Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors
In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance,...
Saved in:
Published in | Nano research Vol. 9; no. 8; pp. 2510 - 2519 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon- based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF.cm-2) and energy density (4.5 mWh.cm-3) at a scan rate of 10 mV.s-L Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors. |
---|---|
AbstractList | In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon-based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF.cm super(-2)) and energy density (4.5 mWh.cm super(-3)) at a scan rate of 10 mV.s super(-1). Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors. [Figure not available: see fulltext.] In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon- based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF.cm-2) and energy density (4.5 mWh.cm-3) at a scan rate of 10 mV.s-L Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors. In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon-based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF·cm–2) and energy density (4.5 mWh·cm–3) at a scan rate of 10 mV·s–1. Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors. In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon-based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF·cm –2 ) and energy density (4.5 mWh·cm –3 ) at a scan rate of 10 mV·s –1 . Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors. |
Author | Yanjuan Yang Liang He Chunjuan Tang Ping Hu Xufeng Hong Mengyu Yan Yixiao Dong Xiaocong Tian Qiulong Wei Liqiang Mai |
AuthorAffiliation | State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Chino Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, China |
Author_xml | – sequence: 1 givenname: Yanjuan surname: Yang fullname: Yang, Yanjuan organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology – sequence: 2 givenname: Liang surname: He fullname: He, Liang email: hel@whut.edu.cn organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology – sequence: 3 givenname: Chunjuan surname: Tang fullname: Tang, Chunjuan organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Department of Mathematics and Physics, Luoyang Institute of Science and Technology – sequence: 4 givenname: Ping surname: Hu fullname: Hu, Ping organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology – sequence: 5 givenname: Xufeng surname: Hong fullname: Hong, Xufeng organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology – sequence: 6 givenname: Mengyu surname: Yan fullname: Yan, Mengyu organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology – sequence: 7 givenname: Yixiao surname: Dong fullname: Dong, Yixiao organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology – sequence: 8 givenname: Xiaocong surname: Tian fullname: Tian, Xiaocong organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology – sequence: 9 givenname: Qiulong surname: Wei fullname: Wei, Qiulong organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology – sequence: 10 givenname: Liqiang surname: Mai fullname: Mai, Liqiang email: mlq518@whut.edu.cn organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology |
BookMark | eNqNkc1O3DAUha0KpMLQB-guajfdpPgvjrOsEG2RkNi0a8txrjNGGXuwHRBvwSPjNEMrsUD1xtb1d3zu9TlFRz54QOgjwV8Jxu15IpS2vMZE1ISwtmbv0AnpOlnjso5ezoTy9-g0pVuMBSVcnqCnq90-hnsYKhP8MJvs7l1-rLQvBb3XxmXtDVTBVs5niIMbS2Uqd7EPvto5EwNMYHIMA6Qqb2OYx-0fdow6u8I8uLx94b32Ic99IW2Iq7pO8x7iwSvEdIaOrZ4SfDjsG_T7--Wvi5_19c2Pq4tv17XhuMs15dCCEYxhw4eONlq2kvMesOitbbgceiYs6AJISyhmQ2clNFxraoESbdkGfVnfLePfzZCy2rlkYJq0hzAnRSRrBBMtlv-BEiIl42RBP79Cb8McfRlEUYwJF5yVljaIrFSZP6UIVu2j2-n4qAhWS5xqjVOVONUSp1o07SvNks3ywzlqN72ppKsyFRc_QvzX01uiTwe7bfDjXdH97VGIrsGStg17BpORxQo |
CitedBy_id | crossref_primary_10_1002_ente_201900144 crossref_primary_10_1039_C7CS00819H crossref_primary_10_1002_aenm_202001873 crossref_primary_10_1016_j_nantod_2019_100764 crossref_primary_10_1039_C8TA00089A crossref_primary_10_1021_acsomega_9b04266 crossref_primary_10_1007_s12274_017_1451_4 crossref_primary_10_1002_smll_201700639 crossref_primary_10_1039_D4RA04909H crossref_primary_10_1016_j_cej_2024_153495 crossref_primary_10_1021_acsaem_0c00150 crossref_primary_10_1088_1361_6528_ab991d crossref_primary_10_1016_j_apsusc_2018_08_259 crossref_primary_10_1021_acsaem_1c03745 crossref_primary_10_1088_1361_6439_aad107 crossref_primary_10_1002_ece2_71 crossref_primary_10_1007_s10971_025_06704_w crossref_primary_10_1016_j_est_2021_103169 crossref_primary_10_1039_D0TA10397G crossref_primary_10_1007_s12274_020_2729_5 crossref_primary_10_1039_C7TA06046G crossref_primary_10_1088_1361_6439_ab1d9f crossref_primary_10_1002_ente_201900820 crossref_primary_10_1007_s12274_017_1586_3 crossref_primary_10_20964_2017_05_39 crossref_primary_10_1007_s12274_023_6263_0 crossref_primary_10_1016_j_jpowsour_2020_228643 crossref_primary_10_1088_1361_6528_abcbc5 crossref_primary_10_1080_00150193_2023_2198450 crossref_primary_10_1002_smll_201703710 crossref_primary_10_1002_adfm_201910000 crossref_primary_10_1021_acsami_8b18853 crossref_primary_10_1002_cssc_201700492 crossref_primary_10_1039_C7NR01789H crossref_primary_10_1088_1742_6596_1052_1_012143 crossref_primary_10_1007_s12274_021_3697_0 crossref_primary_10_1016_j_solidstatesciences_2022_106903 crossref_primary_10_1021_acsami_8b12543 crossref_primary_10_1016_j_applthermaleng_2018_06_049 crossref_primary_10_1039_D3NR05838G crossref_primary_10_3390_mi10050307 crossref_primary_10_1002_aenm_201802369 crossref_primary_10_1016_j_est_2020_101795 crossref_primary_10_1002_cnma_201800368 crossref_primary_10_1007_s10853_022_07838_w crossref_primary_10_1016_j_jpowsour_2019_227284 crossref_primary_10_1016_j_jpowsour_2021_230700 crossref_primary_10_1016_j_jpowsour_2017_04_064 crossref_primary_10_1126_sciadv_abn8338 crossref_primary_10_3390_mi15111294 crossref_primary_10_1039_D0TA09811F crossref_primary_10_1016_j_ensm_2023_01_051 crossref_primary_10_1002_pssb_202000358 crossref_primary_10_1007_s12274_017_1448_z crossref_primary_10_1016_j_electacta_2017_11_011 crossref_primary_10_1021_acsami_6b12001 crossref_primary_10_3390_ma16186133 crossref_primary_10_1007_s12274_017_1587_2 crossref_primary_10_1016_j_ensm_2021_07_041 crossref_primary_10_1002_ente_201600391 crossref_primary_10_1080_00150193_2021_1905745 crossref_primary_10_1002_smll_202400179 crossref_primary_10_1016_j_matchar_2021_111373 crossref_primary_10_1016_j_est_2025_115862 crossref_primary_10_1039_C8CS00561C crossref_primary_10_1080_00150193_2021_1905743 crossref_primary_10_1039_C6TA08328E crossref_primary_10_1007_s10800_018_1243_x crossref_primary_10_1016_j_apsusc_2021_149457 crossref_primary_10_1142_S1793292022500746 crossref_primary_10_1016_j_cej_2016_09_060 crossref_primary_10_1016_j_electacta_2016_09_133 crossref_primary_10_1016_j_jallcom_2019_151769 crossref_primary_10_1002_open_202400179 crossref_primary_10_1016_j_cej_2017_09_169 crossref_primary_10_1007_s40820_024_01352_1 |
Cites_doi | 10.1039/c4ta00570h 10.1126/science.aab3798 10.1039/c3ee43525c 10.1088/0960-1317/22/4/045024 10.1016/j.carbon.2013.01.089 10.1007/s00542-013-1771-6 10.1021/la8005597 10.1038/nmat2297 10.1016/j.jpowsour.2012.10.020 10.1021/nl504427d 10.1038/nmat1782 10.1021/nn4028129 10.1002/adma.201503567 10.1088/0960-1317/25/11/113001 10.1541/ieejsmas.132.425 10.1039/b813846j 10.1016/j.carbon.2014.07.055 10.1016/j.materresbull.2013.05.015 10.1039/C4RA08747J 10.1109/TNANO.2010.2049500 10.1002/adfm.201201292 10.1016/j.snb.2009.01.033 10.1021/ar200306b 10.1039/C2EE23284G 10.1021/nn5060442 10.1021/am100222m 10.1007/s12274-011-0143-8 10.1016/j.nanoen.2012.05.002 10.1021/nl8038579 10.1016/j.carbon.2005.06.020 10.1039/C5EE02703A 10.1016/j.jpowsour.2009.08.085 10.1088/0957-4484/26/19/195601 10.1149/1.2116707 10.1007/s12274-015-0923-7 10.1016/j.electacta.2011.08.054 10.1016/j.jpowsour.2012.10.101 10.1016/j.electacta.2013.01.123 10.1002/adma.201304137 10.1016/j.jpowsour.2013.12.009 10.1038/ncomms10218 10.1002/adfm.201101866 10.1016/j.diamond.2010.01.045 10.1002/aenm.201100019 10.1063/1.4915514 10.1088/0957-4484/25/5/055401 10.1039/C3EE43525C 10.1038/ncomms3487 |
ContentType | Journal Article |
Copyright | Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016 Nano Research is a copyright of Springer, (2016). All Rights Reserved. |
Copyright_xml | – notice: Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016 – notice: Nano Research is a copyright of Springer, (2016). All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H8G HCIFZ JG9 K9. KB. L7M LK8 M0S M7P P64 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s12274-016-1137-3 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection METADEX Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database Engineering Research Database Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors |
EISSN | 1998-0000 |
EndPage | 2519 |
ExternalDocumentID | 10_1007_s12274_016_1137_3 669508275 |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 92L 95- 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBYP ACCUX ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACREN ACTTH ACVWB ACWMK ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CQIGP CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 ~WA AACDK AAJBT AASML AAYZH ABAKF ABQSL ACPIV ADMLS AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU ALIPV BSONS FRJ H13 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP 7QF 7QO 7QQ 7SE 7SR 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO FR3 GNUQQ H8G JG9 K9. L7M P64 PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c409t-24e7ec6330c4d925a87844be06bff548db36fea6338f1203d9f8e54aa2fe21af3 |
IEDL.DBID | U2A |
ISSN | 1998-0124 |
IngestDate | Fri Jul 11 05:58:04 EDT 2025 Fri Jul 11 07:34:48 EDT 2025 Sat Aug 23 14:32:27 EDT 2025 Tue Jul 01 01:46:47 EDT 2025 Thu Apr 24 23:06:39 EDT 2025 Fri Feb 21 02:35:33 EST 2025 Wed Feb 14 10:16:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | photolithography pyrolysis carbon nanotubes microelectromechanical system (MEMS) supercapacitors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-24e7ec6330c4d925a87844be06bff548db36fea6338f1203d9f8e54aa2fe21af3 |
Notes | In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon- based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF.cm-2) and energy density (4.5 mWh.cm-3) at a scan rate of 10 mV.s-L Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors. 11-5974/O4 photolithography,supercapacitors,pyrolysis,microelectromechanicalsystem (MEMS),carbon nanotubes ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2001464363 |
PQPubID | 326270 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1835636708 proquest_miscellaneous_1811883418 proquest_journals_2001464363 crossref_primary_10_1007_s12274_016_1137_3 crossref_citationtrail_10_1007_s12274_016_1137_3 springer_journals_10_1007_s12274_016_1137_3 chongqing_primary_669508275 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationTitleAlternate | Nano Research |
PublicationYear | 2016 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Shen, Wang, Li, Wang, Zhang, Kang (CR16) 2013; 234 Wei, Sevilla, Fuertes, Mokaya, Yushin (CR6) 2011; 1 Beidaghi, Wang (CR9) 2012; 22 Yang, Tu, Li, Shang, Tao (CR34) 2010; 2 Hsia, Marschewski, Wang, In, Carraro, Poulikakos, Grigoropoulos, Maboudian (CR40) 2014; 25 Cai, Xu, Yan, Han, He, Hercule, Niu, Yuan, Xu, Qu (CR46) 2015; 15 Wei, Nitta, Yushin (CR10) 2013; 7 Lin, He, Zhao, Zhang (CR35) 2009; 137 Jiang, Shi, Zhan, Xi, Long, Gong, Li, Cheng, Huang, Tang (CR21) 2015; 25 Pech, Brunet, Taberna, Simon, Fabre, Mesnilgrente, Conédéra, Durou (CR39) 2010; 195 Jiang, Shi, Liu, Long, Xi, Wu, Li, Xia, Tang (CR13) 2014; 262 He, Toda, Kawai, Miyashita, Omori, Hashida, Berger, Ono (CR29) 2014; 20 Yamamoto, Suk, An, Piner, Hashida, Takagi, Ruoff (CR36) 2010; 19 Gu, Lou, Li, Chen, Ma, Shen (CR44) 2016; 9 An, He, Toda, Yamamoto, Hashida, Ono (CR47) 2015; 26 Simon, Gogotsi (CR1) 2008; 7 Lau, Cooney, Atanassov (CR33) 2008; 24 Liu, Tang, Chen, Xin (CR20) 2005; 43 Wei, Sevilla, Fuertes, Mokaya, Yushin (CR22) 2012; 22 Simon, Gogotsi (CR24) 2013; 46 Jiang, Lee, Li (CR4) 2013; 6 Beidaghi, Wang (CR12) 2011; 56 Sivaraman, Bhattacharrya, Mishra, Thakur, Shashidhara, Samui (CR27) 2013; 94 Kaempgen, Chan, Ma, Cui, Gruner (CR15) 2009; 9 Wu, Parvez, Feng, Müllen (CR42) 2013; 4 Kim, Park (CR19) 2014; 4 Penmatsa, Kawarada, Wang (CR28) 2012; 22 He, Toda, Kawai, Sarbi, Omori, Hashida, Ono (CR30) 2012; 132 Futaba, Hata, Yamada, Hiraoka, Hayamizu, Kakudate, Tanaike, Hatori, Yumura, Iijima (CR26) 2006; 5 Chen, Beidaghi, Penmatsa, Bechtold, Kumari, Li, Wang (CR17) 2010; 9 Sevilla, Mokaya (CR23) 2014; 7 Xu, Zheng, Zhang, Huang, Zhao, Nie, Wang, Wei (CR48) 2011; 4 Tian, Shi, Xu, Yan, Xu, Minhas-Khan, Han, He, Mai (CR7) 2015; 27 Wang, Hsia, Carraro, Maboudian (CR37) 2014; 2 Wang, Peng, Zheng, Peng, Yu (CR18) 2013; 48 Yun, Kim, Lee, Ha (CR43) 2014; 79 Liu, Lu, Wang, Tay, Tay (CR8) 2015; 9 Béguin, Presser, Balducci, Frackowiak (CR25) 2014; 26 Hsia, Kim, Vincent, Carraro, Maboudian (CR14) 2013; 57 Reserbat-Plantey, Schädler, Gaudreau, Navickaite, Güttinger, Chang, Toninelli, Bachtold, Koppens (CR32) 2016; 7 Zhou, Yang, He, Hao, Luo, Xiong, Xu, Niu, Yan, Mai (CR31) 2015; 106 Huang, Heon, Pech, Brunet, Taberna, Gogotsi, Lofland, Hettinger, Simon (CR38) 2013; 225 Jiang, Zhou, Lin (CR41) 2009 Lin, Chen, Liu, Yang, Bi, Xu, Huang (CR3) 2015; 350 Zhang, Zhao (CR2) 2009; 38 Wei, Yushin (CR5) 2012; 1 Park, Taherabadi, Wang, Zoval, Madou (CR45) 2005; 152 Jiang, Zhai, Qian, Yuan, Karahan, Wei, Goh, Ng, Wei, Chen (CR11) 2016; 9 M. Sevilla (1137_CR23) 2014; 7 S. S. Gu (1137_CR44) 2016; 9 B. Hsia (1137_CR14) 2013; 57 S. L. Jiang (1137_CR13) 2014; 262 W. W. Liu (1137_CR8) 2015; 9 B. Y. Park (1137_CR45) 2005; 152 W. C. Jiang (1137_CR11) 2016; 9 M. Beidaghi (1137_CR9) 2012; 22 Z.-S. Wu (1137_CR42) 2013; 4 X. M. Yang (1137_CR34) 2010; 2 S. L. Jiang (1137_CR21) 2015; 25 L. L. Zhang (1137_CR2) 2009; 38 W. Chen (1137_CR17) 2010; 9 Y. Q. Jiang (1137_CR41) 2009 F. Béguin (1137_CR25) 2014; 26 L. He (1137_CR30) 2012; 132 M. Kaempgen (1137_CR15) 2009; 9 L. Wei (1137_CR22) 2012; 22 J. Yun (1137_CR43) 2014; 79 B. Hsia (1137_CR40) 2014; 25 G. H. Xu (1137_CR48) 2011; 4 L. He (1137_CR29) 2014; 20 A. Reserbat-Plantey (1137_CR32) 2016; 7 S. Wang (1137_CR37) 2014; 2 V. Penmatsa (1137_CR28) 2012; 22 J. H. Lin (1137_CR35) 2009; 137 L. Wei (1137_CR5) 2012; 1 P. H. Huang (1137_CR38) 2013; 225 H. Jiang (1137_CR4) 2013; 6 L. Wei (1137_CR6) 2011; 1 T. Q. Lin (1137_CR3) 2015; 350 Z. Y. Cai (1137_CR46) 2015; 15 D. Pech (1137_CR39) 2010; 195 P. Simon (1137_CR24) 2013; 46 P. Simon (1137_CR1) 2008; 7 G. Yamamoto (1137_CR36) 2010; 19 H. J. Wang (1137_CR18) 2013; 48 P. Sivaraman (1137_CR27) 2013; 94 Z. L. An (1137_CR47) 2015; 26 M. Beidaghi (1137_CR12) 2011; 56 S.-K. Kim (1137_CR19) 2014; 4 Y. Y. Liu (1137_CR20) 2005; 43 X. C. Tian (1137_CR7) 2015; 27 L. Wei (1137_CR10) 2013; 7 C. W. Shen (1137_CR16) 2013; 234 C. Lau (1137_CR33) 2008; 24 D. N. Futaba (1137_CR26) 2006; 5 P. Zhou (1137_CR31) 2015; 106 |
References_xml | – volume: 2 start-page: 7997 year: 2014 end-page: 8002 ident: CR37 article-title: Highperformance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte publication-title: J. Mater. Chem. A doi: 10.1039/c4ta00570h – volume: 350 start-page: 1508 year: 2015 end-page: 1513 ident: CR3 article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage publication-title: Science doi: 10.1126/science.aab3798 – volume: 7 start-page: 1250 year: 2014 end-page: 1280 ident: CR23 article-title: Energy storage applications of activated carbons: Supercapacitors and hydrogen storage publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43525c – volume: 22 start-page: 045024 year: 2012 ident: CR28 article-title: Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/4/045024 – volume: 57 start-page: 395 year: 2013 end-page: 400 ident: CR14 article-title: Photoresist-derived porous carbon for on-chip microsupercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2013.01.089 – volume: 20 start-page: 201 year: 2014 end-page: 208 ident: CR29 article-title: Fabrication of CNT-carbon composite microstructures using Si micromolding and pyrolysis publication-title: Microsyst. Technol. doi: 10.1007/s00542-013-1771-6 – volume: 24 start-page: 7004 year: 2008 end-page: 7010 ident: CR33 article-title: Conductive macroporous composite chitosan-carbon nanotube scaffolds publication-title: Langmuir doi: 10.1021/la8005597 – volume: 4 start-page: 2487 year: 2013 ident: CR42 article-title: Graphenebased in-plane micro-supercapacitors with high power and energy densities publication-title: Nat. Commun. – volume: 7 start-page: 845 year: 2008 end-page: 854 ident: CR1 article-title: Materials for electrochemical capacitors publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 225 start-page: 240 year: 2013 end-page: 244 ident: CR38 article-title: Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.020 – volume: 15 start-page: 738 year: 2015 end-page: 744 ident: CR46 article-title: Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries publication-title: Nano Lett. doi: 10.1021/nl504427d – volume: 5 start-page: 987 year: 2006 end-page: 994 ident: CR26 article-title: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes publication-title: Nat. Mater. doi: 10.1038/nmat1782 – volume: 7 start-page: 6498 year: 2013 end-page: 6506 ident: CR10 article-title: Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices publication-title: ACS Nano doi: 10.1021/nn4028129 – volume: 27 start-page: 7476 year: 2015 end-page: 7482 ident: CR7 article-title: Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities publication-title: Adv. Mater. doi: 10.1002/adma.201503567 – volume: 25 start-page: 113001 year: 2015 ident: CR21 article-title: Scalable fabrication of carbon-based MEMS/NEMS and their applications: A review publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/25/11/113001 – volume: 132 start-page: 425 year: 2012 end-page: 426 ident: CR30 article-title: Fabrication of a Si-PZT hybrid XY-microstage with CNT-carbon hinges publication-title: IEEJ Trans. Sens. Micromach. doi: 10.1541/ieejsmas.132.425 – volume: 38 start-page: 2520 year: 2009 end-page: 2531 ident: CR2 article-title: Carbon-based materials as supercapacitor electrodes publication-title: Chem. Soc. Rev. doi: 10.1039/b813846j – start-page: 587 year: 2009 end-page: 590 ident: CR41 article-title: Planar MEMS supercapacitor using carbon nanotube forests publication-title: Proceedings of the IEEE 22nd International Conference on Micro Electro Mechanical Systems – volume: 79 start-page: 156 year: 2014 end-page: 164 ident: CR43 article-title: All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes publication-title: Carbon doi: 10.1016/j.carbon.2014.07.055 – volume: 48 start-page: 3389 year: 2013 end-page: 3393 ident: CR18 article-title: Design, synthesis and the electrochemical performance of MnO /C@CNT as supercapacitor material publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2013.05.015 – volume: 4 start-page: 47827 year: 2014 end-page: 47832 ident: CR19 article-title: Multiwalled carbon nanotubes coated with a thin carbon layer for use as composite electrodes in supercapacitors publication-title: RSC Adv. doi: 10.1039/C4RA08747J – volume: 9 start-page: 734 year: 2010 end-page: 740 ident: CR17 article-title: Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors publication-title: IEEE T. Nanotechnol. doi: 10.1109/TNANO.2010.2049500 – volume: 22 start-page: 4501 year: 2012 end-page: 4510 ident: CR9 article-title: Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201292 – volume: 137 start-page: 768 year: 2009 end-page: 773 ident: CR35 article-title: One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor publication-title: Sensor. Actuat. B doi: 10.1016/j.snb.2009.01.033 – volume: 46 start-page: 1094 year: 2013 end-page: 1103 ident: CR24 article-title: Capacitive energy storage in nano-structured carbon-electrolyte systems publication-title: Acc. Chem. Res. doi: 10.1021/ar200306b – volume: 6 start-page: 41 year: 2013 end-page: 53 ident: CR4 article-title: 3D carbon based nanostructures for advanced supercapacitors publication-title: Energy Environ. Sci. doi: 10.1039/C2EE23284G – volume: 9 start-page: 1528 year: 2015 end-page: 1542 ident: CR8 article-title: High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film publication-title: ACS Nano doi: 10.1021/nn5060442 – volume: 2 start-page: 1707 year: 2010 end-page: 1713 ident: CR34 article-title: Well-dispersed chitosan/graphene oxide nanocomposites publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100222m – volume: 4 start-page: 870 year: 2011 end-page: 881 ident: CR48 article-title: Binder-free activated carbon/ carbon nanotube paper electrodes for use in supercapacitors publication-title: Nano Res. doi: 10.1007/s12274-011-0143-8 – volume: 1 start-page: 552 year: 2012 end-page: 565 ident: CR5 article-title: Nanostructured activated carbons from natural precursors for electrical double layer capacitors publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.05.002 – volume: 9 start-page: 1872 year: 2009 end-page: 1876 ident: CR15 article-title: Printable thin film supercapacitors using single-walled carbon nanotubes publication-title: Nano Lett. doi: 10.1021/nl8038579 – volume: 43 start-page: 3178 year: 2005 end-page: 3180 ident: CR20 article-title: Decoration of carbon nanotubes with chitosan publication-title: Carbon doi: 10.1016/j.carbon.2005.06.020 – volume: 9 start-page: 611 year: 2016 end-page: 622 ident: CR11 article-title: Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: Realizing a built-to-order concept for micro-supercapacitors publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02703A – volume: 195 start-page: 1266 year: 2010 end-page: 1269 ident: CR39 article-title: Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.08.085 – volume: 26 start-page: 195601 year: 2015 ident: CR47 article-title: Microstructuring of carbon nanotubes-nickel nanocomposite publication-title: Nanotechnology doi: 10.1088/0957-4484/26/19/195601 – volume: 152 start-page: J136 year: 2005 end-page: J143 ident: CR45 article-title: Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media publication-title: J. Electrochem. Soc. doi: 10.1149/1.2116707 – volume: 9 start-page: 424 year: 2016 end-page: 434 ident: CR44 article-title: Fabrication of flexible reduced graphene oxide/Fe O hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications publication-title: Nano Res. doi: 10.1007/s12274-015-0923-7 – volume: 56 start-page: 9508 year: 2011 end-page: 9514 ident: CR12 article-title: Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.08.054 – volume: 234 start-page: 302 year: 2013 end-page: 309 ident: CR16 article-title: A high-energy-density micro supercapacitor of asymmetric MnO -carbon configuration by using micro-fabrication technologies publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.101 – volume: 94 start-page: 182 year: 2013 end-page: 191 ident: CR27 article-title: Asymmetric supercapacitor containing poly(3-methyl thiophene)-multiwalled carbon nanotubes nanocomposites and activated carbon publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.01.123 – volume: 26 start-page: 2219 year: 2014 end-page: 2251 ident: CR25 article-title: Carbons and electrolytes for advanced supercapacitors publication-title: Adv. Mater. doi: 10.1002/adma.201304137 – volume: 262 start-page: 494 year: 2014 end-page: 500 ident: CR13 article-title: Integration of MnO thin film and carbon nanotubes to three-dimensional carbon microelectrodes for electrochemical microcapacitors publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.12.009 – volume: 7 start-page: 10218 year: 2016 ident: CR32 article-title: Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS publication-title: Nat. Commun. doi: 10.1038/ncomms10218 – volume: 22 start-page: 827 year: 2012 end-page: 834 ident: CR22 article-title: Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101866 – volume: 19 start-page: 748 year: 2010 end-page: 751 ident: CR36 article-title: The influence of Nanoscale defects on the fracture of multi-walled carbon nanotubes under tensile loading publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2010.01.045 – volume: 1 start-page: 356 year: 2011 end-page: 361 ident: CR6 article-title: Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100019 – volume: 106 start-page: 111908 year: 2015 ident: CR31 article-title: The Young’s modulus of high-aspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation publication-title: Appl. Phys. Lett. doi: 10.1063/1.4915514 – volume: 25 start-page: 055401 year: 2014 ident: CR40 article-title: Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes publication-title: Nanotechnology doi: 10.1088/0957-4484/25/5/055401 – volume: 234 start-page: 302 year: 2013 ident: 1137_CR16 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.101 – volume: 24 start-page: 7004 year: 2008 ident: 1137_CR33 publication-title: Langmuir doi: 10.1021/la8005597 – volume: 137 start-page: 768 year: 2009 ident: 1137_CR35 publication-title: Sensor. Actuat. B doi: 10.1016/j.snb.2009.01.033 – volume: 25 start-page: 055401 year: 2014 ident: 1137_CR40 publication-title: Nanotechnology doi: 10.1088/0957-4484/25/5/055401 – volume: 22 start-page: 045024 year: 2012 ident: 1137_CR28 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/4/045024 – volume: 4 start-page: 870 year: 2011 ident: 1137_CR48 publication-title: Nano Res. doi: 10.1007/s12274-011-0143-8 – volume: 7 start-page: 6498 year: 2013 ident: 1137_CR10 publication-title: ACS Nano doi: 10.1021/nn4028129 – volume: 1 start-page: 356 year: 2011 ident: 1137_CR6 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100019 – volume: 9 start-page: 1528 year: 2015 ident: 1137_CR8 publication-title: ACS Nano doi: 10.1021/nn5060442 – volume: 350 start-page: 1508 year: 2015 ident: 1137_CR3 publication-title: Science doi: 10.1126/science.aab3798 – volume: 9 start-page: 734 year: 2010 ident: 1137_CR17 publication-title: IEEE T. Nanotechnol. doi: 10.1109/TNANO.2010.2049500 – volume: 2 start-page: 1707 year: 2010 ident: 1137_CR34 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am100222m – volume: 225 start-page: 240 year: 2013 ident: 1137_CR38 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.020 – volume: 56 start-page: 9508 year: 2011 ident: 1137_CR12 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2011.08.054 – volume: 106 start-page: 111908 year: 2015 ident: 1137_CR31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4915514 – volume: 26 start-page: 2219 year: 2014 ident: 1137_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.201304137 – volume: 94 start-page: 182 year: 2013 ident: 1137_CR27 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.01.123 – volume: 15 start-page: 738 year: 2015 ident: 1137_CR46 publication-title: Nano Lett. doi: 10.1021/nl504427d – volume: 22 start-page: 4501 year: 2012 ident: 1137_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201292 – volume: 25 start-page: 113001 year: 2015 ident: 1137_CR21 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/25/11/113001 – volume: 48 start-page: 3389 year: 2013 ident: 1137_CR18 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2013.05.015 – volume: 7 start-page: 845 year: 2008 ident: 1137_CR1 publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 9 start-page: 611 year: 2016 ident: 1137_CR11 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02703A – volume: 38 start-page: 2520 year: 2009 ident: 1137_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/b813846j – volume: 27 start-page: 7476 year: 2015 ident: 1137_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201503567 – start-page: 587 volume-title: Proceedings of the IEEE 22nd International Conference on Micro Electro Mechanical Systems year: 2009 ident: 1137_CR41 – volume: 9 start-page: 1872 year: 2009 ident: 1137_CR15 publication-title: Nano Lett. doi: 10.1021/nl8038579 – volume: 152 start-page: J136 year: 2005 ident: 1137_CR45 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2116707 – volume: 43 start-page: 3178 year: 2005 ident: 1137_CR20 publication-title: Carbon doi: 10.1016/j.carbon.2005.06.020 – volume: 57 start-page: 395 year: 2013 ident: 1137_CR14 publication-title: Carbon doi: 10.1016/j.carbon.2013.01.089 – volume: 22 start-page: 827 year: 2012 ident: 1137_CR22 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201101866 – volume: 19 start-page: 748 year: 2010 ident: 1137_CR36 publication-title: Diam. Relat. Mater. doi: 10.1016/j.diamond.2010.01.045 – volume: 6 start-page: 41 year: 2013 ident: 1137_CR4 publication-title: Energy Environ. Sci. doi: 10.1039/C2EE23284G – volume: 26 start-page: 195601 year: 2015 ident: 1137_CR47 publication-title: Nanotechnology doi: 10.1088/0957-4484/26/19/195601 – volume: 20 start-page: 201 year: 2014 ident: 1137_CR29 publication-title: Microsyst. Technol. doi: 10.1007/s00542-013-1771-6 – volume: 195 start-page: 1266 year: 2010 ident: 1137_CR39 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.08.085 – volume: 79 start-page: 156 year: 2014 ident: 1137_CR43 publication-title: Carbon doi: 10.1016/j.carbon.2014.07.055 – volume: 132 start-page: 425 year: 2012 ident: 1137_CR30 publication-title: IEEJ Trans. Sens. Micromach. doi: 10.1541/ieejsmas.132.425 – volume: 7 start-page: 1250 year: 2014 ident: 1137_CR23 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE43525C – volume: 9 start-page: 424 year: 2016 ident: 1137_CR44 publication-title: Nano Res. doi: 10.1007/s12274-015-0923-7 – volume: 262 start-page: 494 year: 2014 ident: 1137_CR13 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.12.009 – volume: 4 start-page: 2487 year: 2013 ident: 1137_CR42 publication-title: Nat. Commun. doi: 10.1038/ncomms3487 – volume: 7 start-page: 10218 year: 2016 ident: 1137_CR32 publication-title: Nat. Commun. doi: 10.1038/ncomms10218 – volume: 1 start-page: 552 year: 2012 ident: 1137_CR5 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.05.002 – volume: 4 start-page: 47827 year: 2014 ident: 1137_CR19 publication-title: RSC Adv. doi: 10.1039/C4RA08747J – volume: 2 start-page: 7997 year: 2014 ident: 1137_CR37 publication-title: J. Mater. Chem. A doi: 10.1039/c4ta00570h – volume: 46 start-page: 1094 year: 2013 ident: 1137_CR24 publication-title: Acc. Chem. Res. doi: 10.1021/ar200306b – volume: 5 start-page: 987 year: 2006 ident: 1137_CR26 publication-title: Nat. Mater. doi: 10.1038/nmat1782 |
SSID | ssj0062148 |
Score | 2.429251 |
Snippet | In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2510 |
SubjectTerms | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Capacitance Carbon Carbon nanotubes Chemistry and Materials Science Chitosan Condensed Matter Physics Conductivity Electrochemical analysis Electrochemistry Energy density Energy storage Flux density Integration Materials Science Microelectrodes Microelectromechanical systems Micropatterning Nanostructure Nanotechnology Nanotubes Performance enhancement Photolithography Photoresists Pyrolysis Research Article Supercapacitors |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeIqlBRmJE8gifsRJTgghqgoJTlTam-VnQQJnu8n-j_5kZhJnF5DYqzNOosw48_D4-wh5nUJnXao9s65zDFxAYJ1wgTnObayD5Nrj2eEvX_XFpfq8rtel4DaUtsrlnzj9qEPvsUb-Dnt_FLhPLd9vrhmyRuHuaqHQuE3uIHQZWnWz3idcWvCJPWs-RgaObNnVnI7OCcjHYFQzziWsM8RW-N7nq2vwGH_7qEPg-c9e6eSCzh-Q-yV2pB9mZT8kt2J-RO79gSj4mNzMRYIYKOS5COU6cUNQm2EA3KL_MaKWaZ8o4kSAcVwhaQhc27o-01_YnVeIcUIcaCHxoQumBOiQYuF2kc829-POgSSEvvNsNuw2cVue1W-HJ-Ty_NO3jxeskC4wD6neyISKTfRaysqr0Inatk2rlIuVdilBehOc1ClaEGgTF5UMXWpjrawVKQpuk3xKTnKf4zNCdeAN74JzCtFGQ9OFKlYqealCDVlfXJHT_Sc3mxlcw2iNvLSiqVekWpRgfMErR9qMn-aAtIw6NNijhjo0ckXe7Kcs9zsifLZo1pR1O5iDla3Iq_1lWHG4jWJz7HeDgZiIty14__aYjKw1YuOBzNvFag6P-e9LPT_-UqfkrkCTnRoQz8jJuN3FFxAUje7lZPm_AbdZDCY priority: 102 providerName: ProQuest |
Title | Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors |
URI | http://lib.cqvip.com/qk/71233X/201608/669508275.html https://link.springer.com/article/10.1007/s12274-016-1137-3 https://www.proquest.com/docview/2001464363 https://www.proquest.com/docview/1811883418 https://www.proquest.com/docview/1835636708 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe4EDojzEtmVlJE4gS_EzyXFBu61AVAix0nKK7NguB0jaze7_4Cczk8S7gGglLokUj-MoY3tm7PH3EfIq-tK6qGtmXekYmADPSuE8c5zboL3kpsazwx8vzcVSvV_p1XiOu0vZ7mlLsp-p94fdBERQEPoaxrmEkXFAjjSE7pjHtRSzNP0awXvKrOHsGFivtJX5r1cgoMK3trm6geb-NEx7b_OvDdLe7iwekYejw0hng4aPyb3QPCYPfoMRfEJ-DisDwVMIbhG_tSeEoLaBB2ALawj_QbW0jRTBIaBHXCFTCJStXdvQH5iSN7Lh-NDRkbmHJiAJUBzF1dok39im3WwdSIK_O9Rm3fY6rMe22nX3lCwX8y_vLtjItMBqiO82TKiQh9pImdXKl0LbIi-UciEzLkaIabyTJgYLAkXkIpO-jEXQyloRg-A2ymfksGmb8JxQ43nOS--cQohRn5c-C5mKtVReQ6gXJuR098ur6wFRozIGyWhFrickS0qo6hGkHLkyvld7eGXUYYWJaajDSk7I612V9L47hM-SZqtxsHbIxAn2QkkDxS93xTDMcO_ENqHddhU4QrwowOQXd8lIbRAQD2TepF6zb-bWjzr5L-lTcl9gD-6TEM_I4Wa9DS_AMdq4KTnIVzlci8X5lBzNzr9-mMP97fzy0-dpP0h-ATpRDbI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNdWsBIcAFFxI84yQEhBCxb-ji1Um_Gju2CBMl2kxXiX_BL-I3MJPEuILG3XpNxEmXGnhl75vsIeRpcaWzIqsTY0ibgAlxScusSy5jxmRNMVdg7fHSsZqfy41l2tkV-xV4YLKuMa2K_ULumwj3yl1j7I8F9KvF6fpEgaxSerkYKjcEsDvyP75Cyta_234F-n3E-fX_ydpaMrAJJBblMl3Dpc18pyOMr6UqemSIvpLQ-VTYEiN-dFSp4AwJFYDwVrgyFz6QxPHjOTBDw3CvkqhTgybEzffohrvyKs56ta2hbA8cZT1H7Vj0O-R9cVQljAuY1Yjl8burzC_BQf_vEdaD7z9ls7_Kmt8jNMValbwbjuk22fH2H3PgDwfAu-TlsSnhHIa9G6Niei4KaGi6AG66-dGhVtAkUcSnAGM-RpATuLWxT029YDTgS8Tjf0pE0iEYMC7AZihvFUb42ddMtLUhCqD2MTtrl3C_GdzWL9h45vRR13CfbdVP7HUKVYzkrnbUS0U1dXrrUpzJUQroMskw_IburX67nA5iHVgp5cHmeTUgalaCrER8daTq-6jWyM-pQY00c6lCLCXm-GhKft0F4L2pWj-tEq9dWPSFPVrdhhuOxjal9s2w1xGCsKCDaKDbJiEwhFh_IvIhWs37Nfz_qweaPekyuzU6ODvXh_vHBLrnO0Xz74sc9st0tlv4hBGSdfdTPAko-Xfa0-w2Wh0ma |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVkJwQPyq2xYwElxAVmPHcZIDQkC7aimsKkSl3oId2wWJJttNVoi34Hl4OmaSeBeQ2FuvyTiJMjOeGXv8fYQ89TbXxicl0yY3DEKAZbkwlhnOtUtszFWJZ4c_TNXhqXx3lpxtkF_hLAy2VYY5sZuobV3iGvke9v5ICJ8q3vNDW8TJ_uTV7JIhgxTutAY6jd5Ejt2P71C-NS-P9kHXz4SYHHx6e8gGhgFWQl3TMiFd6koFNX0pbS4SnaWZlMZFyngPubw1sfJOg0DmuYhim_vMJVJr4Z3g2sfw3GtkM8WqaEQ23xxMTz6GOKAE77i7-kNsEEbDnmp3cE9ANQhXFeM8Bi9HZIcvdXV-CfHq7wi5Snv_2antAuDkNrk1ZK70dW9qd8iGq-6Sm3_gGd4jP_slCmcpVNkIJNsxU1BdwQUIyuXXFm2M1p4iSgWY5jlSlsC9uakreoG9gQMtj3UNHSiEaEC0AAuiuGwc5Ctd1e3CgCQk3v1o1ixmbj68q54398nplSjkARlVdeW2CFWWpzy3xkjEOrVpbiMXSV_G0iZQc7ox2Vn-8mLWQ3sUSiErrkiTMYmCEopyQEtH0o5vxQrnGXVYYIcc6rCIx-T5ckh43hrh3aDZYpg1mmJl42PyZHkb_B03cXTl6kVTQEbGswxyj2ydTJwoROYDmRfBalav-e9Hba__qMfkOrhc8f5oerxDbgi03q4TcpeM2vnCPYTsrDWPBjeg5PNVe95vYN5PLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+conductivity+and+capacitance+of+interdigital+carbon+microelectrodes+through+integration+with+carbon+nanotubes+for+micro-supercapacitors&rft.jtitle=%E7%BA%B3%E7%B1%B3%E7%A0%94%E7%A9%B6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Yanjuan+Yang+Liang+He+Chunjuan+Tang+Ping+Hu+Xufeng+Hong+Mengyu+Yan+Yixiao+Dong+Xiaocong+Tian+Qiulong+Wei+Liqiang+Mai&rft.date=2016-08-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.issue=8&rft.spage=2510&rft.epage=2519&rft_id=info:doi/10.1007%2Fs12274-016-1137-3&rft.externalDocID=669508275 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71233X%2F71233X.jpg |