Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight
Solar driven water evaporation and distillation is an ancient technology, but has been rejuvenated by nano-enabled photothermal materials in the past 4 years. The nano-enabled state-of-the-art photothermal materials are able to harvest a full solar spectrum and convert it to heat with extremely high...
Saved in:
Published in | Environmental science. Nano Vol. 5; no. 5; pp. 178 - 189 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solar driven water evaporation and distillation is an ancient technology, but has been rejuvenated by nano-enabled photothermal materials in the past 4 years. The nano-enabled state-of-the-art photothermal materials are able to harvest a full solar spectrum and convert it to heat with extremely high efficiency. Moreover, photothermal structures with heat loss management have evolved in parallel. These together have led to the steadily and significantly improved energy efficiency of solar evaporation and distillation in the past 4 years. Some unprecedented clean water production rates have been reported in small-scale and fully solar-driven devices. This frontier presents a timely and systematic review of the impressive developments in photothermal nanomaterial discovery, selection, optimization, and photothermal structural designs along with their applications especially in clean water production. The current challenges and future perspectives are provided. This article helps inspire more research efforts from environmental nano communities to push forward practical solar-driven clean water production.
This frontier reviews impressive progresses of nano-enabled solar-driven water evaporation and clean water production made in the past 4 years. |
---|---|
AbstractList | Solar driven water evaporation and distillation is an ancient technology, but has been rejuvenated by nano-enabled photothermal materials in the past 4 years. The nano-enabled state-of-the-art photothermal materials are able to harvest a full solar spectrum and convert it to heat with extremely high efficiency. Moreover, photothermal structures with heat loss management have evolved in parallel. These together have led to the steadily and significantly improved energy efficiency of solar evaporation and distillation in the past 4 years. Some unprecedented clean water production rates have been reported in small-scale and fully solar-driven devices. This frontier presents a timely and systematic review of the impressive developments in photothermal nanomaterial discovery, selection, optimization, and photothermal structural designs along with their applications especially in clean water production. The current challenges and future perspectives are provided. This article helps inspire more research efforts from environmental nano communities to push forward practical solar-driven clean water production. Solar driven water evaporation and distillation is an ancient technology, but has been rejuvenated by nano-enabled photothermal materials in the past 4 years. The nano-enabled state-of-the-art photothermal materials are able to harvest a full solar spectrum and convert it to heat with extremely high efficiency. Moreover, photothermal structures with heat loss management have evolved in parallel. These together have led to the steadily and significantly improved energy efficiency of solar evaporation and distillation in the past 4 years. Some unprecedented clean water production rates have been reported in small-scale and fully solar-driven devices. This frontier presents a timely and systematic review of the impressive developments in photothermal nanomaterial discovery, selection, optimization, and photothermal structural designs along with their applications especially in clean water production. The current challenges and future perspectives are provided. This article helps inspire more research efforts from environmental nano communities to push forward practical solar-driven clean water production. This frontier reviews impressive progresses of nano-enabled solar-driven water evaporation and clean water production made in the past 4 years. |
Author | Wang, Peng |
AuthorAffiliation | Division of Biological and Environmental Science and Engineering KAUST Solar Center (KSC) Water Desalination and Reuse Center King Abdullah University of Science and Technology |
AuthorAffiliation_xml | – name: KAUST Solar Center (KSC) – name: King Abdullah University of Science and Technology – name: Division of Biological and Environmental Science and Engineering – name: Water Desalination and Reuse Center |
Author_xml | – sequence: 1 givenname: Peng surname: Wang fullname: Wang, Peng |
BookMark | eNp9kctOAyEUhonRxFs37k0w7kxGYYAp48409ZIY3eh6cspAi5nCCLTGV_CpxdbUxBhXQL7vP3AO-2jbeacROqLknBJWXyipHSFUVLCF9koiaCFpRbc3e8F20SDGF5IlWgpWDffQx3iuw9S6KbZuqWOyU0g-4KiD1fESp5nGwUaNvcEOnC-0g0mnW9zPfPKZhjl0eA4p-9BFbHL27euE9RJ6HyBZ7zC4FqtOg_tmffDtQq3Q5B3HhevsdJYO0Y7JNfTgez1Az9fjp9Ftcf94cze6ui8UJ3UqGCVGDKGS0FaMUi4ZZaqSHKBWhpdDJk1dK1FDy2VtyrateZklxaWBSSUFO0Cn67r5Ga-L3HPz4hfB5SubknAih1yIKltkbangYwzaNMqmVTspgO0aSpqvoTcjOX5YDf0qR85-Rfpg5xDe_5aP13KIauP9_GDmJ__xpm8N-wQPsJtR |
CitedBy_id | crossref_primary_10_1007_s11705_020_1937_6 crossref_primary_10_1016_j_desal_2024_118344 crossref_primary_10_1021_acsami_9b10076 crossref_primary_10_1016_j_solmat_2021_111436 crossref_primary_10_1016_j_matpr_2023_01_222 crossref_primary_10_1007_s42864_020_00062_6 crossref_primary_10_1021_acsestwater_1c00261 crossref_primary_10_1002_advs_202104181 crossref_primary_10_1016_j_apsusc_2024_161624 crossref_primary_10_1021_acsami_0c06836 crossref_primary_10_1007_s13201_024_02281_5 crossref_primary_10_1021_acs_est_9b01142 crossref_primary_10_3934_energy_2023016 crossref_primary_10_1007_s00339_019_2839_7 crossref_primary_10_1002_solr_202100427 crossref_primary_10_1002_adsu_201900045 crossref_primary_10_1039_D3NR04951E crossref_primary_10_1002_adfm_202007855 crossref_primary_10_1021_acsenergylett_1c00869 crossref_primary_10_1016_j_scitotenv_2019_134136 crossref_primary_10_1016_j_cej_2021_132624 crossref_primary_10_1021_acs_accounts_9b00012 crossref_primary_10_1016_j_watres_2022_119276 crossref_primary_10_1038_s44221_023_00099_0 crossref_primary_10_1126_sciadv_aax0763 crossref_primary_10_1016_j_watres_2021_117299 crossref_primary_10_1021_acsaenm_2c00157 crossref_primary_10_1002_advs_202407771 crossref_primary_10_1016_j_apmt_2019_07_011 crossref_primary_10_1073_pnas_2321429121 crossref_primary_10_1021_acsami_8b07150 crossref_primary_10_1016_j_nanoen_2020_104857 crossref_primary_10_1016_j_applthermaleng_2022_119948 crossref_primary_10_1007_s10934_020_00950_9 crossref_primary_10_2166_wst_2024_260 crossref_primary_10_1021_acsami_0c01707 crossref_primary_10_3390_cryst11121489 crossref_primary_10_1016_j_joule_2021_01_012 crossref_primary_10_1016_j_cej_2022_140209 crossref_primary_10_1557_mrs_2018_325 crossref_primary_10_1002_cssc_201900175 crossref_primary_10_1039_D2TA04909K crossref_primary_10_1007_s11431_022_2305_y crossref_primary_10_1016_j_seppur_2023_123201 crossref_primary_10_1002_adfm_201903255 crossref_primary_10_1002_adsu_202000126 crossref_primary_10_1016_j_cej_2023_146200 crossref_primary_10_1007_s11426_022_1409_3 crossref_primary_10_1016_j_jhazmat_2021_127367 crossref_primary_10_1021_acsami_1c12562 crossref_primary_10_1002_solr_202000232 crossref_primary_10_4139_sfj_74_234 crossref_primary_10_1016_j_cej_2023_143281 crossref_primary_10_1038_s41893_018_0186_x crossref_primary_10_1021_acs_langmuir_5c00154 crossref_primary_10_1016_j_carbon_2021_01_140 crossref_primary_10_1002_advs_201902236 crossref_primary_10_1021_acsnano_1c01590 crossref_primary_10_1016_j_jechem_2023_01_009 crossref_primary_10_1007_s11705_023_2339_3 crossref_primary_10_1002_adfm_202307533 crossref_primary_10_1016_j_solener_2024_112468 crossref_primary_10_3390_nano13071260 crossref_primary_10_1021_acs_iecr_1c02751 crossref_primary_10_1021_acs_est_8b02852 crossref_primary_10_1002_smll_202002550 crossref_primary_10_1038_s41565_019_0461_7 crossref_primary_10_1002_adma_201900498 crossref_primary_10_1016_j_mtcomm_2025_111972 crossref_primary_10_1002_adma_201908537 crossref_primary_10_1002_advs_201900883 crossref_primary_10_1016_j_jcis_2020_10_002 crossref_primary_10_1002_adfm_202007110 crossref_primary_10_1016_j_enconman_2019_04_069 crossref_primary_10_1016_j_scib_2020_04_036 crossref_primary_10_1016_j_jmrt_2023_04_047 crossref_primary_10_1016_j_cej_2024_149764 crossref_primary_10_1021_accountsmr_0c00104 crossref_primary_10_1021_acssuschemeng_0c08981 crossref_primary_10_1016_j_pmatsci_2024_101407 crossref_primary_10_1016_j_cej_2021_131008 crossref_primary_10_1002_adma_202313090 crossref_primary_10_1016_j_desal_2023_116492 crossref_primary_10_1002_advs_202002501 crossref_primary_10_1016_j_watres_2020_115581 crossref_primary_10_1038_s41598_021_88006_z crossref_primary_10_1002_solr_201800206 crossref_primary_10_1002_smll_202200175 crossref_primary_10_1016_j_desal_2021_115192 crossref_primary_10_2139_ssrn_4127873 crossref_primary_10_1016_j_jtice_2020_03_015 crossref_primary_10_1002_solr_202201098 crossref_primary_10_1002_advs_202204508 crossref_primary_10_3390_cryst11121509 crossref_primary_10_1073_pnas_2003362117 crossref_primary_10_1002_smtd_202001200 crossref_primary_10_1111_jace_18487 crossref_primary_10_1016_j_dwt_2024_100803 crossref_primary_10_1021_acsami_0c21831 crossref_primary_10_1134_S1070363222120465 crossref_primary_10_1016_j_nanoen_2022_108155 crossref_primary_10_1016_j_pmatsci_2024_101309 crossref_primary_10_2166_ws_2019_070 crossref_primary_10_1016_j_cej_2023_147158 crossref_primary_10_1021_acsanm_9b02058 crossref_primary_10_1016_j_compositesb_2022_110111 crossref_primary_10_1002_eom2_12140 crossref_primary_10_3390_ma16083105 crossref_primary_10_1016_j_nanoen_2020_104465 crossref_primary_10_1016_j_nanoen_2021_105979 crossref_primary_10_1002_solr_202200202 crossref_primary_10_1021_acs_est_8b02772 crossref_primary_10_1038_s42004_024_01366_1 crossref_primary_10_1016_j_coche_2021_100709 crossref_primary_10_1016_j_desal_2023_117114 crossref_primary_10_1007_s12274_019_2608_0 crossref_primary_10_1021_acsomega_9b03718 crossref_primary_10_1016_j_apcatb_2020_118695 crossref_primary_10_1126_sciadv_aax5015 crossref_primary_10_1016_j_joule_2018_12_023 crossref_primary_10_1002_cssc_202300845 crossref_primary_10_1021_acsnano_2c09025 crossref_primary_10_1021_acsami_3c11841 crossref_primary_10_1002_adsu_202100500 crossref_primary_10_1016_j_cej_2024_156702 crossref_primary_10_3390_nano10061199 crossref_primary_10_1038_s43246_024_00534_z crossref_primary_10_1021_acsami_4c00707 crossref_primary_10_1016_j_applthermaleng_2020_116515 crossref_primary_10_1016_j_jcis_2022_01_080 crossref_primary_10_1016_j_solener_2021_10_046 crossref_primary_10_1021_acsami_3c00830 crossref_primary_10_7498_aps_68_20190476 crossref_primary_10_1016_j_jece_2021_105272 crossref_primary_10_3389_fmats_2019_00049 crossref_primary_10_3390_polym15122742 crossref_primary_10_1016_j_mtener_2022_101135 crossref_primary_10_1016_j_scib_2019_08_022 crossref_primary_10_1021_acsnano_2c02520 crossref_primary_10_1002_cssc_202401224 crossref_primary_10_1016_j_apmt_2019_100486 crossref_primary_10_1021_acsami_1c10665 crossref_primary_10_1002_aenm_201900310 crossref_primary_10_1002_agt2_535 crossref_primary_10_1021_acs_est_1c05777 crossref_primary_10_1016_j_jcis_2023_06_205 crossref_primary_10_1021_acsanm_1c02936 crossref_primary_10_1002_solr_202200480 crossref_primary_10_1016_j_jallcom_2020_153998 crossref_primary_10_1021_acs_est_0c07191 crossref_primary_10_1016_j_cej_2024_153536 crossref_primary_10_1039_D1NR04197E crossref_primary_10_1016_j_apenergy_2023_121779 crossref_primary_10_1016_j_chemosphere_2020_128916 crossref_primary_10_1016_j_apenergy_2019_114410 crossref_primary_10_1016_j_applthermaleng_2022_118941 crossref_primary_10_1016_j_xcrp_2021_100561 crossref_primary_10_1016_j_egyr_2020_02_005 crossref_primary_10_1021_acsami_0c06181 crossref_primary_10_1021_acsomega_3c03268 crossref_primary_10_1021_acsami_0c15694 crossref_primary_10_1016_j_jece_2022_107690 crossref_primary_10_1021_acs_inorgchem_3c03750 crossref_primary_10_1016_j_coche_2019_07_004 crossref_primary_10_1002_aesr_202000056 crossref_primary_10_1002_cssc_202301755 crossref_primary_10_1002_solr_202300382 crossref_primary_10_1016_j_desal_2023_116868 crossref_primary_10_1021_acs_est_2c02067 crossref_primary_10_1002_smll_202408293 crossref_primary_10_1002_adma_202000922 crossref_primary_10_1016_j_jmst_2024_06_024 crossref_primary_10_1002_solr_202300347 crossref_primary_10_1021_acs_est_9b07903 crossref_primary_10_1016_j_matlet_2021_129796 crossref_primary_10_1016_j_chemosphere_2022_135205 crossref_primary_10_1016_j_carbon_2021_04_077 crossref_primary_10_1002_gch2_201900004 crossref_primary_10_1016_j_desal_2020_114911 crossref_primary_10_20517_energymater_2024_60 crossref_primary_10_3390_nano10122510 crossref_primary_10_1021_acs_est_2c01874 crossref_primary_10_1039_D0TA08539A crossref_primary_10_1021_acsami_9b16043 crossref_primary_10_1016_j_jece_2024_114680 crossref_primary_10_1002_gch2_202000055 crossref_primary_10_1073_pnas_1905311116 crossref_primary_10_1002_gch2_202000054 crossref_primary_10_1007_s42976_021_00190_w crossref_primary_10_1002_ente_202100679 crossref_primary_10_1016_j_apsusc_2021_149697 crossref_primary_10_1002_solr_202100053 crossref_primary_10_1002_advs_202301421 |
Cites_doi | 10.1016/j.desal.2016.11.001 10.1039/C6EE00971A 10.1039/C7CC01427A 10.1021/acs.chemmater.7b01838 10.1039/C6RA26286D 10.1038/nnano.2017.102 10.1002/adfm.201600564 10.1039/C7TA08972D 10.1002/adma.201701756 10.1016/j.rser.2014.09.002 10.1039/c3ee43825b 10.1103/PhysRevB.57.1390 10.1002/aenm.201701028 10.1021/acssuschemeng.6b03207 10.1002/aenm.201701616 10.1021/nl5016975 10.1039/C6TA09810J 10.1002/adsu.201700046 10.1038/srep17276 10.1016/j.watres.2017.10.015 10.1038/nphoton.2016.75 10.1039/C7SC02967E 10.1021/acsami.7b01992 10.1002/adma.201606762 10.1002/aenm.201601811 10.1038/ncomms10103 10.1016/j.desal.2011.08.027 10.1021/acsnano.7b01965 10.1093/nsr/nwx051 10.1002/adma.201603504 10.1021/acs.est.7b03040 10.1039/c1ee01532j 10.1039/C7EE01804E 10.1021/acs.jpcc.6b08975 10.1002/adma.201702590 10.1073/pnas.1701835114 10.1021/nn505970n 10.1021/acs.jpcc.5b09604 10.1016/j.carbon.2016.11.071 10.1038/srep13600 10.1002/gch2.201700094 10.1021/acs.nanolett.5b04320 10.1016/j.solener.2003.08.039 10.1039/C4MH00140K 10.1002/smll.201601723 10.1016/j.solener.2003.08.002 10.1002/anie.201701321 10.1002/adma.201704107 10.1016/j.nanoen.2016.12.031 10.1002/adsu.201600013 10.1002/adma.201502362 10.1016/j.nanoen.2017.09.005 10.1021/acsnano.7b08196 10.1016/j.solener.2003.07.005 10.1021/acs.chemmater.7b01280 10.1002/adma.201501832 10.1021/acsami.6b04606 10.1016/j.ces.2014.05.057 10.1002/adsu.201700145 10.1016/j.rser.2013.12.052 10.1039/C6TA01205A 10.1016/j.rser.2012.04.059 10.1021/acsami.6b11466 10.1002/adma.201500135 10.1002/adma.201603730 10.1039/C7RA03007J 10.3390/ma9080613 10.1021/nn304948h 10.1039/C7TA01361B 10.1039/C7TA00882A 10.1016/j.nanoen.2015.08.021 10.1002/aenm.201702149 10.1039/C4NR00708E 10.1016/S0376-7388(98)00349-4 10.1039/C7TA03262E 10.1021/jp400770x 10.1021/acsami.5b03435 10.1002/smll.201401071 10.1021/ar7002804 10.1021/acssuschemeng.5b01274 10.1021/nl8036905 10.1039/C2CS35367A 10.1016/j.enconman.2016.09.015 10.1126/sciadv.1501227 10.1021/acsami.5b09996 10.1038/ncomms5449 10.1016/j.joule.2017.10.018 10.1021/acs.est.7b04442 10.1002/adma.201601819 10.1002/aenm.201702884 10.1038/nenergy.2016.126 10.1002/adma.201604031 10.1002/adma.201700981 10.1021/acsnano.6b08415 10.1016/S0011-9164(98)00056-3 10.1016/j.joule.2017.09.011 10.1073/pnas.1613031113 10.1021/acs.nanolett.5b03901 10.1039/C6NR03662G 10.1016/j.desal.2011.03.042 10.1039/C7EN00760D 10.1021/acsami.7b01307 10.1039/C7TA04555G 10.1039/C7TA04834C 10.1021/nl4003238 10.1002/gch2.201600003 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1039/c8en00156a |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2051-8161 |
EndPage | 189 |
ExternalDocumentID | 10_1039_C8EN00156A c8en00156a |
GroupedDBID | -JG AAEMU ABGFH ACLDK ADSRN AEFDR AGSTE AUDPV BSQNT C6K EE0 EF- H~N J3I RCNCU RPMJG RRC RSCEA 0R~ 4.4 AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ADMRA AENGV AETIL AFLYV AFOGI AFRAH AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT BLAPV CITATION EBS ECGLT EJD GGIMP H13 HZ~ J3G J3H O-G O9- RAOCF RVUXY 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c409t-310f57a68ad631148313c684aa9cf42738f99c59ad489f2dd942483c48fab6853 |
ISSN | 2051-8153 |
IngestDate | Mon Jun 30 12:02:03 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Tue Jul 01 02:35:34 EDT 2025 Wed Jun 05 04:41:51 EDT 2019 Mon Jan 28 17:14:24 EST 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c409t-310f57a68ad631148313c684aa9cf42738f99c59ad489f2dd942483c48fab6853 |
Notes | Professor Peng Wang is currently an associate professor in the Environmental Science and Engineering program at KAUST. He received his Ph.D. degree from the University of California, Santa Barbara (UCSB) in 2008. His research focuses on rational design, synthesis, and application of nanomaterials toward sustainable-energy driven clean water production. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0856-0865 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2018/en/c8en00156a |
PQID | 2040874556 |
PQPubID | 2047519 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1039_C8EN00156A proquest_journals_2040874556 crossref_citationtrail_10_1039_C8EN00156A rsc_primary_c8en00156a |
ProviderPackageCode | J3I ACLDK RRC AEFDR RPMJG -JG AGSTE RCNCU AUDPV EF- BSQNT EE0 RSCEA ADSRN C6K H~N ABGFH AAEMU CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Environmental science. Nano |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Liu (C8EN00156A-(cit4)/*[position()=1]) 2017; 41 Liu (C8EN00156A-(cit41)/*[position()=1]) 2015; 7 Yang (C8EN00156A-(cit37)/*[position()=1]) 2018; 12 Li (C8EN00156A-(cit97)/*[position()=1]) 2018; 5 Tiwari (C8EN00156A-(cit94)/*[position()=1]) 2003; 75 Ye (C8EN00156A-(cit79)/*[position()=1]) 2017; 7 Jaque (C8EN00156A-(cit1)/*[position()=1]) 2014; 6 Zhao (C8EN00156A-(cit96)/*[position()=1]) 2015; 5 Zhu (C8EN00156A-(cit99)/*[position()=1]) 2016; 8 Cai (C8EN00156A-(cit17)/*[position()=1]) 2015; 2 Liu (C8EN00156A-(cit53)/*[position()=1]) 2017; 9 Ghasemi (C8EN00156A-(cit45)/*[position()=1]) 2014; 5 Xu (C8EN00156A-(cit100)/*[position()=1]) 2018 Zhang (C8EN00156A-(cit88)/*[position()=1]) 2015; 27 Wang (C8EN00156A-(cit51)/*[position()=1]) 2016; 4 Ishii (C8EN00156A-(cit84)/*[position()=1]) 2016; 120 Zhu (C8EN00156A-(cit113)/*[position()=1]) 2018 Lou (C8EN00156A-(cit46)/*[position()=1]) 2016; 8 Westerhoff (C8EN00156A-(cit12)/*[position()=1]) 2016; 3 Rodrigues (C8EN00156A-(cit11)/*[position()=1]) 2017; 4 Hedayati (C8EN00156A-(cit16)/*[position()=1]) 2016; 9 Gao (C8EN00156A-(cit85)/*[position()=1]) 2017; 29 Zhou (C8EN00156A-(cit40)/*[position()=1]) 2016; 26 Yang (C8EN00156A-(cit111)/*[position()=1]) 2017; 10 Chen (C8EN00156A-(cit52)/*[position()=1]) 2017; 29 Gao (C8EN00156A-(cit112)/*[position()=1]) 2016; 9 Deng (C8EN00156A-(cit6)/*[position()=1]) 2017; 5 Martínez-Díez (C8EN00156A-(cit102)/*[position()=1]) 1999; 156 Loeb (C8EN00156A-(cit62)/*[position()=1]) 2018; 52 Wu (C8EN00156A-(cit104)/*[position()=1]) 2017; 5 Liu (C8EN00156A-(cit73)/*[position()=1]) 2017; 1 Ni (C8EN00156A-(cit95)/*[position()=1]) 2015; 17 Muftah (C8EN00156A-(cit9)/*[position()=1]) 2014; 32 Sun (C8EN00156A-(cit74)/*[position()=1]) 2017; 56 Chang (C8EN00156A-(cit15)/*[position()=1]) 2018 Zhu (C8EN00156A-(cit20)/*[position()=1]) 2018; 8 Neumann (C8EN00156A-(cit63)/*[position()=1]) 2013; 7 Richardson (C8EN00156A-(cit26)/*[position()=1]) 2009; 9 Jia (C8EN00156A-(cit58)/*[position()=1]) 2017; 1 Liu (C8EN00156A-(cit49)/*[position()=1]) 2017; 1 Dao (C8EN00156A-(cit5)/*[position()=1]) 2018; 2 Zhu (C8EN00156A-(cit27)/*[position()=1]) 2017; 4 Xu (C8EN00156A-(cit59)/*[position()=1]) 2017; 29 Eliodoro Chiavazzo (C8EN00156A-(cit105)/*[position()=1]) 2018 Sharon (C8EN00156A-(cit10)/*[position()=1]) 2015; 41 Wang (C8EN00156A-(cit50)/*[position()=1]) 2017; 5 Jiang (C8EN00156A-(cit54)/*[position()=1]) 2017; 1 Tian (C8EN00156A-(cit71)/*[position()=1]) 2016; 16 Fath (C8EN00156A-(cit93)/*[position()=1]) 1998; 116 Shi (C8EN00156A-(cit32)/*[position()=1]) 2017; 5 Fujiwara (C8EN00156A-(cit110)/*[position()=1]) 2017; 404 Zhou (C8EN00156A-(cit72)/*[position()=1]) 2017; 32 Zhou (C8EN00156A-(cit22)/*[position()=1]) 2016; 2 Alkhudhiri (C8EN00156A-(cit101)/*[position()=1]) 2012; 287 Jiang (C8EN00156A-(cit83)/*[position()=1]) 2013; 117 Fang (C8EN00156A-(cit65)/*[position()=1]) 2013; 13 Liu (C8EN00156A-(cit68)/*[position()=1]) 2016; 8 Cao (C8EN00156A-(cit3)/*[position()=1]) 2014; 7 Finnerty (C8EN00156A-(cit29)/*[position()=1]) 2017; 51 Wang (C8EN00156A-(cit34)/*[position()=1]) 2017; 5 Wu (C8EN00156A-(cit91)/*[position()=1]) 2017; 1 Fan (C8EN00156A-(cit19)/*[position()=1]) 2016; 8 Dongare (C8EN00156A-(cit106)/*[position()=1]) 2017; 114 Chen (C8EN00156A-(cit92)/*[position()=1]) 2018; 9 Hogan (C8EN00156A-(cit64)/*[position()=1]) 2014; 14 Jain (C8EN00156A-(cit2)/*[position()=1]) 2008; 41 Huang (C8EN00156A-(cit89)/*[position()=1]) 2017; 7 Wang (C8EN00156A-(cit25)/*[position()=1]) 2017; 29 Chen (C8EN00156A-(cit21)/*[position()=1]) 2013; 42 Zhou (C8EN00156A-(cit23)/*[position()=1]) 2016; 10 Zeng (C8EN00156A-(cit39)/*[position()=1]) 2014; 116 Zhang (C8EN00156A-(cit86)/*[position()=1]) 2016; 12 Wang (C8EN00156A-(cit44)/*[position()=1]) 2017; 29 Zhu (C8EN00156A-(cit78)/*[position()=1]) 2016; 8 Umlauff (C8EN00156A-(cit77)/*[position()=1]) 1998; 57 Zeng (C8EN00156A-(cit38)/*[position()=1]) 2011; 4 Kabeel (C8EN00156A-(cit8)/*[position()=1]) 2011; 276 Liu (C8EN00156A-(cit67)/*[position()=1]) 2015; 27 Bjorkland (C8EN00156A-(cit28)/*[position()=1]) 2017; 4 Fu (C8EN00156A-(cit30)/*[position()=1]) 2017; 5 Li (C8EN00156A-(cit24)/*[position()=1]) 2017; 11 Delyannis (C8EN00156A-(cit7)/*[position()=1]) 2003; 75 Chen (C8EN00156A-(cit75)/*[position()=1]) 2016; 127 Ding (C8EN00156A-(cit80)/*[position()=1]) 2017; 53 Liu (C8EN00156A-(cit57)/*[position()=1]) 2018; 8 Li (C8EN00156A-(cit48)/*[position()=1]) 2016; 113 Li (C8EN00156A-(cit114)/*[position()=1]) 2013; 19 Gueymard (C8EN00156A-(cit14)/*[position()=1]) 2004; 76 Dudchenko (C8EN00156A-(cit107)/*[position()=1]) 2017; 12 Ni (C8EN00156A-(cit98)/*[position()=1]) 2016; 1 Hu (C8EN00156A-(cit31)/*[position()=1]) 2017; 29 Bae (C8EN00156A-(cit70)/*[position()=1]) 2015; 6 Wang (C8EN00156A-(cit33)/*[position()=1]) 2017; 114 Xue (C8EN00156A-(cit56)/*[position()=1]) 2017; 9 Li (C8EN00156A-(cit60)/*[position()=1]) 2017; 29 Wang (C8EN00156A-(cit36)/*[position()=1]) 2018; 6 Zhu (C8EN00156A-(cit55)/*[position()=1]) 2017; 29 Fujiwara (C8EN00156A-(cit109)/*[position()=1]) 2017; 127 Zhang (C8EN00156A-(cit35)/*[position()=1]) 2017; 11 Jiang (C8EN00156A-(cit47)/*[position()=1]) 2016; 28 Wang (C8EN00156A-(cit13)/*[position()=1]) 2017; 4 Jain (C8EN00156A-(cit61)/*[position()=1]) 2008; 41 Zielinski (C8EN00156A-(cit76)/*[position()=1]) 2016; 16 Hua (C8EN00156A-(cit87)/*[position()=1]) 2017; 121 Shi (C8EN00156A-(cit82)/*[position()=1]) 2018; 2 Politano (C8EN00156A-(cit103)/*[position()=1]) 2017; 29 Yu (C8EN00156A-(cit69)/*[position()=1]) 2015; 5 Ito (C8EN00156A-(cit42)/*[position()=1]) 2015; 27 Fujiwara (C8EN00156A-(cit108)/*[position()=1]) 2015; 9 Jiang (C8EN00156A-(cit90)/*[position()=1]) 2017; 5 Ren (C8EN00156A-(cit18)/*[position()=1]) 2017; 29 Chen (C8EN00156A-(cit81)/*[position()=1]) 2017; 7 Wang (C8EN00156A-(cit66)/*[position()=1]) 2014; 10 Sajadi (C8EN00156A-(cit43)/*[position()=1]) 2016; 4 |
References_xml | – issn: 2018 publication-title: Passive high-yield seawater desalination at below one sun by modular and low-cost distillation doi: Eliodoro Chiavazzo Viglino Fasano Asinari – volume: 3 start-page: 1241 year: 2016 ident: C8EN00156A-(cit12)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 404 start-page: 79 year: 2017 ident: C8EN00156A-(cit110)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2016.11.001 – volume: 9 start-page: 3151 year: 2016 ident: C8EN00156A-(cit112)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00971A – volume-title: Passive high-yield seawater desalination at below one sun by modular and low-cost distillation year: 2018 ident: C8EN00156A-(cit105)/*[position()=1] – volume: 53 start-page: 6744 year: 2017 ident: C8EN00156A-(cit80)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC01427A – volume: 29 start-page: 5777 year: 2017 ident: C8EN00156A-(cit85)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01838 – volume: 7 start-page: 9495 year: 2017 ident: C8EN00156A-(cit89)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA26286D – volume: 12 start-page: 557 year: 2017 ident: C8EN00156A-(cit107)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.102 – volume: 26 start-page: 5368 year: 2016 ident: C8EN00156A-(cit40)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600564 – volume: 6 start-page: 963 year: 2018 ident: C8EN00156A-(cit36)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08972D – volume: 29 start-page: 1701756 issue: 3 year: 2017 ident: C8EN00156A-(cit52)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201701756 – volume: 41 start-page: 1080 year: 2015 ident: C8EN00156A-(cit10)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2014.09.002 – volume: 7 start-page: 1615 year: 2014 ident: C8EN00156A-(cit3)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43825b – volume: 57 start-page: 1390 year: 1998 ident: C8EN00156A-(cit77)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.57.1390 – volume: 8 start-page: 1701028 issue: 4 year: 2018 ident: C8EN00156A-(cit20)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701028 – volume: 5 start-page: 4665 year: 2017 ident: C8EN00156A-(cit30)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.6b03207 – volume: 8 start-page: 1701616 issue: 8 year: 2018 ident: C8EN00156A-(cit57)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701616 – volume: 14 start-page: 4640 year: 2014 ident: C8EN00156A-(cit64)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl5016975 – volume: 5 start-page: 16212 year: 2017 ident: C8EN00156A-(cit32)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA09810J – volume: 1 start-page: 1700046 year: 2017 ident: C8EN00156A-(cit91)/*[position()=1] publication-title: Advanced Sustainable Systems doi: 10.1002/adsu.201700046 – volume: 5 start-page: 17276 year: 2015 ident: C8EN00156A-(cit96)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep17276 – volume: 127 start-page: 96 year: 2017 ident: C8EN00156A-(cit109)/*[position()=1] publication-title: Water Res. doi: 10.1016/j.watres.2017.10.015 – volume: 10 start-page: 393 year: 2016 ident: C8EN00156A-(cit23)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.75 – volume: 4 start-page: 2267 year: 2017 ident: C8EN00156A-(cit27)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 9 start-page: 623 year: 2018 ident: C8EN00156A-(cit92)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC02967E – volume: 9 start-page: 15052 year: 2017 ident: C8EN00156A-(cit56)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01992 – volume: 29 start-page: 1606762 issue: 28 year: 2017 ident: C8EN00156A-(cit59)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606762 – volume: 7 start-page: 1601811 year: 2017 ident: C8EN00156A-(cit79)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601811 – volume: 6 start-page: 10103 year: 2015 ident: C8EN00156A-(cit70)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms10103 – volume: 4 start-page: 782 year: 2017 ident: C8EN00156A-(cit13)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 287 start-page: 2 year: 2012 ident: C8EN00156A-(cit101)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2011.08.027 – volume: 11 start-page: 5087 year: 2017 ident: C8EN00156A-(cit35)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b01965 – volume: 5 start-page: 70 issue: 1 year: 2018 ident: C8EN00156A-(cit97)/*[position()=1] publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx051 – volume: 29 start-page: 1603504 year: 2017 ident: C8EN00156A-(cit103)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603504 – volume: 51 start-page: 11701 year: 2017 ident: C8EN00156A-(cit29)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03040 – volume: 4 start-page: 4074 year: 2011 ident: C8EN00156A-(cit38)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01532j – volume: 10 start-page: 1923 year: 2017 ident: C8EN00156A-(cit111)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01804E – volume: 121 start-page: 60 year: 2017 ident: C8EN00156A-(cit87)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b08975 – volume: 29 start-page: 1702590 year: 2017 ident: C8EN00156A-(cit18)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201702590 – volume: 114 start-page: 6936 year: 2017 ident: C8EN00156A-(cit106)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1701835114 – volume: 9 start-page: 5705 year: 2015 ident: C8EN00156A-(cit108)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn505970n – volume: 120 start-page: 2343 year: 2016 ident: C8EN00156A-(cit84)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b09604 – volume: 114 start-page: 117 year: 2017 ident: C8EN00156A-(cit33)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2016.11.071 – volume: 5 start-page: 13600 year: 2015 ident: C8EN00156A-(cit69)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep13600 – volume: 2 start-page: 1700094 issue: 2 year: 2018 ident: C8EN00156A-(cit5)/*[position()=1] publication-title: Global Chall. doi: 10.1002/gch2.201700094 – volume: 16 start-page: 609 year: 2016 ident: C8EN00156A-(cit71)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04320 – volume: 76 start-page: 423 year: 2004 ident: C8EN00156A-(cit14)/*[position()=1] publication-title: Sol. Energy doi: 10.1016/j.solener.2003.08.039 – volume: 2 start-page: 37 year: 2015 ident: C8EN00156A-(cit17)/*[position()=1] publication-title: Mater. Horiz. doi: 10.1039/C4MH00140K – volume: 12 start-page: 5320 year: 2016 ident: C8EN00156A-(cit86)/*[position()=1] publication-title: Small doi: 10.1002/smll.201601723 – volume: 75 start-page: 357 year: 2003 ident: C8EN00156A-(cit7)/*[position()=1] publication-title: Sol. Energy doi: 10.1016/j.solener.2003.08.002 – volume: 4 start-page: 767 year: 2017 ident: C8EN00156A-(cit11)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 56 start-page: 6329 year: 2017 ident: C8EN00156A-(cit74)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201701321 – volume: 29 start-page: 1704107 issue: 44 year: 2017 ident: C8EN00156A-(cit55)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201704107 – volume: 32 start-page: 195 year: 2017 ident: C8EN00156A-(cit72)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.031 – volume: 1 start-page: 1600013 year: 2017 ident: C8EN00156A-(cit73)/*[position()=1] publication-title: Advanced Sustainable Systems doi: 10.1002/adsu.201600013 – volume: 27 start-page: 4889 year: 2015 ident: C8EN00156A-(cit88)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201502362 – volume: 41 start-page: 269 year: 2017 ident: C8EN00156A-(cit4)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.005 – volume: 12 start-page: 829 year: 2018 ident: C8EN00156A-(cit37)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b08196 – volume: 75 start-page: 367 year: 2003 ident: C8EN00156A-(cit94)/*[position()=1] publication-title: Sol. Energy doi: 10.1016/j.solener.2003.07.005 – volume: 29 start-page: 5629 year: 2017 ident: C8EN00156A-(cit44)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01280 – volume: 27 start-page: 4302 year: 2015 ident: C8EN00156A-(cit42)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501832 – volume: 8 start-page: 14628 year: 2016 ident: C8EN00156A-(cit46)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04606 – volume: 4 start-page: 747 year: 2017 ident: C8EN00156A-(cit28)/*[position()=1] publication-title: Environ. Sci.: Nano – volume: 116 start-page: 704 year: 2014 ident: C8EN00156A-(cit39)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.05.057 – volume: 2 start-page: 1700145 issue: 3 year: 2018 ident: C8EN00156A-(cit82)/*[position()=1] publication-title: Advanced Sustainable Systems doi: 10.1002/adsu.201700145 – volume: 32 start-page: 430 year: 2014 ident: C8EN00156A-(cit9)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2013.12.052 – volume: 4 start-page: 4700 year: 2016 ident: C8EN00156A-(cit43)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA01205A – volume: 19 start-page: 136 year: 2013 ident: C8EN00156A-(cit114)/*[position()=1] publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2012.04.059 – volume: 8 start-page: 31716 year: 2016 ident: C8EN00156A-(cit78)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11466 – volume: 27 start-page: 2768 year: 2015 ident: C8EN00156A-(cit67)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201500135 – volume: 29 start-page: 1603730 issue: 3 year: 2017 ident: C8EN00156A-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201603730 – volume: 7 start-page: 19849 year: 2017 ident: C8EN00156A-(cit81)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C7RA03007J – volume: 9 start-page: 22 year: 2016 ident: C8EN00156A-(cit16)/*[position()=1] publication-title: Materials doi: 10.3390/ma9080613 – volume: 7 start-page: 42 year: 2013 ident: C8EN00156A-(cit63)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn304948h – volume: 5 start-page: 7691 year: 2017 ident: C8EN00156A-(cit6)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01361B – volume: 5 start-page: 6860 year: 2017 ident: C8EN00156A-(cit34)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00882A – volume: 17 start-page: 290 year: 2015 ident: C8EN00156A-(cit95)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.08.021 – start-page: 1702149 year: 2018 ident: C8EN00156A-(cit113)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702149 – volume: 6 start-page: 9494 year: 2014 ident: C8EN00156A-(cit1)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR00708E – volume: 156 start-page: 265 year: 1999 ident: C8EN00156A-(cit102)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(98)00349-4 – volume: 5 start-page: 16359 year: 2017 ident: C8EN00156A-(cit50)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03262E – volume: 117 start-page: 8909 year: 2013 ident: C8EN00156A-(cit83)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp400770x – volume: 7 start-page: 13645 year: 2015 ident: C8EN00156A-(cit41)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03435 – volume: 10 start-page: 3234 year: 2014 ident: C8EN00156A-(cit66)/*[position()=1] publication-title: Small doi: 10.1002/smll.201401071 – volume: 41 start-page: 1578 year: 2008 ident: C8EN00156A-(cit2)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar7002804 – volume: 4 start-page: 1223 year: 2016 ident: C8EN00156A-(cit51)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.5b01274 – volume: 9 start-page: 1139 year: 2009 ident: C8EN00156A-(cit26)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl8036905 – volume: 42 start-page: 2679 year: 2013 ident: C8EN00156A-(cit21)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35367A – volume: 127 start-page: 293 year: 2016 ident: C8EN00156A-(cit75)/*[position()=1] publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.09.015 – volume: 2 start-page: e1501227 issue: 4 year: 2016 ident: C8EN00156A-(cit22)/*[position()=1] publication-title: Sci. Adv. doi: 10.1126/sciadv.1501227 – volume: 8 start-page: 772 year: 2016 ident: C8EN00156A-(cit68)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09996 – volume: 5 start-page: 4449 year: 2014 ident: C8EN00156A-(cit45)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5449 – volume: 1 start-page: 429 year: 2017 ident: C8EN00156A-(cit54)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2017.10.018 – volume: 52 start-page: 205 year: 2018 ident: C8EN00156A-(cit62)/*[position()=1] publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04442 – volume: 41 start-page: 1578 year: 2008 ident: C8EN00156A-(cit61)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar7002804 – volume: 28 start-page: 9400 year: 2016 ident: C8EN00156A-(cit47)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601819 – start-page: 1702884 year: 2018 ident: C8EN00156A-(cit100)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702884 – volume: 1 start-page: 16126 year: 2016 ident: C8EN00156A-(cit98)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.126 – volume: 29 start-page: 1604031 year: 2017 ident: C8EN00156A-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604031 – volume: 29 start-page: 1700981 year: 2017 ident: C8EN00156A-(cit60)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700981 – volume: 11 start-page: 3752 year: 2017 ident: C8EN00156A-(cit24)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b08415 – volume: 116 start-page: 45 year: 1998 ident: C8EN00156A-(cit93)/*[position()=1] publication-title: Desalination doi: 10.1016/S0011-9164(98)00056-3 – volume: 1 start-page: 588 year: 2017 ident: C8EN00156A-(cit58)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2017.09.011 – volume: 113 start-page: 13953 year: 2016 ident: C8EN00156A-(cit48)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1613031113 – volume: 16 start-page: 2159 year: 2016 ident: C8EN00156A-(cit76)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03901 – volume: 8 start-page: 14617 year: 2016 ident: C8EN00156A-(cit19)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C6NR03662G – volume: 8 start-page: 31716 year: 2016 ident: C8EN00156A-(cit99)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11466 – volume: 276 start-page: 1 year: 2011 ident: C8EN00156A-(cit8)/*[position()=1] publication-title: Desalination doi: 10.1016/j.desal.2011.03.042 – year: 2018 ident: C8EN00156A-(cit15)/*[position()=1] publication-title: Environ. Sci.: Nano doi: 10.1039/C7EN00760D – volume: 9 start-page: 7675 year: 2017 ident: C8EN00156A-(cit53)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01307 – volume: 5 start-page: 23712 year: 2017 ident: C8EN00156A-(cit104)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04555G – volume: 5 start-page: 18397 year: 2017 ident: C8EN00156A-(cit90)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA04834C – volume: 13 start-page: 1736 year: 2013 ident: C8EN00156A-(cit65)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl4003238 – volume: 1 start-page: 1600003 issue: 2 year: 2017 ident: C8EN00156A-(cit49)/*[position()=1] publication-title: Global Chall doi: 10.1002/gch2.201600003 |
SSID | ssj0001125367 |
Score | 2.5671082 |
Snippet | Solar driven water evaporation and distillation is an ancient technology, but has been rejuvenated by nano-enabled photothermal materials in the past 4 years.... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 178 |
SubjectTerms | Distillation Distilled water Distilling Energy conversion efficiency Energy efficiency Evaporation Heat loss Nanomaterials Solar energy Water |
Title | Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight |
URI | https://www.proquest.com/docview/2040874556 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZY98ILAsFEx0CW4AVNKanzy-atmjoNVAoPqdS3yHEcQOqSqMuE4E_gr-bOjpNMVAh4idrYTaPc5_Pd5b47Ql4JkWgWRtIrGTOvGSNPch54Gkx7lodRqXwkOH9Yx1eb8P022g4BfcMuafOZ-nGQV_I_UoVzIFdkyf6DZPuLwgn4DPKFI0gYjn8lY4wofbakFFcto96f41_bTDeTPvjVRusrWdWeNkyp4rz5UreGenWN5BHZ2ps1KYff8BsWAW8cOAzzbYcRezvW2CKxOAS2681ttUMH_06If2DPOc6l0jPU5PUQwLdK5pPuts4u8tCpSZushJENl1Zq0ka65nSD9mKw2j0-t5WAZ3p8zlZfd-o3GqEsGqlS8Ev5aFue-7bV0G8q3w-wYqriujK08NHG5l7mrz9ml5vVKkuX2_SIHDNwKNiEHC-W6bvVEI8DSy8wDYf7O3fVbAPxZrj8XftlcEqO9q5jjLFM0ofkQedS0IXFxyNyT1ePyU-HDTrGBrXYeEtB9hSRQeuSjpFBx8igPTIoIIMa6dMRMigggxpkdGMDMmj-nTpkPCGby2V6ceV1fTc8Bd5-C9uyX0aJjLks4gD95WAeqJiHUgpVhsjlKoVQkZBFyEXJikKEDCapkJcyj8H-OyGTqq70U0JLwWNV5L4OcqysFnAsj5ck2i9CrRM1n5LX7mlmqitKj71RdplJjghEdsGXa_PkF1Pysp_b2FIsB2edOaFk3VK9yRhsVdjXIYqn5AQE1f9-kOuUnB4eyJqiPP3zRZ-R-7g-bGTujEza_a1-DrZqm7_oYPYLff-cpQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+investigator+series%3A+the+rise+of+nano-enabled+photothermal+materials+for+water+evaporation+and+clean+water+production+by+sunlight&rft.jtitle=Environmental+science.+Nano&rft.au=Wang%2C+Peng&rft.date=2018&rft.pub=Royal+Society+of+Chemistry&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=5&rft.issue=5&rft.spage=1078&rft.epage=1089&rft_id=info:doi/10.1039%2Fc8en00156a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon |