Network-Wide Traffic Signal Control Based on MARL with Hierarchical Nash-Stackelberg Game Model
Network-wide traffic signal control is an important means of relieving urban congestion, reducing traffic accidents, and improving traffic efficiency. However, solving the problem of computational complexity caused by multi-intersection games is challenging. To address this issue, we propose a Nash-...
Saved in:
Published in | IEEE access Vol. 11; p. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Network-wide traffic signal control is an important means of relieving urban congestion, reducing traffic accidents, and improving traffic efficiency. However, solving the problem of computational complexity caused by multi-intersection games is challenging. To address this issue, we propose a Nash-Stackelberg hierarchical game model that considers the importance of different intersections in the road network and the game relationships between intersections. The model takes into account traffic control strategies between and within sub-areas of the road network, with important intersections in the two sub-areas as the game subject at the upper layer and secondary intersections as the game subject at the lower layer. Furthermore, we propose two reinforcement learning algorithms (NSHG-QL and NSHG-DQN) based on the Nash-Stackelberg hierarchical game model to realize coordinated control of traffic signals in urban areas. Experimental results show that, compared to basic game model solving algorithms, NSHG-QL and NSHG-DQN algorithms can reduce the average travel time and time loss of vehicles at intersections, increase average speed and road occupancy, and coordinate secondary intersections to make optimal strategy selections based on satisfying the upper-layer game between important intersections. Moreover, the multi-agent reinforcement learning algorithms based on this hierarchical game model can significantly improve learning performance and convergence. |
---|---|
AbstractList | Network-wide traffic signal control is an important means of relieving urban congestion, reducing traffic accidents, and improving traffic efficiency. However, solving the problem of computational complexity caused by multi-intersection games is challenging. To address this issue, we propose a Nash-Stackelberg hierarchical game model that considers the importance of different intersections in the road network and the game relationships between intersections. The model takes into account traffic control strategies between and within sub-areas of the road network, with important intersections in the two sub-areas as the game subject at the upper layer and secondary intersections as the game subject at the lower layer. Furthermore, we propose two reinforcement learning algorithms (NSHG-QL and NSHG-DQN) based on the Nash-Stackelberg hierarchical game model to realize coordinated control of traffic signals in urban areas. Experimental results show that, compared to basic game model solving algorithms, NSHG-QL and NSHG-DQN algorithms can reduce the average travel time and time loss of vehicles at intersections, increase average speed and road occupancy, and coordinate secondary intersections to make optimal strategy selections based on satisfying the upper-layer game between important intersections. Moreover, the multi-agent reinforcement learning algorithms based on this hierarchical game model can significantly improve learning performance and convergence. |
Author | Liu, Xiaoming Shen, Hui Song, Yutong Zhang, Zundong Yang, Xun Zhao, Hongxia |
Author_xml | – sequence: 1 givenname: Hui surname: Shen fullname: Shen, Hui organization: The school of Electrical and Control Engineering, North China University of Technology, and Beijing Municipal Traffic Management Bureau, Beijing, China – sequence: 2 givenname: Hongxia surname: Zhao fullname: Zhao, Hongxia organization: Institute of Automation, State Key Laboratory of Multimodal Artificial Intelligence Systems, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Zundong orcidid: 0000-0003-0574-7464 surname: Zhang fullname: Zhang, Zundong organization: The Beijing Key Laboratory of Urban Road Traffic Intelligent Technology, North China University of Technology, Beijing, China – sequence: 4 givenname: Xun surname: Yang fullname: Yang, Xun organization: The Beijing Key Laboratory of Urban Road Traffic Intelligent Technology, North China University of Technology, Beijing, China – sequence: 5 givenname: Yutong surname: Song fullname: Song, Yutong organization: The Beijing Key Laboratory of Urban Road Traffic Intelligent Technology, North China University of Technology, Beijing, China – sequence: 6 givenname: Xiaoming surname: Liu fullname: Liu, Xiaoming organization: The Beijing Key Laboratory of Urban Road Traffic Intelligent Technology, North China University of Technology, Beijing, China |
BookMark | eNqFUU1P3DAQtSoqQYFfQA-Wes7irzjxcRtRQFpA6lL1aE2c8a6XEFM7CPXfk21QhXrpXGY0eh_Se5_IwRAHJOSMswXnzJwvm-ZivV4IJuRCSlUqVX8gR4JrU8hS6oN39yE5zXnHpqmnV1kdEXuL40tMD8XP0CG9T-B9cHQdNgP0tInDmGJPv0LGjsaB3iy_r-hLGLf0KmCC5LbBTbhbyNtiPYJ7wL7FtKGX8Ij0JnbYn5CPHvqMp2_7mPz4dnHfXBWru8vrZrkqnGJmLLjXqqscOOErwbRpOa-lMaArjcyDdCihE0IK6WuntXJQS8e6GsC1UJWtPCbXs24XYWefUniE9NtGCPbPI6aNhTQG16OtBK-56LhDwZSQbYvetEq3hoGf8jOT1pdZ6ynFX8-YR7uLz2kKJFthWFUqyYWeUHJGuRRzTuj_unJm98XYuRi7L8a-FTOxzD8sF0YYwz5pCP1_uJ9nbkDEd25SV6YW8hWGcJxp |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_JIOT_2024_3484410 |
Cites_doi | 10.1609/aaai.v34i04.5878 10.1016/j.compeleceng.2017.10.016 10.1145/3319619.3321894 10.1109/TSP.2013.2241057 10.3390/s20154291 10.1109/ACCESS.2020.3018267 10.1016/j.artint.2019.103216 10.1109/TITS.2022.3140511 10.3390/s19102282 10.1109/MITS.2020.2990189 10.21236/ada333248 10.1016/j.conengprac.2020.104525 10.1109/ACCESS.2022.3148706 10.1109/ACCESS.2022.3225431 10.1007/978-3-642-14435-6_7 10.1007/s13369-017-3018-9 10.1007/s10458-008-9062-9 10.1103/PRXEnergy.1.033005 10.1109/ITSC.2019.8917165 10.1016/j.matcom.2019.06.002 10.1016/j.engappai.2015.04.009 10.1155/2013/962869 10.1109/iat.2003.1241094 10.1016/B978-1-55860-335-6.50027-1 10.1371/journal.pone.0222215 10.1155/2021/6693636 10.1609/aaai.v34i04.6144 10.1007/s10462-021-09996-w 10.1609/aaai.v34i04.5744 10.3182/20080706-5-KR-1001.01213 10.1109/TCYB.2020.2977374 10.1109/ICRA.2018.8461113 10.1109/TSMCC.2007.913919 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3345448 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_721812d1ce20423bbef9b46b90af3349 10_1109_ACCESS_2023_3345448 10367982 |
Genre | orig-research |
GrantInformation_xml | – fundername: Guangdong Provincial Key Area Research and Development Program Project grantid: 2020B0909050001 – fundername: China National Railway Group Co., Science and Technology Research and Development Program Project grantid: L2022X002 – fundername: National Natural Science Foundation Project grantid: U1909204 – fundername: Open Topic of National Railway Intelligent Transportation System Engineering Technology Research Center grantid: RITS2021KF03 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c409t-1f64d7cac2f72069b118399a676e0fa3ce3ad22323f8c664ca83c0d8aacba75b3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:31:54 EDT 2025 Mon Jun 30 07:42:14 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Tue Jul 01 04:14:13 EDT 2025 Wed Aug 27 02:35:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-1f64d7cac2f72069b118399a676e0fa3ce3ad22323f8c664ca83c0d8aacba75b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0574-7464 |
OpenAccessLink | https://doaj.org/article/721812d1ce20423bbef9b46b90af3349 |
PQID | 2907543126 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | ieee_primary_10367982 crossref_primary_10_1109_ACCESS_2023_3345448 proquest_journals_2907543126 doaj_primary_oai_doaj_org_article_721812d1ce20423bbef9b46b90af3349 crossref_citationtrail_10_1109_ACCESS_2023_3345448 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 Zhang (ref35) Littman (ref41); 1 ref2 ref1 ref16 ref18 Zhao (ref7) 2008; 20 ref46 ref23 ref45 Mondal (ref17) 2022; 23 ref26 ref48 ref25 Bianchi (ref42); 3 ref47 ref21 ref43 Iqbal (ref44) Doan (ref36) Yang (ref24) 2018; 35 ref28 ref27 Shamshirband (ref8) 2012; 2 Hu (ref38) ref9 ref4 Zhou (ref29); 155 ref3 ref6 ref5 Du (ref19) 2019; 46 Zhao (ref20) 2004; 31 ref40 Weiss (ref22) 2000 Greenwald (ref39); 3 |
References_xml | – ident: ref28 doi: 10.1609/aaai.v34i04.5878 – volume: 46 start-page: 1 issue: 8 year: 2019 ident: ref19 article-title: Overview on multi-agent reinforcement learning publication-title: Comput. Sci. – ident: ref2 doi: 10.1016/j.compeleceng.2017.10.016 – ident: ref25 doi: 10.1145/3319619.3321894 – ident: ref34 doi: 10.1109/TSP.2013.2241057 – ident: ref14 doi: 10.3390/s20154291 – ident: ref4 doi: 10.1109/ACCESS.2020.3018267 – ident: ref27 doi: 10.1016/j.artint.2019.103216 – volume: 155 start-page: 264 volume-title: Proc. Mach. Learn. Res. ident: ref29 article-title: Smarts: An open-source scalable multi-agent RL training school for autonomous driving – ident: ref11 doi: 10.1109/TITS.2022.3140511 – ident: ref5 doi: 10.3390/s19102282 – ident: ref13 doi: 10.1109/MITS.2020.2990189 – volume: 2 start-page: 148 issue: 2 year: 2012 ident: ref8 article-title: A distributed approach for coordination between traffic lights based on game theory publication-title: Int. Arab. J. Inf. Techn. – ident: ref23 doi: 10.21236/ada333248 – volume: 35 start-page: 1613 issue: 3 year: 2018 ident: ref24 article-title: Multi-agent reinforcement learning based traffic signal control for integrated urban network: Survey of state of art publication-title: Appl. Res. Comput. – ident: ref15 doi: 10.1016/j.conengprac.2020.104525 – volume: 1 start-page: 322 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref41 article-title: Friend-or-foe Q-learning in general-sum games – ident: ref48 doi: 10.1109/ACCESS.2022.3148706 – ident: ref46 doi: 10.1109/ACCESS.2022.3225431 – ident: ref21 doi: 10.1007/978-3-642-14435-6_7 – ident: ref47 doi: 10.1007/s13369-017-3018-9 – ident: ref1 doi: 10.1007/s10458-008-9062-9 – volume: 3 start-page: 1395 volume-title: Proc. 11th Int. Conf. Auton. Agent. Multiagent Agent. Syst. ident: ref42 article-title: Combining independent and joint learning: A negotiation based approach – ident: ref18 doi: 10.1103/PRXEnergy.1.033005 – start-page: 242 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref38 article-title: Multi agent reinforcement learning: Theoretical framework and an algorithm – volume: 31 start-page: 23 issue: 3 year: 2004 ident: ref20 article-title: Reinforcement learning technology in multi-agent system publication-title: Comput. Sci. – ident: ref10 doi: 10.1109/ITSC.2019.8917165 – ident: ref3 doi: 10.1016/j.matcom.2019.06.002 – start-page: 2961 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref44 article-title: Actor-attention-critic for multi-agent reinforcement learning – ident: ref9 doi: 10.1016/j.engappai.2015.04.009 – start-page: 121 volume-title: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence year: 2000 ident: ref22 article-title: Distributed problem solving and planning – ident: ref45 doi: 10.1155/2013/962869 – ident: ref40 doi: 10.1109/iat.2003.1241094 – ident: ref31 doi: 10.1016/B978-1-55860-335-6.50027-1 – ident: ref43 doi: 10.1371/journal.pone.0222215 – ident: ref16 doi: 10.1155/2021/6693636 – ident: ref26 doi: 10.1609/aaai.v34i04.6144 – ident: ref37 doi: 10.1007/s10462-021-09996-w – ident: ref12 doi: 10.1609/aaai.v34i04.5744 – volume: 3 start-page: 242 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref39 article-title: Correlated Q-learning – volume: 20 start-page: 4 issue: 17 year: 2008 ident: ref7 article-title: Traffic signal coordination control for two adjacent intersections based on NashCC-Q learning publication-title: Int. J. Simul. Model – start-page: 1626 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref36 article-title: Finite-time analysis of distributed TD(0) with linear function approximation on multi-agent reinforcement learning – volume: 23 start-page: 5614 issue: 129 year: 2022 ident: ref17 article-title: On the approximation of cooperative heterogeneous multi-agent reinforcement learning (MARL) using mean field control (MFC) publication-title: J. Mach. Learn. Res. – ident: ref6 doi: 10.3182/20080706-5-KR-1001.01213 – ident: ref32 doi: 10.1109/TCYB.2020.2977374 – ident: ref30 doi: 10.1109/ICRA.2018.8461113 – ident: ref33 doi: 10.1109/TSMCC.2007.913919 – start-page: 5872 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref35 article-title: Fully decentralized multi-agent reinforcement learning with networked agents |
SSID | ssj0000816957 |
Score | 2.298462 |
Snippet | Network-wide traffic signal control is an important means of relieving urban congestion, reducing traffic accidents, and improving traffic efficiency. However,... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Approximation algorithms Game theory Games Hierarchical game model Machine learning Multi-agent reinforcement learning Multi-agent systems Multiagent systems Network-wide traffic signal control Optimization Process control Q-learning Reinforcement learning Roads Roads & highways Traffic accidents Traffic congestion Traffic control Traffic flow Traffic intersections Traffic models Traffic signals Travel time Urban areas |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxELVKT-VAoRSRUpAPHPGysdf2-phGtFFFcyhU9Gb5EyJCgmhy4dfjsZ0oKgL1tlqtd70a2_M8nnkPobdt5G0U0hNqIiewYyA2Uk8Yt72NLgiVRfuupmJy013e8ttarJ5rYUIIOfksNHCZz_L90q0hVJZmOINDg7TiPko7t1KstQ2ogIKE4rIyCw1b9X40HqefaEAgvGGs4x2I_Ox4n0zSX1VV_lqKs385P0TTTc9KWsn3Zr2yjft9j7TxwV1_ip5UpIlHZWg8Q3thcYQe7_APPkd6WpLAyZeZDzi5LeCTwJ9mX6HhuCSx47Pk5zxeLvDV6PojhrgtnsygbDmrqMzx1Nx9IwmzpuUg82XhC_MjYNBYmx-jm_MPn8cTUhUXiEv7vBUZRtF56YyjUdJWKDsEAKWMkCK00TAXmPEJUFAWeydE50zPXOt7Y5w1klv2Au0vlovwEmElaXCCBRlM3yUUaHrDo1OCU2tEAp0DRDeW0K7SkYMqxlznbUmrdDGfBvPpar4Berdt9LOwcfz_8TMw8fZRoNLON5JpdJ2ZWmaQ44cuUMgRsjZEZTthVWtieo8aoGMw5873iiUH6HQzYnSd93eaqgTBEiaj4uQfzV6hA-hiieKcov3Vr3V4nXDNyr7J4_kPftLy9Q priority: 102 providerName: IEEE |
Title | Network-Wide Traffic Signal Control Based on MARL with Hierarchical Nash-Stackelberg Game Model |
URI | https://ieeexplore.ieee.org/document/10367982 https://www.proquest.com/docview/2907543126 https://doaj.org/article/721812d1ce20423bbef9b46b90af3349 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCbGkx6MP-N0Gg4eZbZQoBznoi5Gd1AXvRGgoEvmZtz8_-XRapqY6MVrA6E8HrzvtY_vQ-gkCzwLQlaEmsAJZAzEBloRxm1pg_NCJdG-25EYjovrJ_7UkvqCmrCaHrg23JlMMajKnadQwmGtD8oWwqrMBMaKdHUvxrxWMpXO4DIXisuGZijP1Fl_MIgz6oFaeC_24wUo_rRCUWLsbyRWfpzLKdhcbqKNBiXifv12W2jFz7bReos7cAfpUV3ATR4nlccx5AAXBL6fPEPHQV2Ajs9jjKrwfIZv-3c3-HGyfMHDCVw5TgooUzwyixcS8WbcyonrCl-ZV49BH226i8aXFw-DIWnUEoiLOdqS5EEUlXTG0SBpJpTNAfwoI6TwWTDMeWaqCAYoC6UTonCmZC6rSmOcNZJbtodWZ_OZ30dYSeqdYF56UxYRwZnS8OCU4NQaEQFjB9Evw2nXUImDosVUp5QiU7q2tgZr68baHXT63emtZtL4vfk5rMh3U6DBTg-ic-jGOfRfztFBu7CerfEY_HWiHdT9WmDd7NmFpirCp4inqDj4j7EP0RrMp_5c00Wry_cPfxQBzNIeJ189TncNPwGpuulY |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PjxMhFCZmPagHf66xuioHjzLOwADDsdu4Vm3noLtxbwQY0MbaGre9-NfLA9o0Go23yWSYYfKA9_F47_sQelEHXgchB0JN4AR2DMQGOhDGbWeD80Il0b55L6YX7btLflmK1VMtjPc-JZ_5Ci7TWf6wdlsIlcUZzuDQIK6416Pj500u19qHVEBDQnFZuIWaWr0aTybxNyqQCK8Ya3kLMj8H_ifR9BddlT8W4-Rhzu6gfte3nFjytdpubOV-_kbb-N-dv4tuF6yJx3lw3EPX_Oo-unXAQPgA6T6ngZNPi8Hj6LiAUQJ_XHyGhpOcxo5Po6cb8HqF5-MPMwyRWzxdQOFy0lFZ4t5cfSERtcYFITFm4Tfmm8egsrY8Rhdnr88nU1I0F4iLO70NaYJoB-mMo0HSWijbAIRSRkjh62CY88wMEVJQFjonROtMx1w9dMY4ayS37CE6Wq1X_hHCSlLvBPPSm66NONB0hgenBKfWiAg7R4juLKFdISQHXYylThuTWulsPg3m08V8I_Ry3-h75uP49-OnYOL9o0CmnW5E0-gyN7VMMGdonKeQJWStD8q2wqrahPgeNULHYM6D72VLjtDJbsToMvOvNFURhEVURsXjvzR7jm5Mz-czPXvbv3-CbkJ3c0znBB1tfmz904hyNvZZGtu_AFCh9j4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network-Wide+Traffic+Signal+Control+Based+on+MARL+With+Hierarchical+Nash-Stackelberg+Game+Model&rft.jtitle=IEEE+access&rft.au=Shen%2C+Hui&rft.au=Zhao%2C+Hongxia&rft.au=Zhang%2C+Zundong&rft.au=Yang%2C+Xun&rft.date=2023-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=11&rft.spage=145085&rft.epage=145100&rft_id=info:doi/10.1109%2FACCESS.2023.3345448&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2023_3345448 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |