Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data
Farmland parcel-based crop classification using satellite data plays an important role in precision agriculture. In this study, a deep-learning-based time-series analysis method employing optical images and synthetic aperture radar (SAR) data is presented for crop classification for cloudy and rainy...
Saved in:
Published in | GIScience and remote sensing Vol. 56; no. 8; pp. 1170 - 1191 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
17.11.2019
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-1603 1943-7226 1943-7226 |
DOI | 10.1080/15481603.2019.1628412 |
Cover
Loading…
Abstract | Farmland parcel-based crop classification using satellite data plays an important role in precision agriculture. In this study, a deep-learning-based time-series analysis method employing optical images and synthetic aperture radar (SAR) data is presented for crop classification for cloudy and rainy regions. Central to this method is the spatial-temporal incorporation of high-resolution optical images and multi-temporal SAR data and deep-learning-based time-series analysis. First, a precise farmland parcel map is delineated from high-resolution optical images. Second, pre-processed SAR intensity images are overlaid onto the parcel map to construct time series of crop growth for each parcel. Third, a deep-learning-based (using the long short-term memory, LSTM, network) classifier is employed to learn time-series features of crops and to classify parcels to produce a final classification map. The method was applied to two datasets of high-resolution ZY-3 images and multi-temporal Sentinel-1A SAR data to classify crop types in Hunan and Guizhou of China. The classification results, with an 5.0% improvement in overall accuracy compared to those of traditional methods, illustrate the effectiveness of the proposed framework for parcel-based crop classification for southern China. A further analysis of the relationship between crop calendars and change patterns of time-series intensity indicates that the LSTM model could learn and extract useful features for time-series crop classification. |
---|---|
AbstractList | Farmland parcel-based crop classification using satellite data plays an important role in precision agriculture. In this study, a deep-learning-based time-series analysis method employing optical images and synthetic aperture radar (SAR) data is presented for crop classification for cloudy and rainy regions. Central to this method is the spatial-temporal incorporation of high-resolution optical images and multi-temporal SAR data and deep-learning-based time-series analysis. First, a precise farmland parcel map is delineated from high-resolution optical images. Second, pre-processed SAR intensity images are overlaid onto the parcel map to construct time series of crop growth for each parcel. Third, a deep-learning-based (using the long short-term memory, LSTM, network) classifier is employed to learn time-series features of crops and to classify parcels to produce a final classification map. The method was applied to two datasets of high-resolution ZY-3 images and multi-temporal Sentinel-1A SAR data to classify crop types in Hunan and Guizhou of China. The classification results, with an 5.0% improvement in overall accuracy compared to those of traditional methods, illustrate the effectiveness of the proposed framework for parcel-based crop classification for southern China. A further analysis of the relationship between crop calendars and change patterns of time-series intensity indicates that the LSTM model could learn and extract useful features for time-series crop classification. |
Author | Wu, Wei Yang, Yingpin Zhou, Ya'nan Luo, Jiancheng Feng, Li Chen, Yuehong |
Author_xml | – sequence: 1 givenname: Ya'nan orcidid: 0000-0002-4880-6439 surname: Zhou fullname: Zhou, Ya'nan email: luojc@radi.ac.cn, zhouyn@hhu.edu.cn organization: School of Earth Science and Engineering, Hohai University – sequence: 2 givenname: Jiancheng surname: Luo fullname: Luo, Jiancheng organization: University of Chinese Academy of Sciences – sequence: 3 givenname: Li surname: Feng fullname: Feng, Li organization: School of Earth Science and Engineering, Hohai University – sequence: 4 givenname: Yingpin orcidid: 0000-0001-9345-0075 surname: Yang fullname: Yang, Yingpin organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Yuehong surname: Chen fullname: Chen, Yuehong organization: School of Earth Science and Engineering, Hohai University – sequence: 6 givenname: Wei orcidid: 0000-0002-1269-9045 surname: Wu fullname: Wu, Wei organization: College of Computer Science and Technology, Zhejiang University of Technology |
BookMark | eNqFkUtr3DAUhU1JoUnan1DwshtP9bRsumkIfQQGAn2sxbV85VGQLUfSUObfVzOTbLpoVhJX53w63HNVXSxhwap6T8mGko58pFJ0tCV8wwjtN7RlnaDsVXVJe8EbxVh7Ue5F0xxFb6qrlB4I4ZJSeVk9bsMyNWkXYm4yxrmZcQ7x0AyQcKxNDGttPKTkrDOQXVjqfXLLVO_ctGsipuD3p2lYcxH42s0wYaphGet577Mr0HkNsbz8vPlRj5DhbfXagk_47um8rn5__fLr9nuzvf92d3uzbYwgfW6o6DkZUKDgfQemhbFDpcg4Dq1RZpB9q4AR0zMlLA5MGjRSoFUShOWkVfy6ujtzxwAPeo0lWTzoAE6fBiFOGmIJ7VEb2ysxMs46iUJy0lEFOAxWcTl0iG1hfTiz1hge95iynl0y6D0sGPZJM05lCdJ3x28_naVldylFtNq4fNpcjuC8pkQfS9PPpeljafqptOKW_7ifg7_k-3z2ucWGOMOfEP2oMxx8iDbCYlzS_P-Iv1eCsZ8 |
CitedBy_id | crossref_primary_10_1016_j_isprsjprs_2021_02_011 crossref_primary_10_1080_01431161_2023_2217985 crossref_primary_10_3390_rs15071723 crossref_primary_10_3390_rs16091505 crossref_primary_10_1016_j_rse_2023_113821 crossref_primary_10_3390_rs13142749 crossref_primary_10_3390_rs15010175 crossref_primary_10_3390_rs13204160 crossref_primary_10_1016_j_isprsjprs_2023_09_009 crossref_primary_10_3390_app11094292 crossref_primary_10_3390_land12101859 crossref_primary_10_1080_15481603_2024_2309843 crossref_primary_10_21605_cukurovaumfd_1230776 crossref_primary_10_3390_rs15133221 crossref_primary_10_1016_j_isprsjprs_2022_03_012 crossref_primary_10_3390_rs17061033 crossref_primary_10_3390_rs15153859 crossref_primary_10_1080_15481603_2020_1853948 crossref_primary_10_1080_01431161_2020_1792576 crossref_primary_10_3390_rs12223733 crossref_primary_10_3390_s21113758 crossref_primary_10_1016_j_patcog_2023_109773 crossref_primary_10_1080_01431161_2022_2032458 crossref_primary_10_3390_rs17010148 crossref_primary_10_1080_15481603_2024_2387393 crossref_primary_10_3390_rs14153721 crossref_primary_10_3390_rs12162655 crossref_primary_10_3390_rs15153792 crossref_primary_10_3390_rs15215203 crossref_primary_10_1016_j_jag_2023_103595 crossref_primary_10_1016_j_jag_2022_102762 crossref_primary_10_1016_j_compag_2024_109042 crossref_primary_10_1016_j_ecoinf_2023_102136 crossref_primary_10_1016_j_isprsjprs_2024_08_018 crossref_primary_10_3390_rs15205009 crossref_primary_10_1016_j_compag_2023_108012 crossref_primary_10_1016_j_compag_2023_107683 crossref_primary_10_1080_20964471_2021_1964879 crossref_primary_10_1080_00103624_2023_2211089 crossref_primary_10_3390_plants12162893 crossref_primary_10_1016_j_compag_2022_106977 crossref_primary_10_1177_09596518231156534 crossref_primary_10_1109_JSTARS_2023_3348874 crossref_primary_10_1016_j_rse_2021_112599 crossref_primary_10_1109_MGRS_2024_3393010 crossref_primary_10_1080_15481603_2022_2163576 crossref_primary_10_1080_15481603_2022_2156123 crossref_primary_10_1109_JSTARS_2025_3527017 crossref_primary_10_3390_informatics9040096 crossref_primary_10_1080_01431161_2021_1954261 crossref_primary_10_1109_JSTARS_2023_3294107 crossref_primary_10_1080_15481603_2020_1841459 crossref_primary_10_1109_ACCESS_2020_3000175 crossref_primary_10_3390_f15050782 crossref_primary_10_1109_JSTARS_2023_3329987 crossref_primary_10_1016_j_jag_2023_103619 crossref_primary_10_1016_j_rse_2023_113886 crossref_primary_10_1016_j_compag_2023_108227 crossref_primary_10_1016_j_jenvman_2024_122251 crossref_primary_10_1080_01431161_2022_2161856 crossref_primary_10_3390_rs12010108 crossref_primary_10_1080_01431161_2021_2000062 crossref_primary_10_1007_s10661_025_13620_7 crossref_primary_10_1109_JSTARS_2024_3501216 crossref_primary_10_1080_15481603_2022_2031549 crossref_primary_10_1515_geo_2020_0272 crossref_primary_10_1080_17538947_2024_2432532 crossref_primary_10_1007_s12524_024_01977_0 crossref_primary_10_1080_10106049_2021_1952314 crossref_primary_10_1109_TGRS_2021_3099522 crossref_primary_10_3390_rs12182935 |
Cites_doi | 10.1080/01431161.2016.1182663 10.1198/10618600152418584 10.3390/rs8010070 10.1016/j.isprsjprs.2008.07.005 10.1016/j.imavis.2018.04.004 10.1109/MGRS.2016.2540798 10.1016/j.jag.2013.12.015 10.1080/01431161.2011.587844 10.1080/15481603.2016.1276255 10.1016/j.rse.2016.11.004 10.1080/01431161.2014.965282 10.1016/j.rse.2017.07.015 10.1016/j.knosys.2017.05.022 10.1109/TGRS.2012.2236560 10.1016/j.isprsjprs.2014.06.014 10.3390/s17050968 10.3390/rs8050362 10.1080/15481603.2018.1482855 10.1109/TNNLS.2016.2582924 10.1080/15481603.2016.1273438 10.1016/S0034-4257(00)00212-1 10.1109/TGRS.2011.2172994 10.1080/15481603.2017.1291783 10.1109/JSTARS.2015.2454297 10.3390/rs8090700 10.1080/01431161.2014.915435 10.1016/j.rse.2017.06.022 10.1016/S0034-4257(01)00295-4 10.1038/nature14539 10.1016/j.isprsjprs.2016.12.002 10.1016/j.rse.2013.03.014 10.1117/1.JRS.11.042609 10.1080/2150704X.2018.1430393 10.1109/JSTARS.2017.2693993 10.3390/rs9121298 10.3390/rs6076163 10.5589/m11-022 10.1080/15481603.2018.1423725 10.3390/rs10030447 |
ContentType | Journal Article |
Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 |
Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 |
DBID | AAYXX CITATION 7S9 L.6 DOA |
DOI | 10.1080/15481603.2019.1628412 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 1943-7226 |
EndPage | 1191 |
ExternalDocumentID | oai_doaj_org_article_cf974d23285e4530817aebbf735b8ee6 10_1080_15481603_2019_1628412 1628412 |
Genre | Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41501453 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2019B17114 funderid: 10.13039/501100012226 – fundername: National Key Research and Development Program grantid: 2017YFB0503600 – fundername: Opening Foundation of Key Lab of Spatial Data Mining & Information Sharing, Ministry of Education grantid: 2019LSDMIS04 – fundername: National Natural Science Foundation of China grantid: 41631179 funderid: 10.13039/501100001809 |
GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 RIG S-T SNACF TDBHL TEI TFL TFT TFW TTHFI UT5 ~02 AAYXX AIYEW CITATION 7S9 L.6 GROUPED_DOAJ |
ID | FETCH-LOGICAL-c409t-14930be4e4398ac6ad8e770ddb6c7cb5967a20c9274feb25cec54ef75a4f30673 |
IEDL.DBID | DOA |
ISSN | 1548-1603 1943-7226 |
IngestDate | Wed Aug 27 01:18:02 EDT 2025 Mon May 05 20:51:25 EDT 2025 Tue Jul 01 02:27:27 EDT 2025 Thu Apr 24 22:58:32 EDT 2025 Wed Dec 25 09:04:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-14930be4e4398ac6ad8e770ddb6c7cb5967a20c9274feb25cec54ef75a4f30673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4880-6439 0000-0001-9345-0075 0000-0002-1269-9045 |
OpenAccessLink | https://doaj.org/article/cf974d23285e4530817aebbf735b8ee6 |
PQID | 2315274987 |
PQPubID | 24069 |
PageCount | 22 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_15481603_2019_1628412 crossref_primary_10_1080_15481603_2019_1628412 crossref_citationtrail_10_1080_15481603_2019_1628412 doaj_primary_oai_doaj_org_article_cf974d23285e4530817aebbf735b8ee6 proquest_miscellaneous_2315274987 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-17 |
PublicationDateYYYYMMDD | 2019-11-17 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-17 day: 17 |
PublicationDecade | 2010 |
PublicationTitle | GIScience and remote sensing |
PublicationYear | 2019 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | Ienco D (e_1_3_3_15_1) 2017 Chollet F. (e_1_3_3_6_1) 2017 Ding J (e_1_3_3_7_1) 2016; 13 Ulaby F. T. (e_1_3_3_39_1) 1986 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 Reddy D. S. (e_1_3_3_31_1) 2018 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_40_1 e_1_3_3_41_1 Kussul N (e_1_3_3_21_1) 2017 e_1_3_3_9_1 Pedregosa F. (e_1_3_3_30_1) 2013; 12 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_48_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_3_1 e_1_3_3_44_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_45_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
References_xml | – volume-title: Deep Learning with Python year: 2017 ident: e_1_3_3_6_1 – ident: e_1_3_3_44_1 doi: 10.1080/01431161.2016.1182663 – ident: e_1_3_3_10_1 doi: 10.1198/10618600152418584 – start-page: 1 issue: 99 year: 2017 ident: e_1_3_3_15_1 article-title: Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks publication-title: IEEE Geoscience & Remote Sensing Letters – volume: 13 start-page: 364 issue: 3 year: 2016 ident: e_1_3_3_7_1 article-title: Convolutional Neural Network with Data Augmentation for SAR Target Recognition publication-title: IEEE Geoscience & Remote Sensing Letters – ident: e_1_3_3_19_1 doi: 10.3390/rs8010070 – ident: e_1_3_3_34_1 doi: 10.1016/j.isprsjprs.2008.07.005 – ident: e_1_3_3_32_1 doi: 10.1016/j.imavis.2018.04.004 – ident: e_1_3_3_46_1 doi: 10.1109/MGRS.2016.2540798 – ident: e_1_3_3_25_1 doi: 10.1016/j.jag.2013.12.015 – ident: e_1_3_3_17_1 doi: 10.1080/01431161.2011.587844 – ident: e_1_3_3_45_1 doi: 10.1080/15481603.2016.1276255 – start-page: 1 issue: 99 year: 2017 ident: e_1_3_3_21_1 article-title: Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data publication-title: IEEE Geoscience & Remote Sensing Letters – ident: e_1_3_3_24_1 – ident: e_1_3_3_12_1 doi: 10.1016/j.rse.2016.11.004 – ident: e_1_3_3_28_1 doi: 10.1080/01431161.2014.965282 – volume-title: Microwave Remote Sensing: Active and Passive. Volume III: From Theory to Applications year: 1986 ident: e_1_3_3_39_1 – ident: e_1_3_3_40_1 doi: 10.1016/j.rse.2017.07.015 – ident: e_1_3_3_38_1 doi: 10.1016/j.knosys.2017.05.022 – ident: e_1_3_3_4_1 doi: 10.1109/TGRS.2012.2236560 – ident: e_1_3_3_18_1 doi: 10.1016/j.isprsjprs.2014.06.014 – ident: e_1_3_3_47_1 doi: 10.3390/s17050968 – ident: e_1_3_3_16_1 doi: 10.3390/rs8050362 – ident: e_1_3_3_14_1 doi: 10.1080/15481603.2018.1482855 – ident: e_1_3_3_13_1 doi: 10.1109/TNNLS.2016.2582924 – ident: e_1_3_3_37_1 doi: 10.1080/15481603.2016.1273438 – ident: e_1_3_3_33_1 doi: 10.1016/S0034-4257(00)00212-1 – ident: e_1_3_3_36_1 doi: 10.1109/TGRS.2011.2172994 – ident: e_1_3_3_20_1 doi: 10.1080/15481603.2017.1291783 – volume: 12 start-page: 2825 issue: 10 year: 2013 ident: e_1_3_3_30_1 article-title: Scikit-learn: Machine Learning in Python publication-title: Journal of Machine Learning Research – ident: e_1_3_3_35_1 doi: 10.1109/JSTARS.2015.2454297 – ident: e_1_3_3_26_1 doi: 10.3390/rs8090700 – ident: e_1_3_3_2_1 doi: 10.1080/01431161.2014.915435 – ident: e_1_3_3_5_1 doi: 10.1016/j.rse.2017.06.022 – ident: e_1_3_3_11_1 doi: 10.1016/S0034-4257(01)00295-4 – ident: e_1_3_3_23_1 doi: 10.1038/nature14539 – ident: e_1_3_3_41_1 doi: 10.1016/j.isprsjprs.2016.12.002 – ident: e_1_3_3_8_1 doi: 10.1016/j.rse.2013.03.014 – ident: e_1_3_3_3_1 doi: 10.1117/1.JRS.11.042609 – ident: e_1_3_3_42_1 doi: 10.1080/2150704X.2018.1430393 – ident: e_1_3_3_48_1 doi: 10.1109/JSTARS.2017.2693993 – start-page: 1 year: 2018 ident: e_1_3_3_31_1 article-title: Prediction of Vegetation Dynamics Using NDVI Time Series Data and LSTM publication-title: Modeling Earth Systems & Environment – ident: e_1_3_3_43_1 doi: 10.3390/rs9121298 – ident: e_1_3_3_9_1 doi: 10.3390/rs6076163 – ident: e_1_3_3_22_1 doi: 10.5589/m11-022 – ident: e_1_3_3_27_1 doi: 10.1080/15481603.2018.1423725 – ident: e_1_3_3_29_1 doi: 10.3390/rs10030447 |
SSID | ssj0035115 |
Score | 2.501511 |
Snippet | Farmland parcel-based crop classification using satellite data plays an important role in precision agriculture. In this study, a deep-learning-based... |
SourceID | doaj proquest crossref informaworld |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1170 |
SubjectTerms | agricultural land China crop classification data collection LSTM network neural networks precision agriculture remote sensing Sentienl-1 SAR synthetic aperture radar time series analysis |
Title | Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data |
URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2019.1628412 https://www.proquest.com/docview/2315274987 https://doaj.org/article/cf974d23285e4530817aebbf735b8ee6 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI9gJy6I8aE92KYgIW7Z2iZpmuPbxDQh2AGYtFuUD3cg7bUbfTvsv5-dttOAw7twq6JGjWLX9s9xfmbsg261r5oGBKQohfKIWQOUSYCubWq1lTp3Lfl6Vp-eq88X-uJRqy-qCRvpgceNO4wtRrwJ_X6jQWmJHsx4CKE1UocGIJNto8-bwdRog-l0TGemVIUYqS7kfHenKQ5pjIaorMselDXa57L6wytl8v6_qEv_MdXZ_5y8YM-nwJEvxwVvsyfQvWQ7y4FS2f3qjn_k-XnMVAyv2M2XvrsUw08MrwWZX7Gimto7QW4rcWrcxSNFzlQqlKXDqQT-khN_sUAMPqkk769ztpv_WqHlGbjvEs9FiGIitbri35ffOBWavmbnJ59-HJ-Kqb-CiIjq1gLBkSwCKMCgpPGx9qkBY4qUQh1NDNrWxldFtAhcWwTgOkLUClqjvWoJacg3bKvrO9hh3CgL0Ru65lopn7y3ZYgWrJFJQ1upBVPz_ro4kY9TD4wrV04cpbNYHInFTWJZsIOHadcj-8amCUckvIeXiTw7D6BKuUml3CaVWjD7WPRunXMn7djoxMkNC3g_64nDH5VOX3wH_e3gMJDWuJO2MW__xyLfsWf0XboWWZpdtrX-fQt7GB-twz57Kouz_fxD3AOVAQnT |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQOcCFb9Tl00iIm5fdjR3HxwVRLbDdA7RSb5btjLeIblKa7KH8emacpCpFqIfeoiSOYmc8fm8yfsPYWxWVmxUFCChDJqRDzuphWgpQuSmjMplKVUv2V_niUH45UkeX9sJQWiVx6NgJRSRfTZObgtFDStx7gtlUHpkys8x4mqOLpULDt5XJNVUxyCarwRvTfzKVNFMlsiVsM-zi-d9j_lqfkoz_FRHTf5x2Won27rMw9KFLQPk53rZ-HH5fkXe8WScfsHs9UOXzzrIesltQPWK784ZC5_XmnL_j6biLjDSP2a9lXa1Fc4xwXpC7FxvK4T0XtEyWnAqF8UBInVKTkjVwSrlfc9JLFsj5-ynA69MUXec_NujpGo7vz1PSo-hFtE749_k3TomtT9jh3qeDjwvR13MQAVlkK5CMZRMPEhAEFS7krixA60lZ-jzo4OnrudkkGCTKEQm_ChCUhKiVk5GYTfaU7VR1BbuMa2kgOE3bamfSlc6ZqQ8GjM5KBXEmR0wOX9GGXuycam6c2GmviToMr6Xhtf3wjtj4otlpp_ZxXYMPZCIXN5NYdzpRn61tP_dtiEjaSoSuhQKpMgRh2oH3UWfKFwD5iJnLBmbbFKuJXWEVm13zAm8Ga7ToGOhvj6ug3jYWgbvCkTSFfnaD579mdxYH-0u7_Lz6-pzdpUu0E3OqX7Cd9mwLLxGStf5VmnN_AN_0KRE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXQkBAvML60wgAjId5c2saO48fyUQ0YFQIm8Wb547pDrE1Z2ofx67nXSSYYQnvYW5XGUeJcX5_jHJ_L2HOVlJtUFQiIoRDSIWf1MI4CVGliUqZQuWrJx3l5cCTff1O9mrDpZJXEoVNrFJFzNQ3udUy9Iu4loWyqjkzCLDMcl5hhqc7w9ZLMw2kXx2jeJ2P6TKayZapEsoRt-k08_7vMX9NTdvG_4GH6T87OE9HsNvP9I7T6kx_D7cYPw68L7o5XesZddquDqXzaxtUddg1Wd9netKGF83p5xl_w_LtdF2nusZ-H9WohmmME84KSvViSgvdM0CQZOZUJ44FwOgmTcixwEtwvOLklC2T83QDg9TqvrfPvS8xzDcfb51nyKDoLrRP-ZfqZk6z1Pjuavf36-kB01RxEQA65EUjFipEHCQiBKhdKFyvQehSjL4MOXplSu8koGKTJCem-ChCUhKSVk4l4TfGA7azqFewxrqWB4DRtqp1IF50zYx8MGF1EBWkiB0z2L9GGzuqcKm6c2HHniNp3r6XutV33DtjwvNm69fq4rMEripDzk8mqOx-oTxe2G_k2JKRsEYFrpUCqAiGYduB90oXyFUA5YObP-LKbvFKT2rIqtrjkBp71wWgxLdC3HreCettYhO0Ke9JU-uEVrv-U3fj0ZmYP380_PGI36R_ahjnW-2xnc7qFx4jHNv5JHnG_ARBnJ7U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-short-term-memory-based+crop+classification+using+high-resolution+optical+images+and+multi-temporal+SAR+data&rft.jtitle=GIScience+and+remote+sensing&rft.au=Zhou%2C+Ya%E2%80%99nan&rft.au=Luo%2C+Jiancheng&rft.au=Feng%2C+Li&rft.au=Yang%2C+Yingpin&rft.date=2019-11-17&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=56&rft.issue=8&rft.spage=1170&rft.epage=1191&rft_id=info:doi/10.1080%2F15481603.2019.1628412&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15481603_2019_1628412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |