Deformation characteristics of soil between prefabricated vertical drains under vacuum preloading

The deformation characteristics of soil among prefabricated vertical drains (PVDs) subjected to vacuum pressure are investigated using a model test conducted on dredged slurry. Red iron particles are used to indirectly indicate the lateral displacement of soil under vacuum preloading. Test results s...

Full description

Saved in:
Bibliographic Details
Published inGeotextiles and geomembranes Vol. 47; no. 6; pp. 798 - 802
Main Authors Wang, Peng, Han, Yanbing, Wang, Jun, Cai, Yuanqiang, Geng, Xueyu
Format Journal Article
LanguageEnglish
Published Essex Elsevier Ltd 01.12.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The deformation characteristics of soil among prefabricated vertical drains (PVDs) subjected to vacuum pressure are investigated using a model test conducted on dredged slurry. Red iron particles are used to indirectly indicate the lateral displacement of soil under vacuum preloading. Test results showed that, in addition to the settlement of soil between two PVDs, there was also lateral displacement that varied with consolidation time and lateral distance from the PVD because of lateral vacuum suction. The lateral displacement arose successively with the increasing lateral distance. And it increased from zero on the PVD surface and dropped back to zero again at the midpoint between the two PVDs. There should have been a maximum value of the lateral displacement at a point near the PVD. The combined vertical and lateral displacement formed a soil pile around the PVD and showed a ‘V’ shaped soil surface.
AbstractList The deformation characteristics of soil among prefabricated vertical drains (PVDs) subjected to vacuum pressure are investigated using a model test conducted on dredged slurry. Red iron particles are used to indirectly indicate the lateral displacement of soil under vacuum preloading. Test results showed that, in addition to the settlement of soil between two PVDs, there was also lateral displacement that varied with consolidation time and lateral distance from the PVD because of lateral vacuum suction. The lateral displacement arose successively with the increasing lateral distance. And it increased from zero on the PVD surface and dropped back to zero again at the midpoint between the two PVDs. There should have been a maximum value of the lateral displacement at a point near the PVD. The combined vertical and lateral displacement formed a soil pile around the PVD and showed a ‘V’ shaped soil surface.
Author Cai, Yuanqiang
Wang, Peng
Wang, Jun
Geng, Xueyu
Han, Yanbing
Author_xml – sequence: 1
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: College of Architecture and Civil Engineering, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
– sequence: 2
  givenname: Yanbing
  surname: Han
  fullname: Han, Yanbing
  organization: College of Architecture and Civil Engineering, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
– sequence: 3
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  email: sunnystar1980@163.com
  organization: College of Architecture and Civil Engineering, Wenzhou University, Chashan University Town, Wenzhou, 325035, China
– sequence: 4
  givenname: Yuanqiang
  surname: Cai
  fullname: Cai, Yuanqiang
  organization: College of Civil Engineering and Architecture Zhejiang University of Technology, Hangzhou, 310014, China
– sequence: 5
  givenname: Xueyu
  surname: Geng
  fullname: Geng, Xueyu
  organization: School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
BookMark eNqNkE1P3DAQhq0KJBbob8BSz9n6a5P40AOCfklIXNqzNXbG1KvEXmxnKf-ebLfqgUs5jTR6n3c0zzk5iSkiIVecrTnj7cft-gFTxd8TTmvBuF62Umn5jqx43-lGbnp1QlZMtG3DuVJn5LyULWNMdbpfEbhFn_IENaRI3S_I4CrmUGpwhSZPSwojtVifECPdZfRgc3BQcaB7zEsKRjpkCLHQOQ6Y6R7cPE-H6JhgCPHhkpx6GAu-_zsvyM8vn3_cfGvu7r9-v7m-a5xiujbctqhFCx0ItNoLpZjs7cZzMYiN9X3ruOvRKtig1Nz22grfKoBOMDl4zeQF-XDs3eX0OGOpZpvmHJeTRkipBOu6rl9S3THlcipl-cfscpggPxvOzMGn2Zp_Ps3Bpzn6XMhPr0gX6h9vdfl_fAN_feRxkbAPmE1xAaPDIWR01Qwp_LfjBTCcm7Y
CitedBy_id crossref_primary_10_1016_j_geotexmem_2024_09_018
crossref_primary_10_1016_j_trgeo_2022_100848
crossref_primary_10_1016_j_geotexmem_2024_10_002
crossref_primary_10_1007_s12517_021_07656_5
crossref_primary_10_1080_1064119X_2024_2350632
crossref_primary_10_1080_1064119X_2019_1699981
crossref_primary_10_1016_j_geotexmem_2020_12_013
crossref_primary_10_1016_j_oceaneng_2023_116650
crossref_primary_10_4236_ojapps_2024_1410186
crossref_primary_10_1016_j_geotexmem_2022_03_006
crossref_primary_10_1007_s11356_020_09074_8
crossref_primary_10_1080_1064119X_2023_2211979
crossref_primary_10_3389_fmars_2023_1213820
crossref_primary_10_3390_jmse10070867
crossref_primary_10_1007_s11440_023_01998_y
crossref_primary_10_1016_j_geotexmem_2020_12_006
crossref_primary_10_1080_1064119X_2023_2292766
crossref_primary_10_1007_s40722_024_00357_7
crossref_primary_10_1016_j_geotexmem_2020_02_010
crossref_primary_10_1155_2021_9962141
crossref_primary_10_1080_1064119X_2021_2001611
crossref_primary_10_1007_s10653_024_02067_3
crossref_primary_10_1680_jgeen_21_00154
crossref_primary_10_3390_su14138101
crossref_primary_10_1680_jgeen_21_00237
crossref_primary_10_1139_cgj_2021_0341
crossref_primary_10_1680_jgein_21_00006a
crossref_primary_10_1016_j_geotexmem_2025_03_003
crossref_primary_10_1080_19386362_2021_1907069
crossref_primary_10_1139_cgj_2021_0248
crossref_primary_10_1016_j_geotexmem_2020_09_008
crossref_primary_10_1080_1064119X_2020_1820644
crossref_primary_10_1016_j_trgeo_2023_101178
crossref_primary_10_1016_j_geotexmem_2024_11_001
crossref_primary_10_1002_nag_3804
crossref_primary_10_1061__ASCE_GT_1943_5606_0002925
crossref_primary_10_1061__ASCE_GM_1943_5622_0002123
crossref_primary_10_1016_j_chemosphere_2020_126528
crossref_primary_10_1680_jgein_24_00037
crossref_primary_10_1016_j_compgeo_2024_106218
crossref_primary_10_1016_j_psep_2025_106937
crossref_primary_10_1007_s13762_022_04608_8
crossref_primary_10_1680_jgein_23_00148
crossref_primary_10_1007_s40891_022_00402_1
crossref_primary_10_1016_j_geotexmem_2025_02_001
Cites_doi 10.1061/(ASCE)GM.1943-5622.0000106
10.1016/j.sandf.2018.02.028
10.1016/j.sandf.2016.01.010
10.1016/j.geotexmem.2018.12.001
10.1061/(ASCE)GT.1943-5606.0000731
10.1016/j.compgeo.2014.08.006
10.1080/1064119X.2019.1599088
10.1080/1064119X.2015.1068895
10.1061/(ASCE)GT.1943-5606.0001516
10.1680/geot.2000.50.6.625
10.1016/j.jrmge.2018.11.002
10.1016/j.geotexmem.2014.07.001
10.1016/j.geotexmem.2014.12.001
10.1061/(ASCE)GT.1943-5606.0001599
10.1139/cgj-2017-0635
10.1680/jgeot.15.T.013
10.1061/(ASCE)1532-3641(2005)5:2(114)
10.1016/j.geotexmem.2003.09.001
10.1680/gein.15.00015
10.1061/(ASCE)1090-0241(2005)131:12(1552)
10.1016/j.geotexmem.2018.11.002
10.1680/jgein.16.00016
10.1680/gein.14.00016
10.1080/1064119X.2015.1016638
10.1139/cgj-2016-0687
10.1139/t2012-024
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Dec 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 2019
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1016/j.geotexmem.2019.103493
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-3584
EndPage 802
ExternalDocumentID 10_1016_j_geotexmem_2019_103493
S0266114419300846
GroupedDBID --K
--M
.-4
..I
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABQEM
ABQYD
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSE
SSM
SST
SSZ
T5K
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8FD
EFKBS
FR3
KR7
ID FETCH-LOGICAL-c409t-1b6e926a7a2eb9f244038b5f12d25bf86c1c8eb4a5e391b89b2f64aa7203df903
IEDL.DBID .~1
ISSN 0266-1144
IngestDate Mon Jul 14 08:22:44 EDT 2025
Tue Jul 01 03:25:20 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Feb 23 02:48:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Soil pile
Geosynthetics
Lateral displacement
Prefabricated vertical drains
Vacuum suction
Vacuum preloading
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-1b6e926a7a2eb9f244038b5f12d25bf86c1c8eb4a5e391b89b2f64aa7203df903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2334207778
PQPubID 2045473
PageCount 5
ParticipantIDs proquest_journals_2334207778
crossref_primary_10_1016_j_geotexmem_2019_103493
crossref_citationtrail_10_1016_j_geotexmem_2019_103493
elsevier_sciencedirect_doi_10_1016_j_geotexmem_2019_103493
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Essex
PublicationPlace_xml – name: Essex
PublicationTitle Geotextiles and geomembranes
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Robinson, Indraratna, Rujikiatkamjorn (bib23) 2012; 49
Wu, Qin, Yang (bib28) 2013; 483
Chen, Shen, Yin, Xu, Horpibulsuk (bib8) 2016; 34
Indraratna, Rujikiatkamjorn, Baral, Ameratunga (bib19) 2019; 11
Lei, Hu, Zheng, Liu, Wang, Liu (bib21) 2019
Geng, Indraratna, Rujikiatkamjorn (bib14) 2012; 12
Bo, Wang, Choa, Arulrajah, Horpibulsuk (bib3) 2016; 34
Deng, Liu, Lu, Xie (bib12) 2014; 62
Wang, Cai, Ma, Chu, Fu, Wang, Jin (bib24) 2016; 142
Cai, Xie, Wang, Wang, Geng (bib5) 2017; 54
Arulrajah (bib1) 2004; 22
Chen, Zhang, Li, An, Li (bib9) 2016; 38
Geng, Yu (bib15) 2017; 67
Kumarage, Gnanendra (bib20) 2019; 47
Guo, Xie, Deng (bib16) 2014
Lu, Wang, Sloan, Sheng, Xie (bib22) 2015; 43
Chai, Carter, Hayahsi (bib6) 2005; 131
Indraratna, Zhong, Fox, Rujikiatkamjorn (bib18) 2017; 143
Chu, Yan, Yang (bib10) 2000; 50
Wang, Cai, Fu, Hu, Cai, Lin, Zheng (bib27) 2018; 58
Indraratna, Rujikiatkamjorn, Balasubramaniam (bib17) 2005; 5
Chai, Horpibulsuk, Shen, Carter (bib7) 2014; 42
Fu, Cai, Wang, Wang (bib13) 2017; 24
Zhou, Pu, Li, Pan, Song (bib31) 2019; 38
Xu, Chai (bib29) 2014; 21
Bate, Zhang (bib2) 2013; 139
Bo, Horpibulsuk, Chinkulkijniwat, Leong (bib4) 2016; 55
Zhan, Lin, Zhan, Chen (bib30) 2015; 22
Wang, Gao, Fu, Ding, Cai, Geng, Shi (bib26) 2019; 47
Wang, Fu, Liu, Cai, Zhou (bib25) 2018; 55
Deng, Liu, Cui, Feng, Chen, He (bib11) 2019; 56
Deng (10.1016/j.geotexmem.2019.103493_bib11) 2019; 56
Fu (10.1016/j.geotexmem.2019.103493_bib13) 2017; 24
Geng (10.1016/j.geotexmem.2019.103493_bib15) 2017; 67
Geng (10.1016/j.geotexmem.2019.103493_bib14) 2012; 12
Wang (10.1016/j.geotexmem.2019.103493_bib27) 2018; 58
Indraratna (10.1016/j.geotexmem.2019.103493_bib19) 2019; 11
Xu (10.1016/j.geotexmem.2019.103493_bib29) 2014; 21
Deng (10.1016/j.geotexmem.2019.103493_bib12) 2014; 62
Lei (10.1016/j.geotexmem.2019.103493_bib21) 2019
Chu (10.1016/j.geotexmem.2019.103493_bib10) 2000; 50
Wang (10.1016/j.geotexmem.2019.103493_bib24) 2016; 142
Bate (10.1016/j.geotexmem.2019.103493_bib2) 2013; 139
Chen (10.1016/j.geotexmem.2019.103493_bib9) 2016; 38
Bo (10.1016/j.geotexmem.2019.103493_bib4) 2016; 55
Guo (10.1016/j.geotexmem.2019.103493_bib16) 2014
Chai (10.1016/j.geotexmem.2019.103493_bib7) 2014; 42
Arulrajah (10.1016/j.geotexmem.2019.103493_bib1) 2004; 22
Zhan (10.1016/j.geotexmem.2019.103493_bib30) 2015; 22
Chen (10.1016/j.geotexmem.2019.103493_bib8) 2016; 34
Indraratna (10.1016/j.geotexmem.2019.103493_bib17) 2005; 5
Cai (10.1016/j.geotexmem.2019.103493_bib5) 2017; 54
Wang (10.1016/j.geotexmem.2019.103493_bib26) 2019; 47
Zhou (10.1016/j.geotexmem.2019.103493_bib31) 2019; 38
Chai (10.1016/j.geotexmem.2019.103493_bib6) 2005; 131
Bo (10.1016/j.geotexmem.2019.103493_bib3) 2016; 34
Indraratna (10.1016/j.geotexmem.2019.103493_bib18) 2017; 143
Kumarage (10.1016/j.geotexmem.2019.103493_bib20) 2019; 47
Lu (10.1016/j.geotexmem.2019.103493_bib22) 2015; 43
Wang (10.1016/j.geotexmem.2019.103493_bib25) 2018; 55
Robinson (10.1016/j.geotexmem.2019.103493_bib23) 2012; 49
Wu (10.1016/j.geotexmem.2019.103493_bib28) 2013; 483
References_xml – volume: 34
  start-page: 648
  year: 2016
  end-page: 658
  ident: bib3
  article-title: Step loading compression of ultra-soft soil under radial drainage conditions
  publication-title: Mar. Georesour. Geotechnol.
– volume: 47
  start-page: 95
  year: 2019
  end-page: 103
  ident: bib20
  article-title: Long-term performance predictions in ground improvements with vacuum assisted prefabricated vertical drains
  publication-title: Geotext. Geomembranes
– volume: 22
  start-page: 327
  year: 2015
  end-page: 338
  ident: bib30
  article-title: Field implementation of FeCl
  publication-title: Geosynth. Int.
– volume: 38
  start-page: 3246
  year: 2019
  end-page: 3251
  ident: bib31
  article-title: Experimental investigations on treatment of dredged slurry by vacuum-assisted prefabricated horizontal drains
  publication-title: Chin. J. Geotech. Eng.
– volume: 67
  start-page: 1020
  year: 2017
  end-page: 1028
  ident: bib15
  article-title: A large-strain radial consolidation theory for soft clays improved by vertical drains
  publication-title: Géotech
– volume: 58
  start-page: 766
  year: 2018
  end-page: 775
  ident: bib27
  article-title: Experimental study on a dredged fill ground improved by a two-stage vacuum preloading method
  publication-title: Soils Found.
– volume: 50
  start-page: 625
  year: 2000
  end-page: 632
  ident: bib10
  article-title: Soil improvement by the vacuum preloading method for an oil storage station
  publication-title: Geotechnique
– volume: 43
  start-page: 182
  year: 2015
  end-page: 189
  ident: bib22
  article-title: Nonlinear consolidation of vertical drains with coupled lateral-vertical flow considering well resistance
  publication-title: Geotext. Geomembranes
– volume: 55
  start-page: 129
  year: 2016
  end-page: 137
  ident: bib4
  article-title: Laboratory measurements of factors affecting discharge capacity of prefabricated vertical drain materials
  publication-title: Soils Found.
– volume: 54
  start-page: 547
  year: 2017
  end-page: 560
  ident: bib5
  article-title: A new approach of vacuum preloading with booster PVDs to improve deep marine clay strata
  publication-title: Can. Geotech. J.
– volume: 42
  start-page: 437
  year: 2014
  end-page: 444
  ident: bib7
  article-title: Consolidation analysis of clayey deposits under vacuum pressure with horizontal drains
  publication-title: Geotext. Geomembranes
– volume: 38
  start-page: 163
  year: 2016
  end-page: 168
  ident: bib9
  article-title: Experimental study on radial consolidation of soil around drainage plate
  publication-title: Chin. J. Geotech. Eng.
– volume: 142
  start-page: 0601
  year: 2016
  end-page: 6012
  ident: bib24
  article-title: Improved vacuum preloading method for consolidation of dredged clay-slurry fill
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 139
  start-page: 143
  year: 2013
  end-page: 151
  ident: bib2
  article-title: Use of vacuum for the stabilization of dry sand slopes
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 62
  start-page: 310
  year: 2014
  end-page: 316
  ident: bib12
  article-title: Consolidation behavior of soft deposits considering the variation of prefabricated vertical drain discharge capacity
  publication-title: Comput. Geotech.
– volume: 5
  start-page: 114
  year: 2005
  end-page: 124
  ident: bib17
  article-title: Analytical and numerical modeling of soft soil stabilized by prefabricated vertical drains incorporating vacuum preloading
  publication-title: Int. J. Geomech.
– volume: 483
  start-page: 116
  year: 2013
  end-page: 122
  ident: bib28
  article-title: Consolidation test and numerical simulation of particles movement to ultra-soft soil bearing vacuum load
  publication-title: J. Eng. Geol.
– start-page: 410390
  year: 2014
  ident: bib16
  article-title: Consolidation by prefabricated vertical drains with a threshold gradient
  publication-title: Math. Probl. Eng.
– volume: 47
  start-page: 121
  year: 2019
  end-page: 127
  ident: bib26
  article-title: Effect of surcharge loading rate and mobilized load ratio on the performance of vacuum–surcharge preloading with PVDs
  publication-title: Geotext. Geomembranes
– year: 2019
  ident: bib21
  article-title: Improved air-booster vacuum preloading method for newly dredged fills: laboratory model study
  publication-title: Mar. Georesour. Geotechnol.
– volume: 49
  start-page: 729
  year: 2012
  end-page: 739
  ident: bib23
  article-title: Final state of soils under vacuum preloading
  publication-title: Can. Geotech. J.
– volume: 55
  start-page: 147
  year: 2018
  end-page: 153
  ident: bib25
  article-title: Influence of the electro-osmosis activation time on vacuum electro-osmosis consolidation of a dredged slurry
  publication-title: Can. Geotech. J.
– volume: 56
  start-page: 611
  year: 2019
  end-page: 620
  ident: bib11
  article-title: Colloid effect on clogging mechanism of hydraulic reclamation mud improved by vacuum preloading
  publication-title: Can. Geotech. J.
– volume: 12
  start-page: 27
  year: 2012
  end-page: 42
  ident: bib14
  article-title: Analytical solutions for a single vertical drain with vacuum and time-dependent surcharge preloading in membrane and membraneless systems
  publication-title: Int. J. Geomech.
– volume: 21
  start-page: 286
  year: 2014
  end-page: 300
  ident: bib29
  article-title: Lateral displacement of PVD-improved deposit under embankment loading
  publication-title: Geosynth. Int.
– volume: 34
  start-page: 420
  year: 2016
  end-page: 430
  ident: bib8
  article-title: Evaluation of effective depth of PVD improvement in soft clay deposit: a field case study
  publication-title: Mar. Georesour. Geotechnol.
– volume: 24
  start-page: 72
  year: 2017
  end-page: 81
  ident: bib13
  article-title: Experimental study on the combined application of vacuum preloading – variable-spacing electro-osmosis to soft ground improvement
  publication-title: Geosynth. Int.
– volume: 143
  year: 2017
  ident: bib18
  article-title: Large-strain vacuum-assisted consolidation with non-darcian radial flow incorporating varying permeability and compressibility
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 131
  start-page: 1552
  year: 2005
  end-page: 1561
  ident: bib6
  article-title: Ground deformation induced by vacuum consolidation
  publication-title: J. Geotech. Geoenviron. Eng.
– volume: 22
  start-page: 415
  year: 2004
  end-page: 437
  ident: bib1
  article-title: Factors affecting field instrumentation assessment of marine clay treated with prefabricated vertical drains
  publication-title: Geotext. Geomembranes
– volume: 11
  start-page: 598
  year: 2019
  end-page: 611
  ident: bib19
  article-title: Performance of marine clay stabilised with vacuum pressure: based on Queensland experience
  publication-title: J. Rock. Mech. Geotech. Eng.
– volume: 12
  start-page: 27
  issue: 1
  year: 2012
  ident: 10.1016/j.geotexmem.2019.103493_bib14
  article-title: Analytical solutions for a single vertical drain with vacuum and time-dependent surcharge preloading in membrane and membraneless systems
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0000106
– volume: 58
  start-page: 766
  year: 2018
  ident: 10.1016/j.geotexmem.2019.103493_bib27
  article-title: Experimental study on a dredged fill ground improved by a two-stage vacuum preloading method
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2018.02.028
– volume: 55
  start-page: 129
  issue: 1
  year: 2016
  ident: 10.1016/j.geotexmem.2019.103493_bib4
  article-title: Laboratory measurements of factors affecting discharge capacity of prefabricated vertical drain materials
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2016.01.010
– volume: 47
  start-page: 121
  year: 2019
  ident: 10.1016/j.geotexmem.2019.103493_bib26
  article-title: Effect of surcharge loading rate and mobilized load ratio on the performance of vacuum–surcharge preloading with PVDs
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2018.12.001
– volume: 54
  start-page: 547
  issue: 4
  year: 2017
  ident: 10.1016/j.geotexmem.2019.103493_bib5
  article-title: A new approach of vacuum preloading with booster PVDs to improve deep marine clay strata
  publication-title: Can. Geotech. J.
– volume: 139
  start-page: 143
  issue: 1
  year: 2013
  ident: 10.1016/j.geotexmem.2019.103493_bib2
  article-title: Use of vacuum for the stabilization of dry sand slopes
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0000731
– volume: 62
  start-page: 310
  year: 2014
  ident: 10.1016/j.geotexmem.2019.103493_bib12
  article-title: Consolidation behavior of soft deposits considering the variation of prefabricated vertical drain discharge capacity
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2014.08.006
– year: 2019
  ident: 10.1016/j.geotexmem.2019.103493_bib21
  article-title: Improved air-booster vacuum preloading method for newly dredged fills: laboratory model study
  publication-title: Mar. Georesour. Geotechnol.
  doi: 10.1080/1064119X.2019.1599088
– volume: 34
  start-page: 648
  issue: 7
  year: 2016
  ident: 10.1016/j.geotexmem.2019.103493_bib3
  article-title: Step loading compression of ultra-soft soil under radial drainage conditions
  publication-title: Mar. Georesour. Geotechnol.
  doi: 10.1080/1064119X.2015.1068895
– volume: 483
  start-page: 116
  issue: 9
  year: 2013
  ident: 10.1016/j.geotexmem.2019.103493_bib28
  article-title: Consolidation test and numerical simulation of particles movement to ultra-soft soil bearing vacuum load
  publication-title: J. Eng. Geol.
– volume: 142
  start-page: 0601
  issue: 11
  year: 2016
  ident: 10.1016/j.geotexmem.2019.103493_bib24
  article-title: Improved vacuum preloading method for consolidation of dredged clay-slurry fill
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0001516
– volume: 50
  start-page: 625
  issue: 6
  year: 2000
  ident: 10.1016/j.geotexmem.2019.103493_bib10
  article-title: Soil improvement by the vacuum preloading method for an oil storage station
  publication-title: Geotechnique
  doi: 10.1680/geot.2000.50.6.625
– volume: 11
  start-page: 598
  year: 2019
  ident: 10.1016/j.geotexmem.2019.103493_bib19
  article-title: Performance of marine clay stabilised with vacuum pressure: based on Queensland experience
  publication-title: J. Rock. Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2018.11.002
– volume: 42
  start-page: 437
  year: 2014
  ident: 10.1016/j.geotexmem.2019.103493_bib7
  article-title: Consolidation analysis of clayey deposits under vacuum pressure with horizontal drains
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2014.07.001
– volume: 43
  start-page: 182
  issue: 2
  year: 2015
  ident: 10.1016/j.geotexmem.2019.103493_bib22
  article-title: Nonlinear consolidation of vertical drains with coupled lateral-vertical flow considering well resistance
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2014.12.001
– volume: 143
  issue: 1
  year: 2017
  ident: 10.1016/j.geotexmem.2019.103493_bib18
  article-title: Large-strain vacuum-assisted consolidation with non-darcian radial flow incorporating varying permeability and compressibility
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)GT.1943-5606.0001599
– volume: 56
  start-page: 611
  issue: 1
  year: 2019
  ident: 10.1016/j.geotexmem.2019.103493_bib11
  article-title: Colloid effect on clogging mechanism of hydraulic reclamation mud improved by vacuum preloading
  publication-title: Can. Geotech. J.
  doi: 10.1139/cgj-2017-0635
– volume: 67
  start-page: 1020
  issue: 11
  year: 2017
  ident: 10.1016/j.geotexmem.2019.103493_bib15
  article-title: A large-strain radial consolidation theory for soft clays improved by vertical drains
  publication-title: Géotech
  doi: 10.1680/jgeot.15.T.013
– volume: 5
  start-page: 114
  issue: 2
  year: 2005
  ident: 10.1016/j.geotexmem.2019.103493_bib17
  article-title: Analytical and numerical modeling of soft soil stabilized by prefabricated vertical drains incorporating vacuum preloading
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)1532-3641(2005)5:2(114)
– volume: 22
  start-page: 415
  issue: 5
  year: 2004
  ident: 10.1016/j.geotexmem.2019.103493_bib1
  article-title: Factors affecting field instrumentation assessment of marine clay treated with prefabricated vertical drains
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2003.09.001
– volume: 22
  start-page: 327
  issue: 4
  year: 2015
  ident: 10.1016/j.geotexmem.2019.103493_bib30
  article-title: Field implementation of FeCl3-conditioning and vacuum preloading for sewage sludge disposed in a sludge lagoon: a case study
  publication-title: Geosynth. Int.
  doi: 10.1680/gein.15.00015
– volume: 131
  start-page: 1552
  issue: 12
  year: 2005
  ident: 10.1016/j.geotexmem.2019.103493_bib6
  article-title: Ground deformation induced by vacuum consolidation
  publication-title: J. Geotech. Geoenviron. Eng.
  doi: 10.1061/(ASCE)1090-0241(2005)131:12(1552)
– start-page: 410390
  year: 2014
  ident: 10.1016/j.geotexmem.2019.103493_bib16
  article-title: Consolidation by prefabricated vertical drains with a threshold gradient
  publication-title: Math. Probl. Eng.
– volume: 47
  start-page: 95
  year: 2019
  ident: 10.1016/j.geotexmem.2019.103493_bib20
  article-title: Long-term performance predictions in ground improvements with vacuum assisted prefabricated vertical drains
  publication-title: Geotext. Geomembranes
  doi: 10.1016/j.geotexmem.2018.11.002
– volume: 38
  start-page: 3246
  issue: 1
  year: 2019
  ident: 10.1016/j.geotexmem.2019.103493_bib31
  article-title: Experimental investigations on treatment of dredged slurry by vacuum-assisted prefabricated horizontal drains
  publication-title: Chin. J. Geotech. Eng.
– volume: 24
  start-page: 72
  issue: 1
  year: 2017
  ident: 10.1016/j.geotexmem.2019.103493_bib13
  article-title: Experimental study on the combined application of vacuum preloading – variable-spacing electro-osmosis to soft ground improvement
  publication-title: Geosynth. Int.
  doi: 10.1680/jgein.16.00016
– volume: 21
  start-page: 286
  issue: 5
  year: 2014
  ident: 10.1016/j.geotexmem.2019.103493_bib29
  article-title: Lateral displacement of PVD-improved deposit under embankment loading
  publication-title: Geosynth. Int.
  doi: 10.1680/gein.14.00016
– volume: 34
  start-page: 420
  year: 2016
  ident: 10.1016/j.geotexmem.2019.103493_bib8
  article-title: Evaluation of effective depth of PVD improvement in soft clay deposit: a field case study
  publication-title: Mar. Georesour. Geotechnol.
  doi: 10.1080/1064119X.2015.1016638
– volume: 55
  start-page: 147
  issue: 1
  year: 2018
  ident: 10.1016/j.geotexmem.2019.103493_bib25
  article-title: Influence of the electro-osmosis activation time on vacuum electro-osmosis consolidation of a dredged slurry
  publication-title: Can. Geotech. J.
  doi: 10.1139/cgj-2016-0687
– volume: 38
  start-page: 163
  issue: 1
  year: 2016
  ident: 10.1016/j.geotexmem.2019.103493_bib9
  article-title: Experimental study on radial consolidation of soil around drainage plate
  publication-title: Chin. J. Geotech. Eng.
– volume: 49
  start-page: 729
  year: 2012
  ident: 10.1016/j.geotexmem.2019.103493_bib23
  article-title: Final state of soils under vacuum preloading
  publication-title: Can. Geotech. J.
  doi: 10.1139/t2012-024
SSID ssj0004798
Score 2.4280427
Snippet The deformation characteristics of soil among prefabricated vertical drains (PVDs) subjected to vacuum pressure are investigated using a model test conducted...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 798
SubjectTerms Deformation
Dredging
Geochemistry
Geosynthetics
Lateral displacement
Model testing
Prefabricated vertical drains
Prefabrication
Slurries
Soil investigations
Soil permeability
Soil pile
Soil settlement
Soil suction
Soil testing
Soils
Studies
Vacuum preloading
Vacuum suction
Vacuum technology
Vertical drains
Title Deformation characteristics of soil between prefabricated vertical drains under vacuum preloading
URI https://dx.doi.org/10.1016/j.geotexmem.2019.103493
https://www.proquest.com/docview/2334207778
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYAB8RTlJQ-soYntxDFbVagKCBZAYrNsx0ZFbVP1gZj47fjyKBQJMTAmOkfW3eU-X_LdHUJnIjYh58IFQkc0YI6xQBGRBB4rQg_3QmQWEsW7-6T3xG6e4-cV1KlrYYBWWcX-MqYX0bq606q02Rr3-62HELAF8gFBoSs8tN1mjIOXn3980TwYL-bhgnAA0kscrxebz-z70EJJeiSgAJ0J-htC_YjVBQB1t9BmdXLE7XJz22jFjnbQWl1YPN1BG996C-4idWkXhYnYLLdlxrnD07w_wBVLC4_9LpQuJgbZDBcjmr3tcAbzI6YY6swm-E2Z-XwIooO8IN7voafu1WOnF1TzFALjs7hZEOnECpIorojVwnlgD2mqYxeRjMTapYmJTGo1U7GlItKp0MQlTCn4U5s5EdJ91BjlI3uAMOHKcOMPJ5oT-ByZZlQRj4WOOEUNy5ooqXUoTdVsHGZeDGTNKnuVC-VLUL4sld9E4WLhuOy38feSi9pIcsl1pEeFvxcf12aV1ds7lYRSRrwL8_TwP88-QutwVZJfjlFjNpnbE3-EmenTwkdP0Wr7-rZ3_wl4G_JN
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9B-1D2MG3AND62-YHXqIntfJg3xEBlhb4AUt8s27GnotJUtJ325-NLnG5FQjzwmvgi6-5yv3NyvzuAE5GaOM-Fi4ROWMQd55GiIos8VsQe7oUoLR4Ub0bZ4J7_GqfjLThvuTBYVhlifxPT62gdrvSDNvvzyaR_GyO24HlAMOwKn21DF7tTpR3onl0NB6N_9Mi8HomL6yMU2Cjz-m2rpf37aJGVngjkoHPBXgOpF-G6xqDLT_AxJI_krNnfZ9iys13otdzixS58-K-94B6on3bNTSRmszMzqRxZVJMpCYVaZO53oXQ9NMiWpJ7S7M1HShwhsSBINXsif5RZrR5x6bSqa-_34f7y4u58EIWRCpHxB7lllOjMCpqpXFGrhfPYHrNCpy6hJU21KzKTmMJqrlLLRKILoanLuFL4s7Z0ImZfoDOrZvYrEJorkxufn-ic4hfJomSKejh01ClmeHkAWatDaUK_cRx7MZVtYdmDXCtfovJlo_wDiNeC86blxtsip62R5Ib3SA8Mbwsft2aV4QVeSMoYp96L8-LwPc_-Ab3B3c21vL4aDY9gB-80tTDH0Fk-rew3n9Es9ffgsc-_7fT-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+characteristics+of+soil+between+prefabricated+vertical+drains+under+vacuum+preloading&rft.jtitle=Geotextiles+and+geomembranes&rft.au=Wang%2C+Peng&rft.au=Han%2C+Yanbing&rft.au=Wang%2C+Jun&rft.au=Cai%2C+Yuanqiang&rft.date=2019-12-01&rft.pub=Elsevier+Ltd&rft.issn=0266-1144&rft.eissn=1879-3584&rft.volume=47&rft.issue=6&rft.spage=798&rft.epage=802&rft_id=info:doi/10.1016%2Fj.geotexmem.2019.103493&rft.externalDocID=S0266114419300846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-1144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-1144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-1144&client=summon