A New Approach to Detecting Atrial Fibrillation Using Count Statistics of Relative Changes between Consecutive RR Intervals

The ratio of the difference between neighboring RR intervals to the length of the preceding RR interval (x%) represents the relative change in the duration between two cardiac cycles. We investigated the diagnostic properties of the percentage of relative RR interval differences equal to or greater...

Full description

Saved in:
Bibliographic Details
Published inJournal of clinical medicine Vol. 12; no. 2; p. 687
Main Authors Buś, Szymon, Jędrzejewski, Konrad, Guzik, Przemysław
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The ratio of the difference between neighboring RR intervals to the length of the preceding RR interval (x%) represents the relative change in the duration between two cardiac cycles. We investigated the diagnostic properties of the percentage of relative RR interval differences equal to or greater than x% (pRRx%) with x% in a range between 0.25% and 25% for the distinction of atrial fibrillation (AF) from sinus rhythm (SR). We used 1-min ECG segments with RR intervals with either AF (32,141 segments) or SR (32,769 segments) from the publicly available Physionet Long-Term Atrial Fibrillation Database (LTAFDB). The properties of pRRx% for different x% were analyzed using the statistical procedures and metrics commonly used to characterize diagnostic methods. The distributions of pRRx% for AF and SR differ significantly over the whole studied range of x% from 0.25% to 25%, with particularly outstanding diagnostic properties for the x% range of 1.5% to 6%. However, pRR3.25% outperformed other pRRx%. Firstly, it had one of the highest and closest to perfect areas under the curve (0.971). For pRR3.25%, the optimal threshold for distinction AF from SR was set at 75.32%. Then, the accuracy was 95.44%, sensitivity was 97.16%, specificity was 93.76%, the positive predictive value was 93.85%, the negative predictive value was 97.11%, and the diagnostic odds ratio was 514. The excellent diagnostic properties of pRR3.25% were confirmed in the publicly available MIT-BIH Atrial Fibrillation Database. In a direct comparison, pRR3.25% outperformed the diagnostic properties of pRR31 (the percentage of successive RR intervals differing by at least 31 ms), i.e., so far, the best single parameter differentiating AF from SR. A family of pRRx% parameters has excellent diagnostic properties for AF detection in a range of x% between 1.5% and 6%. However, pRR3.25% outperforms other pRRx% parameters and pRR31 (until now, probably the most robust single heart rate variability parameter for AF diagnosis). The exquisite pRRx% diagnostic properties for AF and its simple computation make it well-suited for AF detection in modern ECG technologies (mobile/wearable devices, biopatches) in long-term monitoring. The diagnostic properties of pRRx% deserve further exploration in other databases with AF.
AbstractList BACKGROUNDThe ratio of the difference between neighboring RR intervals to the length of the preceding RR interval (x%) represents the relative change in the duration between two cardiac cycles. We investigated the diagnostic properties of the percentage of relative RR interval differences equal to or greater than x% (pRRx%) with x% in a range between 0.25% and 25% for the distinction of atrial fibrillation (AF) from sinus rhythm (SR). METHODSWe used 1-min ECG segments with RR intervals with either AF (32,141 segments) or SR (32,769 segments) from the publicly available Physionet Long-Term Atrial Fibrillation Database (LTAFDB). The properties of pRRx% for different x% were analyzed using the statistical procedures and metrics commonly used to characterize diagnostic methods. RESULTSThe distributions of pRRx% for AF and SR differ significantly over the whole studied range of x% from 0.25% to 25%, with particularly outstanding diagnostic properties for the x% range of 1.5% to 6%. However, pRR3.25% outperformed other pRRx%. Firstly, it had one of the highest and closest to perfect areas under the curve (0.971). For pRR3.25%, the optimal threshold for distinction AF from SR was set at 75.32%. Then, the accuracy was 95.44%, sensitivity was 97.16%, specificity was 93.76%, the positive predictive value was 93.85%, the negative predictive value was 97.11%, and the diagnostic odds ratio was 514. The excellent diagnostic properties of pRR3.25% were confirmed in the publicly available MIT-BIH Atrial Fibrillation Database. In a direct comparison, pRR3.25% outperformed the diagnostic properties of pRR31 (the percentage of successive RR intervals differing by at least 31 ms), i.e., so far, the best single parameter differentiating AF from SR. CONCLUSIONSA family of pRRx% parameters has excellent diagnostic properties for AF detection in a range of x% between 1.5% and 6%. However, pRR3.25% outperforms other pRRx% parameters and pRR31 (until now, probably the most robust single heart rate variability parameter for AF diagnosis). The exquisite pRRx% diagnostic properties for AF and its simple computation make it well-suited for AF detection in modern ECG technologies (mobile/wearable devices, biopatches) in long-term monitoring. The diagnostic properties of pRRx% deserve further exploration in other databases with AF.
Background: The ratio of the difference between neighboring RR intervals to the length of the preceding RR interval (x%) represents the relative change in the duration between two cardiac cycles. We investigated the diagnostic properties of the percentage of relative RR interval differences equal to or greater than x% (pRRx%) with x% in a range between 0.25% and 25% for the distinction of atrial fibrillation (AF) from sinus rhythm (SR). Methods: We used 1-min ECG segments with RR intervals with either AF (32,141 segments) or SR (32,769 segments) from the publicly available Physionet Long-Term Atrial Fibrillation Database (LTAFDB). The properties of pRRx% for different x% were analyzed using the statistical procedures and metrics commonly used to characterize diagnostic methods. Results: The distributions of pRRx% for AF and SR differ significantly over the whole studied range of x% from 0.25% to 25%, with particularly outstanding diagnostic properties for the x% range of 1.5% to 6%. However, pRR3.25% outperformed other pRRx%. Firstly, it had one of the highest and closest to perfect areas under the curve (0.971). For pRR3.25%, the optimal threshold for distinction AF from SR was set at 75.32%. Then, the accuracy was 95.44%, sensitivity was 97.16%, specificity was 93.76%, the positive predictive value was 93.85%, the negative predictive value was 97.11%, and the diagnostic odds ratio was 514. The excellent diagnostic properties of pRR3.25% were confirmed in the publicly available MIT–BIH Atrial Fibrillation Database. In a direct comparison, pRR3.25% outperformed the diagnostic properties of pRR31 (the percentage of successive RR intervals differing by at least 31 ms), i.e., so far, the best single parameter differentiating AF from SR. Conclusions: A family of pRRx% parameters has excellent diagnostic properties for AF detection in a range of x% between 1.5% and 6%. However, pRR3.25% outperforms other pRRx% parameters and pRR31 (until now, probably the most robust single heart rate variability parameter for AF diagnosis). The exquisite pRRx% diagnostic properties for AF and its simple computation make it well-suited for AF detection in modern ECG technologies (mobile/wearable devices, biopatches) in long-term monitoring. The diagnostic properties of pRRx% deserve further exploration in other databases with AF.
The ratio of the difference between neighboring RR intervals to the length of the preceding RR interval (x%) represents the relative change in the duration between two cardiac cycles. We investigated the diagnostic properties of the percentage of relative RR interval differences equal to or greater than x% (pRRx%) with x% in a range between 0.25% and 25% for the distinction of atrial fibrillation (AF) from sinus rhythm (SR). We used 1-min ECG segments with RR intervals with either AF (32,141 segments) or SR (32,769 segments) from the publicly available Physionet Long-Term Atrial Fibrillation Database (LTAFDB). The properties of pRRx% for different x% were analyzed using the statistical procedures and metrics commonly used to characterize diagnostic methods. The distributions of pRRx% for AF and SR differ significantly over the whole studied range of x% from 0.25% to 25%, with particularly outstanding diagnostic properties for the x% range of 1.5% to 6%. However, pRR3.25% outperformed other pRRx%. Firstly, it had one of the highest and closest to perfect areas under the curve (0.971). For pRR3.25%, the optimal threshold for distinction AF from SR was set at 75.32%. Then, the accuracy was 95.44%, sensitivity was 97.16%, specificity was 93.76%, the positive predictive value was 93.85%, the negative predictive value was 97.11%, and the diagnostic odds ratio was 514. The excellent diagnostic properties of pRR3.25% were confirmed in the publicly available MIT-BIH Atrial Fibrillation Database. In a direct comparison, pRR3.25% outperformed the diagnostic properties of pRR31 (the percentage of successive RR intervals differing by at least 31 ms), i.e., so far, the best single parameter differentiating AF from SR. A family of pRRx% parameters has excellent diagnostic properties for AF detection in a range of x% between 1.5% and 6%. However, pRR3.25% outperforms other pRRx% parameters and pRR31 (until now, probably the most robust single heart rate variability parameter for AF diagnosis). The exquisite pRRx% diagnostic properties for AF and its simple computation make it well-suited for AF detection in modern ECG technologies (mobile/wearable devices, biopatches) in long-term monitoring. The diagnostic properties of pRRx% deserve further exploration in other databases with AF.
Author Buś, Szymon
Jędrzejewski, Konrad
Guzik, Przemysław
AuthorAffiliation 1 Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
2 Department of Cardiology-Intensive Therapy and Internal Disease, Poznan University of Medical Sciences, 60-355 Poznan, Poland
AuthorAffiliation_xml – name: 1 Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
– name: 2 Department of Cardiology-Intensive Therapy and Internal Disease, Poznan University of Medical Sciences, 60-355 Poznan, Poland
Author_xml – sequence: 1
  givenname: Szymon
  orcidid: 0000-0003-2412-0739
  surname: Buś
  fullname: Buś, Szymon
  organization: Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
– sequence: 2
  givenname: Konrad
  orcidid: 0000-0003-4303-9450
  surname: Jędrzejewski
  fullname: Jędrzejewski, Konrad
  organization: Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
– sequence: 3
  givenname: Przemysław
  orcidid: 0000-0001-9052-5027
  surname: Guzik
  fullname: Guzik, Przemysław
  organization: Department of Cardiology-Intensive Therapy and Internal Disease, Poznan University of Medical Sciences, 60-355 Poznan, Poland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36675616$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1rGzEQxUVJaNI0p96LoJdAcasvS9pLwbjNB4QW3OYstNpZW2YtuZLWofSfr9ykwelcZtD78ZjRe4WOQgyA0BtKPnDekI9rt6GMMCK1eoFOGVFqQrjmRwfzCTrPeU1qaS0YVS_RCZdSTSWVp-j3DH-FezzbblO0boVLxJ-hgCs-LPGsJG8HfOnb5IfBFh8Dvst7ZR7HUPD3Ut9y8S7j2OMF7JEd4PnKhiVk3EK5BwgVDhnc-FdbLPBNKJB2dsiv0XFfG5w_9jN0d_nlx_x6cvvt6mY-u504QZoyYZ20nRAaHGiuVc-scqoFpnvaCqq5k9B1op1SIagTrRVNI7hTznLdWbCUn6FPD77bsd1A5yCUZAezTX5j0y8TrTfPleBXZhl3ptFyKomoBhePBin-HCEXs_HZQf2SAHHMhimpGZtqKiv67j90HccU6nl7SjHGlVCVev9AuRRzTtA_LUOJ2edqDnKt9NvD_Z_YfynyP7kqoaI
CitedBy_id crossref_primary_10_20883_medical_e941
Cites_doi 10.1161/01.CIR.101.23.e215
10.1016/j.patrec.2005.10.010
10.1097/HCO.0000000000000817
10.1093/europace/eum096
10.1038/s41586-020-2649-2
10.1136/hrt.52.4.396
10.3390/jcm11195702
10.20944/preprints202008.0508.v1
10.1109/ESGCO55423.2022.9931356
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1093/eurheartj/ehac262
10.3390/s21072539
10.3390/jcm11144004
10.1016/j.cvdhj.2020.11.004
10.1093/eurheartj/ehac546
10.1093/eurheartj/ehaa612
10.1016/S0895-4356(03)00177-X
10.1093/europace/euac144
10.1214/aos/1176344552
10.1111/anec.12447
10.1016/0002-9149(88)90917-4
10.1111/sms.12917
10.1016/j.jelectrocard.2016.07.030
10.23919/SPW49079.2020.9259140
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/jcm12020687
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2077-0383
ExternalDocumentID 10_3390_jcm12020687
36675616
Genre Journal Article
GrantInformation_xml – fundername: Scientific Council for the discipline of Automatic Control, Electronics and Electrical Engineering of Warsaw University of Technology, Poland
  grantid: ISE/2020/GD_AEE_2
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AADQD
AAFWJ
ABDBF
ABUWG
ADBBV
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
IAO
IHR
ITC
KQ8
M48
MODMG
M~E
NPM
OK1
PGMZT
PIMPY
RPM
UKHRP
AAYXX
AFPKN
CITATION
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c409t-2d6ad448ece8387f2a7c7be28f1b4183c6edd4b51441c4ba49943c7ca38daea13
IEDL.DBID RPM
ISSN 2077-0383
IngestDate Tue Sep 17 21:30:31 EDT 2024
Fri Oct 25 09:55:02 EDT 2024
Thu Oct 10 19:29:27 EDT 2024
Thu Sep 26 20:33:19 EDT 2024
Wed Oct 16 00:40:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords cardiac time series
atrial fibrillation
cardiac arrhythmia
heart rate variability
RR intervals
electrocardiography
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-2d6ad448ece8387f2a7c7be28f1b4183c6edd4b51441c4ba49943c7ca38daea13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4303-9450
0000-0001-9052-5027
0000-0003-2412-0739
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865604/
PMID 36675616
PQID 2767223747
PQPubID 5046890
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9865604
proquest_miscellaneous_2768225816
proquest_journals_2767223747
crossref_primary_10_3390_jcm12020687
pubmed_primary_36675616
PublicationCentury 2000
PublicationDate 20230115
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 1
  year: 2023
  text: 20230115
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of clinical medicine
PublicationTitleAlternate J Clin Med
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Moody (ref_26) 1983; 10
Petrutiu (ref_8) 2007; 9
Guzik (ref_21) 2016; 49
ref_19
Glas (ref_13) 2003; 56
Efron (ref_14) 1979; 7
Ewing (ref_5) 1984; 52
Pedregosa (ref_9) 2011; 12
Zeppenfeld (ref_18) 2022; 43
Hindricks (ref_16) 2021; 42
Gajda (ref_22) 2018; 28
Kleiger (ref_6) 1988; 61
Varma (ref_17) 2021; 2
ref_25
ref_24
ref_23
Fawcett (ref_11) 2006; 27
ref_1
ref_3
ref_2
ref_27
Goldberger (ref_7) 2000; 101
ref_4
Harris (ref_10) 2020; 585
Youden (ref_12) 1950; 3
Steinberg (ref_15) 2017; 22
Lavie (ref_20) 2021; 36
References_xml – volume: 101
  start-page: e215
  year: 2000
  ident: ref_7
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
  contributor:
    fullname: Goldberger
– volume: 27
  start-page: 861
  year: 2006
  ident: ref_11
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
  contributor:
    fullname: Fawcett
– volume: 36
  start-page: 10
  year: 2021
  ident: ref_20
  article-title: Consumer wearable technologies to identify and monitor exercise-related arrhythmias in athletes
  publication-title: Curr. Opin. Cardiol.
  doi: 10.1097/HCO.0000000000000817
  contributor:
    fullname: Lavie
– volume: 9
  start-page: 466
  year: 2007
  ident: ref_8
  article-title: Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans
  publication-title: EP Europace
  doi: 10.1093/europace/eum096
  contributor:
    fullname: Petrutiu
– volume: 585
  start-page: 357
  year: 2020
  ident: ref_10
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
  contributor:
    fullname: Harris
– volume: 52
  start-page: 396
  year: 1984
  ident: ref_5
  article-title: New method for assessing cardiac parasympathetic activity using 24 hour electrocardiograms
  publication-title: Heart
  doi: 10.1136/hrt.52.4.396
  contributor:
    fullname: Ewing
– ident: ref_3
  doi: 10.3390/jcm11195702
– ident: ref_23
  doi: 10.20944/preprints202008.0508.v1
– ident: ref_27
  doi: 10.1109/ESGCO55423.2022.9931356
– ident: ref_1
– volume: 10
  start-page: 227
  year: 1983
  ident: ref_26
  article-title: A new method for detecting atrial fibrillation using RR intervals
  publication-title: Comput. Cardiol.
  contributor:
    fullname: Moody
– volume: 3
  start-page: 32
  year: 1950
  ident: ref_12
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
  contributor:
    fullname: Youden
– volume: 43
  start-page: 3997
  year: 2022
  ident: ref_18
  article-title: 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Developed by the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC)
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehac262
  contributor:
    fullname: Zeppenfeld
– ident: ref_19
  doi: 10.3390/s21072539
– ident: ref_2
  doi: 10.3390/jcm11144004
– volume: 2
  start-page: 4
  year: 2021
  ident: ref_17
  article-title: 2021 ISHNE/HRS/EHRA/APHRS Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals: From the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia Pacific Heart Rhythm Society
  publication-title: Cardiovasc. Digit. Health J.
  doi: 10.1016/j.cvdhj.2020.11.004
  contributor:
    fullname: Varma
– ident: ref_25
  doi: 10.1093/eurheartj/ehac546
– volume: 42
  start-page: 373
  year: 2021
  ident: ref_16
  article-title: 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS) The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehaa612
  contributor:
    fullname: Hindricks
– volume: 56
  start-page: 1129
  year: 2003
  ident: ref_13
  article-title: The diagnostic odds ratio: A single indicator of test performance
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/S0895-4356(03)00177-X
  contributor:
    fullname: Glas
– ident: ref_24
  doi: 10.1093/europace/euac144
– volume: 7
  start-page: 1
  year: 1979
  ident: ref_14
  article-title: Bootstrap Methods: Another Look at the Jackknife
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344552
  contributor:
    fullname: Efron
– volume: 22
  start-page: e12447
  year: 2017
  ident: ref_15
  article-title: 2017 ISHNE-HRS expert consensus statement on ambulatory ECG and external cardiac monitoring/telemetry
  publication-title: Ann. Noninvasive Electrocardiol.
  doi: 10.1111/anec.12447
  contributor:
    fullname: Steinberg
– volume: 61
  start-page: 208
  year: 1988
  ident: ref_6
  article-title: Components of heart rate variability measured during healing of acute myocardial infarction
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(88)90917-4
  contributor:
    fullname: Kleiger
– volume: 28
  start-page: 496
  year: 2018
  ident: ref_22
  article-title: Are heart rate monitors valuable tools for diagnosing arrhythmias in endurance athletes?
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/sms.12917
  contributor:
    fullname: Gajda
– volume: 49
  start-page: 894
  year: 2016
  ident: ref_21
  article-title: ECG by mobile technologies
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2016.07.030
  contributor:
    fullname: Guzik
– ident: ref_4
  doi: 10.23919/SPW49079.2020.9259140
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_9
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
SSID ssj0000884217
Score 2.2761154
Snippet The ratio of the difference between neighboring RR intervals to the length of the preceding RR interval (x%) represents the relative change in the duration...
Background: The ratio of the difference between neighboring RR intervals to the length of the preceding RR interval (x%) represents the relative change in the...
BACKGROUNDThe ratio of the difference between neighboring RR intervals to the length of the preceding RR interval (x%) represents the relative change in the...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 687
SubjectTerms Accuracy
Cardiac arrhythmia
Classification
Clinical medicine
Electrocardiography
Heart rate
Rhythm
Software
Statistical analysis
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYoSFUvCGhLw6MapFxXWa8de3NCETRCleCAiJTbyq9VW5VdSjZc-PPM7DohAannsWTLM_a8vplhrM9RqdNc7YTr0lNTbZFYZW1ijE-9lkFwTsXJ1zfqaip_zoazGHCbR1jl8k9sP2pfO4qRDzKtNKoytH7PH_4lNDWKsqtxhMYHtsMzFF6UZz3TqxgLviCJJ-nK8gR694M_7h4XZqkiCN26InpnXb4FSa5pncke243mIow7_u6zrVAdsI_XMSH-mT2PAb8pGMfO4NDUcBkoL4AaCcbtSA6YEKr_b4d5gxYiAFSJ3gAZml2fZqhL6GBxTwG6goM5RAgX0EzP4BYt7fYW2hgiyuf8C5tOftxdXCVxnkLi0Itrkswr49EdCy7kItdlZrTTNmR5ya3Ep-1U8F7aIflYTlqDzpAUTjsjcm-C4eIr267qKnxj4Mpc52YU0rKU0qV-JL3yygruR2gQpa7H-svLLR66thkFuhvEg2KNBz12srz4Ir6defHK6R47W5FR6imVYapQL9o1aNkMc6567LDj02ofodAJUkTRGxxcLaCO2puU6vevtrP2KKdeRPLo_8c6Zp9o6DwFYvjwhG03j4twiqZJY7-38vcCA4LnKw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEB5qheJLabXq2R-M0NfVzW4uyT1IOdoeRagPxYO-Lfm1qNQ97e0VxX_emeze0as-9HmyBDJJ5vs2M98AHAsK6txXOxO6DiyqXWZOOZdZG_KgZSyF4OLky0_qYio_Xg-vN2DZjLNfwPl_qR33k5re3rz79fP3CR34D8w4ibK__-a_C-LwuTL6CTwtWJGLc_h6nJ-uZGNkkbrvFrnWWU60rKvVe_j9enT6B3I-zJy8F4omO7DdY0gcd07fhY3YPIety_6V_AX8GSPdXTju5cKxneFZ5McCClM4Tn06cMKp_jddIhymvAHk8vQWGX124s04q7HLlbuL2FUhzLHP60Ju9Bn9ItmurjD9WKRNO9-D6eT88-lF1jdZyDxRuzYrgrKBOFr00ZRG14XVXrtYmFo4SefdqxiCdEMmXl46SwxJll57W5pgoxXlS9hsZk18Dehro40dxbyupfR5GMmggnKlCCNCSbkfwPFycasfnZZGRRyEfVDd88EADpYLXy33Q1VopQnJEPkZwNuVmY4Cv2_YJs4WaQzBnaERagCvOj-t5ikVMSPFFr3mwdUAltletzRfvyS57ZFhgSL55hHz7sMzbkfPv2jE8AA229tFPCTQ0rqjtCH_AokZ7UQ
  priority: 102
  providerName: Scholars Portal
Title A New Approach to Detecting Atrial Fibrillation Using Count Statistics of Relative Changes between Consecutive RR Intervals
URI https://www.ncbi.nlm.nih.gov/pubmed/36675616
https://www.proquest.com/docview/2767223747
https://search.proquest.com/docview/2768225816
https://pubmed.ncbi.nlm.nih.gov/PMC9865604
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH4CJqFdJhgwAqzyJK6hce3Y7rH8qBBSEaqG1FvkX9GYaIrWlAv_PM9OUpXttmNkR47ynu3vs7_3HsA5xU091NVOqSxdSKrNUiOMSbV2mZPcM0pDcPLkXtw-8rtZPtuCvIuFiaJ9a54uquf5RfX0K2orX-a23-nE-g-Tq6EKKWN4fxu20UE3KHpcfpXiOHwTi8eQ0vd_2zlFjp8JFUruMYEYWYT65psb0T_o8m-R5MauM96DLy1cJKPms_Zhy1dfYXfSXogfwNuI4DJFRm1mcFIvyLUP9wK4I5FRLMlBxkHV_9xo3kiUCJAQiV6TADSbPM1kUZJGFvfqSRNwsCSthIuEmp7ermLbdEriGSL65_IQHsc3P69u07aeQmqRxdXpwAntkI556xVTshxoaaXxA1VSw3FqW-Gd4yYPHMtyo5EMcWal1Uw57TVlR7BTLSp_DMSWSio99FlZcm4zN-ROOGEYdUMERJlN4Lz7ucVLkzajQLoRzFFsmCOBs-7HF-3cWRYDKSSCFuQ5CfxYN6PXh6sMXfnFKvZBZJMrKhL41thpPU5n4ATkBwuuO4SM2h9b0NFiZu3WsU7--81T-Bzq0YczGpqfwU79Z-W_I2qpTQ99dSZ78Ony5v5hik8TrnrRc98Bi0TzjA
link.rule.ids 230,315,730,783,787,888,2228,12070,21402,24332,27938,27939,31733,31734,33758,33759,43324,43819,53806,53808,74081,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6VVgIuCCiPQIGp1KtVb3az65xQBETpIz1UrZSbtS8LENiFOFz488zYm5CC1PNY8mpnd-f1zTcAR4KMOs_VzoSpApNqy8xp5zJrQx6MilIIbk6eX-jZtTpdjBYp4bZMsMr1m9g91KHxnCM_HhptyJSR9_v-5kfGU6O4uppGaNyDPebhYu58szCbHAvdIEUr6dvyJEX3x1_9d0Hhfq4ZQrdtiP7zLv8FSW5ZneljeJTcRZz0-n0CO7F-CvfnqSC-D78nSM8UThIzOLYNfoxcFyCLhJNuJAdOGdX_rce8YQcRQO5Eb5EdzZ6nGZsKe1jcr4h9w8ESE4QLeaZn9KtOdnmJXQ6RzufyGVxPP119mGVpnkLmKYprs2HQNlA4Fn0sZGGqoTXeuDgsKuEUXW2vYwjKjTjG8spZCoaU9MZbWQQbrZDPYbdu6vgS0FeFKew45lWllM_DWAUdtJMijMkhyv0AjtabW970tBklhRusg3JLBwM4WG98me7Osvyr6QEcbsR06rmUYevYrLpvyLMZFUIP4EWvp81_pKYgSLPE3NLg5gNm1L4tqb987pi1xwVzEalXdy_rHTyYXc3Py_OTi7PX8JAH0HNSRowOYLf9uYpvyE1p3dvuLP4BC5_qGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB5BkSouFVAegVIGqVcr3uxm1zmhiBKVR6uqolJu1r6stip2Sxwu_Hlm7E1IqcR5LHm1M7Pz-mYG4ECQUee92pkwVeCh2jJz2rnM2pAHo6IUgpuTj0_00bn6Mh_PE_5pkWCVqzexe6hD4zlHPhwZbciUkfc7rBIs4vRw9uHmNuMNUlxpTes0HsIjo8jQkWybuVnnW0ibFJ2qb9GTFOkPr_wPQaF_rhlOt2mU7nma_wImNyzQ7AnsJNcRpz2vn8KDWD-D7eNUHN-F31OkJwunaUo4tg0eRq4RkHXCabeeA2eM8L_u8W_YwQWQu9JbZKezn9mMTYU9RO5XxL75YIEJzoW83zP6ZUc7O8Mun0iyungO57NP3z8eZWm3QuYpomuzUdA2UGgWfSxkYaqRNd64OCoq4RSpudcxBOXGHG955SwFRkp6460sgo1WyBewVTd1fAXoq8IUdhLzqlLK52Gigg7aSREm5BzlfgAHq8stb_oRGiWFHsyDcoMHA9hbXXyZ9GhR_uX6AN6vyaQBXNawdWyW3Tfk5YwLoQfwsufT-j9SU0CkmWLucHD9AU_XvkupLy-6KduTgucSqdf_P9Y72CYxLL99Pvn6Bh7zLnrOz4jxHmy1P5fxLXksrdvvRPEPtUjuUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Approach+to+Detecting+Atrial+Fibrillation+Using+Count+Statistics+of+Relative+Changes+between+Consecutive+RR+Intervals&rft.jtitle=Journal+of+clinical+medicine&rft.au=Bu%C5%9B%2C+Szymon&rft.au=J%C4%99drzejewski%2C+Konrad&rft.au=Guzik%2C+Przemys%C5%82aw&rft.date=2023-01-15&rft.issn=2077-0383&rft.eissn=2077-0383&rft.volume=12&rft.issue=2&rft_id=info:doi/10.3390%2Fjcm12020687&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0383&client=summon