A highly stable microporous covalent imine network adsorbent for natural gas upgrading and flue gas CO2 capture

The microporous CIN material offering superior chemical robustness under both acidic and basic conditions and high thermal stability. Framework enriched with Lewis basicity and high Qst facilitated to enhance natural gas upgrading and flue gas CO2 capture, make the material as a promising adsorbent....

Full description

Saved in:
Bibliographic Details
Published inSeparation and purification technology Vol. 170; pp. 68 - 77
Main Authors Das, Swapan K., Wang, Xinbo, Ostwal, Mayur M., Lai, Zhiping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The microporous CIN material offering superior chemical robustness under both acidic and basic conditions and high thermal stability. Framework enriched with Lewis basicity and high Qst facilitated to enhance natural gas upgrading and flue gas CO2 capture, make the material as a promising adsorbent. [Display omitted] •A covalent triazine-piperazine linked polymer with permanent porosity.•Outstanding chemical robustness and high thermal stability.•Enhanced CO2 and CH4 uptake and high CO2/N2 and CH4/N2 selectivity.•High heats of adsorption for CH4 and CO2. The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff base condensation and exhibited superior chemical robustness under both acidic and basic conditions and high thermal stability. The material possesses a relatively uniform nanoparticle size of approximately 70–100nm. This network featured permanent porosity with a high surface area (722m2/g) and micropores. A single-component gas adsorption study showed enhanced CO2 and CH4 uptakes of 3.32mmol/g and 1.14mmol/g, respectively, at 273K and 1bar, coupled with high separation selectivities for CO2/CH4, CH4/N2, and CO2/N2 of 23, 11.8 and 211, respectively. The enriched Lewis basicity in the porous skeletons favours the interaction of quadrupolar CO2 and polarizable CH4, resulting in enhanced CH4 and CO2 uptake and high CH4/N2, CO2/CH4 and CO2/N2 selectivities. Breakthrough experiments showed high CO2/CH4, CH4/N2 and CO2/N2 selectivities of 7.29, 40 and 125, respectively, at 298K and 1bar. High heats of adsorption for CH4 and CO2 (QstCH4; 32.61kJmol−1 and QstCO2; 42.42kJmol−1) provide the ultimate validation for the high selectivity. To the best of our knowledge, such a versatile adsorbent material that displays both enhanced uptake and selectivity for a variety of binary gas mixtures, including CO2/CH4, CO2/N2 and CH4/N2, has not been extensively explored.
AbstractList The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff base condensation and exhibited superior chemical robustness under both acidic and basic conditions and high thermal stability. The material possesses a relatively uniform nanoparticle size of approximately 70-100nm. This network featured permanent porosity with a high surface area (722m2/g) and micropores. A single-component gas adsorption study showed enhanced CO2 and CH4 uptakes of 3.32mmol/g and 1.14mmol/g, respectively, at 273K and 1bar, coupled with high separation selectivities for CO2/CH4, CH4/N2, and CO2/N2 of 23, 11.8 and 211, respectively. The enriched Lewis basicity in the porous skeletons favours the interaction of quadrupolar CO2 and polarizable CH4, resulting in enhanced CH4 and CO2 uptake and high CH4/N2, CO2/CH4 and CO2/N2 selectivities. Breakthrough experiments showed high CO2/CH4, CH4/N2 and CO2/N2 selectivities of 7.29, 40 and 125, respectively, at 298K and 1bar. High heats of adsorption for CH4 and CO2 (QstCH4; 32.61kJmol-1 and QstCO2; 42.42kJmol-1) provide the ultimate validation for the high selectivity. To the best of our knowledge, such a versatile adsorbent material that displays both enhanced uptake and selectivity for a variety of binary gas mixtures, including CO2/CH4, CO2/N2 and CH4/N2, has not been extensively explored.
The microporous CIN material offering superior chemical robustness under both acidic and basic conditions and high thermal stability. Framework enriched with Lewis basicity and high Qst facilitated to enhance natural gas upgrading and flue gas CO2 capture, make the material as a promising adsorbent. [Display omitted] •A covalent triazine-piperazine linked polymer with permanent porosity.•Outstanding chemical robustness and high thermal stability.•Enhanced CO2 and CH4 uptake and high CO2/N2 and CH4/N2 selectivity.•High heats of adsorption for CH4 and CO2. The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff base condensation and exhibited superior chemical robustness under both acidic and basic conditions and high thermal stability. The material possesses a relatively uniform nanoparticle size of approximately 70–100nm. This network featured permanent porosity with a high surface area (722m2/g) and micropores. A single-component gas adsorption study showed enhanced CO2 and CH4 uptakes of 3.32mmol/g and 1.14mmol/g, respectively, at 273K and 1bar, coupled with high separation selectivities for CO2/CH4, CH4/N2, and CO2/N2 of 23, 11.8 and 211, respectively. The enriched Lewis basicity in the porous skeletons favours the interaction of quadrupolar CO2 and polarizable CH4, resulting in enhanced CH4 and CO2 uptake and high CH4/N2, CO2/CH4 and CO2/N2 selectivities. Breakthrough experiments showed high CO2/CH4, CH4/N2 and CO2/N2 selectivities of 7.29, 40 and 125, respectively, at 298K and 1bar. High heats of adsorption for CH4 and CO2 (QstCH4; 32.61kJmol−1 and QstCO2; 42.42kJmol−1) provide the ultimate validation for the high selectivity. To the best of our knowledge, such a versatile adsorbent material that displays both enhanced uptake and selectivity for a variety of binary gas mixtures, including CO2/CH4, CO2/N2 and CH4/N2, has not been extensively explored.
Author Das, Swapan K.
Lai, Zhiping
Wang, Xinbo
Ostwal, Mayur M.
Author_xml – sequence: 1
  givenname: Swapan K.
  surname: Das
  fullname: Das, Swapan K.
– sequence: 2
  givenname: Xinbo
  surname: Wang
  fullname: Wang, Xinbo
– sequence: 3
  givenname: Mayur M.
  surname: Ostwal
  fullname: Ostwal, Mayur M.
– sequence: 4
  givenname: Zhiping
  orcidid: 0000-0001-9555-6009
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
BookMark eNqNUU1v1DAQtVAr0Q_-AQcfuWSx48RxOCBVKwpIlXqhZ2vsTLZevHawnaL-e7xdThwAaaT50HtvNPMuyVmIAQl5y9mGMy7f7zcZl2VNm7Z2G1aDy1fkgqtBNGIYu7NaCyWaXkn5mlzmvGeMD1y1FyTe0Ee3e_TPNBcwHunB2RSXmOKaqY1P4DEU6g4uIA1Yfsb0ncKUYzLH-RwTDVDWBJ7uINN12SWYXNhRCBOd_Yov4-19Sy0sFYfX5HwGn_HN73xFHm4_fdt-ae7uP3_d3tw1tmNjadpetQMzo5mtGsH2agaLgxwsTD03fBSqVwamFuaus2YSBjhIxmEyEnoLKK7Iu5PukuKPFXPRB5cteg8B62maK9H3SvVS_geUczWKTo4V-uEErT_KOeGsrStQXAwlgfOaM300RO_1yRB9NESzGvy4p_uDvCR3gPT8L9rHEw3ru54cJp2tw2Bxcglt0VN0fxf4BbIerG8
CitedBy_id crossref_primary_10_1007_s10450_025_00595_7
crossref_primary_10_3390_en12214213
crossref_primary_10_1016_j_inoche_2019_02_036
crossref_primary_10_1016_j_jssc_2024_124683
crossref_primary_10_1016_j_micromeso_2017_07_038
crossref_primary_10_1016_j_micromeso_2022_111907
crossref_primary_10_1016_j_seppur_2017_07_023
crossref_primary_10_1016_j_micromeso_2022_112318
crossref_primary_10_1016_j_mtcomm_2021_102251
crossref_primary_10_3390_colloids6020020
crossref_primary_10_1016_j_carbon_2016_12_056
crossref_primary_10_1021_acsami_0c20484
crossref_primary_10_1063_5_0208686
crossref_primary_10_1007_s42452_019_1055_6
crossref_primary_10_3390_polym17070868
crossref_primary_10_1016_j_micromeso_2025_113516
crossref_primary_10_1039_C9TA06847C
crossref_primary_10_1016_j_apsusc_2016_09_161
crossref_primary_10_1007_s10971_019_04920_9
crossref_primary_10_1155_2019_6130152
Cites_doi 10.1021/ie901488f
10.1038/ncomms2359
10.1021/ic502733v
10.1002/ange.200904637
10.1080/01496390801940952
10.1038/nature14212
10.1038/ncomms1405
10.1126/science.1172246
10.1021/ie902008g
10.1021/es4000643
10.1080/01496390500287846
10.1039/c1sc00100k
10.1021/am301772k
10.1021/ja305601g
10.1002/ange.200900479
10.1039/c3ee42548g
10.1021/ja803708s
10.1016/j.ces.2016.02.007
10.1021/ef800938e
10.1002/anie.200461704
10.1039/C4TA03015J
10.1039/c1cc00084e
10.1038/nmat2545
10.1021/jacs.5b04300
10.1073/pnas.0909718106
10.1021/jacs.5b00838
10.1002/anie.201000431
10.1002/marc.201300227
10.1039/C4RA08909J
10.1021/cm901280w
10.1021/ef050072h
10.1021/cm303751n
10.1126/science.1077591
10.1039/c2jm30761h
10.1039/c3py01471a
10.1039/C1DT11350J
10.1021/cr2003272
10.1021/jp300137e
10.1038/srep02611
10.1002/chem.201303493
10.17221/41/2010-RAE
10.1021/acs.iecr.5b04038
10.1002/ceat.201300046
10.1021/cm400019f
10.1038/nature11893
10.1002/adfm.201202442
10.1021/cm303072n
10.1039/c2jm35446b
10.1038/nature06900
10.1021/jp300961j
10.1039/c3ee42226g
10.1039/c0dt01483d
10.1021/cm300407h
10.1002/anie.200705710
10.1039/C4TA02861A
10.1016/j.jcis.2014.05.021
10.1039/c3cc41382a
10.1039/C5TA00665A
10.1039/C4TA05349D
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7ST
C1K
SOI
7SR
8BQ
8FD
JG9
DOI 10.1016/j.seppur.2016.06.016
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
Environment Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3794
EndPage 77
ExternalDocumentID 10_1016_j_seppur_2016_06_016
S1383586616306451
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
HZ~
R2-
SEW
SSH
7ST
C1K
SOI
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c409t-258270b9bfc89ac58face767cad51b193858bad2af44cbd3ba1a601adb6a5cae3
IEDL.DBID .~1
ISSN 1383-5866
IngestDate Fri Jul 11 01:55:53 EDT 2025
Fri Jul 11 13:58:45 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
Tue Jul 01 01:05:01 EDT 2025
Fri Feb 23 02:33:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Porous organic polymer
Methane nitrogen separation
CO2 capture
Adsorption
Greenhouse gas
Natural gas
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-258270b9bfc89ac58face767cad51b193858bad2af44cbd3ba1a601adb6a5cae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9555-6009
PQID 1811893469
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_1835588566
proquest_miscellaneous_1811893469
crossref_citationtrail_10_1016_j_seppur_2016_06_016
crossref_primary_10_1016_j_seppur_2016_06_016
elsevier_sciencedirect_doi_10_1016_j_seppur_2016_06_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Separation and purification technology
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Tian, Thallapally, McGrail (b0295) 2012; 116
Cooper (b0035) 2015; 519
Brunelli, Didas, Venkatasubbaiah, Jones (b0090) 2012; 134
Lu, Verdegaal, Yu, Balbuena, Jeong, Zhou (b0195) 2013; 6
Yuan, Wu, Chen, Huang, Luo, Deng (b0010) 2013; 47
Roy, Chatterjee, Banerjee, Salam, Bhaumik, Islam (b0145) 2014; 4
Huang, Krishna, Jiang (b0255) 2015; 137
Nugent, Belmabkhout, Burd, Cairns, Luebke, Forrest, Pham, Ma, Space, Wojtas (b0290) 2013; 495
Zhao, Jin, Su, Jing, Sun, Zhu (b0130) 2011; 47
Patel, Je, Park, Jung, Coskun, Yavuz (b0235) 2014; 20
Atwood, Barbour, Jerga, Schottel (b0205) 2002; 298
Herout, Malaťák, Kučera, Dlabaja (b0215) 2011; 57
Cavenati, Grande, Rodrigues (b0030) 2005; 19
Mohanty, Kull, Landskron (b0060) 2011; 2
Ma, Ren, Meng, Sun, Zhu (b0110) 2013; 3
Kailasam, Schmidt, Bildirir, Zhang, Blechert, Wang, Thomas (b0120) 2013; 34
Qian, Lei, Hao, Li, Lu (b0220) 2012; 4
Das, Bhunia, Seikh, Dutta, Bhaumik (b0160) 2011; 40
Cavenati, Grande, Rodrigues (b0015) 2005; 40
Liu, Liu, Yang, Zhong, Mi (b0065) 2010; 49
Ben, Ren, Ma, Cao, Lan, Jing, Wang, Xu, Deng, Simmons (b0070) 2009; 121
Rabbani, El-Kaderi (b0250) 2012; 24
Grande, Lopes, Ribeiro, Loureiro, Rodrigues (b0025) 2008; 43
Hamon, Jolimaître, Pirngruber (b0280) 2010; 49
Farha, Spokoyny, Hauser, Bae, Brown, Snurr, Mirkin, Hupp (b0075) 2009; 21
Sozzani, Bracco, Comotti, Ferretti, Simonutti (b0200) 2005; 44
Kuhn, Antonietti, Thomas (b0100) 2008; 47
Yang, Guo, Hu, Hu, Chen, Shen, Dai, Fan (b0085) 2016; 55
Liang, Marshall, Chaffee (b0285) 2009; 23
Asadi, Ehsani, Ribeiro, Loureiro, Rodrigues (b0275) 2013; 36
Britt, Furukawa, Wang, Glover, Yaghi (b0155) 2009; 106
Mason, McDonald, Bae, Bachman, Sumida, Dutton, Kaye, Long (b0175) 2015; 137
Wu, Yuan, Bao, Deng (b0005) 2014; 430
Zhu, Long, Zhang (b0245) 2013; 25
Katekomol, Roeser, Bojdys, Weber, Thomas (b0125) 2013; 25
Bhunia, Das, Pachfule, Banerjee, Bhaumik (b0140) 2012; 41
Tozawa, Jones, Swamy, Jiang, Adams, Shakespeare, Clowes, Bradshaw, Hasell, Chong (b0210) 2009; 8
Patel, Karadas, Byun, Park, Deniz, Canlier, Jung, Atilhan, Yavuz (b0040) 2013; 23
Das, Wang, Ostwal, Zhao, Han, Lai (b0190) 2016
Xiang, Cao, Wang, Yang, Han, Lu (b0230) 2012; 116
Tian, Thallapally, Dalgarno, McGrail, Atwood (b0080) 2009; 121
Dawson, Adams, Cooper (b0270) 2011; 2
Kuhn, Forget, Su, Thomas, Antonietti (b0165) 2008; 130
Lu, Zhang (b0240) 2014; 2
Puthiaraj, Cho, Lee, Ahn (b0170) 2015; 3
Patel, Je, Park, Chen, Jung, Yavuz, Coskun (b0185) 2013; 4
D’Alessandro, Smit, Long (b0180) 2010; 49
Wang, Jia, Hou, Shi, Zhu, Wang (b0055) 2015; 54
Sumida, Rogow, Mason, McDonald, Bloch, Herm, Bae, Long (b0045) 2011; 112
Patel, Karadas, Canlier, Park, Deniz, Jung, Atilhan, Yavuz (b0115) 2012; 22
Liu, Wang, Shen, Ju, Yuan (b0225) 2015; 3
Sung, Suh (b0260) 2014; 2
Haszeldine (b0020) 2009; 325
Zhao, Yao, Teng, Zhang, Han (b0095) 2013; 6
Xiong, Fu, Xiang, Yu, Guan, Wang, Du, Xiong, Pan (b0135) 2014; 5
Bhunia, Vasylyeva, Janiak (b0105) 2013; 49
Zhao, Liu, Yao, Zhao, Han (b0150) 2012; 24
Xiang, Zhou, Zhou, Zhong, He, Qin, Cao (b0265) 2012; 22
Wang, Côté, Furukawa, O’Keeffe, Yaghi (b0050) 2008; 453
Bhunia (10.1016/j.seppur.2016.06.016_b0105) 2013; 49
Yang (10.1016/j.seppur.2016.06.016_b0085) 2016; 55
Kuhn (10.1016/j.seppur.2016.06.016_b0100) 2008; 47
Xiang (10.1016/j.seppur.2016.06.016_b0230) 2012; 116
Huang (10.1016/j.seppur.2016.06.016_b0255) 2015; 137
Ben (10.1016/j.seppur.2016.06.016_b0070) 2009; 121
Farha (10.1016/j.seppur.2016.06.016_b0075) 2009; 21
Grande (10.1016/j.seppur.2016.06.016_b0025) 2008; 43
Asadi (10.1016/j.seppur.2016.06.016_b0275) 2013; 36
Atwood (10.1016/j.seppur.2016.06.016_b0205) 2002; 298
Katekomol (10.1016/j.seppur.2016.06.016_b0125) 2013; 25
Wang (10.1016/j.seppur.2016.06.016_b0050) 2008; 453
Brunelli (10.1016/j.seppur.2016.06.016_b0090) 2012; 134
Roy (10.1016/j.seppur.2016.06.016_b0145) 2014; 4
Cavenati (10.1016/j.seppur.2016.06.016_b0030) 2005; 19
Zhu (10.1016/j.seppur.2016.06.016_b0245) 2013; 25
Das (10.1016/j.seppur.2016.06.016_b0160) 2011; 40
Haszeldine (10.1016/j.seppur.2016.06.016_b0020) 2009; 325
Puthiaraj (10.1016/j.seppur.2016.06.016_b0170) 2015; 3
D’Alessandro (10.1016/j.seppur.2016.06.016_b0180) 2010; 49
Dawson (10.1016/j.seppur.2016.06.016_b0270) 2011; 2
Patel (10.1016/j.seppur.2016.06.016_b0185) 2013; 4
Xiang (10.1016/j.seppur.2016.06.016_b0265) 2012; 22
Cavenati (10.1016/j.seppur.2016.06.016_b0015) 2005; 40
Zhao (10.1016/j.seppur.2016.06.016_b0095) 2013; 6
Patel (10.1016/j.seppur.2016.06.016_b0115) 2012; 22
Patel (10.1016/j.seppur.2016.06.016_b0040) 2013; 23
Mason (10.1016/j.seppur.2016.06.016_b0175) 2015; 137
Das (10.1016/j.seppur.2016.06.016_b0190) 2016
Liu (10.1016/j.seppur.2016.06.016_b0065) 2010; 49
Qian (10.1016/j.seppur.2016.06.016_b0220) 2012; 4
Liu (10.1016/j.seppur.2016.06.016_b0225) 2015; 3
Liu (10.1016/j.seppur.2016.06.016_b0295) 2012; 116
Kailasam (10.1016/j.seppur.2016.06.016_b0120) 2013; 34
Mohanty (10.1016/j.seppur.2016.06.016_b0060) 2011; 2
Sozzani (10.1016/j.seppur.2016.06.016_b0200) 2005; 44
Sung (10.1016/j.seppur.2016.06.016_b0260) 2014; 2
Sumida (10.1016/j.seppur.2016.06.016_b0045) 2011; 112
Zhao (10.1016/j.seppur.2016.06.016_b0130) 2011; 47
Yuan (10.1016/j.seppur.2016.06.016_b0010) 2013; 47
Tozawa (10.1016/j.seppur.2016.06.016_b0210) 2009; 8
Xiong (10.1016/j.seppur.2016.06.016_b0135) 2014; 5
Rabbani (10.1016/j.seppur.2016.06.016_b0250) 2012; 24
Nugent (10.1016/j.seppur.2016.06.016_b0290) 2013; 495
Lu (10.1016/j.seppur.2016.06.016_b0195) 2013; 6
Liang (10.1016/j.seppur.2016.06.016_b0285) 2009; 23
Ma (10.1016/j.seppur.2016.06.016_b0110) 2013; 3
Wang (10.1016/j.seppur.2016.06.016_b0055) 2015; 54
Tian (10.1016/j.seppur.2016.06.016_b0080) 2009; 121
Kuhn (10.1016/j.seppur.2016.06.016_b0165) 2008; 130
Zhao (10.1016/j.seppur.2016.06.016_b0150) 2012; 24
Lu (10.1016/j.seppur.2016.06.016_b0240) 2014; 2
Hamon (10.1016/j.seppur.2016.06.016_b0280) 2010; 49
Bhunia (10.1016/j.seppur.2016.06.016_b0140) 2012; 41
Herout (10.1016/j.seppur.2016.06.016_b0215) 2011; 57
Cooper (10.1016/j.seppur.2016.06.016_b0035) 2015; 519
Britt (10.1016/j.seppur.2016.06.016_b0155) 2009; 106
Patel (10.1016/j.seppur.2016.06.016_b0235) 2014; 20
Wu (10.1016/j.seppur.2016.06.016_b0005) 2014; 430
References_xml – volume: 325
  start-page: 1647
  year: 2009
  end-page: 1652
  ident: b0020
  article-title: Carbon capture and storage: how green can black be?
  publication-title: Science
– volume: 19
  start-page: 2545
  year: 2005
  end-page: 2555
  ident: b0030
  article-title: Upgrade of methane from landfill gas by pressure swing adsorption
  publication-title: Energy Fuels
– volume: 112
  start-page: 724
  year: 2011
  end-page: 781
  ident: b0045
  article-title: Carbon dioxide capture in metal–organic frameworks
  publication-title: Chem. Rev.
– volume: 47
  start-page: 3450
  year: 2008
  end-page: 3453
  ident: b0100
  article-title: Porous covalent triazine-based frameworks prepared by ionothermal synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 41
  start-page: 1304
  year: 2012
  end-page: 1311
  ident: b0140
  article-title: Nitrogen-rich porous covalent imine network (CIN) material as an efficient catalytic support for C–C coupling reactions
  publication-title: Dalton Trans.
– volume: 4
  start-page: 46075
  year: 2014
  end-page: 46083
  ident: b0145
  article-title: Cu (ii) anchored nitrogen-rich covalent imine network (Cu II-CIN-1): an efficient and recyclable heterogeneous catalyst for the synthesis of organoselenides from aryl boronic acids in a green solvent
  publication-title: RSC Adv.
– volume: 3
  start-page: 3051
  year: 2015
  end-page: 3058
  ident: b0225
  article-title: A facile synthesis of microporous organic polymers for efficient gas storage and separation
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 22663
  year: 2012
  end-page: 22669
  ident: b0265
  article-title: Covalent-organic polymers for carbon dioxide capture
  publication-title: J. Mater. Chem.
– volume: 6
  start-page: 3684
  year: 2013
  end-page: 3692
  ident: b0095
  article-title: A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO
  publication-title: Energy Environ. Sci.
– volume: 121
  start-page: 9621
  year: 2009
  end-page: 9624
  ident: b0070
  article-title: Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area
  publication-title: Angew. Chem.
– volume: 6
  start-page: 3559
  year: 2013
  end-page: 3564
  ident: b0195
  article-title: Building multiple adsorption sites in porous polymer networks for carbon capture applications
  publication-title: Energy Environ. Sci.
– volume: 36
  start-page: 1231
  year: 2013
  end-page: 1239
  ident: b0275
  article-title: CO
  publication-title: Chem. Eng. Technol.
– volume: 116
  start-page: 9575
  year: 2012
  end-page: 9581
  ident: b0295
  article-title: Selective CO
  publication-title: J. Phys. Chem. C
– volume: 23
  start-page: 2270
  year: 2013
  end-page: 2276
  ident: b0040
  article-title: Highly stable nanoporous sulfur-bridged covalent organic polymers for carbon dioxide removal
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 401
  year: 2011
  ident: b0060
  article-title: Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide
  publication-title: Nat. Commun.
– volume: 49
  start-page: 6058
  year: 2010
  end-page: 6082
  ident: b0180
  article-title: Carbon dioxide capture: prospects for new materials
  publication-title: Angew. Chem. Int. Ed.
– volume: 25
  start-page: 1542
  year: 2013
  end-page: 1548
  ident: b0125
  article-title: Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene
  publication-title: Chem. Mater.
– volume: 134
  start-page: 13950
  year: 2012
  end-page: 13953
  ident: b0090
  article-title: Tuning cooperativity by controlling the linker length of silica-supported amines in catalysis and CO
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 3424
  year: 2014
  end-page: 3431
  ident: b0135
  article-title: Liquid acid-catalysed fabrication of nanoporous 1,3,5-triazine frameworks with efficient and selective CO
  publication-title: Polym. Chem.
– volume: 4
  start-page: 1357
  year: 2013
  ident: b0185
  article-title: Unprecedented high-temperature CO
  publication-title: Nat. Commun.
– volume: 453
  start-page: 207
  year: 2008
  end-page: 211
  ident: b0050
  article-title: Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs
  publication-title: Nature
– volume: 430
  start-page: 78
  year: 2014
  end-page: 84
  ident: b0005
  article-title: Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal–organic framework
  publication-title: J. Colloid Interface Sci.
– volume: 3
  start-page: 6792
  year: 2015
  end-page: 6797
  ident: b0170
  article-title: Microporous covalent triazine polymers: efficient Friedel-Crafts synthesis and adsorption/storage of CO
  publication-title: J. Mater. Chem. A
– volume: 49
  start-page: 3961
  year: 2013
  end-page: 3963
  ident: b0105
  article-title: From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities
  publication-title: Chem. Commun.
– volume: 519
  start-page: 294
  year: 2015
  end-page: 295
  ident: b0035
  article-title: Materials chemistry: cooperative carbon capture
  publication-title: Nature
– volume: 49
  start-page: 2902
  year: 2010
  end-page: 2906
  ident: b0065
  article-title: Comparative study of separation performance of COFs and MOFs for CH
  publication-title: Ind. Eng. Chem. Res.
– volume: 47
  start-page: 6389
  year: 2011
  end-page: 6391
  ident: b0130
  article-title: Targeted synthesis of a 2D ordered porous organic framework for drug release
  publication-title: Chem. Commun.
– volume: 40
  start-page: 2932
  year: 2011
  end-page: 2939
  ident: b0160
  article-title: Highly porous Co (II)-salicylate metal–organic framework: synthesis, characterization and magnetic properties
  publication-title: Dalton Trans.
– volume: 137
  start-page: 7079
  year: 2015
  end-page: 7082
  ident: b0255
  article-title: Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization for performance screening
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 13831
  year: 2014
  end-page: 13834
  ident: b0240
  article-title: Facile synthesis of azo-linked porous organic frameworks via reductive homocoupling for selective CO
  publication-title: J. Mater. Chem. A
– volume: 49
  start-page: 7497
  year: 2010
  end-page: 7503
  ident: b0280
  article-title: CO
  publication-title: Ind. Eng. Chem. Res.
– year: 2016
  ident: b0190
  article-title: Highly stable porous covalent triazine-piperazine linked nanoflower as a feasible adsorbent for flue gas CO
  publication-title: Chem. Eng. Sci.
– volume: 40
  start-page: 2721
  year: 2005
  end-page: 2743
  ident: b0015
  article-title: Separation of methane and nitrogen by adsorption on carbon molecular sieve
  publication-title: Sep. Sci. Technol.
– volume: 44
  start-page: 1816
  year: 2005
  end-page: 1820
  ident: b0200
  article-title: Methane and carbon dioxide storage in a porous van der Waals crystal
  publication-title: Angew. Chem. Int. Ed.
– volume: 116
  start-page: 5974
  year: 2012
  end-page: 5980
  ident: b0230
  article-title: Postsynthetic lithium modification of covalent-organic polymers for enhancing hydrogen and carbon dioxide storage
  publication-title: J. Phys. Chem. C
– volume: 47
  start-page: 5474
  year: 2013
  end-page: 5480
  ident: b0010
  article-title: Adsorption of CO
  publication-title: Environ. Sci. Technol.
– volume: 298
  start-page: 1000
  year: 2002
  end-page: 1002
  ident: b0205
  article-title: Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity
  publication-title: Science
– volume: 20
  start-page: 772
  year: 2014
  end-page: 780
  ident: b0235
  article-title: Directing the structural features of N
  publication-title: Chem. Eur. J.
– volume: 2
  start-page: 1173
  year: 2011
  end-page: 1177
  ident: b0270
  article-title: Chemical tuning of CO
  publication-title: Chem. Sci.
– volume: 34
  start-page: 1008
  year: 2013
  end-page: 1013
  ident: b0120
  article-title: Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution
  publication-title: Macromol. Rapid Commun.
– volume: 137
  start-page: 4787
  year: 2015
  end-page: 4803
  ident: b0175
  article-title: Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 1338
  year: 2008
  end-page: 1364
  ident: b0025
  article-title: Adsorption of off-gases from steam methane reforming (H
  publication-title: Sep. Sci. Technol.
– volume: 2
  start-page: 13245
  year: 2014
  end-page: 13249
  ident: b0260
  article-title: Highly efficient carbon dioxide capture with a porous organic polymer impregnated with polyethylenimine
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2013
  ident: b0110
  article-title: Novel porphyrinic porous organic frameworks for high performance separation of small hydrocarbons
  publication-title: Sci. Rep.
– volume: 24
  start-page: 1511
  year: 2012
  end-page: 1517
  ident: b0250
  article-title: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake
  publication-title: Chem. Mater.
– volume: 21
  start-page: 3033
  year: 2009
  end-page: 3035
  ident: b0075
  article-title: Synthesis, properties, and gas separation studies of a robust diimide-based microporous organic polymer
  publication-title: Chem. Mater.
– volume: 121
  start-page: 5600
  year: 2009
  end-page: 5603
  ident: b0080
  article-title: Amorphous molecular organic solids for gas adsorption
  publication-title: Angew. Chem.
– volume: 130
  start-page: 13333
  year: 2008
  end-page: 13337
  ident: b0165
  article-title: From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks
  publication-title: J. Am. Chem. Soc.
– volume: 495
  start-page: 80
  year: 2013
  end-page: 84
  ident: b0290
  article-title: Porous materials with optimal adsorption thermodynamics and kinetics for CO
  publication-title: Nature
– volume: 57
  start-page: 137
  year: 2011
  end-page: 143
  ident: b0215
  article-title: Biogas composition depending on the type of plant biomass used
  publication-title: Res. Agric. Eng.
– volume: 25
  start-page: 1630
  year: 2013
  end-page: 1635
  ident: b0245
  article-title: Imine-linked porous polymer frameworks with high small gas (H
  publication-title: Chem. Mater.
– volume: 55
  start-page: 757
  year: 2016
  end-page: 765
  ident: b0085
  article-title: Adsorption of CO
  publication-title: Ind. Eng. Chem. Res.
– volume: 8
  start-page: 973
  year: 2009
  end-page: 978
  ident: b0210
  article-title: Porous organic cages
  publication-title: Nat. Mater.
– volume: 23
  start-page: 2785
  year: 2009
  end-page: 2789
  ident: b0285
  article-title: CO
  publication-title: Energy Fuels
– volume: 22
  start-page: 8431
  year: 2012
  end-page: 8437
  ident: b0115
  article-title: High capacity carbon dioxide adsorption by inexpensive covalent organic polymers
  publication-title: J. Mater. Chem.
– volume: 24
  start-page: 4725
  year: 2012
  end-page: 4734
  ident: b0150
  article-title: Superior capture of CO
  publication-title: Chem. Mater.
– volume: 4
  start-page: 6125
  year: 2012
  end-page: 6132
  ident: b0220
  article-title: Synthesis of hierarchical porous carbon monoliths with incorporated metal–organic frameworks for enhancing volumetric based CO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 106
  start-page: 20637
  year: 2009
  end-page: 20640
  ident: b0155
  article-title: Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites
  publication-title: Proc. Nat. Acad. Sci.
– volume: 54
  start-page: 1841
  year: 2015
  end-page: 1846
  ident: b0055
  article-title: A new porous MOF with two uncommon metal–carboxylate–pyrazolate clusters and high CO
  publication-title: Inorg. Chem.
– volume: 49
  start-page: 2902
  year: 2010
  ident: 10.1016/j.seppur.2016.06.016_b0065
  article-title: Comparative study of separation performance of COFs and MOFs for CH4/CO2/H2 mixtures
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie901488f
– volume: 4
  start-page: 1357
  year: 2013
  ident: 10.1016/j.seppur.2016.06.016_b0185
  article-title: Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2359
– volume: 54
  start-page: 1841
  year: 2015
  ident: 10.1016/j.seppur.2016.06.016_b0055
  article-title: A new porous MOF with two uncommon metal–carboxylate–pyrazolate clusters and high CO2/N2 selectivity
  publication-title: Inorg. Chem.
  doi: 10.1021/ic502733v
– volume: 121
  start-page: 9621
  year: 2009
  ident: 10.1016/j.seppur.2016.06.016_b0070
  article-title: Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200904637
– volume: 43
  start-page: 1338
  year: 2008
  ident: 10.1016/j.seppur.2016.06.016_b0025
  article-title: Adsorption of off-gases from steam methane reforming (H2, CO2, CH4, CO and N2) on activated carbon
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496390801940952
– volume: 519
  start-page: 294
  year: 2015
  ident: 10.1016/j.seppur.2016.06.016_b0035
  article-title: Materials chemistry: cooperative carbon capture
  publication-title: Nature
  doi: 10.1038/nature14212
– volume: 2
  start-page: 401
  year: 2011
  ident: 10.1016/j.seppur.2016.06.016_b0060
  article-title: Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1405
– volume: 325
  start-page: 1647
  year: 2009
  ident: 10.1016/j.seppur.2016.06.016_b0020
  article-title: Carbon capture and storage: how green can black be?
  publication-title: Science
  doi: 10.1126/science.1172246
– volume: 49
  start-page: 7497
  year: 2010
  ident: 10.1016/j.seppur.2016.06.016_b0280
  article-title: CO2 and CH4 separation by adsorption using Cu-BTC metal–organic framework
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie902008g
– volume: 47
  start-page: 5474
  year: 2013
  ident: 10.1016/j.seppur.2016.06.016_b0010
  article-title: Adsorption of CO2, CH4, and N2 on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4000643
– volume: 40
  start-page: 2721
  year: 2005
  ident: 10.1016/j.seppur.2016.06.016_b0015
  article-title: Separation of methane and nitrogen by adsorption on carbon molecular sieve
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496390500287846
– volume: 2
  start-page: 1173
  year: 2011
  ident: 10.1016/j.seppur.2016.06.016_b0270
  article-title: Chemical tuning of CO2 sorption in robust nanoporous organic polymers
  publication-title: Chem. Sci.
  doi: 10.1039/c1sc00100k
– volume: 4
  start-page: 6125
  year: 2012
  ident: 10.1016/j.seppur.2016.06.016_b0220
  article-title: Synthesis of hierarchical porous carbon monoliths with incorporated metal–organic frameworks for enhancing volumetric based CO2 capture capability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am301772k
– volume: 134
  start-page: 13950
  year: 2012
  ident: 10.1016/j.seppur.2016.06.016_b0090
  article-title: Tuning cooperativity by controlling the linker length of silica-supported amines in catalysis and CO2 capture
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305601g
– volume: 121
  start-page: 5600
  year: 2009
  ident: 10.1016/j.seppur.2016.06.016_b0080
  article-title: Amorphous molecular organic solids for gas adsorption
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200900479
– volume: 6
  start-page: 3684
  year: 2013
  ident: 10.1016/j.seppur.2016.06.016_b0095
  article-title: A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42548g
– volume: 130
  start-page: 13333
  year: 2008
  ident: 10.1016/j.seppur.2016.06.016_b0165
  article-title: From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja803708s
– year: 2016
  ident: 10.1016/j.seppur.2016.06.016_b0190
  article-title: Highly stable porous covalent triazine-piperazine linked nanoflower as a feasible adsorbent for flue gas CO2 capture
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.02.007
– volume: 23
  start-page: 2785
  year: 2009
  ident: 10.1016/j.seppur.2016.06.016_b0285
  article-title: CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X)
  publication-title: Energy Fuels
  doi: 10.1021/ef800938e
– volume: 44
  start-page: 1816
  year: 2005
  ident: 10.1016/j.seppur.2016.06.016_b0200
  article-title: Methane and carbon dioxide storage in a porous van der Waals crystal
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200461704
– volume: 2
  start-page: 13831
  year: 2014
  ident: 10.1016/j.seppur.2016.06.016_b0240
  article-title: Facile synthesis of azo-linked porous organic frameworks via reductive homocoupling for selective CO2 capture
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA03015J
– volume: 47
  start-page: 6389
  year: 2011
  ident: 10.1016/j.seppur.2016.06.016_b0130
  article-title: Targeted synthesis of a 2D ordered porous organic framework for drug release
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc00084e
– volume: 8
  start-page: 973
  year: 2009
  ident: 10.1016/j.seppur.2016.06.016_b0210
  article-title: Porous organic cages
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2545
– volume: 137
  start-page: 7079
  year: 2015
  ident: 10.1016/j.seppur.2016.06.016_b0255
  article-title: Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization for performance screening
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04300
– volume: 106
  start-page: 20637
  year: 2009
  ident: 10.1016/j.seppur.2016.06.016_b0155
  article-title: Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1073/pnas.0909718106
– volume: 137
  start-page: 4787
  year: 2015
  ident: 10.1016/j.seppur.2016.06.016_b0175
  article-title: Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00838
– volume: 49
  start-page: 6058
  year: 2010
  ident: 10.1016/j.seppur.2016.06.016_b0180
  article-title: Carbon dioxide capture: prospects for new materials
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201000431
– volume: 34
  start-page: 1008
  year: 2013
  ident: 10.1016/j.seppur.2016.06.016_b0120
  article-title: Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201300227
– volume: 4
  start-page: 46075
  year: 2014
  ident: 10.1016/j.seppur.2016.06.016_b0145
  article-title: Cu (ii) anchored nitrogen-rich covalent imine network (Cu II-CIN-1): an efficient and recyclable heterogeneous catalyst for the synthesis of organoselenides from aryl boronic acids in a green solvent
  publication-title: RSC Adv.
  doi: 10.1039/C4RA08909J
– volume: 21
  start-page: 3033
  year: 2009
  ident: 10.1016/j.seppur.2016.06.016_b0075
  article-title: Synthesis, properties, and gas separation studies of a robust diimide-based microporous organic polymer
  publication-title: Chem. Mater.
  doi: 10.1021/cm901280w
– volume: 19
  start-page: 2545
  year: 2005
  ident: 10.1016/j.seppur.2016.06.016_b0030
  article-title: Upgrade of methane from landfill gas by pressure swing adsorption
  publication-title: Energy Fuels
  doi: 10.1021/ef050072h
– volume: 25
  start-page: 1542
  year: 2013
  ident: 10.1016/j.seppur.2016.06.016_b0125
  article-title: Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene
  publication-title: Chem. Mater.
  doi: 10.1021/cm303751n
– volume: 298
  start-page: 1000
  year: 2002
  ident: 10.1016/j.seppur.2016.06.016_b0205
  article-title: Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity
  publication-title: Science
  doi: 10.1126/science.1077591
– volume: 22
  start-page: 8431
  year: 2012
  ident: 10.1016/j.seppur.2016.06.016_b0115
  article-title: High capacity carbon dioxide adsorption by inexpensive covalent organic polymers
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30761h
– volume: 5
  start-page: 3424
  year: 2014
  ident: 10.1016/j.seppur.2016.06.016_b0135
  article-title: Liquid acid-catalysed fabrication of nanoporous 1,3,5-triazine frameworks with efficient and selective CO2 uptake
  publication-title: Polym. Chem.
  doi: 10.1039/c3py01471a
– volume: 41
  start-page: 1304
  year: 2012
  ident: 10.1016/j.seppur.2016.06.016_b0140
  article-title: Nitrogen-rich porous covalent imine network (CIN) material as an efficient catalytic support for C–C coupling reactions
  publication-title: Dalton Trans.
  doi: 10.1039/C1DT11350J
– volume: 112
  start-page: 724
  year: 2011
  ident: 10.1016/j.seppur.2016.06.016_b0045
  article-title: Carbon dioxide capture in metal–organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003272
– volume: 116
  start-page: 5974
  year: 2012
  ident: 10.1016/j.seppur.2016.06.016_b0230
  article-title: Postsynthetic lithium modification of covalent-organic polymers for enhancing hydrogen and carbon dioxide storage
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp300137e
– volume: 3
  year: 2013
  ident: 10.1016/j.seppur.2016.06.016_b0110
  article-title: Novel porphyrinic porous organic frameworks for high performance separation of small hydrocarbons
  publication-title: Sci. Rep.
  doi: 10.1038/srep02611
– volume: 20
  start-page: 772
  year: 2014
  ident: 10.1016/j.seppur.2016.06.016_b0235
  article-title: Directing the structural features of N2-phobic nanoporous covalent organic polymers for CO2 capture and separation
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201303493
– volume: 57
  start-page: 137
  year: 2011
  ident: 10.1016/j.seppur.2016.06.016_b0215
  article-title: Biogas composition depending on the type of plant biomass used
  publication-title: Res. Agric. Eng.
  doi: 10.17221/41/2010-RAE
– volume: 55
  start-page: 757
  year: 2016
  ident: 10.1016/j.seppur.2016.06.016_b0085
  article-title: Adsorption of CO2 by petroleum coke nitrogen-doped porous carbons synthesized by combining ammoxidation with KOH activation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b04038
– volume: 36
  start-page: 1231
  year: 2013
  ident: 10.1016/j.seppur.2016.06.016_b0275
  article-title: CO2/CH4 separation by adsorption using nanoporous metal organic framework copper-benzene-1,3,5-tricarboxylate tablet
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201300046
– volume: 25
  start-page: 1630
  year: 2013
  ident: 10.1016/j.seppur.2016.06.016_b0245
  article-title: Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity
  publication-title: Chem. Mater.
  doi: 10.1021/cm400019f
– volume: 495
  start-page: 80
  year: 2013
  ident: 10.1016/j.seppur.2016.06.016_b0290
  article-title: Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation
  publication-title: Nature
  doi: 10.1038/nature11893
– volume: 23
  start-page: 2270
  year: 2013
  ident: 10.1016/j.seppur.2016.06.016_b0040
  article-title: Highly stable nanoporous sulfur-bridged covalent organic polymers for carbon dioxide removal
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202442
– volume: 24
  start-page: 4725
  year: 2012
  ident: 10.1016/j.seppur.2016.06.016_b0150
  article-title: Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon
  publication-title: Chem. Mater.
  doi: 10.1021/cm303072n
– volume: 22
  start-page: 22663
  year: 2012
  ident: 10.1016/j.seppur.2016.06.016_b0265
  article-title: Covalent-organic polymers for carbon dioxide capture
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm35446b
– volume: 453
  start-page: 207
  year: 2008
  ident: 10.1016/j.seppur.2016.06.016_b0050
  article-title: Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs
  publication-title: Nature
  doi: 10.1038/nature06900
– volume: 116
  start-page: 9575
  year: 2012
  ident: 10.1016/j.seppur.2016.06.016_b0295
  article-title: Selective CO2 capture from flue Gas using metal–organic frameworks-a fixed bed study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp300961j
– volume: 6
  start-page: 3559
  year: 2013
  ident: 10.1016/j.seppur.2016.06.016_b0195
  article-title: Building multiple adsorption sites in porous polymer networks for carbon capture applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee42226g
– volume: 40
  start-page: 2932
  year: 2011
  ident: 10.1016/j.seppur.2016.06.016_b0160
  article-title: Highly porous Co (II)-salicylate metal–organic framework: synthesis, characterization and magnetic properties
  publication-title: Dalton Trans.
  doi: 10.1039/c0dt01483d
– volume: 24
  start-page: 1511
  year: 2012
  ident: 10.1016/j.seppur.2016.06.016_b0250
  article-title: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake
  publication-title: Chem. Mater.
  doi: 10.1021/cm300407h
– volume: 47
  start-page: 3450
  year: 2008
  ident: 10.1016/j.seppur.2016.06.016_b0100
  article-title: Porous covalent triazine-based frameworks prepared by ionothermal synthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200705710
– volume: 2
  start-page: 13245
  year: 2014
  ident: 10.1016/j.seppur.2016.06.016_b0260
  article-title: Highly efficient carbon dioxide capture with a porous organic polymer impregnated with polyethylenimine
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA02861A
– volume: 430
  start-page: 78
  year: 2014
  ident: 10.1016/j.seppur.2016.06.016_b0005
  article-title: Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal–organic framework
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2014.05.021
– volume: 49
  start-page: 3961
  year: 2013
  ident: 10.1016/j.seppur.2016.06.016_b0105
  article-title: From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc41382a
– volume: 3
  start-page: 6792
  year: 2015
  ident: 10.1016/j.seppur.2016.06.016_b0170
  article-title: Microporous covalent triazine polymers: efficient Friedel-Crafts synthesis and adsorption/storage of CO2 and CH4
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA00665A
– volume: 3
  start-page: 3051
  year: 2015
  ident: 10.1016/j.seppur.2016.06.016_b0225
  article-title: A facile synthesis of microporous organic polymers for efficient gas storage and separation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA05349D
SSID ssj0017182
Score 2.3003592
Snippet The microporous CIN material offering superior chemical robustness under both acidic and basic conditions and high thermal stability. Framework enriched with...
The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 68
SubjectTerms Adsorbents
Adsorption
Carbon dioxide
CO2 capture
Greenhouse gas
Imines
Methane nitrogen separation
Natural gas
Networks
Porous organic polymer
Selectivity
Separation
Uptakes
Title A highly stable microporous covalent imine network adsorbent for natural gas upgrading and flue gas CO2 capture
URI https://dx.doi.org/10.1016/j.seppur.2016.06.016
https://www.proquest.com/docview/1811893469
https://www.proquest.com/docview/1835588566
Volume 170
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvTSH0idNH0GBXp1d2ZIsH5elYdNAemgCuQlpJIWUrdfs49BLf3tnZDu0pSQQ8MVihI0eM9-gT98w9kl60BAqUSShVSHTFApTJgRyTVmCqKukYlb7vNCLK_nlWl3vsfl4F4ZolYPv73169tZDy2QYzUl3ezv5JjC5UgbjiyYUna9RS1nTKj_5dUfzEOh784knGhdkPV6fyxyvTey6HamCCp1VPKnq-f_D0z-OOkef0-fs2QAb-az_sxdsL7Yv2cEfYoKv2GrGSXt4-ZMj4PPLyH8Q1w7hNeb2HFa4ojC-cCriFXnbk7-5C5vV2lM7YleeRT7xKzduw3fdzTrT67lrA6dCJrl5_rXk4Do6dnjNrk4_X84XxVBOoQBM4rZFqUxZT33jE5jGgTLJQax1DS4o4RHIGWW8C6VLUoIPlXfCYbrmgtdOgYvVG7bfrtr4lnERG4AwBddEgYiuNiEk3Mu1TlrSc8iqcRQtDFrjVPJiaUdS2Xfbj72lsbfErRP6kBV3vbpea-MB-3qcIPvXmrEYDh7oeTzOp8XtRGckro04HRYBj0AIJ3Vznw1p0hsEwu8e_Qfv2VN662mBH9j-dr2LHxHebP1RXr9H7Mns7Hxx8Rv9y_27
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPiKfa8jISHMOundhxDhyqQrWlpRxopd6Mn1XRkkSbXaFe-FP8QWacpAKEqIRUKSfHTqyxPfNZ_vwNIS8L66TzOcsikyIr4tRlikcAchXnjpV5FCGpfR7J2Unx_lScrpEf410YpFUOvr_36clbDyWTwZqT9vx88onB5kooiC8SUbRgA7PyIFx8g31b92b_LQzyK8733h3vzrIhtUDmYEOzzLhQvJzaykanKuOEisaFUpbOeMEsgBollDWem1gUzvrcGmZg62K8lUY4E3L47g1yswB3gWkTXn-_5JUwcPbpiBV6l2H3xvt6iVTWhbZdoQwpk0k2FNOs_z0e_hEZUrjbu0vuDDiV7vSmuEfWQn2fbPyiXviANDsUxY7nFxQQpp0H-hXJfYDnm1VHXQNTGAIaxaxhgdY925wa3zULi-UAlmlSFYW_nJmOrtqzReLzU1N7iplTUvHuR06dafGc4yE5uRYjPyLrdVOHTUJZqJzzU2eqwABClsr7CM6jlFEW-GyRfLSidoO4OebYmOuRxfZF97bXaHuNZD4mt0h22artxT2uqF-OA6R_m6Qa4s8VLV-M46lh_eKhjKkDDIcGhMUAMxay-lcdFMFXgLy3_7sHz8mt2fGHQ324f3TwmNzGNz0n8QlZXy5W4Slgq6V9luYyJZ-ve_H8BAeEPAo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+highly+stable+microporous+covalent+imine+network+adsorbent+for+natural+gas+upgrading+and+flue+gas+CO2+capture&rft.jtitle=Separation+and+purification+technology&rft.au=Das%2C+Swapan+K&rft.au=Wang%2C+Xinbo&rft.au=Ostwal%2C+Mayur+M&rft.au=Lai%2C+Zhiping&rft.date=2016-10-01&rft.issn=1383-5866&rft.volume=170&rft.spage=68&rft.epage=77&rft_id=info:doi/10.1016%2Fj.seppur.2016.06.016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon