Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data

Farmland parcel-based crop classification using satellite data plays an important role in precision agriculture. In this study, a deep-learning-based time-series analysis method employing optical images and synthetic aperture radar (SAR) data is presented for crop classification for cloudy and rainy...

Full description

Saved in:
Bibliographic Details
Published inGIScience and remote sensing Vol. 56; no. 8; pp. 1170 - 1191
Main Authors Zhou, Ya'nan, Luo, Jiancheng, Feng, Li, Yang, Yingpin, Chen, Yuehong, Wu, Wei
Format Journal Article
LanguageEnglish
Published Taylor & Francis 17.11.2019
Taylor & Francis Group
Subjects
Online AccessGet full text
ISSN1548-1603
1943-7226
1943-7226
DOI10.1080/15481603.2019.1628412

Cover

Loading…
Abstract Farmland parcel-based crop classification using satellite data plays an important role in precision agriculture. In this study, a deep-learning-based time-series analysis method employing optical images and synthetic aperture radar (SAR) data is presented for crop classification for cloudy and rainy regions. Central to this method is the spatial-temporal incorporation of high-resolution optical images and multi-temporal SAR data and deep-learning-based time-series analysis. First, a precise farmland parcel map is delineated from high-resolution optical images. Second, pre-processed SAR intensity images are overlaid onto the parcel map to construct time series of crop growth for each parcel. Third, a deep-learning-based (using the long short-term memory, LSTM, network) classifier is employed to learn time-series features of crops and to classify parcels to produce a final classification map. The method was applied to two datasets of high-resolution ZY-3 images and multi-temporal Sentinel-1A SAR data to classify crop types in Hunan and Guizhou of China. The classification results, with an 5.0% improvement in overall accuracy compared to those of traditional methods, illustrate the effectiveness of the proposed framework for parcel-based crop classification for southern China. A further analysis of the relationship between crop calendars and change patterns of time-series intensity indicates that the LSTM model could learn and extract useful features for time-series crop classification.
AbstractList Farmland parcel-based crop classification using satellite data plays an important role in precision agriculture. In this study, a deep-learning-based time-series analysis method employing optical images and synthetic aperture radar (SAR) data is presented for crop classification for cloudy and rainy regions. Central to this method is the spatial-temporal incorporation of high-resolution optical images and multi-temporal SAR data and deep-learning-based time-series analysis. First, a precise farmland parcel map is delineated from high-resolution optical images. Second, pre-processed SAR intensity images are overlaid onto the parcel map to construct time series of crop growth for each parcel. Third, a deep-learning-based (using the long short-term memory, LSTM, network) classifier is employed to learn time-series features of crops and to classify parcels to produce a final classification map. The method was applied to two datasets of high-resolution ZY-3 images and multi-temporal Sentinel-1A SAR data to classify crop types in Hunan and Guizhou of China. The classification results, with an 5.0% improvement in overall accuracy compared to those of traditional methods, illustrate the effectiveness of the proposed framework for parcel-based crop classification for southern China. A further analysis of the relationship between crop calendars and change patterns of time-series intensity indicates that the LSTM model could learn and extract useful features for time-series crop classification.
Author Wu, Wei
Yang, Yingpin
Zhou, Ya'nan
Luo, Jiancheng
Feng, Li
Chen, Yuehong
Author_xml – sequence: 1
  givenname: Ya'nan
  orcidid: 0000-0002-4880-6439
  surname: Zhou
  fullname: Zhou, Ya'nan
  email: luojc@radi.ac.cn, zhouyn@hhu.edu.cn
  organization: School of Earth Science and Engineering, Hohai University
– sequence: 2
  givenname: Jiancheng
  surname: Luo
  fullname: Luo, Jiancheng
  organization: University of Chinese Academy of Sciences
– sequence: 3
  givenname: Li
  surname: Feng
  fullname: Feng, Li
  organization: School of Earth Science and Engineering, Hohai University
– sequence: 4
  givenname: Yingpin
  orcidid: 0000-0001-9345-0075
  surname: Yang
  fullname: Yang, Yingpin
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Yuehong
  surname: Chen
  fullname: Chen, Yuehong
  organization: School of Earth Science and Engineering, Hohai University
– sequence: 6
  givenname: Wei
  orcidid: 0000-0002-1269-9045
  surname: Wu
  fullname: Wu, Wei
  organization: College of Computer Science and Technology, Zhejiang University of Technology
BookMark eNqFkUtr3DAUhU1JoUnan1DwshtP9bRsumkIfQQGAn2sxbV85VGQLUfSUObfVzOTbLpoVhJX53w63HNVXSxhwap6T8mGko58pFJ0tCV8wwjtN7RlnaDsVXVJe8EbxVh7Ue5F0xxFb6qrlB4I4ZJSeVk9bsMyNWkXYm4yxrmZcQ7x0AyQcKxNDGttPKTkrDOQXVjqfXLLVO_ctGsipuD3p2lYcxH42s0wYaphGet577Mr0HkNsbz8vPlRj5DhbfXagk_47um8rn5__fLr9nuzvf92d3uzbYwgfW6o6DkZUKDgfQemhbFDpcg4Dq1RZpB9q4AR0zMlLA5MGjRSoFUShOWkVfy6ujtzxwAPeo0lWTzoAE6fBiFOGmIJ7VEb2ysxMs46iUJy0lEFOAxWcTl0iG1hfTiz1hge95iynl0y6D0sGPZJM05lCdJ3x28_naVldylFtNq4fNpcjuC8pkQfS9PPpeljafqptOKW_7ifg7_k-3z2ucWGOMOfEP2oMxx8iDbCYlzS_P-Iv1eCsZ8
CitedBy_id crossref_primary_10_1016_j_isprsjprs_2021_02_011
crossref_primary_10_1080_01431161_2023_2217985
crossref_primary_10_3390_rs15071723
crossref_primary_10_3390_rs16091505
crossref_primary_10_1016_j_rse_2023_113821
crossref_primary_10_3390_rs13142749
crossref_primary_10_3390_rs15010175
crossref_primary_10_3390_rs13204160
crossref_primary_10_1016_j_isprsjprs_2023_09_009
crossref_primary_10_3390_app11094292
crossref_primary_10_3390_land12101859
crossref_primary_10_1080_15481603_2024_2309843
crossref_primary_10_21605_cukurovaumfd_1230776
crossref_primary_10_3390_rs15133221
crossref_primary_10_1016_j_isprsjprs_2022_03_012
crossref_primary_10_3390_rs17061033
crossref_primary_10_3390_rs15153859
crossref_primary_10_1080_15481603_2020_1853948
crossref_primary_10_1080_01431161_2020_1792576
crossref_primary_10_3390_rs12223733
crossref_primary_10_3390_s21113758
crossref_primary_10_1016_j_patcog_2023_109773
crossref_primary_10_1080_01431161_2022_2032458
crossref_primary_10_3390_rs17010148
crossref_primary_10_1080_15481603_2024_2387393
crossref_primary_10_3390_rs14153721
crossref_primary_10_3390_rs12162655
crossref_primary_10_3390_rs15153792
crossref_primary_10_3390_rs15215203
crossref_primary_10_1016_j_jag_2023_103595
crossref_primary_10_1016_j_jag_2022_102762
crossref_primary_10_1016_j_compag_2024_109042
crossref_primary_10_1016_j_ecoinf_2023_102136
crossref_primary_10_1016_j_isprsjprs_2024_08_018
crossref_primary_10_3390_rs15205009
crossref_primary_10_1016_j_compag_2023_108012
crossref_primary_10_1016_j_compag_2023_107683
crossref_primary_10_1080_20964471_2021_1964879
crossref_primary_10_1080_00103624_2023_2211089
crossref_primary_10_3390_plants12162893
crossref_primary_10_1016_j_compag_2022_106977
crossref_primary_10_1177_09596518231156534
crossref_primary_10_1109_JSTARS_2023_3348874
crossref_primary_10_1016_j_rse_2021_112599
crossref_primary_10_1109_MGRS_2024_3393010
crossref_primary_10_1080_15481603_2022_2163576
crossref_primary_10_1080_15481603_2022_2156123
crossref_primary_10_1109_JSTARS_2025_3527017
crossref_primary_10_3390_informatics9040096
crossref_primary_10_1080_01431161_2021_1954261
crossref_primary_10_1109_JSTARS_2023_3294107
crossref_primary_10_1080_15481603_2020_1841459
crossref_primary_10_1109_ACCESS_2020_3000175
crossref_primary_10_3390_f15050782
crossref_primary_10_1109_JSTARS_2023_3329987
crossref_primary_10_1016_j_jag_2023_103619
crossref_primary_10_1016_j_rse_2023_113886
crossref_primary_10_1016_j_compag_2023_108227
crossref_primary_10_1016_j_jenvman_2024_122251
crossref_primary_10_1080_01431161_2022_2161856
crossref_primary_10_3390_rs12010108
crossref_primary_10_1080_01431161_2021_2000062
crossref_primary_10_1007_s10661_025_13620_7
crossref_primary_10_1109_JSTARS_2024_3501216
crossref_primary_10_1080_15481603_2022_2031549
crossref_primary_10_1515_geo_2020_0272
crossref_primary_10_1080_17538947_2024_2432532
crossref_primary_10_1007_s12524_024_01977_0
crossref_primary_10_1080_10106049_2021_1952314
crossref_primary_10_1109_TGRS_2021_3099522
crossref_primary_10_3390_rs12182935
Cites_doi 10.1080/01431161.2016.1182663
10.1198/10618600152418584
10.3390/rs8010070
10.1016/j.isprsjprs.2008.07.005
10.1016/j.imavis.2018.04.004
10.1109/MGRS.2016.2540798
10.1016/j.jag.2013.12.015
10.1080/01431161.2011.587844
10.1080/15481603.2016.1276255
10.1016/j.rse.2016.11.004
10.1080/01431161.2014.965282
10.1016/j.rse.2017.07.015
10.1016/j.knosys.2017.05.022
10.1109/TGRS.2012.2236560
10.1016/j.isprsjprs.2014.06.014
10.3390/s17050968
10.3390/rs8050362
10.1080/15481603.2018.1482855
10.1109/TNNLS.2016.2582924
10.1080/15481603.2016.1273438
10.1016/S0034-4257(00)00212-1
10.1109/TGRS.2011.2172994
10.1080/15481603.2017.1291783
10.1109/JSTARS.2015.2454297
10.3390/rs8090700
10.1080/01431161.2014.915435
10.1016/j.rse.2017.06.022
10.1016/S0034-4257(01)00295-4
10.1038/nature14539
10.1016/j.isprsjprs.2016.12.002
10.1016/j.rse.2013.03.014
10.1117/1.JRS.11.042609
10.1080/2150704X.2018.1430393
10.1109/JSTARS.2017.2693993
10.3390/rs9121298
10.3390/rs6076163
10.5589/m11-022
10.1080/15481603.2018.1423725
10.3390/rs10030447
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
DBID AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1080/15481603.2019.1628412
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1943-7226
EndPage 1191
ExternalDocumentID oai_doaj_org_article_cf974d23285e4530817aebbf735b8ee6
10_1080_15481603_2019_1628412
1628412
Genre Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41501453
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019B17114
  funderid: 10.13039/501100012226
– fundername: National Key Research and Development Program
  grantid: 2017YFB0503600
– fundername: Opening Foundation of Key Lab of Spatial Data Mining & Information Sharing, Ministry of Education
  grantid: 2019LSDMIS04
– fundername: National Natural Science Foundation of China
  grantid: 41631179
  funderid: 10.13039/501100001809
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
RIG
S-T
SNACF
TDBHL
TEI
TFL
TFT
TFW
TTHFI
UT5
~02
AAYXX
AIYEW
CITATION
7S9
L.6
GROUPED_DOAJ
ID FETCH-LOGICAL-c409t-14930be4e4398ac6ad8e770ddb6c7cb5967a20c9274feb25cec54ef75a4f30673
IEDL.DBID DOA
ISSN 1548-1603
1943-7226
IngestDate Wed Aug 27 01:18:02 EDT 2025
Mon May 05 20:51:25 EDT 2025
Tue Jul 01 02:27:27 EDT 2025
Thu Apr 24 22:58:32 EDT 2025
Wed Dec 25 09:04:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-14930be4e4398ac6ad8e770ddb6c7cb5967a20c9274feb25cec54ef75a4f30673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4880-6439
0000-0001-9345-0075
0000-0002-1269-9045
OpenAccessLink https://doaj.org/article/cf974d23285e4530817aebbf735b8ee6
PQID 2315274987
PQPubID 24069
PageCount 22
ParticipantIDs informaworld_taylorfrancis_310_1080_15481603_2019_1628412
crossref_primary_10_1080_15481603_2019_1628412
crossref_citationtrail_10_1080_15481603_2019_1628412
doaj_primary_oai_doaj_org_article_cf974d23285e4530817aebbf735b8ee6
proquest_miscellaneous_2315274987
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-17
PublicationDateYYYYMMDD 2019-11-17
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-17
  day: 17
PublicationDecade 2010
PublicationTitle GIScience and remote sensing
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References Ienco D (e_1_3_3_15_1) 2017
Chollet F. (e_1_3_3_6_1) 2017
Ding J (e_1_3_3_7_1) 2016; 13
Ulaby F. T. (e_1_3_3_39_1) 1986
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
Reddy D. S. (e_1_3_3_31_1) 2018
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_40_1
e_1_3_3_41_1
Kussul N (e_1_3_3_21_1) 2017
e_1_3_3_9_1
Pedregosa F. (e_1_3_3_30_1) 2013; 12
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_48_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_3_1
e_1_3_3_44_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_45_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – volume-title: Deep Learning with Python
  year: 2017
  ident: e_1_3_3_6_1
– ident: e_1_3_3_44_1
  doi: 10.1080/01431161.2016.1182663
– ident: e_1_3_3_10_1
  doi: 10.1198/10618600152418584
– start-page: 1
  issue: 99
  year: 2017
  ident: e_1_3_3_15_1
  article-title: Land Cover Classification via Multitemporal Spatial Data by Deep Recurrent Neural Networks
  publication-title: IEEE Geoscience & Remote Sensing Letters
– volume: 13
  start-page: 364
  issue: 3
  year: 2016
  ident: e_1_3_3_7_1
  article-title: Convolutional Neural Network with Data Augmentation for SAR Target Recognition
  publication-title: IEEE Geoscience & Remote Sensing Letters
– ident: e_1_3_3_19_1
  doi: 10.3390/rs8010070
– ident: e_1_3_3_34_1
  doi: 10.1016/j.isprsjprs.2008.07.005
– ident: e_1_3_3_32_1
  doi: 10.1016/j.imavis.2018.04.004
– ident: e_1_3_3_46_1
  doi: 10.1109/MGRS.2016.2540798
– ident: e_1_3_3_25_1
  doi: 10.1016/j.jag.2013.12.015
– ident: e_1_3_3_17_1
  doi: 10.1080/01431161.2011.587844
– ident: e_1_3_3_45_1
  doi: 10.1080/15481603.2016.1276255
– start-page: 1
  issue: 99
  year: 2017
  ident: e_1_3_3_21_1
  article-title: Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data
  publication-title: IEEE Geoscience & Remote Sensing Letters
– ident: e_1_3_3_24_1
– ident: e_1_3_3_12_1
  doi: 10.1016/j.rse.2016.11.004
– ident: e_1_3_3_28_1
  doi: 10.1080/01431161.2014.965282
– volume-title: Microwave Remote Sensing: Active and Passive. Volume III: From Theory to Applications
  year: 1986
  ident: e_1_3_3_39_1
– ident: e_1_3_3_40_1
  doi: 10.1016/j.rse.2017.07.015
– ident: e_1_3_3_38_1
  doi: 10.1016/j.knosys.2017.05.022
– ident: e_1_3_3_4_1
  doi: 10.1109/TGRS.2012.2236560
– ident: e_1_3_3_18_1
  doi: 10.1016/j.isprsjprs.2014.06.014
– ident: e_1_3_3_47_1
  doi: 10.3390/s17050968
– ident: e_1_3_3_16_1
  doi: 10.3390/rs8050362
– ident: e_1_3_3_14_1
  doi: 10.1080/15481603.2018.1482855
– ident: e_1_3_3_13_1
  doi: 10.1109/TNNLS.2016.2582924
– ident: e_1_3_3_37_1
  doi: 10.1080/15481603.2016.1273438
– ident: e_1_3_3_33_1
  doi: 10.1016/S0034-4257(00)00212-1
– ident: e_1_3_3_36_1
  doi: 10.1109/TGRS.2011.2172994
– ident: e_1_3_3_20_1
  doi: 10.1080/15481603.2017.1291783
– volume: 12
  start-page: 2825
  issue: 10
  year: 2013
  ident: e_1_3_3_30_1
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_3_35_1
  doi: 10.1109/JSTARS.2015.2454297
– ident: e_1_3_3_26_1
  doi: 10.3390/rs8090700
– ident: e_1_3_3_2_1
  doi: 10.1080/01431161.2014.915435
– ident: e_1_3_3_5_1
  doi: 10.1016/j.rse.2017.06.022
– ident: e_1_3_3_11_1
  doi: 10.1016/S0034-4257(01)00295-4
– ident: e_1_3_3_23_1
  doi: 10.1038/nature14539
– ident: e_1_3_3_41_1
  doi: 10.1016/j.isprsjprs.2016.12.002
– ident: e_1_3_3_8_1
  doi: 10.1016/j.rse.2013.03.014
– ident: e_1_3_3_3_1
  doi: 10.1117/1.JRS.11.042609
– ident: e_1_3_3_42_1
  doi: 10.1080/2150704X.2018.1430393
– ident: e_1_3_3_48_1
  doi: 10.1109/JSTARS.2017.2693993
– start-page: 1
  year: 2018
  ident: e_1_3_3_31_1
  article-title: Prediction of Vegetation Dynamics Using NDVI Time Series Data and LSTM
  publication-title: Modeling Earth Systems & Environment
– ident: e_1_3_3_43_1
  doi: 10.3390/rs9121298
– ident: e_1_3_3_9_1
  doi: 10.3390/rs6076163
– ident: e_1_3_3_22_1
  doi: 10.5589/m11-022
– ident: e_1_3_3_27_1
  doi: 10.1080/15481603.2018.1423725
– ident: e_1_3_3_29_1
  doi: 10.3390/rs10030447
SSID ssj0035115
Score 2.501511
Snippet Farmland parcel-based crop classification using satellite data plays an important role in precision agriculture. In this study, a deep-learning-based...
SourceID doaj
proquest
crossref
informaworld
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1170
SubjectTerms agricultural land
China
crop classification
data collection
LSTM network
neural networks
precision agriculture
remote sensing
Sentienl-1 SAR
synthetic aperture radar
time series analysis
Title Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2019.1628412
https://www.proquest.com/docview/2315274987
https://doaj.org/article/cf974d23285e4530817aebbf735b8ee6
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI9gJy6I8aE92KYgIW7Z2iZpmuPbxDQh2AGYtFuUD3cg7bUbfTvsv5-dttOAw7twq6JGjWLX9s9xfmbsg261r5oGBKQohfKIWQOUSYCubWq1lTp3Lfl6Vp-eq88X-uJRqy-qCRvpgceNO4wtRrwJ_X6jQWmJHsx4CKE1UocGIJNto8-bwdRog-l0TGemVIUYqS7kfHenKQ5pjIaorMselDXa57L6wytl8v6_qEv_MdXZ_5y8YM-nwJEvxwVvsyfQvWQ7y4FS2f3qjn_k-XnMVAyv2M2XvrsUw08MrwWZX7Gimto7QW4rcWrcxSNFzlQqlKXDqQT-khN_sUAMPqkk769ztpv_WqHlGbjvEs9FiGIitbri35ffOBWavmbnJ59-HJ-Kqb-CiIjq1gLBkSwCKMCgpPGx9qkBY4qUQh1NDNrWxldFtAhcWwTgOkLUClqjvWoJacg3bKvrO9hh3CgL0Ru65lopn7y3ZYgWrJFJQ1upBVPz_ro4kY9TD4wrV04cpbNYHInFTWJZsIOHadcj-8amCUckvIeXiTw7D6BKuUml3CaVWjD7WPRunXMn7djoxMkNC3g_64nDH5VOX3wH_e3gMJDWuJO2MW__xyLfsWf0XboWWZpdtrX-fQt7GB-twz57Kouz_fxD3AOVAQnT
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQOcCFb9Tl00iIm5fdjR3HxwVRLbDdA7RSb5btjLeIblKa7KH8emacpCpFqIfeoiSOYmc8fm8yfsPYWxWVmxUFCChDJqRDzuphWgpQuSmjMplKVUv2V_niUH45UkeX9sJQWiVx6NgJRSRfTZObgtFDStx7gtlUHpkys8x4mqOLpULDt5XJNVUxyCarwRvTfzKVNFMlsiVsM-zi-d9j_lqfkoz_FRHTf5x2Won27rMw9KFLQPk53rZ-HH5fkXe8WScfsHs9UOXzzrIesltQPWK784ZC5_XmnL_j6biLjDSP2a9lXa1Fc4xwXpC7FxvK4T0XtEyWnAqF8UBInVKTkjVwSrlfc9JLFsj5-ynA69MUXec_NujpGo7vz1PSo-hFtE749_k3TomtT9jh3qeDjwvR13MQAVlkK5CMZRMPEhAEFS7krixA60lZ-jzo4OnrudkkGCTKEQm_ChCUhKiVk5GYTfaU7VR1BbuMa2kgOE3bamfSlc6ZqQ8GjM5KBXEmR0wOX9GGXuycam6c2GmviToMr6Xhtf3wjtj4otlpp_ZxXYMPZCIXN5NYdzpRn61tP_dtiEjaSoSuhQKpMgRh2oH3UWfKFwD5iJnLBmbbFKuJXWEVm13zAm8Ga7ToGOhvj6ug3jYWgbvCkTSFfnaD579mdxYH-0u7_Lz6-pzdpUu0E3OqX7Cd9mwLLxGStf5VmnN_AN_0KRE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLXQkBAvML60wgAjId5c2saO48fyUQ0YFQIm8Wb547pDrE1Z2ofx67nXSSYYQnvYW5XGUeJcX5_jHJ_L2HOVlJtUFQiIoRDSIWf1MI4CVGliUqZQuWrJx3l5cCTff1O9mrDpZJXEoVNrFJFzNQ3udUy9Iu4loWyqjkzCLDMcl5hhqc7w9ZLMw2kXx2jeJ2P6TKayZapEsoRt-k08_7vMX9NTdvG_4GH6T87OE9HsNvP9I7T6kx_D7cYPw68L7o5XesZddquDqXzaxtUddg1Wd9netKGF83p5xl_w_LtdF2nusZ-H9WohmmME84KSvViSgvdM0CQZOZUJ44FwOgmTcixwEtwvOLklC2T83QDg9TqvrfPvS8xzDcfb51nyKDoLrRP-ZfqZk6z1Pjuavf36-kB01RxEQA65EUjFipEHCQiBKhdKFyvQehSjL4MOXplSu8koGKTJCem-ChCUhKSVk4l4TfGA7azqFewxrqWB4DRtqp1IF50zYx8MGF1EBWkiB0z2L9GGzuqcKm6c2HHniNp3r6XutV33DtjwvNm69fq4rMEripDzk8mqOx-oTxe2G_k2JKRsEYFrpUCqAiGYduB90oXyFUA5YObP-LKbvFKT2rIqtrjkBp71wWgxLdC3HreCettYhO0Ke9JU-uEVrv-U3fj0ZmYP380_PGI36R_ahjnW-2xnc7qFx4jHNv5JHnG_ARBnJ7U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-short-term-memory-based+crop+classification+using+high-resolution+optical+images+and+multi-temporal+SAR+data&rft.jtitle=GIScience+and+remote+sensing&rft.au=Zhou%2C+Ya%E2%80%99nan&rft.au=Luo%2C+Jiancheng&rft.au=Feng%2C+Li&rft.au=Yang%2C+Yingpin&rft.date=2019-11-17&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=56&rft.issue=8&rft.spage=1170&rft.epage=1191&rft_id=info:doi/10.1080%2F15481603.2019.1628412&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15481603_2019_1628412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon