Network-Wide Traffic Signal Control Based on MARL with Hierarchical Nash-Stackelberg Game Model

Network-wide traffic signal control is an important means of relieving urban congestion, reducing traffic accidents, and improving traffic efficiency. However, solving the problem of computational complexity caused by multi-intersection games is challenging. To address this issue, we propose a Nash-...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; p. 1
Main Authors Shen, Hui, Zhao, Hongxia, Zhang, Zundong, Yang, Xun, Song, Yutong, Liu, Xiaoming
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Network-wide traffic signal control is an important means of relieving urban congestion, reducing traffic accidents, and improving traffic efficiency. However, solving the problem of computational complexity caused by multi-intersection games is challenging. To address this issue, we propose a Nash-Stackelberg hierarchical game model that considers the importance of different intersections in the road network and the game relationships between intersections. The model takes into account traffic control strategies between and within sub-areas of the road network, with important intersections in the two sub-areas as the game subject at the upper layer and secondary intersections as the game subject at the lower layer. Furthermore, we propose two reinforcement learning algorithms (NSHG-QL and NSHG-DQN) based on the Nash-Stackelberg hierarchical game model to realize coordinated control of traffic signals in urban areas. Experimental results show that, compared to basic game model solving algorithms, NSHG-QL and NSHG-DQN algorithms can reduce the average travel time and time loss of vehicles at intersections, increase average speed and road occupancy, and coordinate secondary intersections to make optimal strategy selections based on satisfying the upper-layer game between important intersections. Moreover, the multi-agent reinforcement learning algorithms based on this hierarchical game model can significantly improve learning performance and convergence.
AbstractList Network-wide traffic signal control is an important means of relieving urban congestion, reducing traffic accidents, and improving traffic efficiency. However, solving the problem of computational complexity caused by multi-intersection games is challenging. To address this issue, we propose a Nash-Stackelberg hierarchical game model that considers the importance of different intersections in the road network and the game relationships between intersections. The model takes into account traffic control strategies between and within sub-areas of the road network, with important intersections in the two sub-areas as the game subject at the upper layer and secondary intersections as the game subject at the lower layer. Furthermore, we propose two reinforcement learning algorithms (NSHG-QL and NSHG-DQN) based on the Nash-Stackelberg hierarchical game model to realize coordinated control of traffic signals in urban areas. Experimental results show that, compared to basic game model solving algorithms, NSHG-QL and NSHG-DQN algorithms can reduce the average travel time and time loss of vehicles at intersections, increase average speed and road occupancy, and coordinate secondary intersections to make optimal strategy selections based on satisfying the upper-layer game between important intersections. Moreover, the multi-agent reinforcement learning algorithms based on this hierarchical game model can significantly improve learning performance and convergence.
Author Liu, Xiaoming
Shen, Hui
Song, Yutong
Zhang, Zundong
Yang, Xun
Zhao, Hongxia
Author_xml – sequence: 1
  givenname: Hui
  surname: Shen
  fullname: Shen, Hui
  organization: The school of Electrical and Control Engineering, North China University of Technology, and Beijing Municipal Traffic Management Bureau, Beijing, China
– sequence: 2
  givenname: Hongxia
  surname: Zhao
  fullname: Zhao, Hongxia
  organization: Institute of Automation, State Key Laboratory of Multimodal Artificial Intelligence Systems, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Zundong
  orcidid: 0000-0003-0574-7464
  surname: Zhang
  fullname: Zhang, Zundong
  organization: The Beijing Key Laboratory of Urban Road Traffic Intelligent Technology, North China University of Technology, Beijing, China
– sequence: 4
  givenname: Xun
  surname: Yang
  fullname: Yang, Xun
  organization: The Beijing Key Laboratory of Urban Road Traffic Intelligent Technology, North China University of Technology, Beijing, China
– sequence: 5
  givenname: Yutong
  surname: Song
  fullname: Song, Yutong
  organization: The Beijing Key Laboratory of Urban Road Traffic Intelligent Technology, North China University of Technology, Beijing, China
– sequence: 6
  givenname: Xiaoming
  surname: Liu
  fullname: Liu, Xiaoming
  organization: The Beijing Key Laboratory of Urban Road Traffic Intelligent Technology, North China University of Technology, Beijing, China
BookMark eNqFUU1P3DAQtSoqQYFfQA-Wes7irzjxcRtRQFpA6lL1aE2c8a6XEFM7CPXfk21QhXrpXGY0eh_Se5_IwRAHJOSMswXnzJwvm-ZivV4IJuRCSlUqVX8gR4JrU8hS6oN39yE5zXnHpqmnV1kdEXuL40tMD8XP0CG9T-B9cHQdNgP0tInDmGJPv0LGjsaB3iy_r-hLGLf0KmCC5LbBTbhbyNtiPYJ7wL7FtKGX8Ij0JnbYn5CPHvqMp2_7mPz4dnHfXBWru8vrZrkqnGJmLLjXqqscOOErwbRpOa-lMaArjcyDdCihE0IK6WuntXJQS8e6GsC1UJWtPCbXs24XYWefUniE9NtGCPbPI6aNhTQG16OtBK-56LhDwZSQbYvetEq3hoGf8jOT1pdZ6ynFX8-YR7uLz2kKJFthWFUqyYWeUHJGuRRzTuj_unJm98XYuRi7L8a-FTOxzD8sF0YYwz5pCP1_uJ9nbkDEd25SV6YW8hWGcJxp
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_JIOT_2024_3484410
Cites_doi 10.1609/aaai.v34i04.5878
10.1016/j.compeleceng.2017.10.016
10.1145/3319619.3321894
10.1109/TSP.2013.2241057
10.3390/s20154291
10.1109/ACCESS.2020.3018267
10.1016/j.artint.2019.103216
10.1109/TITS.2022.3140511
10.3390/s19102282
10.1109/MITS.2020.2990189
10.21236/ada333248
10.1016/j.conengprac.2020.104525
10.1109/ACCESS.2022.3148706
10.1109/ACCESS.2022.3225431
10.1007/978-3-642-14435-6_7
10.1007/s13369-017-3018-9
10.1007/s10458-008-9062-9
10.1103/PRXEnergy.1.033005
10.1109/ITSC.2019.8917165
10.1016/j.matcom.2019.06.002
10.1016/j.engappai.2015.04.009
10.1155/2013/962869
10.1109/iat.2003.1241094
10.1016/B978-1-55860-335-6.50027-1
10.1371/journal.pone.0222215
10.1155/2021/6693636
10.1609/aaai.v34i04.6144
10.1007/s10462-021-09996-w
10.1609/aaai.v34i04.5744
10.3182/20080706-5-KR-1001.01213
10.1109/TCYB.2020.2977374
10.1109/ICRA.2018.8461113
10.1109/TSMCC.2007.913919
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3345448
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_721812d1ce20423bbef9b46b90af3349
10_1109_ACCESS_2023_3345448
10367982
Genre orig-research
GrantInformation_xml – fundername: Guangdong Provincial Key Area Research and Development Program Project
  grantid: 2020B0909050001
– fundername: China National Railway Group Co., Science and Technology Research and Development Program Project
  grantid: L2022X002
– fundername: National Natural Science Foundation Project
  grantid: U1909204
– fundername: Open Topic of National Railway Intelligent Transportation System Engineering Technology Research Center
  grantid: RITS2021KF03
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c409t-1f64d7cac2f72069b118399a676e0fa3ce3ad22323f8c664ca83c0d8aacba75b3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:31:54 EDT 2025
Mon Jun 30 07:42:14 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
Tue Jul 01 04:14:13 EDT 2025
Wed Aug 27 02:35:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-1f64d7cac2f72069b118399a676e0fa3ce3ad22323f8c664ca83c0d8aacba75b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0574-7464
OpenAccessLink https://doaj.org/article/721812d1ce20423bbef9b46b90af3349
PQID 2907543126
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_10367982
crossref_primary_10_1109_ACCESS_2023_3345448
proquest_journals_2907543126
doaj_primary_oai_doaj_org_article_721812d1ce20423bbef9b46b90af3349
crossref_citationtrail_10_1109_ACCESS_2023_3345448
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
ref31
ref30
ref11
ref33
ref10
ref32
Zhang (ref35)
Littman (ref41); 1
ref2
ref1
ref16
ref18
Zhao (ref7) 2008; 20
ref46
ref23
ref45
Mondal (ref17) 2022; 23
ref26
ref48
ref25
Bianchi (ref42); 3
ref47
ref21
ref43
Iqbal (ref44)
Doan (ref36)
Yang (ref24) 2018; 35
ref28
ref27
Shamshirband (ref8) 2012; 2
Hu (ref38)
ref9
ref4
Zhou (ref29); 155
ref3
ref6
ref5
Du (ref19) 2019; 46
Zhao (ref20) 2004; 31
ref40
Weiss (ref22) 2000
Greenwald (ref39); 3
References_xml – ident: ref28
  doi: 10.1609/aaai.v34i04.5878
– volume: 46
  start-page: 1
  issue: 8
  year: 2019
  ident: ref19
  article-title: Overview on multi-agent reinforcement learning
  publication-title: Comput. Sci.
– ident: ref2
  doi: 10.1016/j.compeleceng.2017.10.016
– ident: ref25
  doi: 10.1145/3319619.3321894
– ident: ref34
  doi: 10.1109/TSP.2013.2241057
– ident: ref14
  doi: 10.3390/s20154291
– ident: ref4
  doi: 10.1109/ACCESS.2020.3018267
– ident: ref27
  doi: 10.1016/j.artint.2019.103216
– volume: 155
  start-page: 264
  volume-title: Proc. Mach. Learn. Res.
  ident: ref29
  article-title: Smarts: An open-source scalable multi-agent RL training school for autonomous driving
– ident: ref11
  doi: 10.1109/TITS.2022.3140511
– ident: ref5
  doi: 10.3390/s19102282
– ident: ref13
  doi: 10.1109/MITS.2020.2990189
– volume: 2
  start-page: 148
  issue: 2
  year: 2012
  ident: ref8
  article-title: A distributed approach for coordination between traffic lights based on game theory
  publication-title: Int. Arab. J. Inf. Techn.
– ident: ref23
  doi: 10.21236/ada333248
– volume: 35
  start-page: 1613
  issue: 3
  year: 2018
  ident: ref24
  article-title: Multi-agent reinforcement learning based traffic signal control for integrated urban network: Survey of state of art
  publication-title: Appl. Res. Comput.
– ident: ref15
  doi: 10.1016/j.conengprac.2020.104525
– volume: 1
  start-page: 322
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref41
  article-title: Friend-or-foe Q-learning in general-sum games
– ident: ref48
  doi: 10.1109/ACCESS.2022.3148706
– ident: ref46
  doi: 10.1109/ACCESS.2022.3225431
– ident: ref21
  doi: 10.1007/978-3-642-14435-6_7
– ident: ref47
  doi: 10.1007/s13369-017-3018-9
– ident: ref1
  doi: 10.1007/s10458-008-9062-9
– volume: 3
  start-page: 1395
  volume-title: Proc. 11th Int. Conf. Auton. Agent. Multiagent Agent. Syst.
  ident: ref42
  article-title: Combining independent and joint learning: A negotiation based approach
– ident: ref18
  doi: 10.1103/PRXEnergy.1.033005
– start-page: 242
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref38
  article-title: Multi agent reinforcement learning: Theoretical framework and an algorithm
– volume: 31
  start-page: 23
  issue: 3
  year: 2004
  ident: ref20
  article-title: Reinforcement learning technology in multi-agent system
  publication-title: Comput. Sci.
– ident: ref10
  doi: 10.1109/ITSC.2019.8917165
– ident: ref3
  doi: 10.1016/j.matcom.2019.06.002
– start-page: 2961
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref44
  article-title: Actor-attention-critic for multi-agent reinforcement learning
– ident: ref9
  doi: 10.1016/j.engappai.2015.04.009
– start-page: 121
  volume-title: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence
  year: 2000
  ident: ref22
  article-title: Distributed problem solving and planning
– ident: ref45
  doi: 10.1155/2013/962869
– ident: ref40
  doi: 10.1109/iat.2003.1241094
– ident: ref31
  doi: 10.1016/B978-1-55860-335-6.50027-1
– ident: ref43
  doi: 10.1371/journal.pone.0222215
– ident: ref16
  doi: 10.1155/2021/6693636
– ident: ref26
  doi: 10.1609/aaai.v34i04.6144
– ident: ref37
  doi: 10.1007/s10462-021-09996-w
– ident: ref12
  doi: 10.1609/aaai.v34i04.5744
– volume: 3
  start-page: 242
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref39
  article-title: Correlated Q-learning
– volume: 20
  start-page: 4
  issue: 17
  year: 2008
  ident: ref7
  article-title: Traffic signal coordination control for two adjacent intersections based on NashCC-Q learning
  publication-title: Int. J. Simul. Model
– start-page: 1626
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref36
  article-title: Finite-time analysis of distributed TD(0) with linear function approximation on multi-agent reinforcement learning
– volume: 23
  start-page: 5614
  issue: 129
  year: 2022
  ident: ref17
  article-title: On the approximation of cooperative heterogeneous multi-agent reinforcement learning (MARL) using mean field control (MFC)
  publication-title: J. Mach. Learn. Res.
– ident: ref6
  doi: 10.3182/20080706-5-KR-1001.01213
– ident: ref32
  doi: 10.1109/TCYB.2020.2977374
– ident: ref30
  doi: 10.1109/ICRA.2018.8461113
– ident: ref33
  doi: 10.1109/TSMCC.2007.913919
– start-page: 5872
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref35
  article-title: Fully decentralized multi-agent reinforcement learning with networked agents
SSID ssj0000816957
Score 2.298462
Snippet Network-wide traffic signal control is an important means of relieving urban congestion, reducing traffic accidents, and improving traffic efficiency. However,...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Approximation algorithms
Game theory
Games
Hierarchical game model
Machine learning
Multi-agent reinforcement learning
Multi-agent systems
Multiagent systems
Network-wide traffic signal control
Optimization
Process control
Q-learning
Reinforcement learning
Roads
Roads & highways
Traffic accidents
Traffic congestion
Traffic control
Traffic flow
Traffic intersections
Traffic models
Traffic signals
Travel time
Urban areas
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxELVKT-VAoRSRUpAPHPGysdf2-phGtFFFcyhU9Gb5EyJCgmhy4dfjsZ0oKgL1tlqtd70a2_M8nnkPobdt5G0U0hNqIiewYyA2Uk8Yt72NLgiVRfuupmJy013e8ttarJ5rYUIIOfksNHCZz_L90q0hVJZmOINDg7TiPko7t1KstQ2ogIKE4rIyCw1b9X40HqefaEAgvGGs4x2I_Ox4n0zSX1VV_lqKs385P0TTTc9KWsn3Zr2yjft9j7TxwV1_ip5UpIlHZWg8Q3thcYQe7_APPkd6WpLAyZeZDzi5LeCTwJ9mX6HhuCSx47Pk5zxeLvDV6PojhrgtnsygbDmrqMzx1Nx9IwmzpuUg82XhC_MjYNBYmx-jm_MPn8cTUhUXiEv7vBUZRtF56YyjUdJWKDsEAKWMkCK00TAXmPEJUFAWeydE50zPXOt7Y5w1klv2Au0vlovwEmElaXCCBRlM3yUUaHrDo1OCU2tEAp0DRDeW0K7SkYMqxlznbUmrdDGfBvPpar4Berdt9LOwcfz_8TMw8fZRoNLON5JpdJ2ZWmaQ44cuUMgRsjZEZTthVWtieo8aoGMw5873iiUH6HQzYnSd93eaqgTBEiaj4uQfzV6hA-hiieKcov3Vr3V4nXDNyr7J4_kPftLy9Q
  priority: 102
  providerName: IEEE
Title Network-Wide Traffic Signal Control Based on MARL with Hierarchical Nash-Stackelberg Game Model
URI https://ieeexplore.ieee.org/document/10367982
https://www.proquest.com/docview/2907543126
https://doaj.org/article/721812d1ce20423bbef9b46b90af3349
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCbGkx6MP-N0Gg4eZbZQoBznoi5Gd1AXvRGgoEvmZtz8_-XRapqY6MVrA6E8HrzvtY_vQ-gkCzwLQlaEmsAJZAzEBloRxm1pg_NCJdG-25EYjovrJ_7UkvqCmrCaHrg23JlMMajKnadQwmGtD8oWwqrMBMaKdHUvxrxWMpXO4DIXisuGZijP1Fl_MIgz6oFaeC_24wUo_rRCUWLsbyRWfpzLKdhcbqKNBiXifv12W2jFz7bReos7cAfpUV3ATR4nlccx5AAXBL6fPEPHQV2Ajs9jjKrwfIZv-3c3-HGyfMHDCVw5TgooUzwyixcS8WbcyonrCl-ZV49BH226i8aXFw-DIWnUEoiLOdqS5EEUlXTG0SBpJpTNAfwoI6TwWTDMeWaqCAYoC6UTonCmZC6rSmOcNZJbtodWZ_OZ30dYSeqdYF56UxYRwZnS8OCU4NQaEQFjB9Evw2nXUImDosVUp5QiU7q2tgZr68baHXT63emtZtL4vfk5rMh3U6DBTg-ic-jGOfRfztFBu7CerfEY_HWiHdT9WmDd7NmFpirCp4inqDj4j7EP0RrMp_5c00Wry_cPfxQBzNIeJ189TncNPwGpuulY
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PjxMhFCZmPagHf66xuioHjzLOwADDsdu4Vm3noLtxbwQY0MbaGre9-NfLA9o0Go23yWSYYfKA9_F47_sQelEHXgchB0JN4AR2DMQGOhDGbWeD80Il0b55L6YX7btLflmK1VMtjPc-JZ_5Ci7TWf6wdlsIlcUZzuDQIK6416Pj500u19qHVEBDQnFZuIWaWr0aTybxNyqQCK8Ya3kLMj8H_ifR9BddlT8W4-Rhzu6gfte3nFjytdpubOV-_kbb-N-dv4tuF6yJx3lw3EPX_Oo-unXAQPgA6T6ngZNPi8Hj6LiAUQJ_XHyGhpOcxo5Po6cb8HqF5-MPMwyRWzxdQOFy0lFZ4t5cfSERtcYFITFm4Tfmm8egsrY8Rhdnr88nU1I0F4iLO70NaYJoB-mMo0HSWijbAIRSRkjh62CY88wMEVJQFjonROtMx1w9dMY4ayS37CE6Wq1X_hHCSlLvBPPSm66NONB0hgenBKfWiAg7R4juLKFdISQHXYylThuTWulsPg3m08V8I_Ry3-h75uP49-OnYOL9o0CmnW5E0-gyN7VMMGdonKeQJWStD8q2wqrahPgeNULHYM6D72VLjtDJbsToMvOvNFURhEVURsXjvzR7jm5Mz-czPXvbv3-CbkJ3c0znBB1tfmz904hyNvZZGtu_AFCh9j4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network-Wide+Traffic+Signal+Control+Based+on+MARL+With+Hierarchical+Nash-Stackelberg+Game+Model&rft.jtitle=IEEE+access&rft.au=Shen%2C+Hui&rft.au=Zhao%2C+Hongxia&rft.au=Zhang%2C+Zundong&rft.au=Yang%2C+Xun&rft.date=2023-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=145085&rft.epage=145100&rft_id=info:doi/10.1109%2FACCESS.2023.3345448&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3345448
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon