A highly stable microporous covalent imine network adsorbent for natural gas upgrading and flue gas CO2 capture
The microporous CIN material offering superior chemical robustness under both acidic and basic conditions and high thermal stability. Framework enriched with Lewis basicity and high Qst facilitated to enhance natural gas upgrading and flue gas CO2 capture, make the material as a promising adsorbent....
Saved in:
Published in | Separation and purification technology Vol. 170; pp. 68 - 77 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The microporous CIN material offering superior chemical robustness under both acidic and basic conditions and high thermal stability. Framework enriched with Lewis basicity and high Qst facilitated to enhance natural gas upgrading and flue gas CO2 capture, make the material as a promising adsorbent. [Display omitted]
•A covalent triazine-piperazine linked polymer with permanent porosity.•Outstanding chemical robustness and high thermal stability.•Enhanced CO2 and CH4 uptake and high CO2/N2 and CH4/N2 selectivity.•High heats of adsorption for CH4 and CO2.
The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff base condensation and exhibited superior chemical robustness under both acidic and basic conditions and high thermal stability. The material possesses a relatively uniform nanoparticle size of approximately 70–100nm. This network featured permanent porosity with a high surface area (722m2/g) and micropores. A single-component gas adsorption study showed enhanced CO2 and CH4 uptakes of 3.32mmol/g and 1.14mmol/g, respectively, at 273K and 1bar, coupled with high separation selectivities for CO2/CH4, CH4/N2, and CO2/N2 of 23, 11.8 and 211, respectively. The enriched Lewis basicity in the porous skeletons favours the interaction of quadrupolar CO2 and polarizable CH4, resulting in enhanced CH4 and CO2 uptake and high CH4/N2, CO2/CH4 and CO2/N2 selectivities. Breakthrough experiments showed high CO2/CH4, CH4/N2 and CO2/N2 selectivities of 7.29, 40 and 125, respectively, at 298K and 1bar. High heats of adsorption for CH4 and CO2 (QstCH4; 32.61kJmol−1 and QstCO2; 42.42kJmol−1) provide the ultimate validation for the high selectivity. To the best of our knowledge, such a versatile adsorbent material that displays both enhanced uptake and selectivity for a variety of binary gas mixtures, including CO2/CH4, CO2/N2 and CH4/N2, has not been extensively explored. |
---|---|
AbstractList | The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff base condensation and exhibited superior chemical robustness under both acidic and basic conditions and high thermal stability. The material possesses a relatively uniform nanoparticle size of approximately 70-100nm. This network featured permanent porosity with a high surface area (722m2/g) and micropores. A single-component gas adsorption study showed enhanced CO2 and CH4 uptakes of 3.32mmol/g and 1.14mmol/g, respectively, at 273K and 1bar, coupled with high separation selectivities for CO2/CH4, CH4/N2, and CO2/N2 of 23, 11.8 and 211, respectively. The enriched Lewis basicity in the porous skeletons favours the interaction of quadrupolar CO2 and polarizable CH4, resulting in enhanced CH4 and CO2 uptake and high CH4/N2, CO2/CH4 and CO2/N2 selectivities. Breakthrough experiments showed high CO2/CH4, CH4/N2 and CO2/N2 selectivities of 7.29, 40 and 125, respectively, at 298K and 1bar. High heats of adsorption for CH4 and CO2 (QstCH4; 32.61kJmol-1 and QstCO2; 42.42kJmol-1) provide the ultimate validation for the high selectivity. To the best of our knowledge, such a versatile adsorbent material that displays both enhanced uptake and selectivity for a variety of binary gas mixtures, including CO2/CH4, CO2/N2 and CH4/N2, has not been extensively explored. The microporous CIN material offering superior chemical robustness under both acidic and basic conditions and high thermal stability. Framework enriched with Lewis basicity and high Qst facilitated to enhance natural gas upgrading and flue gas CO2 capture, make the material as a promising adsorbent. [Display omitted] •A covalent triazine-piperazine linked polymer with permanent porosity.•Outstanding chemical robustness and high thermal stability.•Enhanced CO2 and CH4 uptake and high CO2/N2 and CH4/N2 selectivity.•High heats of adsorption for CH4 and CO2. The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we studied the microporous covalent imine networks (CIN) material prepared through Schiff base condensation and exhibited superior chemical robustness under both acidic and basic conditions and high thermal stability. The material possesses a relatively uniform nanoparticle size of approximately 70–100nm. This network featured permanent porosity with a high surface area (722m2/g) and micropores. A single-component gas adsorption study showed enhanced CO2 and CH4 uptakes of 3.32mmol/g and 1.14mmol/g, respectively, at 273K and 1bar, coupled with high separation selectivities for CO2/CH4, CH4/N2, and CO2/N2 of 23, 11.8 and 211, respectively. The enriched Lewis basicity in the porous skeletons favours the interaction of quadrupolar CO2 and polarizable CH4, resulting in enhanced CH4 and CO2 uptake and high CH4/N2, CO2/CH4 and CO2/N2 selectivities. Breakthrough experiments showed high CO2/CH4, CH4/N2 and CO2/N2 selectivities of 7.29, 40 and 125, respectively, at 298K and 1bar. High heats of adsorption for CH4 and CO2 (QstCH4; 32.61kJmol−1 and QstCO2; 42.42kJmol−1) provide the ultimate validation for the high selectivity. To the best of our knowledge, such a versatile adsorbent material that displays both enhanced uptake and selectivity for a variety of binary gas mixtures, including CO2/CH4, CO2/N2 and CH4/N2, has not been extensively explored. |
Author | Das, Swapan K. Lai, Zhiping Wang, Xinbo Ostwal, Mayur M. |
Author_xml | – sequence: 1 givenname: Swapan K. surname: Das fullname: Das, Swapan K. – sequence: 2 givenname: Xinbo surname: Wang fullname: Wang, Xinbo – sequence: 3 givenname: Mayur M. surname: Ostwal fullname: Ostwal, Mayur M. – sequence: 4 givenname: Zhiping orcidid: 0000-0001-9555-6009 surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa |
BookMark | eNqNUU1v1DAQtVAr0Q_-AQcfuWSx48RxOCBVKwpIlXqhZ2vsTLZevHawnaL-e7xdThwAaaT50HtvNPMuyVmIAQl5y9mGMy7f7zcZl2VNm7Z2G1aDy1fkgqtBNGIYu7NaCyWaXkn5mlzmvGeMD1y1FyTe0Ee3e_TPNBcwHunB2RSXmOKaqY1P4DEU6g4uIA1Yfsb0ncKUYzLH-RwTDVDWBJ7uINN12SWYXNhRCBOd_Yov4-19Sy0sFYfX5HwGn_HN73xFHm4_fdt-ae7uP3_d3tw1tmNjadpetQMzo5mtGsH2agaLgxwsTD03fBSqVwamFuaus2YSBjhIxmEyEnoLKK7Iu5PukuKPFXPRB5cteg8B62maK9H3SvVS_geUczWKTo4V-uEErT_KOeGsrStQXAwlgfOaM300RO_1yRB9NESzGvy4p_uDvCR3gPT8L9rHEw3ru54cJp2tw2Bxcglt0VN0fxf4BbIerG8 |
CitedBy_id | crossref_primary_10_1007_s10450_025_00595_7 crossref_primary_10_3390_en12214213 crossref_primary_10_1016_j_inoche_2019_02_036 crossref_primary_10_1016_j_jssc_2024_124683 crossref_primary_10_1016_j_micromeso_2017_07_038 crossref_primary_10_1016_j_micromeso_2022_111907 crossref_primary_10_1016_j_seppur_2017_07_023 crossref_primary_10_1016_j_micromeso_2022_112318 crossref_primary_10_1016_j_mtcomm_2021_102251 crossref_primary_10_3390_colloids6020020 crossref_primary_10_1016_j_carbon_2016_12_056 crossref_primary_10_1021_acsami_0c20484 crossref_primary_10_1063_5_0208686 crossref_primary_10_1007_s42452_019_1055_6 crossref_primary_10_3390_polym17070868 crossref_primary_10_1016_j_micromeso_2025_113516 crossref_primary_10_1039_C9TA06847C crossref_primary_10_1016_j_apsusc_2016_09_161 crossref_primary_10_1007_s10971_019_04920_9 crossref_primary_10_1155_2019_6130152 |
Cites_doi | 10.1021/ie901488f 10.1038/ncomms2359 10.1021/ic502733v 10.1002/ange.200904637 10.1080/01496390801940952 10.1038/nature14212 10.1038/ncomms1405 10.1126/science.1172246 10.1021/ie902008g 10.1021/es4000643 10.1080/01496390500287846 10.1039/c1sc00100k 10.1021/am301772k 10.1021/ja305601g 10.1002/ange.200900479 10.1039/c3ee42548g 10.1021/ja803708s 10.1016/j.ces.2016.02.007 10.1021/ef800938e 10.1002/anie.200461704 10.1039/C4TA03015J 10.1039/c1cc00084e 10.1038/nmat2545 10.1021/jacs.5b04300 10.1073/pnas.0909718106 10.1021/jacs.5b00838 10.1002/anie.201000431 10.1002/marc.201300227 10.1039/C4RA08909J 10.1021/cm901280w 10.1021/ef050072h 10.1021/cm303751n 10.1126/science.1077591 10.1039/c2jm30761h 10.1039/c3py01471a 10.1039/C1DT11350J 10.1021/cr2003272 10.1021/jp300137e 10.1038/srep02611 10.1002/chem.201303493 10.17221/41/2010-RAE 10.1021/acs.iecr.5b04038 10.1002/ceat.201300046 10.1021/cm400019f 10.1038/nature11893 10.1002/adfm.201202442 10.1021/cm303072n 10.1039/c2jm35446b 10.1038/nature06900 10.1021/jp300961j 10.1039/c3ee42226g 10.1039/c0dt01483d 10.1021/cm300407h 10.1002/anie.200705710 10.1039/C4TA02861A 10.1016/j.jcis.2014.05.021 10.1039/c3cc41382a 10.1039/C5TA00665A 10.1039/C4TA05349D |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7ST C1K SOI 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.seppur.2016.06.016 |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3794 |
EndPage | 77 |
ExternalDocumentID | 10_1016_j_seppur_2016_06_016 S1383586616306451 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB HZ~ R2- SEW SSH 7ST C1K SOI 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c409t-258270b9bfc89ac58face767cad51b193858bad2af44cbd3ba1a601adb6a5cae3 |
IEDL.DBID | .~1 |
ISSN | 1383-5866 |
IngestDate | Fri Jul 11 01:55:53 EDT 2025 Fri Jul 11 13:58:45 EDT 2025 Thu Apr 24 23:07:22 EDT 2025 Tue Jul 01 01:05:01 EDT 2025 Fri Feb 23 02:33:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Porous organic polymer Methane nitrogen separation CO2 capture Adsorption Greenhouse gas Natural gas |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-258270b9bfc89ac58face767cad51b193858bad2af44cbd3ba1a601adb6a5cae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9555-6009 |
PQID | 1811893469 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1835588566 proquest_miscellaneous_1811893469 crossref_citationtrail_10_1016_j_seppur_2016_06_016 crossref_primary_10_1016_j_seppur_2016_06_016 elsevier_sciencedirect_doi_10_1016_j_seppur_2016_06_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-10-01 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Separation and purification technology |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Tian, Thallapally, McGrail (b0295) 2012; 116 Cooper (b0035) 2015; 519 Brunelli, Didas, Venkatasubbaiah, Jones (b0090) 2012; 134 Lu, Verdegaal, Yu, Balbuena, Jeong, Zhou (b0195) 2013; 6 Yuan, Wu, Chen, Huang, Luo, Deng (b0010) 2013; 47 Roy, Chatterjee, Banerjee, Salam, Bhaumik, Islam (b0145) 2014; 4 Huang, Krishna, Jiang (b0255) 2015; 137 Nugent, Belmabkhout, Burd, Cairns, Luebke, Forrest, Pham, Ma, Space, Wojtas (b0290) 2013; 495 Zhao, Jin, Su, Jing, Sun, Zhu (b0130) 2011; 47 Patel, Je, Park, Jung, Coskun, Yavuz (b0235) 2014; 20 Atwood, Barbour, Jerga, Schottel (b0205) 2002; 298 Herout, Malaťák, Kučera, Dlabaja (b0215) 2011; 57 Cavenati, Grande, Rodrigues (b0030) 2005; 19 Mohanty, Kull, Landskron (b0060) 2011; 2 Ma, Ren, Meng, Sun, Zhu (b0110) 2013; 3 Kailasam, Schmidt, Bildirir, Zhang, Blechert, Wang, Thomas (b0120) 2013; 34 Qian, Lei, Hao, Li, Lu (b0220) 2012; 4 Das, Bhunia, Seikh, Dutta, Bhaumik (b0160) 2011; 40 Cavenati, Grande, Rodrigues (b0015) 2005; 40 Liu, Liu, Yang, Zhong, Mi (b0065) 2010; 49 Ben, Ren, Ma, Cao, Lan, Jing, Wang, Xu, Deng, Simmons (b0070) 2009; 121 Rabbani, El-Kaderi (b0250) 2012; 24 Grande, Lopes, Ribeiro, Loureiro, Rodrigues (b0025) 2008; 43 Hamon, Jolimaître, Pirngruber (b0280) 2010; 49 Farha, Spokoyny, Hauser, Bae, Brown, Snurr, Mirkin, Hupp (b0075) 2009; 21 Sozzani, Bracco, Comotti, Ferretti, Simonutti (b0200) 2005; 44 Kuhn, Antonietti, Thomas (b0100) 2008; 47 Yang, Guo, Hu, Hu, Chen, Shen, Dai, Fan (b0085) 2016; 55 Liang, Marshall, Chaffee (b0285) 2009; 23 Asadi, Ehsani, Ribeiro, Loureiro, Rodrigues (b0275) 2013; 36 Britt, Furukawa, Wang, Glover, Yaghi (b0155) 2009; 106 Mason, McDonald, Bae, Bachman, Sumida, Dutton, Kaye, Long (b0175) 2015; 137 Wu, Yuan, Bao, Deng (b0005) 2014; 430 Zhu, Long, Zhang (b0245) 2013; 25 Katekomol, Roeser, Bojdys, Weber, Thomas (b0125) 2013; 25 Bhunia, Das, Pachfule, Banerjee, Bhaumik (b0140) 2012; 41 Tozawa, Jones, Swamy, Jiang, Adams, Shakespeare, Clowes, Bradshaw, Hasell, Chong (b0210) 2009; 8 Patel, Karadas, Byun, Park, Deniz, Canlier, Jung, Atilhan, Yavuz (b0040) 2013; 23 Das, Wang, Ostwal, Zhao, Han, Lai (b0190) 2016 Xiang, Cao, Wang, Yang, Han, Lu (b0230) 2012; 116 Tian, Thallapally, Dalgarno, McGrail, Atwood (b0080) 2009; 121 Dawson, Adams, Cooper (b0270) 2011; 2 Kuhn, Forget, Su, Thomas, Antonietti (b0165) 2008; 130 Lu, Zhang (b0240) 2014; 2 Puthiaraj, Cho, Lee, Ahn (b0170) 2015; 3 Patel, Je, Park, Chen, Jung, Yavuz, Coskun (b0185) 2013; 4 D’Alessandro, Smit, Long (b0180) 2010; 49 Wang, Jia, Hou, Shi, Zhu, Wang (b0055) 2015; 54 Sumida, Rogow, Mason, McDonald, Bloch, Herm, Bae, Long (b0045) 2011; 112 Patel, Karadas, Canlier, Park, Deniz, Jung, Atilhan, Yavuz (b0115) 2012; 22 Liu, Wang, Shen, Ju, Yuan (b0225) 2015; 3 Sung, Suh (b0260) 2014; 2 Haszeldine (b0020) 2009; 325 Zhao, Yao, Teng, Zhang, Han (b0095) 2013; 6 Xiong, Fu, Xiang, Yu, Guan, Wang, Du, Xiong, Pan (b0135) 2014; 5 Bhunia, Vasylyeva, Janiak (b0105) 2013; 49 Zhao, Liu, Yao, Zhao, Han (b0150) 2012; 24 Xiang, Zhou, Zhou, Zhong, He, Qin, Cao (b0265) 2012; 22 Wang, Côté, Furukawa, O’Keeffe, Yaghi (b0050) 2008; 453 Bhunia (10.1016/j.seppur.2016.06.016_b0105) 2013; 49 Yang (10.1016/j.seppur.2016.06.016_b0085) 2016; 55 Kuhn (10.1016/j.seppur.2016.06.016_b0100) 2008; 47 Xiang (10.1016/j.seppur.2016.06.016_b0230) 2012; 116 Huang (10.1016/j.seppur.2016.06.016_b0255) 2015; 137 Ben (10.1016/j.seppur.2016.06.016_b0070) 2009; 121 Farha (10.1016/j.seppur.2016.06.016_b0075) 2009; 21 Grande (10.1016/j.seppur.2016.06.016_b0025) 2008; 43 Asadi (10.1016/j.seppur.2016.06.016_b0275) 2013; 36 Atwood (10.1016/j.seppur.2016.06.016_b0205) 2002; 298 Katekomol (10.1016/j.seppur.2016.06.016_b0125) 2013; 25 Wang (10.1016/j.seppur.2016.06.016_b0050) 2008; 453 Brunelli (10.1016/j.seppur.2016.06.016_b0090) 2012; 134 Roy (10.1016/j.seppur.2016.06.016_b0145) 2014; 4 Cavenati (10.1016/j.seppur.2016.06.016_b0030) 2005; 19 Zhu (10.1016/j.seppur.2016.06.016_b0245) 2013; 25 Das (10.1016/j.seppur.2016.06.016_b0160) 2011; 40 Haszeldine (10.1016/j.seppur.2016.06.016_b0020) 2009; 325 Puthiaraj (10.1016/j.seppur.2016.06.016_b0170) 2015; 3 D’Alessandro (10.1016/j.seppur.2016.06.016_b0180) 2010; 49 Dawson (10.1016/j.seppur.2016.06.016_b0270) 2011; 2 Patel (10.1016/j.seppur.2016.06.016_b0185) 2013; 4 Xiang (10.1016/j.seppur.2016.06.016_b0265) 2012; 22 Cavenati (10.1016/j.seppur.2016.06.016_b0015) 2005; 40 Zhao (10.1016/j.seppur.2016.06.016_b0095) 2013; 6 Patel (10.1016/j.seppur.2016.06.016_b0115) 2012; 22 Patel (10.1016/j.seppur.2016.06.016_b0040) 2013; 23 Mason (10.1016/j.seppur.2016.06.016_b0175) 2015; 137 Das (10.1016/j.seppur.2016.06.016_b0190) 2016 Liu (10.1016/j.seppur.2016.06.016_b0065) 2010; 49 Qian (10.1016/j.seppur.2016.06.016_b0220) 2012; 4 Liu (10.1016/j.seppur.2016.06.016_b0225) 2015; 3 Liu (10.1016/j.seppur.2016.06.016_b0295) 2012; 116 Kailasam (10.1016/j.seppur.2016.06.016_b0120) 2013; 34 Mohanty (10.1016/j.seppur.2016.06.016_b0060) 2011; 2 Sozzani (10.1016/j.seppur.2016.06.016_b0200) 2005; 44 Sung (10.1016/j.seppur.2016.06.016_b0260) 2014; 2 Sumida (10.1016/j.seppur.2016.06.016_b0045) 2011; 112 Zhao (10.1016/j.seppur.2016.06.016_b0130) 2011; 47 Yuan (10.1016/j.seppur.2016.06.016_b0010) 2013; 47 Tozawa (10.1016/j.seppur.2016.06.016_b0210) 2009; 8 Xiong (10.1016/j.seppur.2016.06.016_b0135) 2014; 5 Rabbani (10.1016/j.seppur.2016.06.016_b0250) 2012; 24 Nugent (10.1016/j.seppur.2016.06.016_b0290) 2013; 495 Lu (10.1016/j.seppur.2016.06.016_b0195) 2013; 6 Liang (10.1016/j.seppur.2016.06.016_b0285) 2009; 23 Ma (10.1016/j.seppur.2016.06.016_b0110) 2013; 3 Wang (10.1016/j.seppur.2016.06.016_b0055) 2015; 54 Tian (10.1016/j.seppur.2016.06.016_b0080) 2009; 121 Kuhn (10.1016/j.seppur.2016.06.016_b0165) 2008; 130 Zhao (10.1016/j.seppur.2016.06.016_b0150) 2012; 24 Lu (10.1016/j.seppur.2016.06.016_b0240) 2014; 2 Hamon (10.1016/j.seppur.2016.06.016_b0280) 2010; 49 Bhunia (10.1016/j.seppur.2016.06.016_b0140) 2012; 41 Herout (10.1016/j.seppur.2016.06.016_b0215) 2011; 57 Cooper (10.1016/j.seppur.2016.06.016_b0035) 2015; 519 Britt (10.1016/j.seppur.2016.06.016_b0155) 2009; 106 Patel (10.1016/j.seppur.2016.06.016_b0235) 2014; 20 Wu (10.1016/j.seppur.2016.06.016_b0005) 2014; 430 |
References_xml | – volume: 325 start-page: 1647 year: 2009 end-page: 1652 ident: b0020 article-title: Carbon capture and storage: how green can black be? publication-title: Science – volume: 19 start-page: 2545 year: 2005 end-page: 2555 ident: b0030 article-title: Upgrade of methane from landfill gas by pressure swing adsorption publication-title: Energy Fuels – volume: 112 start-page: 724 year: 2011 end-page: 781 ident: b0045 article-title: Carbon dioxide capture in metal–organic frameworks publication-title: Chem. Rev. – volume: 47 start-page: 3450 year: 2008 end-page: 3453 ident: b0100 article-title: Porous covalent triazine-based frameworks prepared by ionothermal synthesis publication-title: Angew. Chem. Int. Ed. – volume: 41 start-page: 1304 year: 2012 end-page: 1311 ident: b0140 article-title: Nitrogen-rich porous covalent imine network (CIN) material as an efficient catalytic support for C–C coupling reactions publication-title: Dalton Trans. – volume: 4 start-page: 46075 year: 2014 end-page: 46083 ident: b0145 article-title: Cu (ii) anchored nitrogen-rich covalent imine network (Cu II-CIN-1): an efficient and recyclable heterogeneous catalyst for the synthesis of organoselenides from aryl boronic acids in a green solvent publication-title: RSC Adv. – volume: 3 start-page: 3051 year: 2015 end-page: 3058 ident: b0225 article-title: A facile synthesis of microporous organic polymers for efficient gas storage and separation publication-title: J. Mater. Chem. A – volume: 22 start-page: 22663 year: 2012 end-page: 22669 ident: b0265 article-title: Covalent-organic polymers for carbon dioxide capture publication-title: J. Mater. Chem. – volume: 6 start-page: 3684 year: 2013 end-page: 3692 ident: b0095 article-title: A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO publication-title: Energy Environ. Sci. – volume: 121 start-page: 9621 year: 2009 end-page: 9624 ident: b0070 article-title: Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area publication-title: Angew. Chem. – volume: 6 start-page: 3559 year: 2013 end-page: 3564 ident: b0195 article-title: Building multiple adsorption sites in porous polymer networks for carbon capture applications publication-title: Energy Environ. Sci. – volume: 36 start-page: 1231 year: 2013 end-page: 1239 ident: b0275 article-title: CO publication-title: Chem. Eng. Technol. – volume: 116 start-page: 9575 year: 2012 end-page: 9581 ident: b0295 article-title: Selective CO publication-title: J. Phys. Chem. C – volume: 23 start-page: 2270 year: 2013 end-page: 2276 ident: b0040 article-title: Highly stable nanoporous sulfur-bridged covalent organic polymers for carbon dioxide removal publication-title: Adv. Funct. Mater. – volume: 2 start-page: 401 year: 2011 ident: b0060 article-title: Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide publication-title: Nat. Commun. – volume: 49 start-page: 6058 year: 2010 end-page: 6082 ident: b0180 article-title: Carbon dioxide capture: prospects for new materials publication-title: Angew. Chem. Int. Ed. – volume: 25 start-page: 1542 year: 2013 end-page: 1548 ident: b0125 article-title: Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene publication-title: Chem. Mater. – volume: 134 start-page: 13950 year: 2012 end-page: 13953 ident: b0090 article-title: Tuning cooperativity by controlling the linker length of silica-supported amines in catalysis and CO publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 3424 year: 2014 end-page: 3431 ident: b0135 article-title: Liquid acid-catalysed fabrication of nanoporous 1,3,5-triazine frameworks with efficient and selective CO publication-title: Polym. Chem. – volume: 4 start-page: 1357 year: 2013 ident: b0185 article-title: Unprecedented high-temperature CO publication-title: Nat. Commun. – volume: 453 start-page: 207 year: 2008 end-page: 211 ident: b0050 article-title: Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs publication-title: Nature – volume: 430 start-page: 78 year: 2014 end-page: 84 ident: b0005 article-title: Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal–organic framework publication-title: J. Colloid Interface Sci. – volume: 3 start-page: 6792 year: 2015 end-page: 6797 ident: b0170 article-title: Microporous covalent triazine polymers: efficient Friedel-Crafts synthesis and adsorption/storage of CO publication-title: J. Mater. Chem. A – volume: 49 start-page: 3961 year: 2013 end-page: 3963 ident: b0105 article-title: From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities publication-title: Chem. Commun. – volume: 519 start-page: 294 year: 2015 end-page: 295 ident: b0035 article-title: Materials chemistry: cooperative carbon capture publication-title: Nature – volume: 49 start-page: 2902 year: 2010 end-page: 2906 ident: b0065 article-title: Comparative study of separation performance of COFs and MOFs for CH publication-title: Ind. Eng. Chem. Res. – volume: 47 start-page: 6389 year: 2011 end-page: 6391 ident: b0130 article-title: Targeted synthesis of a 2D ordered porous organic framework for drug release publication-title: Chem. Commun. – volume: 40 start-page: 2932 year: 2011 end-page: 2939 ident: b0160 article-title: Highly porous Co (II)-salicylate metal–organic framework: synthesis, characterization and magnetic properties publication-title: Dalton Trans. – volume: 137 start-page: 7079 year: 2015 end-page: 7082 ident: b0255 article-title: Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization for performance screening publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 13831 year: 2014 end-page: 13834 ident: b0240 article-title: Facile synthesis of azo-linked porous organic frameworks via reductive homocoupling for selective CO publication-title: J. Mater. Chem. A – volume: 49 start-page: 7497 year: 2010 end-page: 7503 ident: b0280 article-title: CO publication-title: Ind. Eng. Chem. Res. – year: 2016 ident: b0190 article-title: Highly stable porous covalent triazine-piperazine linked nanoflower as a feasible adsorbent for flue gas CO publication-title: Chem. Eng. Sci. – volume: 40 start-page: 2721 year: 2005 end-page: 2743 ident: b0015 article-title: Separation of methane and nitrogen by adsorption on carbon molecular sieve publication-title: Sep. Sci. Technol. – volume: 44 start-page: 1816 year: 2005 end-page: 1820 ident: b0200 article-title: Methane and carbon dioxide storage in a porous van der Waals crystal publication-title: Angew. Chem. Int. Ed. – volume: 116 start-page: 5974 year: 2012 end-page: 5980 ident: b0230 article-title: Postsynthetic lithium modification of covalent-organic polymers for enhancing hydrogen and carbon dioxide storage publication-title: J. Phys. Chem. C – volume: 47 start-page: 5474 year: 2013 end-page: 5480 ident: b0010 article-title: Adsorption of CO publication-title: Environ. Sci. Technol. – volume: 298 start-page: 1000 year: 2002 end-page: 1002 ident: b0205 article-title: Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity publication-title: Science – volume: 20 start-page: 772 year: 2014 end-page: 780 ident: b0235 article-title: Directing the structural features of N publication-title: Chem. Eur. J. – volume: 2 start-page: 1173 year: 2011 end-page: 1177 ident: b0270 article-title: Chemical tuning of CO publication-title: Chem. Sci. – volume: 34 start-page: 1008 year: 2013 end-page: 1013 ident: b0120 article-title: Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution publication-title: Macromol. Rapid Commun. – volume: 137 start-page: 4787 year: 2015 end-page: 4803 ident: b0175 article-title: Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 1338 year: 2008 end-page: 1364 ident: b0025 article-title: Adsorption of off-gases from steam methane reforming (H publication-title: Sep. Sci. Technol. – volume: 2 start-page: 13245 year: 2014 end-page: 13249 ident: b0260 article-title: Highly efficient carbon dioxide capture with a porous organic polymer impregnated with polyethylenimine publication-title: J. Mater. Chem. A – volume: 3 year: 2013 ident: b0110 article-title: Novel porphyrinic porous organic frameworks for high performance separation of small hydrocarbons publication-title: Sci. Rep. – volume: 24 start-page: 1511 year: 2012 end-page: 1517 ident: b0250 article-title: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake publication-title: Chem. Mater. – volume: 21 start-page: 3033 year: 2009 end-page: 3035 ident: b0075 article-title: Synthesis, properties, and gas separation studies of a robust diimide-based microporous organic polymer publication-title: Chem. Mater. – volume: 121 start-page: 5600 year: 2009 end-page: 5603 ident: b0080 article-title: Amorphous molecular organic solids for gas adsorption publication-title: Angew. Chem. – volume: 130 start-page: 13333 year: 2008 end-page: 13337 ident: b0165 article-title: From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks publication-title: J. Am. Chem. Soc. – volume: 495 start-page: 80 year: 2013 end-page: 84 ident: b0290 article-title: Porous materials with optimal adsorption thermodynamics and kinetics for CO publication-title: Nature – volume: 57 start-page: 137 year: 2011 end-page: 143 ident: b0215 article-title: Biogas composition depending on the type of plant biomass used publication-title: Res. Agric. Eng. – volume: 25 start-page: 1630 year: 2013 end-page: 1635 ident: b0245 article-title: Imine-linked porous polymer frameworks with high small gas (H publication-title: Chem. Mater. – volume: 55 start-page: 757 year: 2016 end-page: 765 ident: b0085 article-title: Adsorption of CO publication-title: Ind. Eng. Chem. Res. – volume: 8 start-page: 973 year: 2009 end-page: 978 ident: b0210 article-title: Porous organic cages publication-title: Nat. Mater. – volume: 23 start-page: 2785 year: 2009 end-page: 2789 ident: b0285 article-title: CO publication-title: Energy Fuels – volume: 22 start-page: 8431 year: 2012 end-page: 8437 ident: b0115 article-title: High capacity carbon dioxide adsorption by inexpensive covalent organic polymers publication-title: J. Mater. Chem. – volume: 24 start-page: 4725 year: 2012 end-page: 4734 ident: b0150 article-title: Superior capture of CO publication-title: Chem. Mater. – volume: 4 start-page: 6125 year: 2012 end-page: 6132 ident: b0220 article-title: Synthesis of hierarchical porous carbon monoliths with incorporated metal–organic frameworks for enhancing volumetric based CO publication-title: ACS Appl. Mater. Interfaces – volume: 106 start-page: 20637 year: 2009 end-page: 20640 ident: b0155 article-title: Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites publication-title: Proc. Nat. Acad. Sci. – volume: 54 start-page: 1841 year: 2015 end-page: 1846 ident: b0055 article-title: A new porous MOF with two uncommon metal–carboxylate–pyrazolate clusters and high CO publication-title: Inorg. Chem. – volume: 49 start-page: 2902 year: 2010 ident: 10.1016/j.seppur.2016.06.016_b0065 article-title: Comparative study of separation performance of COFs and MOFs for CH4/CO2/H2 mixtures publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie901488f – volume: 4 start-page: 1357 year: 2013 ident: 10.1016/j.seppur.2016.06.016_b0185 article-title: Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers publication-title: Nat. Commun. doi: 10.1038/ncomms2359 – volume: 54 start-page: 1841 year: 2015 ident: 10.1016/j.seppur.2016.06.016_b0055 article-title: A new porous MOF with two uncommon metal–carboxylate–pyrazolate clusters and high CO2/N2 selectivity publication-title: Inorg. Chem. doi: 10.1021/ic502733v – volume: 121 start-page: 9621 year: 2009 ident: 10.1016/j.seppur.2016.06.016_b0070 article-title: Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area publication-title: Angew. Chem. doi: 10.1002/ange.200904637 – volume: 43 start-page: 1338 year: 2008 ident: 10.1016/j.seppur.2016.06.016_b0025 article-title: Adsorption of off-gases from steam methane reforming (H2, CO2, CH4, CO and N2) on activated carbon publication-title: Sep. Sci. Technol. doi: 10.1080/01496390801940952 – volume: 519 start-page: 294 year: 2015 ident: 10.1016/j.seppur.2016.06.016_b0035 article-title: Materials chemistry: cooperative carbon capture publication-title: Nature doi: 10.1038/nature14212 – volume: 2 start-page: 401 year: 2011 ident: 10.1016/j.seppur.2016.06.016_b0060 article-title: Porous covalent electron-rich organonitridic frameworks as highly selective sorbents for methane and carbon dioxide publication-title: Nat. Commun. doi: 10.1038/ncomms1405 – volume: 325 start-page: 1647 year: 2009 ident: 10.1016/j.seppur.2016.06.016_b0020 article-title: Carbon capture and storage: how green can black be? publication-title: Science doi: 10.1126/science.1172246 – volume: 49 start-page: 7497 year: 2010 ident: 10.1016/j.seppur.2016.06.016_b0280 article-title: CO2 and CH4 separation by adsorption using Cu-BTC metal–organic framework publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie902008g – volume: 47 start-page: 5474 year: 2013 ident: 10.1016/j.seppur.2016.06.016_b0010 article-title: Adsorption of CO2, CH4, and N2 on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading publication-title: Environ. Sci. Technol. doi: 10.1021/es4000643 – volume: 40 start-page: 2721 year: 2005 ident: 10.1016/j.seppur.2016.06.016_b0015 article-title: Separation of methane and nitrogen by adsorption on carbon molecular sieve publication-title: Sep. Sci. Technol. doi: 10.1080/01496390500287846 – volume: 2 start-page: 1173 year: 2011 ident: 10.1016/j.seppur.2016.06.016_b0270 article-title: Chemical tuning of CO2 sorption in robust nanoporous organic polymers publication-title: Chem. Sci. doi: 10.1039/c1sc00100k – volume: 4 start-page: 6125 year: 2012 ident: 10.1016/j.seppur.2016.06.016_b0220 article-title: Synthesis of hierarchical porous carbon monoliths with incorporated metal–organic frameworks for enhancing volumetric based CO2 capture capability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am301772k – volume: 134 start-page: 13950 year: 2012 ident: 10.1016/j.seppur.2016.06.016_b0090 article-title: Tuning cooperativity by controlling the linker length of silica-supported amines in catalysis and CO2 capture publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305601g – volume: 121 start-page: 5600 year: 2009 ident: 10.1016/j.seppur.2016.06.016_b0080 article-title: Amorphous molecular organic solids for gas adsorption publication-title: Angew. Chem. doi: 10.1002/ange.200900479 – volume: 6 start-page: 3684 year: 2013 ident: 10.1016/j.seppur.2016.06.016_b0095 article-title: A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42548g – volume: 130 start-page: 13333 year: 2008 ident: 10.1016/j.seppur.2016.06.016_b0165 article-title: From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja803708s – year: 2016 ident: 10.1016/j.seppur.2016.06.016_b0190 article-title: Highly stable porous covalent triazine-piperazine linked nanoflower as a feasible adsorbent for flue gas CO2 capture publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.02.007 – volume: 23 start-page: 2785 year: 2009 ident: 10.1016/j.seppur.2016.06.016_b0285 article-title: CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X) publication-title: Energy Fuels doi: 10.1021/ef800938e – volume: 44 start-page: 1816 year: 2005 ident: 10.1016/j.seppur.2016.06.016_b0200 article-title: Methane and carbon dioxide storage in a porous van der Waals crystal publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200461704 – volume: 2 start-page: 13831 year: 2014 ident: 10.1016/j.seppur.2016.06.016_b0240 article-title: Facile synthesis of azo-linked porous organic frameworks via reductive homocoupling for selective CO2 capture publication-title: J. Mater. Chem. A doi: 10.1039/C4TA03015J – volume: 47 start-page: 6389 year: 2011 ident: 10.1016/j.seppur.2016.06.016_b0130 article-title: Targeted synthesis of a 2D ordered porous organic framework for drug release publication-title: Chem. Commun. doi: 10.1039/c1cc00084e – volume: 8 start-page: 973 year: 2009 ident: 10.1016/j.seppur.2016.06.016_b0210 article-title: Porous organic cages publication-title: Nat. Mater. doi: 10.1038/nmat2545 – volume: 137 start-page: 7079 year: 2015 ident: 10.1016/j.seppur.2016.06.016_b0255 article-title: Tailor-made pore surface engineering in covalent organic frameworks: systematic functionalization for performance screening publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04300 – volume: 106 start-page: 20637 year: 2009 ident: 10.1016/j.seppur.2016.06.016_b0155 article-title: Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites publication-title: Proc. Nat. Acad. Sci. doi: 10.1073/pnas.0909718106 – volume: 137 start-page: 4787 year: 2015 ident: 10.1016/j.seppur.2016.06.016_b0175 article-title: Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00838 – volume: 49 start-page: 6058 year: 2010 ident: 10.1016/j.seppur.2016.06.016_b0180 article-title: Carbon dioxide capture: prospects for new materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201000431 – volume: 34 start-page: 1008 year: 2013 ident: 10.1016/j.seppur.2016.06.016_b0120 article-title: Room temperature synthesis of heptazine-based microporous polymer networks as photocatalysts for hydrogen evolution publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201300227 – volume: 4 start-page: 46075 year: 2014 ident: 10.1016/j.seppur.2016.06.016_b0145 article-title: Cu (ii) anchored nitrogen-rich covalent imine network (Cu II-CIN-1): an efficient and recyclable heterogeneous catalyst for the synthesis of organoselenides from aryl boronic acids in a green solvent publication-title: RSC Adv. doi: 10.1039/C4RA08909J – volume: 21 start-page: 3033 year: 2009 ident: 10.1016/j.seppur.2016.06.016_b0075 article-title: Synthesis, properties, and gas separation studies of a robust diimide-based microporous organic polymer publication-title: Chem. Mater. doi: 10.1021/cm901280w – volume: 19 start-page: 2545 year: 2005 ident: 10.1016/j.seppur.2016.06.016_b0030 article-title: Upgrade of methane from landfill gas by pressure swing adsorption publication-title: Energy Fuels doi: 10.1021/ef050072h – volume: 25 start-page: 1542 year: 2013 ident: 10.1016/j.seppur.2016.06.016_b0125 article-title: Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene publication-title: Chem. Mater. doi: 10.1021/cm303751n – volume: 298 start-page: 1000 year: 2002 ident: 10.1016/j.seppur.2016.06.016_b0205 article-title: Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity publication-title: Science doi: 10.1126/science.1077591 – volume: 22 start-page: 8431 year: 2012 ident: 10.1016/j.seppur.2016.06.016_b0115 article-title: High capacity carbon dioxide adsorption by inexpensive covalent organic polymers publication-title: J. Mater. Chem. doi: 10.1039/c2jm30761h – volume: 5 start-page: 3424 year: 2014 ident: 10.1016/j.seppur.2016.06.016_b0135 article-title: Liquid acid-catalysed fabrication of nanoporous 1,3,5-triazine frameworks with efficient and selective CO2 uptake publication-title: Polym. Chem. doi: 10.1039/c3py01471a – volume: 41 start-page: 1304 year: 2012 ident: 10.1016/j.seppur.2016.06.016_b0140 article-title: Nitrogen-rich porous covalent imine network (CIN) material as an efficient catalytic support for C–C coupling reactions publication-title: Dalton Trans. doi: 10.1039/C1DT11350J – volume: 112 start-page: 724 year: 2011 ident: 10.1016/j.seppur.2016.06.016_b0045 article-title: Carbon dioxide capture in metal–organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr2003272 – volume: 116 start-page: 5974 year: 2012 ident: 10.1016/j.seppur.2016.06.016_b0230 article-title: Postsynthetic lithium modification of covalent-organic polymers for enhancing hydrogen and carbon dioxide storage publication-title: J. Phys. Chem. C doi: 10.1021/jp300137e – volume: 3 year: 2013 ident: 10.1016/j.seppur.2016.06.016_b0110 article-title: Novel porphyrinic porous organic frameworks for high performance separation of small hydrocarbons publication-title: Sci. Rep. doi: 10.1038/srep02611 – volume: 20 start-page: 772 year: 2014 ident: 10.1016/j.seppur.2016.06.016_b0235 article-title: Directing the structural features of N2-phobic nanoporous covalent organic polymers for CO2 capture and separation publication-title: Chem. Eur. J. doi: 10.1002/chem.201303493 – volume: 57 start-page: 137 year: 2011 ident: 10.1016/j.seppur.2016.06.016_b0215 article-title: Biogas composition depending on the type of plant biomass used publication-title: Res. Agric. Eng. doi: 10.17221/41/2010-RAE – volume: 55 start-page: 757 year: 2016 ident: 10.1016/j.seppur.2016.06.016_b0085 article-title: Adsorption of CO2 by petroleum coke nitrogen-doped porous carbons synthesized by combining ammoxidation with KOH activation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b04038 – volume: 36 start-page: 1231 year: 2013 ident: 10.1016/j.seppur.2016.06.016_b0275 article-title: CO2/CH4 separation by adsorption using nanoporous metal organic framework copper-benzene-1,3,5-tricarboxylate tablet publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201300046 – volume: 25 start-page: 1630 year: 2013 ident: 10.1016/j.seppur.2016.06.016_b0245 article-title: Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity publication-title: Chem. Mater. doi: 10.1021/cm400019f – volume: 495 start-page: 80 year: 2013 ident: 10.1016/j.seppur.2016.06.016_b0290 article-title: Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation publication-title: Nature doi: 10.1038/nature11893 – volume: 23 start-page: 2270 year: 2013 ident: 10.1016/j.seppur.2016.06.016_b0040 article-title: Highly stable nanoporous sulfur-bridged covalent organic polymers for carbon dioxide removal publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202442 – volume: 24 start-page: 4725 year: 2012 ident: 10.1016/j.seppur.2016.06.016_b0150 article-title: Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon publication-title: Chem. Mater. doi: 10.1021/cm303072n – volume: 22 start-page: 22663 year: 2012 ident: 10.1016/j.seppur.2016.06.016_b0265 article-title: Covalent-organic polymers for carbon dioxide capture publication-title: J. Mater. Chem. doi: 10.1039/c2jm35446b – volume: 453 start-page: 207 year: 2008 ident: 10.1016/j.seppur.2016.06.016_b0050 article-title: Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs publication-title: Nature doi: 10.1038/nature06900 – volume: 116 start-page: 9575 year: 2012 ident: 10.1016/j.seppur.2016.06.016_b0295 article-title: Selective CO2 capture from flue Gas using metal–organic frameworks-a fixed bed study publication-title: J. Phys. Chem. C doi: 10.1021/jp300961j – volume: 6 start-page: 3559 year: 2013 ident: 10.1016/j.seppur.2016.06.016_b0195 article-title: Building multiple adsorption sites in porous polymer networks for carbon capture applications publication-title: Energy Environ. Sci. doi: 10.1039/c3ee42226g – volume: 40 start-page: 2932 year: 2011 ident: 10.1016/j.seppur.2016.06.016_b0160 article-title: Highly porous Co (II)-salicylate metal–organic framework: synthesis, characterization and magnetic properties publication-title: Dalton Trans. doi: 10.1039/c0dt01483d – volume: 24 start-page: 1511 year: 2012 ident: 10.1016/j.seppur.2016.06.016_b0250 article-title: Synthesis and characterization of porous benzimidazole-linked polymers and their performance in small gas storage and selective uptake publication-title: Chem. Mater. doi: 10.1021/cm300407h – volume: 47 start-page: 3450 year: 2008 ident: 10.1016/j.seppur.2016.06.016_b0100 article-title: Porous covalent triazine-based frameworks prepared by ionothermal synthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200705710 – volume: 2 start-page: 13245 year: 2014 ident: 10.1016/j.seppur.2016.06.016_b0260 article-title: Highly efficient carbon dioxide capture with a porous organic polymer impregnated with polyethylenimine publication-title: J. Mater. Chem. A doi: 10.1039/C4TA02861A – volume: 430 start-page: 78 year: 2014 ident: 10.1016/j.seppur.2016.06.016_b0005 article-title: Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal–organic framework publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2014.05.021 – volume: 49 start-page: 3961 year: 2013 ident: 10.1016/j.seppur.2016.06.016_b0105 article-title: From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities publication-title: Chem. Commun. doi: 10.1039/c3cc41382a – volume: 3 start-page: 6792 year: 2015 ident: 10.1016/j.seppur.2016.06.016_b0170 article-title: Microporous covalent triazine polymers: efficient Friedel-Crafts synthesis and adsorption/storage of CO2 and CH4 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA00665A – volume: 3 start-page: 3051 year: 2015 ident: 10.1016/j.seppur.2016.06.016_b0225 article-title: A facile synthesis of microporous organic polymers for efficient gas storage and separation publication-title: J. Mater. Chem. A doi: 10.1039/C4TA05349D |
SSID | ssj0017182 |
Score | 2.3003592 |
Snippet | The microporous CIN material offering superior chemical robustness under both acidic and basic conditions and high thermal stability. Framework enriched with... The feasible capture and separation of CO2 and N2 from CH4 is an important task for natural gas upgrading and the control of greenhouse gas emissions. Here, we... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 68 |
SubjectTerms | Adsorbents Adsorption Carbon dioxide CO2 capture Greenhouse gas Imines Methane nitrogen separation Natural gas Networks Porous organic polymer Selectivity Separation Uptakes |
Title | A highly stable microporous covalent imine network adsorbent for natural gas upgrading and flue gas CO2 capture |
URI | https://dx.doi.org/10.1016/j.seppur.2016.06.016 https://www.proquest.com/docview/1811893469 https://www.proquest.com/docview/1835588566 |
Volume | 170 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvTSH0idNH0GBXp1d2ZIsH5elYdNAemgCuQlpJIWUrdfs49BLf3tnZDu0pSQQ8MVihI0eM9-gT98w9kl60BAqUSShVSHTFApTJgRyTVmCqKukYlb7vNCLK_nlWl3vsfl4F4ZolYPv73169tZDy2QYzUl3ezv5JjC5UgbjiyYUna9RS1nTKj_5dUfzEOh784knGhdkPV6fyxyvTey6HamCCp1VPKnq-f_D0z-OOkef0-fs2QAb-az_sxdsL7Yv2cEfYoKv2GrGSXt4-ZMj4PPLyH8Q1w7hNeb2HFa4ojC-cCriFXnbk7-5C5vV2lM7YleeRT7xKzduw3fdzTrT67lrA6dCJrl5_rXk4Do6dnjNrk4_X84XxVBOoQBM4rZFqUxZT33jE5jGgTLJQax1DS4o4RHIGWW8C6VLUoIPlXfCYbrmgtdOgYvVG7bfrtr4lnERG4AwBddEgYiuNiEk3Mu1TlrSc8iqcRQtDFrjVPJiaUdS2Xfbj72lsbfErRP6kBV3vbpea-MB-3qcIPvXmrEYDh7oeTzOp8XtRGckro04HRYBj0AIJ3Vznw1p0hsEwu8e_Qfv2VN662mBH9j-dr2LHxHebP1RXr9H7Mns7Hxx8Rv9y_27 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPiKfa8jISHMOundhxDhyqQrWlpRxopd6Mn1XRkkSbXaFe-FP8QWacpAKEqIRUKSfHTqyxPfNZ_vwNIS8L66TzOcsikyIr4tRlikcAchXnjpV5FCGpfR7J2Unx_lScrpEf410YpFUOvr_36clbDyWTwZqT9vx88onB5kooiC8SUbRgA7PyIFx8g31b92b_LQzyK8733h3vzrIhtUDmYEOzzLhQvJzaykanKuOEisaFUpbOeMEsgBollDWem1gUzvrcGmZg62K8lUY4E3L47g1yswB3gWkTXn-_5JUwcPbpiBV6l2H3xvt6iVTWhbZdoQwpk0k2FNOs_z0e_hEZUrjbu0vuDDiV7vSmuEfWQn2fbPyiXviANDsUxY7nFxQQpp0H-hXJfYDnm1VHXQNTGAIaxaxhgdY925wa3zULi-UAlmlSFYW_nJmOrtqzReLzU1N7iplTUvHuR06dafGc4yE5uRYjPyLrdVOHTUJZqJzzU2eqwABClsr7CM6jlFEW-GyRfLSidoO4OebYmOuRxfZF97bXaHuNZD4mt0h22artxT2uqF-OA6R_m6Qa4s8VLV-M46lh_eKhjKkDDIcGhMUAMxay-lcdFMFXgLy3_7sHz8mt2fGHQ324f3TwmNzGNz0n8QlZXy5W4Slgq6V9luYyJZ-ve_H8BAeEPAo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+highly+stable+microporous+covalent+imine+network+adsorbent+for+natural+gas+upgrading+and+flue+gas+CO2+capture&rft.jtitle=Separation+and+purification+technology&rft.au=Das%2C+Swapan+K&rft.au=Wang%2C+Xinbo&rft.au=Ostwal%2C+Mayur+M&rft.au=Lai%2C+Zhiping&rft.date=2016-10-01&rft.issn=1383-5866&rft.volume=170&rft.spage=68&rft.epage=77&rft_id=info:doi/10.1016%2Fj.seppur.2016.06.016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |