Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors

In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance,...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 9; no. 8; pp. 2510 - 2519
Main Authors Yang, Yanjuan, He, Liang, Tang, Chunjuan, Hu, Ping, Hong, Xufeng, Yan, Mengyu, Dong, Yixiao, Tian, Xiaocong, Wei, Qiulong, Mai, Liqiang
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon- based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF.cm-2) and energy density (4.5 mWh.cm-3) at a scan rate of 10 mV.s-L Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors.
AbstractList In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon-based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF.cm super(-2)) and energy density (4.5 mWh.cm super(-3)) at a scan rate of 10 mV.s super(-1). Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors. [Figure not available: see fulltext.]
In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon- based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF.cm-2) and energy density (4.5 mWh.cm-3) at a scan rate of 10 mV.s-L Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors.
In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon-based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF·cm–2) and energy density (4.5 mWh·cm–3) at a scan rate of 10 mV·s–1. Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors.
In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon-based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF·cm –2 ) and energy density (4.5 mWh·cm –3 ) at a scan rate of 10 mV·s –1 . Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors.
Author Yanjuan Yang Liang He Chunjuan Tang Ping Hu Xufeng Hong Mengyu Yan Yixiao Dong Xiaocong Tian Qiulong Wei Liqiang Mai
AuthorAffiliation State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Chino Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, China
Author_xml – sequence: 1
  givenname: Yanjuan
  surname: Yang
  fullname: Yang, Yanjuan
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
– sequence: 2
  givenname: Liang
  surname: He
  fullname: He, Liang
  email: hel@whut.edu.cn
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
– sequence: 3
  givenname: Chunjuan
  surname: Tang
  fullname: Tang, Chunjuan
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Department of Mathematics and Physics, Luoyang Institute of Science and Technology
– sequence: 4
  givenname: Ping
  surname: Hu
  fullname: Hu, Ping
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
– sequence: 5
  givenname: Xufeng
  surname: Hong
  fullname: Hong, Xufeng
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
– sequence: 6
  givenname: Mengyu
  surname: Yan
  fullname: Yan, Mengyu
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
– sequence: 7
  givenname: Yixiao
  surname: Dong
  fullname: Dong, Yixiao
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
– sequence: 8
  givenname: Xiaocong
  surname: Tian
  fullname: Tian, Xiaocong
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
– sequence: 9
  givenname: Qiulong
  surname: Wei
  fullname: Wei, Qiulong
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
– sequence: 10
  givenname: Liqiang
  surname: Mai
  fullname: Mai, Liqiang
  email: mlq518@whut.edu.cn
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology
BookMark eNqNkc1O3DAUha0KpMLQB-guajfdpPgvjrOsEG2RkNi0a8txrjNGGXuwHRBvwSPjNEMrsUD1xtb1d3zu9TlFRz54QOgjwV8Jxu15IpS2vMZE1ISwtmbv0AnpOlnjso5ezoTy9-g0pVuMBSVcnqCnq90-hnsYKhP8MJvs7l1-rLQvBb3XxmXtDVTBVs5niIMbS2Uqd7EPvto5EwNMYHIMA6Qqb2OYx-0fdow6u8I8uLx94b32Ic99IW2Iq7pO8x7iwSvEdIaOrZ4SfDjsG_T7--Wvi5_19c2Pq4tv17XhuMs15dCCEYxhw4eONlq2kvMesOitbbgceiYs6AJISyhmQ2clNFxraoESbdkGfVnfLePfzZCy2rlkYJq0hzAnRSRrBBMtlv-BEiIl42RBP79Cb8McfRlEUYwJF5yVljaIrFSZP6UIVu2j2-n4qAhWS5xqjVOVONUSp1o07SvNks3ywzlqN72ppKsyFRc_QvzX01uiTwe7bfDjXdH97VGIrsGStg17BpORxQo
CitedBy_id crossref_primary_10_1002_ente_201900144
crossref_primary_10_1039_C7CS00819H
crossref_primary_10_1002_aenm_202001873
crossref_primary_10_1016_j_nantod_2019_100764
crossref_primary_10_1039_C8TA00089A
crossref_primary_10_1021_acsomega_9b04266
crossref_primary_10_1007_s12274_017_1451_4
crossref_primary_10_1002_smll_201700639
crossref_primary_10_1039_D4RA04909H
crossref_primary_10_1016_j_cej_2024_153495
crossref_primary_10_1021_acsaem_0c00150
crossref_primary_10_1088_1361_6528_ab991d
crossref_primary_10_1016_j_apsusc_2018_08_259
crossref_primary_10_1021_acsaem_1c03745
crossref_primary_10_1088_1361_6439_aad107
crossref_primary_10_1002_ece2_71
crossref_primary_10_1007_s10971_025_06704_w
crossref_primary_10_1016_j_est_2021_103169
crossref_primary_10_1039_D0TA10397G
crossref_primary_10_1007_s12274_020_2729_5
crossref_primary_10_1039_C7TA06046G
crossref_primary_10_1088_1361_6439_ab1d9f
crossref_primary_10_1002_ente_201900820
crossref_primary_10_1007_s12274_017_1586_3
crossref_primary_10_20964_2017_05_39
crossref_primary_10_1007_s12274_023_6263_0
crossref_primary_10_1016_j_jpowsour_2020_228643
crossref_primary_10_1088_1361_6528_abcbc5
crossref_primary_10_1080_00150193_2023_2198450
crossref_primary_10_1002_smll_201703710
crossref_primary_10_1002_adfm_201910000
crossref_primary_10_1021_acsami_8b18853
crossref_primary_10_1002_cssc_201700492
crossref_primary_10_1039_C7NR01789H
crossref_primary_10_1088_1742_6596_1052_1_012143
crossref_primary_10_1007_s12274_021_3697_0
crossref_primary_10_1016_j_solidstatesciences_2022_106903
crossref_primary_10_1021_acsami_8b12543
crossref_primary_10_1016_j_applthermaleng_2018_06_049
crossref_primary_10_1039_D3NR05838G
crossref_primary_10_3390_mi10050307
crossref_primary_10_1002_aenm_201802369
crossref_primary_10_1016_j_est_2020_101795
crossref_primary_10_1002_cnma_201800368
crossref_primary_10_1007_s10853_022_07838_w
crossref_primary_10_1016_j_jpowsour_2019_227284
crossref_primary_10_1016_j_jpowsour_2021_230700
crossref_primary_10_1016_j_jpowsour_2017_04_064
crossref_primary_10_1126_sciadv_abn8338
crossref_primary_10_3390_mi15111294
crossref_primary_10_1039_D0TA09811F
crossref_primary_10_1016_j_ensm_2023_01_051
crossref_primary_10_1002_pssb_202000358
crossref_primary_10_1007_s12274_017_1448_z
crossref_primary_10_1016_j_electacta_2017_11_011
crossref_primary_10_1021_acsami_6b12001
crossref_primary_10_3390_ma16186133
crossref_primary_10_1007_s12274_017_1587_2
crossref_primary_10_1016_j_ensm_2021_07_041
crossref_primary_10_1002_ente_201600391
crossref_primary_10_1080_00150193_2021_1905745
crossref_primary_10_1002_smll_202400179
crossref_primary_10_1016_j_matchar_2021_111373
crossref_primary_10_1016_j_est_2025_115862
crossref_primary_10_1039_C8CS00561C
crossref_primary_10_1080_00150193_2021_1905743
crossref_primary_10_1039_C6TA08328E
crossref_primary_10_1007_s10800_018_1243_x
crossref_primary_10_1016_j_apsusc_2021_149457
crossref_primary_10_1142_S1793292022500746
crossref_primary_10_1016_j_cej_2016_09_060
crossref_primary_10_1016_j_electacta_2016_09_133
crossref_primary_10_1016_j_jallcom_2019_151769
crossref_primary_10_1002_open_202400179
crossref_primary_10_1016_j_cej_2017_09_169
crossref_primary_10_1007_s40820_024_01352_1
Cites_doi 10.1039/c4ta00570h
10.1126/science.aab3798
10.1039/c3ee43525c
10.1088/0960-1317/22/4/045024
10.1016/j.carbon.2013.01.089
10.1007/s00542-013-1771-6
10.1021/la8005597
10.1038/nmat2297
10.1016/j.jpowsour.2012.10.020
10.1021/nl504427d
10.1038/nmat1782
10.1021/nn4028129
10.1002/adma.201503567
10.1088/0960-1317/25/11/113001
10.1541/ieejsmas.132.425
10.1039/b813846j
10.1016/j.carbon.2014.07.055
10.1016/j.materresbull.2013.05.015
10.1039/C4RA08747J
10.1109/TNANO.2010.2049500
10.1002/adfm.201201292
10.1016/j.snb.2009.01.033
10.1021/ar200306b
10.1039/C2EE23284G
10.1021/nn5060442
10.1021/am100222m
10.1007/s12274-011-0143-8
10.1016/j.nanoen.2012.05.002
10.1021/nl8038579
10.1016/j.carbon.2005.06.020
10.1039/C5EE02703A
10.1016/j.jpowsour.2009.08.085
10.1088/0957-4484/26/19/195601
10.1149/1.2116707
10.1007/s12274-015-0923-7
10.1016/j.electacta.2011.08.054
10.1016/j.jpowsour.2012.10.101
10.1016/j.electacta.2013.01.123
10.1002/adma.201304137
10.1016/j.jpowsour.2013.12.009
10.1038/ncomms10218
10.1002/adfm.201101866
10.1016/j.diamond.2010.01.045
10.1002/aenm.201100019
10.1063/1.4915514
10.1088/0957-4484/25/5/055401
10.1039/C3EE43525C
10.1038/ncomms3487
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Nano Research is a copyright of Springer, (2016). All Rights Reserved.
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
– notice: Nano Research is a copyright of Springer, (2016). All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s12274-016-1137-3
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Materials Research Database
Engineering Research Database

Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors
EISSN 1998-0000
EndPage 2519
ExternalDocumentID 10_1007_s12274_016_1137_3
669508275
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
92L
95-
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBYP
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACREN
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CQIGP
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
~WA
AACDK
AAJBT
AASML
AAYZH
ABAKF
ABQSL
ACPIV
ADMLS
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
ALIPV
BSONS
FRJ
H13
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c409t-24e7ec6330c4d925a87844be06bff548db36fea6338f1203d9f8e54aa2fe21af3
IEDL.DBID U2A
ISSN 1998-0124
IngestDate Fri Jul 11 05:58:04 EDT 2025
Fri Jul 11 07:34:48 EDT 2025
Sat Aug 23 14:32:27 EDT 2025
Tue Jul 01 01:46:47 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
Fri Feb 21 02:35:33 EST 2025
Wed Feb 14 10:16:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords photolithography
pyrolysis
carbon nanotubes
microelectromechanical system (MEMS)
supercapacitors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-24e7ec6330c4d925a87844be06bff548db36fea6338f1203d9f8e54aa2fe21af3
Notes In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods have been investigated to improve the performance of pyrolyzed carbons, such as conductivity, energy storage density and cycling performance, effective methods for the integration and mass-production of pyrolyzed-carbon- based composites on a large scale are lacking. Here, we report the development of an optimized photolithographic technique for the fine micropatterning of photoresist/chitosan-coated carbon nanotube (CHIT-CNT) composite. After subsequent pyrolysis, the fabricated carbon/CHIT-CNT microelectrode-based micro-supercapacitor has a high capacitance (6.09 mF.cm-2) and energy density (4.5 mWh.cm-3) at a scan rate of 10 mV.s-L Additionally, the micro-supercapacitor has a remarkable long-term cyclability, with 99.9% capacitance retention after 10,000 cyclic voltammetry cycles. This design and microfabrication process allow the application of carbon microelectromechanical system (C-MEMS)-based micro-supercapacitors due to their high potential for enhancing the mechanical and electrochemical performance of micro-supercapacitors.
11-5974/O4
photolithography,supercapacitors,pyrolysis,microelectromechanicalsystem (MEMS),carbon nanotubes
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2001464363
PQPubID 326270
PageCount 10
ParticipantIDs proquest_miscellaneous_1835636708
proquest_miscellaneous_1811883418
proquest_journals_2001464363
crossref_primary_10_1007_s12274_016_1137_3
crossref_citationtrail_10_1007_s12274_016_1137_3
springer_journals_10_1007_s12274_016_1137_3
chongqing_primary_669508275
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationTitleAlternate Nano Research
PublicationYear 2016
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Shen, Wang, Li, Wang, Zhang, Kang (CR16) 2013; 234
Wei, Sevilla, Fuertes, Mokaya, Yushin (CR6) 2011; 1
Beidaghi, Wang (CR9) 2012; 22
Yang, Tu, Li, Shang, Tao (CR34) 2010; 2
Hsia, Marschewski, Wang, In, Carraro, Poulikakos, Grigoropoulos, Maboudian (CR40) 2014; 25
Cai, Xu, Yan, Han, He, Hercule, Niu, Yuan, Xu, Qu (CR46) 2015; 15
Wei, Nitta, Yushin (CR10) 2013; 7
Lin, He, Zhao, Zhang (CR35) 2009; 137
Jiang, Shi, Zhan, Xi, Long, Gong, Li, Cheng, Huang, Tang (CR21) 2015; 25
Pech, Brunet, Taberna, Simon, Fabre, Mesnilgrente, Conédéra, Durou (CR39) 2010; 195
Jiang, Shi, Liu, Long, Xi, Wu, Li, Xia, Tang (CR13) 2014; 262
He, Toda, Kawai, Miyashita, Omori, Hashida, Berger, Ono (CR29) 2014; 20
Yamamoto, Suk, An, Piner, Hashida, Takagi, Ruoff (CR36) 2010; 19
Gu, Lou, Li, Chen, Ma, Shen (CR44) 2016; 9
An, He, Toda, Yamamoto, Hashida, Ono (CR47) 2015; 26
Simon, Gogotsi (CR1) 2008; 7
Lau, Cooney, Atanassov (CR33) 2008; 24
Liu, Tang, Chen, Xin (CR20) 2005; 43
Wei, Sevilla, Fuertes, Mokaya, Yushin (CR22) 2012; 22
Simon, Gogotsi (CR24) 2013; 46
Jiang, Lee, Li (CR4) 2013; 6
Beidaghi, Wang (CR12) 2011; 56
Sivaraman, Bhattacharrya, Mishra, Thakur, Shashidhara, Samui (CR27) 2013; 94
Kaempgen, Chan, Ma, Cui, Gruner (CR15) 2009; 9
Wu, Parvez, Feng, Müllen (CR42) 2013; 4
Kim, Park (CR19) 2014; 4
Penmatsa, Kawarada, Wang (CR28) 2012; 22
He, Toda, Kawai, Sarbi, Omori, Hashida, Ono (CR30) 2012; 132
Futaba, Hata, Yamada, Hiraoka, Hayamizu, Kakudate, Tanaike, Hatori, Yumura, Iijima (CR26) 2006; 5
Chen, Beidaghi, Penmatsa, Bechtold, Kumari, Li, Wang (CR17) 2010; 9
Sevilla, Mokaya (CR23) 2014; 7
Xu, Zheng, Zhang, Huang, Zhao, Nie, Wang, Wei (CR48) 2011; 4
Tian, Shi, Xu, Yan, Xu, Minhas-Khan, Han, He, Mai (CR7) 2015; 27
Wang, Hsia, Carraro, Maboudian (CR37) 2014; 2
Wang, Peng, Zheng, Peng, Yu (CR18) 2013; 48
Yun, Kim, Lee, Ha (CR43) 2014; 79
Liu, Lu, Wang, Tay, Tay (CR8) 2015; 9
Béguin, Presser, Balducci, Frackowiak (CR25) 2014; 26
Hsia, Kim, Vincent, Carraro, Maboudian (CR14) 2013; 57
Reserbat-Plantey, Schädler, Gaudreau, Navickaite, Güttinger, Chang, Toninelli, Bachtold, Koppens (CR32) 2016; 7
Zhou, Yang, He, Hao, Luo, Xiong, Xu, Niu, Yan, Mai (CR31) 2015; 106
Huang, Heon, Pech, Brunet, Taberna, Gogotsi, Lofland, Hettinger, Simon (CR38) 2013; 225
Jiang, Zhou, Lin (CR41) 2009
Lin, Chen, Liu, Yang, Bi, Xu, Huang (CR3) 2015; 350
Zhang, Zhao (CR2) 2009; 38
Wei, Yushin (CR5) 2012; 1
Park, Taherabadi, Wang, Zoval, Madou (CR45) 2005; 152
Jiang, Zhai, Qian, Yuan, Karahan, Wei, Goh, Ng, Wei, Chen (CR11) 2016; 9
M. Sevilla (1137_CR23) 2014; 7
S. S. Gu (1137_CR44) 2016; 9
B. Hsia (1137_CR14) 2013; 57
S. L. Jiang (1137_CR13) 2014; 262
W. W. Liu (1137_CR8) 2015; 9
B. Y. Park (1137_CR45) 2005; 152
W. C. Jiang (1137_CR11) 2016; 9
M. Beidaghi (1137_CR9) 2012; 22
Z.-S. Wu (1137_CR42) 2013; 4
X. M. Yang (1137_CR34) 2010; 2
S. L. Jiang (1137_CR21) 2015; 25
L. L. Zhang (1137_CR2) 2009; 38
W. Chen (1137_CR17) 2010; 9
Y. Q. Jiang (1137_CR41) 2009
F. Béguin (1137_CR25) 2014; 26
L. He (1137_CR30) 2012; 132
M. Kaempgen (1137_CR15) 2009; 9
L. Wei (1137_CR22) 2012; 22
J. Yun (1137_CR43) 2014; 79
B. Hsia (1137_CR40) 2014; 25
G. H. Xu (1137_CR48) 2011; 4
L. He (1137_CR29) 2014; 20
A. Reserbat-Plantey (1137_CR32) 2016; 7
S. Wang (1137_CR37) 2014; 2
V. Penmatsa (1137_CR28) 2012; 22
J. H. Lin (1137_CR35) 2009; 137
L. Wei (1137_CR5) 2012; 1
P. H. Huang (1137_CR38) 2013; 225
H. Jiang (1137_CR4) 2013; 6
L. Wei (1137_CR6) 2011; 1
T. Q. Lin (1137_CR3) 2015; 350
Z. Y. Cai (1137_CR46) 2015; 15
D. Pech (1137_CR39) 2010; 195
P. Simon (1137_CR24) 2013; 46
P. Simon (1137_CR1) 2008; 7
G. Yamamoto (1137_CR36) 2010; 19
H. J. Wang (1137_CR18) 2013; 48
P. Sivaraman (1137_CR27) 2013; 94
Z. L. An (1137_CR47) 2015; 26
M. Beidaghi (1137_CR12) 2011; 56
S.-K. Kim (1137_CR19) 2014; 4
Y. Y. Liu (1137_CR20) 2005; 43
X. C. Tian (1137_CR7) 2015; 27
L. Wei (1137_CR10) 2013; 7
C. W. Shen (1137_CR16) 2013; 234
C. Lau (1137_CR33) 2008; 24
D. N. Futaba (1137_CR26) 2006; 5
P. Zhou (1137_CR31) 2015; 106
References_xml – volume: 2
  start-page: 7997
  year: 2014
  end-page: 8002
  ident: CR37
  article-title: Highperformance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta00570h
– volume: 350
  start-page: 1508
  year: 2015
  end-page: 1513
  ident: CR3
  article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage
  publication-title: Science
  doi: 10.1126/science.aab3798
– volume: 7
  start-page: 1250
  year: 2014
  end-page: 1280
  ident: CR23
  article-title: Energy storage applications of activated carbons: Supercapacitors and hydrogen storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43525c
– volume: 22
  start-page: 045024
  year: 2012
  ident: CR28
  article-title: Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/22/4/045024
– volume: 57
  start-page: 395
  year: 2013
  end-page: 400
  ident: CR14
  article-title: Photoresist-derived porous carbon for on-chip microsupercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.01.089
– volume: 20
  start-page: 201
  year: 2014
  end-page: 208
  ident: CR29
  article-title: Fabrication of CNT-carbon composite microstructures using Si micromolding and pyrolysis
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-013-1771-6
– volume: 24
  start-page: 7004
  year: 2008
  end-page: 7010
  ident: CR33
  article-title: Conductive macroporous composite chitosan-carbon nanotube scaffolds
  publication-title: Langmuir
  doi: 10.1021/la8005597
– volume: 4
  start-page: 2487
  year: 2013
  ident: CR42
  article-title: Graphenebased in-plane micro-supercapacitors with high power and energy densities
  publication-title: Nat. Commun.
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  ident: CR1
  article-title: Materials for electrochemical capacitors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 225
  start-page: 240
  year: 2013
  end-page: 244
  ident: CR38
  article-title: Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.020
– volume: 15
  start-page: 738
  year: 2015
  end-page: 744
  ident: CR46
  article-title: Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl504427d
– volume: 5
  start-page: 987
  year: 2006
  end-page: 994
  ident: CR26
  article-title: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1782
– volume: 7
  start-page: 6498
  year: 2013
  end-page: 6506
  ident: CR10
  article-title: Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices
  publication-title: ACS Nano
  doi: 10.1021/nn4028129
– volume: 27
  start-page: 7476
  year: 2015
  end-page: 7482
  ident: CR7
  article-title: Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503567
– volume: 25
  start-page: 113001
  year: 2015
  ident: CR21
  article-title: Scalable fabrication of carbon-based MEMS/NEMS and their applications: A review
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/25/11/113001
– volume: 132
  start-page: 425
  year: 2012
  end-page: 426
  ident: CR30
  article-title: Fabrication of a Si-PZT hybrid XY-microstage with CNT-carbon hinges
  publication-title: IEEJ Trans. Sens. Micromach.
  doi: 10.1541/ieejsmas.132.425
– volume: 38
  start-page: 2520
  year: 2009
  end-page: 2531
  ident: CR2
  article-title: Carbon-based materials as supercapacitor electrodes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b813846j
– start-page: 587
  year: 2009
  end-page: 590
  ident: CR41
  article-title: Planar MEMS supercapacitor using carbon nanotube forests
  publication-title: Proceedings of the IEEE 22nd International Conference on Micro Electro Mechanical Systems
– volume: 79
  start-page: 156
  year: 2014
  end-page: 164
  ident: CR43
  article-title: All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.07.055
– volume: 48
  start-page: 3389
  year: 2013
  end-page: 3393
  ident: CR18
  article-title: Design, synthesis and the electrochemical performance of MnO /C@CNT as supercapacitor material
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2013.05.015
– volume: 4
  start-page: 47827
  year: 2014
  end-page: 47832
  ident: CR19
  article-title: Multiwalled carbon nanotubes coated with a thin carbon layer for use as composite electrodes in supercapacitors
  publication-title: RSC Adv.
  doi: 10.1039/C4RA08747J
– volume: 9
  start-page: 734
  year: 2010
  end-page: 740
  ident: CR17
  article-title: Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors
  publication-title: IEEE T. Nanotechnol.
  doi: 10.1109/TNANO.2010.2049500
– volume: 22
  start-page: 4501
  year: 2012
  end-page: 4510
  ident: CR9
  article-title: Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201292
– volume: 137
  start-page: 768
  year: 2009
  end-page: 773
  ident: CR35
  article-title: One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor
  publication-title: Sensor. Actuat. B
  doi: 10.1016/j.snb.2009.01.033
– volume: 46
  start-page: 1094
  year: 2013
  end-page: 1103
  ident: CR24
  article-title: Capacitive energy storage in nano-structured carbon-electrolyte systems
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200306b
– volume: 6
  start-page: 41
  year: 2013
  end-page: 53
  ident: CR4
  article-title: 3D carbon based nanostructures for advanced supercapacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE23284G
– volume: 9
  start-page: 1528
  year: 2015
  end-page: 1542
  ident: CR8
  article-title: High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film
  publication-title: ACS Nano
  doi: 10.1021/nn5060442
– volume: 2
  start-page: 1707
  year: 2010
  end-page: 1713
  ident: CR34
  article-title: Well-dispersed chitosan/graphene oxide nanocomposites
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100222m
– volume: 4
  start-page: 870
  year: 2011
  end-page: 881
  ident: CR48
  article-title: Binder-free activated carbon/ carbon nanotube paper electrodes for use in supercapacitors
  publication-title: Nano Res.
  doi: 10.1007/s12274-011-0143-8
– volume: 1
  start-page: 552
  year: 2012
  end-page: 565
  ident: CR5
  article-title: Nanostructured activated carbons from natural precursors for electrical double layer capacitors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.05.002
– volume: 9
  start-page: 1872
  year: 2009
  end-page: 1876
  ident: CR15
  article-title: Printable thin film supercapacitors using single-walled carbon nanotubes
  publication-title: Nano Lett.
  doi: 10.1021/nl8038579
– volume: 43
  start-page: 3178
  year: 2005
  end-page: 3180
  ident: CR20
  article-title: Decoration of carbon nanotubes with chitosan
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.06.020
– volume: 9
  start-page: 611
  year: 2016
  end-page: 622
  ident: CR11
  article-title: Space-confined assembly of all-carbon hybrid fibers for capacitive energy storage: Realizing a built-to-order concept for micro-supercapacitors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02703A
– volume: 195
  start-page: 1266
  year: 2010
  end-page: 1269
  ident: CR39
  article-title: Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.08.085
– volume: 26
  start-page: 195601
  year: 2015
  ident: CR47
  article-title: Microstructuring of carbon nanotubes-nickel nanocomposite
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/19/195601
– volume: 152
  start-page: J136
  year: 2005
  end-page: J143
  ident: CR45
  article-title: Electrical properties and shrinkage of carbonized photoresist films and the implications for carbon microelectromechanical systems devices in conductive media
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2116707
– volume: 9
  start-page: 424
  year: 2016
  end-page: 434
  ident: CR44
  article-title: Fabrication of flexible reduced graphene oxide/Fe O hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0923-7
– volume: 56
  start-page: 9508
  year: 2011
  end-page: 9514
  ident: CR12
  article-title: Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.08.054
– volume: 234
  start-page: 302
  year: 2013
  end-page: 309
  ident: CR16
  article-title: A high-energy-density micro supercapacitor of asymmetric MnO -carbon configuration by using micro-fabrication technologies
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.101
– volume: 94
  start-page: 182
  year: 2013
  end-page: 191
  ident: CR27
  article-title: Asymmetric supercapacitor containing poly(3-methyl thiophene)-multiwalled carbon nanotubes nanocomposites and activated carbon
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.01.123
– volume: 26
  start-page: 2219
  year: 2014
  end-page: 2251
  ident: CR25
  article-title: Carbons and electrolytes for advanced supercapacitors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304137
– volume: 262
  start-page: 494
  year: 2014
  end-page: 500
  ident: CR13
  article-title: Integration of MnO thin film and carbon nanotubes to three-dimensional carbon microelectrodes for electrochemical microcapacitors
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.009
– volume: 7
  start-page: 10218
  year: 2016
  ident: CR32
  article-title: Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10218
– volume: 22
  start-page: 827
  year: 2012
  end-page: 834
  ident: CR22
  article-title: Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101866
– volume: 19
  start-page: 748
  year: 2010
  end-page: 751
  ident: CR36
  article-title: The influence of Nanoscale defects on the fracture of multi-walled carbon nanotubes under tensile loading
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2010.01.045
– volume: 1
  start-page: 356
  year: 2011
  end-page: 361
  ident: CR6
  article-title: Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100019
– volume: 106
  start-page: 111908
  year: 2015
  ident: CR31
  article-title: The Young’s modulus of high-aspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4915514
– volume: 25
  start-page: 055401
  year: 2014
  ident: CR40
  article-title: Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/5/055401
– volume: 234
  start-page: 302
  year: 2013
  ident: 1137_CR16
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.101
– volume: 24
  start-page: 7004
  year: 2008
  ident: 1137_CR33
  publication-title: Langmuir
  doi: 10.1021/la8005597
– volume: 137
  start-page: 768
  year: 2009
  ident: 1137_CR35
  publication-title: Sensor. Actuat. B
  doi: 10.1016/j.snb.2009.01.033
– volume: 25
  start-page: 055401
  year: 2014
  ident: 1137_CR40
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/5/055401
– volume: 22
  start-page: 045024
  year: 2012
  ident: 1137_CR28
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/22/4/045024
– volume: 4
  start-page: 870
  year: 2011
  ident: 1137_CR48
  publication-title: Nano Res.
  doi: 10.1007/s12274-011-0143-8
– volume: 7
  start-page: 6498
  year: 2013
  ident: 1137_CR10
  publication-title: ACS Nano
  doi: 10.1021/nn4028129
– volume: 1
  start-page: 356
  year: 2011
  ident: 1137_CR6
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100019
– volume: 9
  start-page: 1528
  year: 2015
  ident: 1137_CR8
  publication-title: ACS Nano
  doi: 10.1021/nn5060442
– volume: 350
  start-page: 1508
  year: 2015
  ident: 1137_CR3
  publication-title: Science
  doi: 10.1126/science.aab3798
– volume: 9
  start-page: 734
  year: 2010
  ident: 1137_CR17
  publication-title: IEEE T. Nanotechnol.
  doi: 10.1109/TNANO.2010.2049500
– volume: 2
  start-page: 1707
  year: 2010
  ident: 1137_CR34
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am100222m
– volume: 225
  start-page: 240
  year: 2013
  ident: 1137_CR38
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.020
– volume: 56
  start-page: 9508
  year: 2011
  ident: 1137_CR12
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2011.08.054
– volume: 106
  start-page: 111908
  year: 2015
  ident: 1137_CR31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4915514
– volume: 26
  start-page: 2219
  year: 2014
  ident: 1137_CR25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304137
– volume: 94
  start-page: 182
  year: 2013
  ident: 1137_CR27
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.01.123
– volume: 15
  start-page: 738
  year: 2015
  ident: 1137_CR46
  publication-title: Nano Lett.
  doi: 10.1021/nl504427d
– volume: 22
  start-page: 4501
  year: 2012
  ident: 1137_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201292
– volume: 25
  start-page: 113001
  year: 2015
  ident: 1137_CR21
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/25/11/113001
– volume: 48
  start-page: 3389
  year: 2013
  ident: 1137_CR18
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2013.05.015
– volume: 7
  start-page: 845
  year: 2008
  ident: 1137_CR1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 9
  start-page: 611
  year: 2016
  ident: 1137_CR11
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02703A
– volume: 38
  start-page: 2520
  year: 2009
  ident: 1137_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b813846j
– volume: 27
  start-page: 7476
  year: 2015
  ident: 1137_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503567
– start-page: 587
  volume-title: Proceedings of the IEEE 22nd International Conference on Micro Electro Mechanical Systems
  year: 2009
  ident: 1137_CR41
– volume: 9
  start-page: 1872
  year: 2009
  ident: 1137_CR15
  publication-title: Nano Lett.
  doi: 10.1021/nl8038579
– volume: 152
  start-page: J136
  year: 2005
  ident: 1137_CR45
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2116707
– volume: 43
  start-page: 3178
  year: 2005
  ident: 1137_CR20
  publication-title: Carbon
  doi: 10.1016/j.carbon.2005.06.020
– volume: 57
  start-page: 395
  year: 2013
  ident: 1137_CR14
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.01.089
– volume: 22
  start-page: 827
  year: 2012
  ident: 1137_CR22
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201101866
– volume: 19
  start-page: 748
  year: 2010
  ident: 1137_CR36
  publication-title: Diam. Relat. Mater.
  doi: 10.1016/j.diamond.2010.01.045
– volume: 6
  start-page: 41
  year: 2013
  ident: 1137_CR4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE23284G
– volume: 26
  start-page: 195601
  year: 2015
  ident: 1137_CR47
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/19/195601
– volume: 20
  start-page: 201
  year: 2014
  ident: 1137_CR29
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-013-1771-6
– volume: 195
  start-page: 1266
  year: 2010
  ident: 1137_CR39
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.08.085
– volume: 79
  start-page: 156
  year: 2014
  ident: 1137_CR43
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.07.055
– volume: 132
  start-page: 425
  year: 2012
  ident: 1137_CR30
  publication-title: IEEJ Trans. Sens. Micromach.
  doi: 10.1541/ieejsmas.132.425
– volume: 7
  start-page: 1250
  year: 2014
  ident: 1137_CR23
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE43525C
– volume: 9
  start-page: 424
  year: 2016
  ident: 1137_CR44
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0923-7
– volume: 262
  start-page: 494
  year: 2014
  ident: 1137_CR13
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.12.009
– volume: 4
  start-page: 2487
  year: 2013
  ident: 1137_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3487
– volume: 7
  start-page: 10218
  year: 2016
  ident: 1137_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10218
– volume: 1
  start-page: 552
  year: 2012
  ident: 1137_CR5
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.05.002
– volume: 4
  start-page: 47827
  year: 2014
  ident: 1137_CR19
  publication-title: RSC Adv.
  doi: 10.1039/C4RA08747J
– volume: 2
  start-page: 7997
  year: 2014
  ident: 1137_CR37
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta00570h
– volume: 46
  start-page: 1094
  year: 2013
  ident: 1137_CR24
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200306b
– volume: 5
  start-page: 987
  year: 2006
  ident: 1137_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1782
SSID ssj0062148
Score 2.429251
Snippet In the last decade, pyrolyzed-carbon-based composites have attracted much attention for their applications in micro-supercapacitors. Although various methods...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2510
SubjectTerms Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Capacitance
Carbon
Carbon nanotubes
Chemistry and Materials Science
Chitosan
Condensed Matter Physics
Conductivity
Electrochemical analysis
Electrochemistry
Energy density
Energy storage
Flux density
Integration
Materials Science
Microelectrodes
Microelectromechanical systems
Micropatterning
Nanostructure
Nanotechnology
Nanotubes
Performance enhancement
Photolithography
Photoresists
Pyrolysis
Research Article
Supercapacitors
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeIqlBRmJE8gifsRJTgghqgoJTlTam-VnQQJnu8n-j_5kZhJnF5DYqzNOosw48_D4-wh5nUJnXao9s65zDFxAYJ1wgTnObayD5Nrj2eEvX_XFpfq8rtel4DaUtsrlnzj9qEPvsUb-Dnt_FLhPLd9vrhmyRuHuaqHQuE3uIHQZWnWz3idcWvCJPWs-RgaObNnVnI7OCcjHYFQzziWsM8RW-N7nq2vwGH_7qEPg-c9e6eSCzh-Q-yV2pB9mZT8kt2J-RO79gSj4mNzMRYIYKOS5COU6cUNQm2EA3KL_MaKWaZ8o4kSAcVwhaQhc27o-01_YnVeIcUIcaCHxoQumBOiQYuF2kc829-POgSSEvvNsNuw2cVue1W-HJ-Ty_NO3jxeskC4wD6neyISKTfRaysqr0Inatk2rlIuVdilBehOc1ClaEGgTF5UMXWpjrawVKQpuk3xKTnKf4zNCdeAN74JzCtFGQ9OFKlYqealCDVlfXJHT_Sc3mxlcw2iNvLSiqVekWpRgfMErR9qMn-aAtIw6NNijhjo0ckXe7Kcs9zsifLZo1pR1O5iDla3Iq_1lWHG4jWJz7HeDgZiIty14__aYjKw1YuOBzNvFag6P-e9LPT_-UqfkrkCTnRoQz8jJuN3FFxAUje7lZPm_AbdZDCY
  priority: 102
  providerName: ProQuest
Title Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors
URI http://lib.cqvip.com/qk/71233X/201608/669508275.html
https://link.springer.com/article/10.1007/s12274-016-1137-3
https://www.proquest.com/docview/2001464363
https://www.proquest.com/docview/1811883418
https://www.proquest.com/docview/1835636708
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe4EDojzEtmVlJE4gS_EzyXFBu61AVAix0nKK7NguB0jaze7_4Cczk8S7gGglLokUj-MoY3tm7PH3EfIq-tK6qGtmXekYmADPSuE8c5zboL3kpsazwx8vzcVSvV_p1XiOu0vZ7mlLsp-p94fdBERQEPoaxrmEkXFAjjSE7pjHtRSzNP0awXvKrOHsGFivtJX5r1cgoMK3trm6geb-NEx7b_OvDdLe7iwekYejw0hng4aPyb3QPCYPfoMRfEJ-DisDwVMIbhG_tSeEoLaBB2ALawj_QbW0jRTBIaBHXCFTCJStXdvQH5iSN7Lh-NDRkbmHJiAJUBzF1dok39im3WwdSIK_O9Rm3fY6rMe22nX3lCwX8y_vLtjItMBqiO82TKiQh9pImdXKl0LbIi-UciEzLkaIabyTJgYLAkXkIpO-jEXQyloRg-A2ymfksGmb8JxQ43nOS--cQohRn5c-C5mKtVReQ6gXJuR098ur6wFRozIGyWhFrickS0qo6hGkHLkyvld7eGXUYYWJaajDSk7I612V9L47hM-SZqtxsHbIxAn2QkkDxS93xTDMcO_ENqHddhU4QrwowOQXd8lIbRAQD2TepF6zb-bWjzr5L-lTcl9gD-6TEM_I4Wa9DS_AMdq4KTnIVzlci8X5lBzNzr9-mMP97fzy0-dpP0h-ATpRDbI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNdWsBIcAFFxI84yQEhBCxb-ji1Um_Gju2CBMl2kxXiX_BL-I3MJPEuILG3XpNxEmXGnhl75vsIeRpcaWzIqsTY0ibgAlxScusSy5jxmRNMVdg7fHSsZqfy41l2tkV-xV4YLKuMa2K_ULumwj3yl1j7I8F9KvF6fpEgaxSerkYKjcEsDvyP75Cyta_234F-n3E-fX_ydpaMrAJJBblMl3Dpc18pyOMr6UqemSIvpLQ-VTYEiN-dFSp4AwJFYDwVrgyFz6QxPHjOTBDw3CvkqhTgybEzffohrvyKs56ta2hbA8cZT1H7Vj0O-R9cVQljAuY1Yjl8burzC_BQf_vEdaD7z9ls7_Kmt8jNMValbwbjuk22fH2H3PgDwfAu-TlsSnhHIa9G6Niei4KaGi6AG66-dGhVtAkUcSnAGM-RpATuLWxT029YDTgS8Tjf0pE0iEYMC7AZihvFUb42ddMtLUhCqD2MTtrl3C_GdzWL9h45vRR13CfbdVP7HUKVYzkrnbUS0U1dXrrUpzJUQroMskw_IburX67nA5iHVgp5cHmeTUgalaCrER8daTq-6jWyM-pQY00c6lCLCXm-GhKft0F4L2pWj-tEq9dWPSFPVrdhhuOxjal9s2w1xGCsKCDaKDbJiEwhFh_IvIhWs37Nfz_qweaPekyuzU6ODvXh_vHBLrnO0Xz74sc9st0tlv4hBGSdfdTPAko-Xfa0-w2Wh0ma
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbKVkJwQPyq2xYwElxAVmPHcZIDQkC7aimsKkSl3oId2wWJJttNVoi34Hl4OmaSeBeQ2FuvyTiJMjOeGXv8fYQ89TbXxicl0yY3DEKAZbkwlhnOtUtszFWJZ4c_TNXhqXx3lpxtkF_hLAy2VYY5sZuobV3iGvke9v5ICJ8q3vNDW8TJ_uTV7JIhgxTutAY6jd5Ejt2P71C-NS-P9kHXz4SYHHx6e8gGhgFWQl3TMiFd6koFNX0pbS4SnaWZlMZFyngPubw1sfJOg0DmuYhim_vMJVJr4Z3g2sfw3GtkM8WqaEQ23xxMTz6GOKAE77i7-kNsEEbDnmp3cE9ANQhXFeM8Bi9HZIcvdXV-CfHq7wi5Snv_2antAuDkNrk1ZK70dW9qd8iGq-6Sm3_gGd4jP_slCmcpVNkIJNsxU1BdwQUIyuXXFm2M1p4iSgWY5jlSlsC9uakreoG9gQMtj3UNHSiEaEC0AAuiuGwc5Ctd1e3CgCQk3v1o1ixmbj68q54398nplSjkARlVdeW2CFWWpzy3xkjEOrVpbiMXSV_G0iZQc7ox2Vn-8mLWQ3sUSiErrkiTMYmCEopyQEtH0o5vxQrnGXVYYIcc6rCIx-T5ckh43hrh3aDZYpg1mmJl42PyZHkb_B03cXTl6kVTQEbGswxyj2ydTJwoROYDmRfBalav-e9Hba__qMfkOrhc8f5oerxDbgi03q4TcpeM2vnCPYTsrDWPBjeg5PNVe95vYN5PLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+conductivity+and+capacitance+of+interdigital+carbon+microelectrodes+through+integration+with+carbon+nanotubes+for+micro-supercapacitors&rft.jtitle=%E7%BA%B3%E7%B1%B3%E7%A0%94%E7%A9%B6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Yanjuan+Yang+Liang+He+Chunjuan+Tang+Ping+Hu+Xufeng+Hong+Mengyu+Yan+Yixiao+Dong+Xiaocong+Tian+Qiulong+Wei+Liqiang+Mai&rft.date=2016-08-01&rft.issn=1998-0124&rft.eissn=1998-0000&rft.issue=8&rft.spage=2510&rft.epage=2519&rft_id=info:doi/10.1007%2Fs12274-016-1137-3&rft.externalDocID=669508275
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F71233X%2F71233X.jpg