Automated Pixel Purification for Delineating Pervious and Impervious Surfaces in a City Using Advanced Hyperspectral Imagery Techniques
Conventional urbanization transforms natural into paved landscapes, posing a significant environmental challenge. Detecting the changes in (im)pervious surfaces in cities, where patches are small and intermingled, is particularly challenging. This study introduces a novel approach to these changes b...
Saved in:
Published in | IEEE access Vol. 12; pp. 82560 - 82583 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conventional urbanization transforms natural into paved landscapes, posing a significant environmental challenge. Detecting the changes in (im)pervious surfaces in cities, where patches are small and intermingled, is particularly challenging. This study introduces a novel approach to these changes by integrating Coupled Non-negative Matrix Factorization (CNMF) image fusion with an automatic pixel purification algorithm. By fusing low-resolution hyperspectral (30m) with high-resolution panchromatic (5m) PRISMA imagery, we achieved enhanced spatial resolution, crucial for accurate land use and land cover (LULC) classification. We introduced automatic pixel purification as a key innovation method to improve LULC mapping accuracy, sensitive to training pixel selection and mixed pixels. This method, which is tested in Dublin City area, enhanced/ refined spectral signatures and clarity across major LULC classes including bare soil, industrial roofs, grasslands, trees, residential roofs/asphalts, and water bodies, significantly improving classification accuracy by removing outliers and ensuring spectral consistency. The Random Forest (RF) algorithm, applied before and after pixel purification, showed substantial increases in overall accuracy (from 94.04% to 96.69%,) and Kappa coefficient (from 92.60% to 95.91%) for 2021, with similar improvements in 2022. This method enabled accurate differential analysis of (im)pervious surfaces, revealing a 4.08% decrease in pervious (from 33.29 km2 to 28.08 km2) and a 4.09% increase in impervious surfaces (from 79.96 km2 to 82.92 km2) over one year, highlighting the rapid urbanization's impact on Dublin's landscape permeability. This study significantly advances LULC classification and urban monitoring, offering valuable insights for sustainable urban development and advocating for its integration into future remote sensing and urban planning initiatives. |
---|---|
AbstractList | Conventional urbanization transforms natural into paved landscapes, posing a significant environmental challenge. Detecting the changes in (im)pervious surfaces in cities, where patches are small and intermingled, is particularly challenging. This study introduces a novel approach to these changes by integrating Coupled Non-negative Matrix Factorization (CNMF) image fusion with an automatic pixel purification algorithm. By fusing low-resolution hyperspectral (30m) with high-resolution panchromatic (5m) PRISMA imagery, we achieved enhanced spatial resolution, crucial for accurate land use and land cover (LULC) classification. We introduced automatic pixel purification as a key innovation method to improve LULC mapping accuracy, sensitive to training pixel selection and mixed pixels. This method, which is tested in Dublin City area, enhanced/ refined spectral signatures and clarity across major LULC classes including bare soil, industrial roofs, grasslands, trees, residential roofs/asphalts, and water bodies, significantly improving classification accuracy by removing outliers and ensuring spectral consistency. The Random Forest (RF) algorithm, applied before and after pixel purification, showed substantial increases in overall accuracy (from 94.04% to 96.69%,) and Kappa coefficient (from 92.60% to 95.91%) for 2021, with similar improvements in 2022. This method enabled accurate differential analysis of (im)pervious surfaces, revealing a 4.08% decrease in pervious (from 33.29 km2 to 28.08 km2) and a 4.09% increase in impervious surfaces (from 79.96 km2 to 82.92 km2) over one year, highlighting the rapid urbanization’s impact on Dublin’s landscape permeability. This study significantly advances LULC classification and urban monitoring, offering valuable insights for sustainable urban development and advocating for its integration into future remote sensing and urban planning initiatives. |
Author | Pilla, Francesco Gholamnia, Mehdi Mills, Gerald Bonafoni, Stefania Li, Zeting Han, Jiazheng Khan, Salman Sajadi, Payam Sang, Yan-Fang |
Author_xml | – sequence: 1 givenname: Payam orcidid: 0000-0002-4371-2468 surname: Sajadi fullname: Sajadi, Payam email: payam.sajadi@ucd.ie organization: School of Architecture, Planning and Environmental Policy, University College Dublin, Dublin 4, Ireland – sequence: 2 givenname: Mehdi surname: Gholamnia fullname: Gholamnia, Mehdi organization: School of Architecture, Planning and Environmental Policy, University College Dublin, Dublin 4, Ireland – sequence: 3 givenname: Stefania orcidid: 0000-0002-6485-393X surname: Bonafoni fullname: Bonafoni, Stefania organization: Department of Engineering, University of Perugia, Perugia, Italy – sequence: 4 givenname: Gerald orcidid: 0000-0003-2186-8936 surname: Mills fullname: Mills, Gerald organization: School of Geography, University College Dublin, Dublin 4, Ireland – sequence: 5 givenname: Yan-Fang orcidid: 0000-0001-6770-9311 surname: Sang fullname: Sang, Yan-Fang organization: Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China – sequence: 6 givenname: Zeting orcidid: 0000-0001-5498-1295 surname: Li fullname: Li, Zeting organization: School of Geography, University College Dublin, Dublin 4, Ireland – sequence: 7 givenname: Salman orcidid: 0000-0002-2460-8390 surname: Khan fullname: Khan, Salman organization: School of Architecture, Planning and Environmental Policy, University College Dublin, Dublin 4, Ireland – sequence: 8 givenname: Jiazheng surname: Han fullname: Han, Jiazheng organization: School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, China – sequence: 9 givenname: Francesco orcidid: 0000-0002-1535-1239 surname: Pilla fullname: Pilla, Francesco organization: School of Architecture, Planning and Environmental Policy, University College Dublin, Dublin 4, Ireland |
BookMark | eNp9kcFq3DAQhk1JoWmaJ2gPgp53K1myJB8XN20WAl3Y5CzG8nirxSttJTt0n6CvXW2cQOihukgz_N_PaP73xYUPHoviI6NLxmj9ZdU0N9vtsqSlWHJBtabVm-KyZLJe8IrLi1fvd8V1Snuaj86tSl0Wf1bTGA4wYkc27jcOZDNF1zsLowue9CGSrzg4j7n2O7LB-OjClAj4jqwPx5dyO8UeLCbiPAHSuPFEHtIZWHWP4G02vz1lcTqiHSMMGYUdxhO5R_vTu18Tpg_F2x6GhNfP91Xx8O3mvrld3P34vm5WdwsraD0uSqaY1Fa0WvQdQwWV6hSgKgUXEriqWWVBtyhYi4AVKNrSmrVWKyGxRc2vivXs2wXYm2N0B4gnE8CZp0aIOwNxdHZA07ISNEPLeloJpWstGeu6WoBoJa-0zV6fZ69jDOc_jGYfpujz-IZTqZlSUlZZVc8qG0NKEXtj3fi03rwKNxhGzTlGM8dozjGa5xgzy_9hXyb-P_VpphwiviIqIetS8b9lm6yt |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_scs_2025_106165 crossref_primary_10_32604_cmc_2024_056318 |
Cites_doi | 10.1109/79.974727 10.1109/tgrs.2017.2766080 10.1016/j.rse.2011.02.030 10.1080/01431161.2018.1433343 10.1080/22797254.2022.2117650 10.1109/tgrs.2021.3128279 10.1201/9781315370101 10.1016/j.jag.2005.06.001 10.14358/PERS.74.10.1201 10.1016/j.isprsjprs.2015.03.014 10.1117/12.390485 10.1016/j.ejrs.2021.01.002 10.1109/JSTARS.2019.2925098 10.1007/s11042-022-13569-6 10.1080/01431161.2020.1871100 10.1111/j.2517-6161.1978.tb01039.x 10.1007/978-981-13-8012-9_4 10.5194/isprsarchives-XL-1-W5-343-2015 10.1109/JSTARS.2015.2432037 10.1201/b15917-23 10.3390/rs10030482 10.1016/0034-4257(91)90048-B 10.1007/s12145-022-00874-9 10.1080/10106049.2022.2123959 10.1016/S0034-4257(03)00132-9 10.1109/MGRS.2015.2440094 10.3390/rs11050481 10.29150/2237-2202.2022.253484 10.3390/su132413758 10.1016/j.foreco.2012.03.003 10.1016/j.inffus.2020.11.001 10.1016/j.isprsjprs.2014.12.026 10.1117/12.2683780 10.3390/rs14205251 10.1093/pnasnexus/pgad111 10.1080/01431161.2011.649864 10.1016/j.isprsjprs.2010.11.001 10.3390/rs13030453 10.1016/j.isprsjprs.2015.03.002 10.1117/12.974452 10.3390/rs71013436 10.1109/tgrs.2019.2930093 10.1109/IGARSS.2019.8899272 10.1109/SIU.2013.6531495 10.1109/MGRS.2013.2244672 10.1109/MGRS.2017.2762087 10.1002/admi.202201464 10.3390/rs15051378 10.1016/j.isprsjprs.2011.11.002 10.1109/IGARSS.2018.8519556 10.14257/ijfgcn.2017.10.1.05 10.1007/s42452-023-05280-4 10.1016/S0034-4257(01)00295-4 10.1016/j.jag.2019.101943 10.1109/TCYB.2019.2905793 10.1007/s12524-018-0929-1 10.5194/isprs-archives-xliii-b3-2021-215-2021 10.1109/TGRS.2005.844293 10.1109/LGRS.2012.2226426 10.1080/014311600750037499 10.1109/icmoce.2015.7489727 10.1109/TIP.2018.2819501 10.1109/IGARSS.2014.6947018 10.3390/rs14133191 10.1016/j.rse.2008.07.018 10.1109/TGRS.2011.2161320 10.1109/whispers56178.2022.9955087 10.1080/01490419.2022.2032497 10.1201/b17012-2 10.1109/jstars.2022.3198137 10.1016/j.isprsjprs.2016.01.011 10.1109/MGRS.2016.2637824 10.3390/rs11121409 10.3390/rs9121222 10.1080/22797254.2022.2141659 10.1016/j.rse.2011.12.003 10.1016/0034-4257(93)90013-N 10.1080/0143116031000139863 10.55650/igj.2009.96 10.1016/j.isprsjprs.2017.06.001 10.1109/IGARSS.2011.6049465 10.1016/j.rse.2010.12.017 10.1007/978-1-4419-9170-6 10.3390/rs70708489 10.1080/15481603.2023.2181143 10.1029/2021JG006718 10.1201/9781315120607 10.1007/s00034-021-01938-9 10.1109/TGRS.2010.2055876 10.1109/whispers.2010.5594892 10.1109/LGRS.2021.3094216 10.1016/j.isprsjprs.2023.11.014 10.1109/warsd.2003.1295206 10.1080/01431160412331269698 10.1016/j.inffus.2016.03.003 10.1038/s41598-023-40564-0 10.1109/MGRS.2016.2540798 10.1198/tast.2009.08199 10.14358/PERS.72.5.591 10.1088/1755-1315/950/1/012091 10.1016/j.isprsjprs.2010.10.010 10.1080/01431161.2015.1015657 10.1890/07-0539.1 10.1364/AO.488558 10.1007/978-981-16-9669-5_15 10.1109/TGRS.2014.2351754 10.3390/rs15163926 10.1109/TGRS.2007.904923 10.1016/j.jenvman.2006.11.012 10.1016/j.isprsjprs.2021.06.017 10.1080/01944369608975688 10.1016/j.rse.2007.07.028 10.1016/j.cogr.2022.12.002 10.1023/A:1010933404324 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3408805 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 82583 |
ExternalDocumentID | oai_doaj_org_article_b12a81ec1f0547898611dd94a4b6358c 10_1109_ACCESS_2024_3408805 10546927 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Challenge Fund, Science Foundation Ireland (SFI) grantid: 22/NCF/OT/11263 funderid: 10.13039/501100001602 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-217168c4b84fd1e7a57d7ae724346a37915ca8be41beae5a70b091bc8746ebe83 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 00:59:24 EDT 2025 Mon Jun 30 06:39:55 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Thu Jul 03 08:36:28 EDT 2025 Wed Aug 27 01:41:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-217168c4b84fd1e7a57d7ae724346a37915ca8be41beae5a70b091bc8746ebe83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2460-8390 0000-0003-2186-8936 0000-0002-1535-1239 0000-0001-5498-1295 0000-0001-6770-9311 0000-0002-4371-2468 0000-0002-6485-393X |
OpenAccessLink | https://doaj.org/article/b12a81ec1f0547898611dd94a4b6358c |
PQID | 3068177665 |
PQPubID | 4845423 |
PageCount | 24 |
ParticipantIDs | proquest_journals_3068177665 doaj_primary_oai_doaj_org_article_b12a81ec1f0547898611dd94a4b6358c crossref_primary_10_1109_ACCESS_2024_3408805 ieee_primary_10546927 crossref_citationtrail_10_1109_ACCESS_2024_3408805 |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref44 ref43 ref49 Qu (ref110) 2021; 13 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref34 ref37 ref36 ref31 Busetto (ref57) 2020 ref30 ref33 ref32 ref39 ref38 Loukika (ref73) 2021; 13 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Johnson (ref108) 2015; 7 ref28 ref27 ref29 ref12 ref15 Yang (ref77) 2017; 9 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref91 ref90 ref89 ref86 ref85 ref88 ref87 Wang (ref94) 2022; 14 Zhang (ref65) 2022; 14 Millard (ref41) 2015; 7 ref82 ref81 ref84 ref83 ref80 ref79 ref78 ref109 Gong (ref35) 2021; 56 ref106 ref107 ref75 ref104 ref74 ref105 ref102 ref76 ref103 Sun (ref13) 2023 ref2 ref1 ref71 ref111 ref70 ref112 Mashala (ref63) 2023; 15 ref72 ref68 ref67 ref117 ref69 ref64 ref115 ref116 ref66 ref113 ref114 ref60 ref62 ref61 |
References_xml | – ident: ref44 doi: 10.1109/79.974727 – ident: ref70 doi: 10.1109/tgrs.2017.2766080 – ident: ref11 doi: 10.1016/j.rse.2011.02.030 – ident: ref111 doi: 10.1080/01431161.2018.1433343 – volume: 56 start-page: 67 issue: 1 year: 2021 ident: ref35 article-title: The use of structural information for improving land-cover classification accuracies at the rural-urban fringe publication-title: Photogrammetric Eng. Remote Sens. – ident: ref58 doi: 10.1080/22797254.2022.2117650 – ident: ref72 doi: 10.1109/tgrs.2021.3128279 – ident: ref104 doi: 10.1201/9781315370101 – ident: ref83 doi: 10.1016/j.jag.2005.06.001 – ident: ref37 doi: 10.14358/PERS.74.10.1201 – ident: ref40 doi: 10.1016/j.isprsjprs.2015.03.014 – ident: ref3 doi: 10.1117/12.390485 – ident: ref5 doi: 10.1016/j.ejrs.2021.01.002 – ident: ref29 doi: 10.1109/JSTARS.2019.2925098 – ident: ref85 doi: 10.1007/s11042-022-13569-6 – ident: ref87 doi: 10.1080/01431161.2020.1871100 – ident: ref86 doi: 10.1111/j.2517-6161.1978.tb01039.x – ident: ref1 doi: 10.1007/978-981-13-8012-9_4 – ident: ref89 doi: 10.5194/isprsarchives-XL-1-W5-343-2015 – ident: ref7 doi: 10.1109/JSTARS.2015.2432037 – ident: ref17 doi: 10.1201/b15917-23 – ident: ref45 doi: 10.3390/rs10030482 – ident: ref95 doi: 10.1016/0034-4257(91)90048-B – ident: ref92 doi: 10.1007/s12145-022-00874-9 – ident: ref93 doi: 10.1080/10106049.2022.2123959 – ident: ref38 doi: 10.1016/S0034-4257(03)00132-9 – ident: ref22 doi: 10.1109/MGRS.2015.2440094 – volume-title: Prismaread: A Tool for Facilitating Access and Analysis of PRISMA L1/L2 Hyperspectral Imagery V1. 0.0 year: 2020 ident: ref57 – ident: ref59 doi: 10.3390/rs11050481 – ident: ref51 doi: 10.29150/2237-2202.2022.253484 – volume: 13 start-page: 13758 issue: 24 year: 2021 ident: ref73 article-title: Analysis of land use and land cover using machine learning algorithms on Google Earth engine for Munneru River Basin, India publication-title: Sustainability doi: 10.3390/su132413758 – ident: ref75 doi: 10.1016/j.foreco.2012.03.003 – ident: ref105 doi: 10.1016/j.inffus.2020.11.001 – ident: ref47 doi: 10.1016/j.isprsjprs.2014.12.026 – ident: ref27 doi: 10.1117/12.2683780 – volume: 14 start-page: 5251 issue: 20 year: 2022 ident: ref65 article-title: Hyper-LGNet: Coupling local and global features for hyperspectral image classification publication-title: Remote Sens. doi: 10.3390/rs14205251 – ident: ref66 doi: 10.1093/pnasnexus/pgad111 – ident: ref113 doi: 10.1080/01431161.2011.649864 – ident: ref36 doi: 10.1016/j.isprsjprs.2010.11.001 – volume: 13 start-page: 453 issue: 3 year: 2021 ident: ref110 article-title: Accuracy improvements to pixel-based and object-based LULC classification with auxiliary datasets from Google Earth engine publication-title: Remote Sens. doi: 10.3390/rs13030453 – ident: ref42 doi: 10.1016/j.isprsjprs.2015.03.002 – ident: ref62 doi: 10.1117/12.974452 – volume: 7 start-page: 13436 issue: 10 year: 2015 ident: ref108 article-title: Scale issues related to the accuracy assessment of land use/land cover maps produced using multi-resolution data: Comments on `the improvement of land cover classification by thermal remote sensing publication-title: Remote Sens. doi: 10.3390/rs71013436 – ident: ref14 doi: 10.1109/tgrs.2019.2930093 – ident: ref55 doi: 10.1109/IGARSS.2019.8899272 – ident: ref106 doi: 10.1109/SIU.2013.6531495 – ident: ref8 doi: 10.1109/MGRS.2013.2244672 – ident: ref16 doi: 10.1109/MGRS.2017.2762087 – ident: ref19 doi: 10.1002/admi.202201464 – ident: ref15 doi: 10.3390/rs15051378 – ident: ref32 doi: 10.1016/j.isprsjprs.2011.11.002 – ident: ref21 doi: 10.1109/IGARSS.2018.8519556 – ident: ref84 doi: 10.14257/ijfgcn.2017.10.1.05 – ident: ref78 doi: 10.1007/s42452-023-05280-4 – ident: ref34 doi: 10.1016/S0034-4257(01)00295-4 – ident: ref117 doi: 10.1016/j.jag.2019.101943 – ident: ref18 doi: 10.1109/TCYB.2019.2905793 – ident: ref4 doi: 10.1007/s12524-018-0929-1 – ident: ref50 doi: 10.5194/isprs-archives-xliii-b3-2021-215-2021 – ident: ref71 doi: 10.1109/TGRS.2005.844293 – ident: ref90 doi: 10.1109/LGRS.2012.2226426 – ident: ref28 doi: 10.1080/014311600750037499 – ident: ref109 doi: 10.1109/icmoce.2015.7489727 – ident: ref115 doi: 10.1109/TIP.2018.2819501 – ident: ref24 doi: 10.1109/IGARSS.2014.6947018 – volume: 14 start-page: 3191 issue: 13 year: 2022 ident: ref94 article-title: Annual wetland mapping in metropolis by temporal sample migration and random forest classification with time series Landsat data and Google Earth engine publication-title: Remote Sens. doi: 10.3390/rs14133191 – ident: ref100 doi: 10.1016/j.rse.2008.07.018 – ident: ref31 doi: 10.1109/TGRS.2011.2161320 – ident: ref64 doi: 10.1109/whispers56178.2022.9955087 – ident: ref54 doi: 10.1080/01490419.2022.2032497 – ident: ref20 doi: 10.1201/b17012-2 – ident: ref67 doi: 10.1109/jstars.2022.3198137 – ident: ref33 doi: 10.1016/j.isprsjprs.2016.01.011 – ident: ref30 doi: 10.1109/MGRS.2016.2637824 – ident: ref112 doi: 10.3390/rs11121409 – volume: 9 start-page: 1222 issue: 12 year: 2017 ident: ref77 article-title: Improving land use/land cover classification by integrating pixel unmixing and decision tree methods publication-title: Remote Sens. doi: 10.3390/rs9121222 – ident: ref60 doi: 10.1080/22797254.2022.2141659 – ident: ref79 doi: 10.1016/j.rse.2011.12.003 – ident: ref82 doi: 10.1016/0034-4257(93)90013-N – ident: ref99 doi: 10.1080/0143116031000139863 – ident: ref56 doi: 10.55650/igj.2009.96 – ident: ref46 doi: 10.1016/j.isprsjprs.2017.06.001 – ident: ref68 doi: 10.1109/IGARSS.2011.6049465 – ident: ref107 doi: 10.1016/j.rse.2010.12.017 – ident: ref81 doi: 10.1007/978-1-4419-9170-6 – volume: 7 start-page: 8489 issue: 7 year: 2015 ident: ref41 article-title: On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping publication-title: Remote Sens. doi: 10.3390/rs70708489 – year: 2023 ident: ref13 article-title: High spectral spatial resolution synthetic HyperSpectral dataset form multi-source fusion publication-title: arXiv:2309.00005 – ident: ref96 doi: 10.1080/15481603.2023.2181143 – ident: ref52 doi: 10.1029/2021JG006718 – ident: ref80 doi: 10.1201/9781315120607 – ident: ref61 doi: 10.1007/s00034-021-01938-9 – ident: ref49 doi: 10.1109/TGRS.2010.2055876 – ident: ref10 doi: 10.1109/whispers.2010.5594892 – ident: ref25 doi: 10.1109/LGRS.2021.3094216 – ident: ref2 doi: 10.1016/j.isprsjprs.2023.11.014 – ident: ref88 doi: 10.1109/warsd.2003.1295206 – ident: ref39 doi: 10.1080/01431160412331269698 – ident: ref23 doi: 10.1016/j.inffus.2016.03.003 – ident: ref91 doi: 10.1038/s41598-023-40564-0 – ident: ref48 doi: 10.1109/MGRS.2016.2540798 – ident: ref76 doi: 10.1198/tast.2009.08199 – ident: ref26 doi: 10.14358/PERS.72.5.591 – ident: ref97 doi: 10.1088/1755-1315/950/1/012091 – ident: ref98 doi: 10.1016/j.isprsjprs.2010.10.010 – ident: ref6 doi: 10.1080/01431161.2015.1015657 – ident: ref114 doi: 10.1890/07-0539.1 – ident: ref12 doi: 10.1364/AO.488558 – ident: ref69 doi: 10.1007/978-981-16-9669-5_15 – ident: ref116 doi: 10.1109/TGRS.2014.2351754 – volume: 15 start-page: 3926 issue: 16 year: 2023 ident: ref63 article-title: A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments publication-title: Remote Sens. doi: 10.3390/rs15163926 – ident: ref103 doi: 10.1109/TGRS.2007.904923 – ident: ref102 doi: 10.1016/j.jenvman.2006.11.012 – ident: ref53 doi: 10.1016/j.isprsjprs.2021.06.017 – ident: ref101 doi: 10.1080/01944369608975688 – ident: ref43 doi: 10.1016/j.rse.2007.07.028 – ident: ref9 doi: 10.1016/j.cogr.2022.12.002 – ident: ref74 doi: 10.1023/A:1010933404324 |
SSID | ssj0000816957 |
Score | 2.3134031 |
Snippet | Conventional urbanization transforms natural into paved landscapes, posing a significant environmental challenge. Detecting the changes in (im)pervious... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 82560 |
SubjectTerms | Accuracy Algorithms Cities Classification Classification algorithms Computer vision Grasslands Hyperspectral image fusion Hyperspectral imaging Image enhancement Image resolution impervious-pervious surface Land cover land cover classification Land surface Land use pixel purification Pixels Purification Radiometry Remote sensing Spatial resolution Spectral signatures Training Urban areas Urban planning Urbanization Vegetation mapping |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoT3Dgs4iFgnzgSJY4tmPnuCxUWw7VSrRSb5E_UUWbRbuJRPsH-NvMON7VCgTiEiWRozh6Y_uNM_OGkLcVrFqxNrIIDg7CVU2hbawLKWIsVWTShxRtcVYvLsTnS3mZk9VTLkwIIQWfhSmepn_5fuUG3CqDES7Bm6vUATkAz21M1tptqGAFiUaqrCzEyub9bD6HjwAfsBJTLmA4YY26vdUnifTnqip_TMVpfTl5RM62PRvDSr5Nh95O3d1voo3_3fXH5GFmmnQ2msYTci90T8mDPf3BZ-TnbOhXQFmDp8urH-GaLoc1hg4ltCjQWfoR09WRVnZf6RKnldWwoabz9BTodr78MqwjBnbRq44aOgdaT1MgAp3l-AK6AGd3zOlcQ49Ob1A345aeb-VjN0fk4uTT-XxR5MoMhQN_sC8qFNnRTlgtomdBGam8MkFVgovacNUw6Yy2QTAbTJBGlRZ4iXVaiRqsRvPn5LBbdeEFodGr2Dh07IBo8Coa3ngeg62j5YpzMyHVFrHWZdlyrJ5x3Sb3pWzaEeYWYW4zzBPybvfQ91G149_NP6Ap7Jqi5Ha6ARC2eQS3llVGs-BYLFEDrdE1Y943wggLpE27CTlC2PfeNyI-Icdby2rz_LBpwVHTTKm6li__8tgrch-7OO72HJPDfj2E18B_evsm2f0vRBwDiQ priority: 102 providerName: IEEE |
Title | Automated Pixel Purification for Delineating Pervious and Impervious Surfaces in a City Using Advanced Hyperspectral Imagery Techniques |
URI | https://ieeexplore.ieee.org/document/10546927 https://www.proquest.com/docview/3068177665 https://doaj.org/article/b12a81ec1f0547898611dd94a4b6358c |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kJz2IxoirMfTBo2Om393HdWPYeJAFE8it6acE4iRsdkF_gX_b6p7eMCAkFy8DM_TQ01XVVfUN1V8h9IFC1MrSiS4FuPBATad9lp3gOfcqExFTrbb4JpcX_OuluJy0-io1YSM98Ci4Y0-o0yQFkvtCPWW0JCRGwx33ECt1KN4XYt4ETFUfrIk0QjWaIdKb4_liASsCQEj5J8Zhb5WGdZNQVBn7W4uVf_xyDTanL9DzliXi-fh1L9GTNOyjZxPuwFfoz3y7uYF0M0W8uvqVrvFquy5lP1XSGFJRfFKOmpeUcPiBV8UlAMjHboj4DFLldvt9u86lKAtfDdjhBaTkuBYR4HmrDcBLAKrjecw1fNHZz8J58Ruf76hf7w7QxemX88Wya10VugBYbtPRQpCjA_ea50iSckJF5ZKinHHpmDJEBKd94sQnl4RTvQf5-qAVl6BxzV6jveFmSG8QzlFlEwoogySB0eyYiSwnL7NnijE3Q3QnYBsa5XjpfHFtK_TojR21YotWbNPKDH28f-l2ZNx4ePjnorn7oYUuuz4AI7LNiOxjRjRDB0Xvk_kEl4aqGTrcGYJte_vOAsjSRCkpxdv_Mfc79LSsZ_ytc4j2Nutteg-JzsYfVZs-qmcS_wKP_vm_ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLVKWQALnq0YKOAF7MgQv-JkwWKYUs3QUo3EVOrO-IkqSgbNTATlB_gKfoVv4zrxjEYg2FViEyWRkzjOse89zvW5CD2lYLVCoUXmLWy4pVVWmlBkgoeQy0CE8220xXExOuFvTsXpFvqxXgvjvW-Dz3w_7rb_8t3MNnGqDHq4ADZHZYqhPPQXX4ChLV6O9-FzPqP04PV0OMpSEoHMAnVZZjTqwZSWm5IHR7zUQjqpvaSc8UIzWRFhdWk8J8ZrL7TMDZhQY0vJC3jBksF9r6Cr4GgI2i0PW0_hxJwVlZBJy4jk1YvBcAjNBqyT8j7j0IFjVrwNe9emBUh5XP4Y_FuLdnAL_Vy1RRfI8rHfLE3ffvtNJvK_bazb6GbypfGgA_8dtOXru-jGhsLiPfR90Cxn4JR7hydnX_05njTzGBzV4hGDw47344L86DjXH_AkDpyzZoF17fAYCEU6fNfMQwxdw2c11ngIxAW3oRZ4kCIo8AjofLdqdQ41Gn-KyiAXeLoSyF3soJNLaYldtF3Pan8f4eBkqGykruBKMRo0qxwL3hTBMMmY7iG6QoiySZg95gc5Vy1ByyvVwUpFWKkEqx56vr7oc6dL8u_iryL01kWjqHh7AiCj0hilDKG6JN6SkEeVt6osCHGu4pobcEtL20M7EWYbz-sQ1kN7KySrNAIuFFDRkkhZFOLBXy57gq6Npm-P1NH4-PAhuh6r281t7aHt5bzxj8DbW5rHbZ_D6P1l4_YX_kdhTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Pixel+Purification+for+Delineating+Pervious+and+Impervious+Surfaces+in+a+City+Using+Advanced+Hyperspectral+Imagery+Techniques&rft.jtitle=IEEE+access&rft.au=Sajadi%2C+Payam&rft.au=Gholamnia%2C+Mehdi&rft.au=Bonafoni%2C+Stefania&rft.au=Mills%2C+Gerald&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=82560&rft.epage=82583&rft_id=info:doi/10.1109%2FACCESS.2024.3408805&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3408805 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |