A-(cit87)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b08975
– volume: 29
  start-page: 1702590
  year: 2017
  ident: C8EN00156A-(cit18)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702590
– volume: 114
  start-page: 6936
  year: 2017
  ident: C8EN00156A-(cit106)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1701835114
– volume: 9
  start-page: 5705
  year: 2015
  ident: C8EN00156A-(cit108)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn505970n
– volume: 120
  start-page: 2343
  year: 2016
  ident: C8EN00156A-(cit84)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b09604
– volume: 114
  start-page: 117
  year: 2017
  ident: C8EN00156A-(cit33)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.11.071
– volume: 5
  start-page: 13600
  year: 2015
  ident: C8EN00156A-(cit69)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep13600
– volume: 2
  start-page: 1700094
  issue: 2
  year: 2018
  ident: C8EN00156A-(cit5)/*[position()=1]
  publication-title: Global Chall.
  doi: 10.1002/gch2.201700094
– volume: 16
  start-page: 609
  year: 2016
  ident: C8EN00156A-(cit71)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04320
– volume: 76
  start-page: 423
  year: 2004
  ident: C8EN00156A-(cit14)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2003.08.039
– volume: 2
  start-page: 37
  year: 2015
  ident: C8EN00156A-(cit17)/*[position()=1]
  publication-title: Mater. Horiz.
  doi: 10.1039/C4MH00140K
– volume: 12
  start-page: 5320
  year: 2016
  ident: C8EN00156A-(cit86)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201601723
– volume: 75
  start-page: 357
  year: 2003
  ident: C8EN00156A-(cit7)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2003.08.002
– volume: 4
  start-page: 767
  year: 2017
  ident: C8EN00156A-(cit11)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 56
  start-page: 6329
  year: 2017
  ident: C8EN00156A-(cit74)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201701321
– volume: 29
  start-page: 1704107
  issue: 44
  year: 2017
  ident: C8EN00156A-(cit55)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704107
– volume: 32
  start-page: 195
  year: 2017
  ident: C8EN00156A-(cit72)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.031
– volume: 1
  start-page: 1600013
  year: 2017
  ident: C8EN00156A-(cit73)/*[position()=1]
  publication-title: Advanced Sustainable Systems
  doi: 10.1002/adsu.201600013
– volume: 27
  start-page: 4889
  year: 2015
  ident: C8EN00156A-(cit88)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502362
– volume: 41
  start-page: 269
  year: 2017
  ident: C8EN00156A-(cit4)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.09.005
– volume: 12
  start-page: 829
  year: 2018
  ident: C8EN00156A-(cit37)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08196
– volume: 75
  start-page: 367
  year: 2003
  ident: C8EN00156A-(cit94)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2003.07.005
– volume: 29
  start-page: 5629
  year: 2017
  ident: C8EN00156A-(cit44)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01280
– volume: 27
  start-page: 4302
  year: 2015
  ident: C8EN00156A-(cit42)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501832
– volume: 8
  start-page: 14628
  year: 2016
  ident: C8EN00156A-(cit46)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04606
– volume: 4
  start-page: 747
  year: 2017
  ident: C8EN00156A-(cit28)/*[position()=1]
  publication-title: Environ. Sci.: Nano
– volume: 116
  start-page: 704
  year: 2014
  ident: C8EN00156A-(cit39)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.05.057
– volume: 2
  start-page: 1700145
  issue: 3
  year: 2018
  ident: C8EN00156A-(cit82)/*[position()=1]
  publication-title: Advanced Sustainable Systems
  doi: 10.1002/adsu.201700145
– volume: 32
  start-page: 430
  year: 2014
  ident: C8EN00156A-(cit9)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2013.12.052
– volume: 4
  start-page: 4700
  year: 2016
  ident: C8EN00156A-(cit43)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA01205A
– volume: 19
  start-page: 136
  year: 2013
  ident: C8EN00156A-(cit114)/*[position()=1]
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2012.04.059
– volume: 8
  start-page: 31716
  year: 2016
  ident: C8EN00156A-(cit78)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11466
– volume: 27
  start-page: 2768
  year: 2015
  ident: C8EN00156A-(cit67)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500135
– volume: 29
  start-page: 1603730
  issue: 3
  year: 2017
  ident: C8EN00156A-(cit25)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603730
– volume: 7
  start-page: 19849
  year: 2017
  ident: C8EN00156A-(cit81)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C7RA03007J
– volume: 9
  start-page: 22
  year: 2016
  ident: C8EN00156A-(cit16)/*[position()=1]
  publication-title: Materials
  doi: 10.3390/ma9080613
– volume: 7
  start-page: 42
  year: 2013
  ident: C8EN00156A-(cit63)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn304948h
– volume: 5
  start-page: 7691
  year: 2017
  ident: C8EN00156A-(cit6)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01361B
– volume: 5
  start-page: 6860
  year: 2017
  ident: C8EN00156A-(cit34)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00882A
– volume: 17
  start-page: 290
  year: 2015
  ident: C8EN00156A-(cit95)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.08.021
– start-page: 1702149
  year: 2018
  ident: C8EN00156A-(cit113)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702149
– volume: 6
  start-page: 9494
  year: 2014
  ident: C8EN00156A-(cit1)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR00708E
– volume: 156
  start-page: 265
  year: 1999
  ident: C8EN00156A-(cit102)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(98)00349-4
– volume: 5
  start-page: 16359
  year: 2017
  ident: C8EN00156A-(cit50)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03262E
– volume: 117
  start-page: 8909
  year: 2013
  ident: C8EN00156A-(cit83)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp400770x
– volume: 7
  start-page: 13645
  year: 2015
  ident: C8EN00156A-(cit41)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03435
– volume: 10
  start-page: 3234
  year: 2014
  ident: C8EN00156A-(cit66)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201401071
– volume: 41
  start-page: 1578
  year: 2008
  ident: C8EN00156A-(cit2)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar7002804
– volume: 4
  start-page: 1223
  year: 2016
  ident: C8EN00156A-(cit51)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.5b01274
– volume: 9
  start-page: 1139
  year: 2009
  ident: C8EN00156A-(cit26)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl8036905
– volume: 42
  start-page: 2679
  year: 2013
  ident: C8EN00156A-(cit21)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35367A
– volume: 127
  start-page: 293
  year: 2016
  ident: C8EN00156A-(cit75)/*[position()=1]
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.09.015
– volume: 2
  start-page: e1501227
  issue: 4
  year: 2016
  ident: C8EN00156A-(cit22)/*[position()=1]
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501227
– volume: 8
  start-page: 772
  year: 2016
  ident: C8EN00156A-(cit68)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09996
– volume: 5
  start-page: 4449
  year: 2014
  ident: C8EN00156A-(cit45)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5449
– volume: 1
  start-page: 429
  year: 2017
  ident: C8EN00156A-(cit54)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2017.10.018
– volume: 52
  start-page: 205
  year: 2018
  ident: C8EN00156A-(cit62)/*[position()=1]
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04442
– volume: 41
  start-page: 1578
  year: 2008
  ident: C8EN00156A-(cit61)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar7002804
– volume: 28
  start-page: 9400
  year: 2016
  ident: C8EN00156A-(cit47)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601819
– start-page: 1702884
  year: 2018
  ident: C8EN00156A-(cit100)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702884
– volume: 1
  start-page: 16126
  year: 2016
  ident: C8EN00156A-(cit98)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.126
– volume: 29
  start-page: 1604031
  year: 2017
  ident: C8EN00156A-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604031
– volume: 29
  start-page: 1700981
  year: 2017
  ident: C8EN00156A-(cit60)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700981
– volume: 11
  start-page: 3752
  year: 2017
  ident: C8EN00156A-(cit24)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08415
– volume: 116
  start-page: 45
  year: 1998
  ident: C8EN00156A-(cit93)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/S0011-9164(98)00056-3
– volume: 1
  start-page: 588
  year: 2017
  ident: C8EN00156A-(cit58)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.011
– volume: 113
  start-page: 13953
  year: 2016
  ident: C8EN00156A-(cit48)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1613031113
– volume: 16
  start-page: 2159
  year: 2016
  ident: C8EN00156A-(cit76)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03901
– volume: 8
  start-page: 14617
  year: 2016
  ident: C8EN00156A-(cit19)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C6NR03662G
– volume: 8
  start-page: 31716
  year: 2016
  ident: C8EN00156A-(cit99)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11466
– volume: 276
  start-page: 1
  year: 2011
  ident: C8EN00156A-(cit8)/*[position()=1]
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.03.042
– year: 2018
  ident: C8EN00156A-(cit15)/*[position()=1]
  publication-title: Environ. Sci.: Nano
  doi: 10.1039/C7EN00760D
– volume: 9
  start-page: 7675
  year: 2017
  ident: C8EN00156A-(cit53)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01307
– volume: 5
  start-page: 23712
  year: 2017
  ident: C8EN00156A-(cit104)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04555G
– volume: 5
  start-page: 18397
  year: 2017
  ident: C8EN00156A-(cit90)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA04834C
– volume: 13
  start-page: 1736
  year: 2013
  ident: C8EN00156A-(cit65)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl4003238
– volume: 1
  start-page: 1600003
  issue: 2
  year: 2017
  ident: C8EN00156A-(cit49)/*[position()=1]
  publication-title: Global Chall
  doi: 10.1002/gch2.201600003
SSID ssj0001125367
Score 2.5671082
Snippet Solar driven water evaporation and distillation is an ancient technology, but has been rejuvenated by nano-enabled photothermal materials in the past 4 years....
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 178
SubjectTerms Distillation
Distilled water
Distilling
Energy conversion efficiency
Energy efficiency
Evaporation
Heat loss
Nanomaterials
Solar energy
Water
Title Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight
URI https://www.proquest.com/docview/2040874556
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZY98ILAsFEx0CW4AVNKanzy-atmjoNVAoPqdS3yHEcQOqSqMuE4E_gr-bOjpNMVAh4idrYTaPc5_Pd5b47Ql4JkWgWRtIrGTOvGSNPch54Gkx7lodRqXwkOH9Yx1eb8P022g4BfcMuafOZ-nGQV_I_UoVzIFdkyf6DZPuLwgn4DPKFI0gYjn8lY4wofbakFFcto96f41_bTDeTPvjVRusrWdWeNkyp4rz5UreGenWN5BHZ2ps1KYff8BsWAW8cOAzzbYcRezvW2CKxOAS2681ttUMH_06If2DPOc6l0jPU5PUQwLdK5pPuts4u8tCpSZushJENl1Zq0ka65nSD9mKw2j0-t5WAZ3p8zlZfd-o3GqEsGqlS8Ev5aFue-7bV0G8q3w-wYqriujK08NHG5l7mrz9ml5vVKkuX2_SIHDNwKNiEHC-W6bvVEI8DSy8wDYf7O3fVbAPxZrj8XftlcEqO9q5jjLFM0ofkQedS0IXFxyNyT1ePyU-HDTrGBrXYeEtB9hSRQeuSjpFBx8igPTIoIIMa6dMRMigggxpkdGMDMmj-nTpkPCGby2V6ceV1fTc8Bd5-C9uyX0aJjLks4gD95WAeqJiHUgpVhsjlKoVQkZBFyEXJikKEDCapkJcyj8H-OyGTqq70U0JLwWNV5L4OcqysFnAsj5ck2i9CrRM1n5LX7mlmqitKj71RdplJjghEdsGXa_PkF1Pysp_b2FIsB2edOaFk3VK9yRhsVdjXIYqn5AQE1f9-kOuUnB4eyJqiPP3zRZ-R-7g-bGTujEza_a1-DrZqm7_oYPYLff-cpQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+investigator+series%3A+the+rise+of+nano-enabled+photothermal+materials+for+water+evaporation+and+clean+water+production+by+sunlight&rft.jtitle=Environmental+science.+Nano&rft.au=Wang%2C+Peng&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=5&rft.issue=5&rft.spage=1078&rft.epage=1089&rft_id=info:doi/10.1039%2Fc8en00156a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon