UAV-Mounted RIS-Aided Mobile Edge Computing System: A DDQN-Based Optimization Approach
Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are increasingly employed in mobile edge computing (MEC) systems to flexibly modify the signal transmission environment. This is achieved through the active manipulation of the wireless channel facilitated by the mobile d...
Saved in:
Published in | Drones (Basel) Vol. 8; no. 5; p. 184 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2504-446X 2504-446X |
DOI | 10.3390/drones8050184 |
Cover
Abstract | Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are increasingly employed in mobile edge computing (MEC) systems to flexibly modify the signal transmission environment. This is achieved through the active manipulation of the wireless channel facilitated by the mobile deployment of UAVs and the intelligent reflection of signals by RISs. However, these technologies are subject to inherent limitations such as the restricted range of UAVs and limited RIS coverage, which hinder their broader application. The integration of UAVs and RISs into UAV–RIS schemes presents a promising approach to surmounting these limitations by leveraging the strengths of both technologies. Motivated by the above observations, we contemplate a novel UAV–RIS-aided MEC system, wherein UAV–RIS plays a pivotal role in facilitating communication between terrestrial vehicle users and MEC servers. To address this challenging non-convex problem, we propose an energy-constrained approach to maximize the system’s energy efficiency based on a double-deep Q-network (DDQN), which is employed to realize joint control of the UAVs, passive beamforming, and resource allocation for MEC. Numerical results demonstrate that the proposed optimization scheme significantly enhances the system efficiency of the UAV–RIS-aided time division multiple access (TDMA) network. |
---|---|
AbstractList | Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are increasingly employed in mobile edge computing (MEC) systems to flexibly modify the signal transmission environment. This is achieved through the active manipulation of the wireless channel facilitated by the mobile deployment of UAVs and the intelligent reflection of signals by RISs. However, these technologies are subject to inherent limitations such as the restricted range of UAVs and limited RIS coverage, which hinder their broader application. The integration of UAVs and RISs into UAV–RIS schemes presents a promising approach to surmounting these limitations by leveraging the strengths of both technologies. Motivated by the above observations, we contemplate a novel UAV–RIS-aided MEC system, wherein UAV–RIS plays a pivotal role in facilitating communication between terrestrial vehicle users and MEC servers. To address this challenging non-convex problem, we propose an energy-constrained approach to maximize the system’s energy efficiency based on a double-deep Q-network (DDQN), which is employed to realize joint control of the UAVs, passive beamforming, and resource allocation for MEC. Numerical results demonstrate that the proposed optimization scheme significantly enhances the system efficiency of the UAV–RIS-aided time division multiple access (TDMA) network. |
Audience | Academic |
Author | Wu, Min Zhu, Shibing Liu, Rui Li, Changqing Zhu, Jiao Liu, Xiangyu Chen, Yudi |
Author_xml | – sequence: 1 givenname: Min orcidid: 0000-0001-9379-7714 surname: Wu fullname: Wu, Min – sequence: 2 givenname: Shibing surname: Zhu fullname: Zhu, Shibing – sequence: 3 givenname: Changqing orcidid: 0000-0001-5260-0794 surname: Li fullname: Li, Changqing – sequence: 4 givenname: Jiao surname: Zhu fullname: Zhu, Jiao – sequence: 5 givenname: Yudi orcidid: 0000-0001-8237-7861 surname: Chen fullname: Chen, Yudi – sequence: 6 givenname: Xiangyu surname: Liu fullname: Liu, Xiangyu – sequence: 7 givenname: Rui orcidid: 0000-0003-3147-878X surname: Liu fullname: Liu, Rui |
BookMark | eNp1UU1v1DAQtVCRKKVH7pE4pzj22Im5hW2BlVoqKK24WY4_Fq82cep4D-XXM3QRAiRkyR6P3nvz8Z6ToylNnpCXDT3jXNHXLuN_6aigTQdPyDETFGoA-fXoj_gZOV2WLaWUMRBSNcfk7ra_q6_SfireVZ_XN3UfHUZXaYg7X124ja9WaZz3JU6b6uZhKX58U_XV-fmnj_VbsyD0ei5xjN9NiWmq-nnOydhvL8jTYHaLP_31npDbdxdfVh_qy-v361V_WVugqtRNI5RrvAHDhAiCdx0PjrWWOsChvG1pSyUIFRwdWBi4CkZiPkBnO8kQfULWB12XzFbPOY4mP-hkon5MpLzRJpdod1476LhUHZMDOBhEUM5yEcALD0Nog0WtVwctHOF-75eit2mfJ2xfcyoUNFIyQNTZAbUxKBqnkEo2Fo_zY7ToQcDF6b5VAijDGwn1gWBzWpbsw-82G6p_Wqf_sg7x_B-8jeVxu1go7v7D-gGF5p2L |
CitedBy_id | crossref_primary_10_3390_drones8070301 crossref_primary_10_3390_electronics13132479 crossref_primary_10_3390_drones8100574 crossref_primary_10_1109_JIOT_2025_3527041 |
Cites_doi | 10.1109/TWC.2019.2928539 10.1109/TCOMM.2024.3370618 10.1109/TWC.2019.2902559 10.1109/TWC.2022.3212830 10.1109/TWC.2020.3024860 10.3390/drones7040266 10.1109/TCOMM.2020.3009153 10.1109/TVT.2020.2968343 10.1109/JSAC.2020.3000835 10.3390/drones7120688 10.1109/WCNC51071.2022.9771971 10.1109/TCCN.2021.3066619 10.1109/JIOT.2021.3052498 10.1109/JIOT.2019.2958975 10.1109/TWC.2019.2892461 10.1109/MWC.121.2100058 10.1109/TWC.2021.3086521 10.1109/ACCESS.2024.3375345 10.1109/LWC.2023.3236411 10.1109/JSAC.2020.3007035 10.1109/TVT.2019.2935450 10.1109/LWC.2022.3206587 10.1109/TNSE.2022.3154760 10.1109/TII.2021.3106402 10.1109/TITS.2023.3267607 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/drones8050184 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-446X |
ExternalDocumentID | oai_doaj_org_article_d48369826b4d4b5f9dc35f4e5e4bf7fc A795402795 10_3390_drones8050184 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC MODMG M~E OK1 PHGZM PHGZT PIMPY PMFND 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c409t-1159d1ea4a255f53883fd27c0d4339ec70706459fd0b2fb39fa639ef48c862883 |
IEDL.DBID | 8FG |
ISSN | 2504-446X |
IngestDate | Wed Aug 27 01:29:59 EDT 2025 Fri Jul 25 07:53:12 EDT 2025 Tue Jun 10 21:04:14 EDT 2025 Tue Jul 01 01:49:54 EDT 2025 Thu Apr 24 22:57:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c409t-1159d1ea4a255f53883fd27c0d4339ec70706459fd0b2fb39fa639ef48c862883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3147-878X 0000-0001-8237-7861 0000-0001-9379-7714 0000-0001-5260-0794 |
OpenAccessLink | https://www.proquest.com/docview/3059416624?pq-origsite=%requestingapplication% |
PQID | 3059416624 |
PQPubID | 5046906 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d48369826b4d4b5f9dc35f4e5e4bf7fc proquest_journals_3059416624 gale_infotracacademiconefile_A795402795 crossref_primary_10_3390_drones8050184 crossref_citationtrail_10_3390_drones8050184 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Drones (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yang (ref_8) 2021; 28 Yang (ref_23) 2021; 20 ref_13 ref_10 Xia (ref_2) 2023; 10 Liu (ref_18) 2020; 7 Guo (ref_6) 2023; 24 Zhuo (ref_12) 2024; 12 Xu (ref_5) 2021; 20 Hu (ref_17) 2019; 18 Zhai (ref_11) 2022; 11 ref_16 Zhang (ref_24) 2020; 68 Li (ref_4) 2020; 69 Ale (ref_15) 2021; 7 Zhang (ref_22) 2019; 18 Yang (ref_21) 2022; 18 Zhang (ref_9) 2023; 12 Liu (ref_14) 2019; 68 Bai (ref_7) 2020; 38 ref_3 Zeng (ref_19) 2019; 18 Hwang (ref_1) 2021; 8 Zhang (ref_20) 2023; 22 Huang (ref_25) 2020; 38 |
References_xml | – volume: 18 start-page: 4738 year: 2019 ident: ref_17 article-title: UAV-assisted relaying and edge computing: Scheduling and trajectory optimization publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2928539 – ident: ref_13 doi: 10.1109/TCOMM.2024.3370618 – volume: 18 start-page: 2329 year: 2019 ident: ref_19 article-title: Energy minimization for wireless communication with rotary-wing UAV publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2902559 – volume: 22 start-page: 2583 year: 2023 ident: ref_20 article-title: Capacity Maximization RIS-UAV Networks: A DDQN-Based Trajectory Phase Shift Optimization Approach publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2022.3212830 – volume: 20 start-page: 375 year: 2021 ident: ref_23 article-title: Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2020.3024860 – ident: ref_16 doi: 10.3390/drones7040266 – volume: 68 start-page: 6483 year: 2020 ident: ref_24 article-title: Energy-efficient resource allocation and trajectory design for UAV relaying systems publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2020.3009153 – volume: 69 start-page: 3424 year: 2020 ident: ref_4 article-title: Energy efficient UAV-assisted mobile edge computing: Resource allocation and trajectory optimization publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2020.2968343 – volume: 38 start-page: 1839 year: 2020 ident: ref_25 article-title: Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.3000835 – ident: ref_10 doi: 10.3390/drones7120688 – ident: ref_3 doi: 10.1109/WCNC51071.2022.9771971 – volume: 7 start-page: 881 year: 2021 ident: ref_15 article-title: Delay-aware and energy-efficient computation offloading in mobile-edge computing using deep reinforcement learning publication-title: IEEE Trans. Cognit. Commun. Netw. doi: 10.1109/TCCN.2021.3066619 – volume: 8 start-page: 11526 year: 2021 ident: ref_1 article-title: IoT service slicing and task offloading for edge computing publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3052498 – volume: 7 start-page: 2777 year: 2020 ident: ref_18 article-title: UAV-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2958975 – volume: 18 start-page: 1376 year: 2019 ident: ref_22 article-title: Securing UAV communications via joint trajectory and power control publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2019.2892461 – volume: 28 start-page: 66 year: 2021 ident: ref_8 article-title: AI-driven UAV-NOMA-MEC in next generation wireless networks publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.121.2100058 – volume: 20 start-page: 7712 year: 2021 ident: ref_5 article-title: UAV-assisted MEC networks with aerial and ground cooperation publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2021.3086521 – volume: 12 start-page: 39678 year: 2024 ident: ref_12 article-title: Method of minimizing energy consumption for RIS assisted UAV mobile edge computing system publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3375345 – volume: 12 start-page: 610 year: 2023 ident: ref_9 article-title: Resource allocation for energy efficient STAR-RIS aided MEC systems publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2023.3236411 – volume: 38 start-page: 2666 year: 2020 ident: ref_7 article-title: Latency minimization for intelligent reflecting surface aided mobile edge computing publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.3007035 – volume: 68 start-page: 11158 year: 2019 ident: ref_14 article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2019.2935450 – volume: 11 start-page: 2507 year: 2022 ident: ref_11 article-title: Energy-efficient UAV-mounted RIS assisted mobile edge computing publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2022.3206587 – volume: 10 start-page: 1256 year: 2023 ident: ref_2 article-title: AI-driven and MEC-empowered confident information coverage hole recovery in 6G-enabled IoT publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2022.3154760 – volume: 18 start-page: 3150 year: 2022 ident: ref_21 article-title: Policy gradient adaptive critic design with dynamic prioritized experience replay for wastewater treatment process control publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2021.3106402 – volume: 24 start-page: 10197 year: 2023 ident: ref_6 article-title: Deep reinforcement learning and NOMA-based multiobjective RIS-assisted IS-UAV-TNs: Trajectory optimization and beamforming design publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3267607 |
SSID | ssj0002245691 |
Score | 2.28854 |
Snippet | Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are increasingly employed in mobile edge computing (MEC) systems to flexibly... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 184 |
SubjectTerms | Algorithms Beamforming Capital costs Data processing double-deep Q-network Drone aircraft Edge computing Energy consumption Energy efficiency Internet of Things Investigations Methods Mobile communication systems Mobile computing mobile edge computing Optimization Reconfigurable intelligent surfaces Resource allocation Signal processing Signal reflection Signal transmission Time Division Multiple Access Unmanned aerial vehicles Wireless communication systems |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdRVKwvchC9GLqbZHcTb1vbUoVWfFS8hTxF8YXW_-9kd1vsoXjxsixLlk1mdma-geT7EDoSBjAHo5owJzXhJtdEZ5wRXaQ2hIJyUWksjcb5cMIvH7KHX1JfcU9YTQ9cG67juGC5BBBsuOMmC9JZlgXuM89NKIKN2TeRya9m6rkidQFgINOaVJNBX99xn5H7XiSRwI4vFKGKq39ZRq7KzGAdrTX4EJf1vDbQin_bRPeT8p6MoqqDd_jm4paUTw7uRu8GYhr33aPHtToD1CFcc5Cf4RL3etdj0oUy5fAVZIbX5sglLhse8S00GfTvzoekEUQgFtqwKQH0Jl3qNdfQCARIVYIFRwubOA5r9LaA-I3kMMElhgbDZNAAQHzgwopKVngbtd7ADDsI--AZyxNNNbxhNRNaZjpLbaWWKShro9OZhZRt2MKjaMWLgq4hGlQtGLSNjufDP2qajGUDu9Hc80GR3bp6AD5Xjc_VXz5vo5PoLBVjECZldXOUAL4T2axUWUgAohSubbQ_86dqgvNLschRk-Y55bv_MZs9tEoB6dS7IPdRa_r57Q8AqUzNYfVT_gDv8OWI priority: 102 providerName: Directory of Open Access Journals |
Title | UAV-Mounted RIS-Aided Mobile Edge Computing System: A DDQN-Based Optimization Approach |
URI | https://www.proquest.com/docview/3059416624 https://doaj.org/article/d48369826b4d4b5f9dc35f4e5e4bf7fc |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFLc2uOwyMbGJbqzyAW0XLBrbSZxdUArtGFI7PlbEzfInmrRRKOX_33uOW8SBXaIoeVGSZ78vf_x-hOwpCzmH4IYJ3xgmbWWYKaVgpi5cjDWXKnEsTabVyUyeXpfXecDtIS-rXPnE5Kj93OEY-YFAYJGiqrg8vLtnyBqFs6uZQuM12Swg0mA_V-Pv6zEWjrN6TdFBawqo7g_8AhHw1QBh7OSzUJQQ-1_yyynYjLfI25wl0rZr1nfkVbjdJlez9opNkNsheHrx45K1vz2cTeYWLJuO_E2gHUcDRCPaIZF_oy09Pj6fsiEEK09_gn_4mzde0jajib8ns_Ho19EJy7QIzEExtmSQwzW-CEYaKAciOCwloue1G3gJ_xhcDVaMEDHRDyyPVjTRQBoSolROJXLhD2TjFtSwQ2iIQYhqYLiBJ5wRyjSlKQuXODMVFz2yv9KQdhkzHKkr_mioHVCh-plCe-TLWvyuA8t4SXCI6l4LIcZ1ujBf3OhsMtpLJaoGyh8rvbRlbLwTZZShDNLGOroe-YqNpdES4aOcyRsK4D2IaaXbuoF0lMOxR3ZX7amziT7opw718f-3P5E3HDKZbpXjLtlYLh7DZ8hElrafulufbA5H07OLfqrn_wH6at6H |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4q6QEuCASIQIE5sFwY1Z4Z22MkhBySKqFNgNJUvU1nrZDapqRBiD_Fb-SNl6Aeyq0Xy7LHi968dZbvA3gpDeYcnGnKXampMLmmOhOc6iK1IRRMyJpjaTrLx3Px6Sg72oA_3V6YuKyy84m1o3YLG8fIt3kEFknznIkPFz9oZI2Ks6sdhUajFrv-9y8s2S7fT4bYv68Y2xkdfBzTllWAWqxlVhRToNKlXguN2XRAe5c8OFbYxAnOS28LNIKIsBJcYlgwvAwao7gPQlpZc_Pie2_Bpog7WnuwORjNvuyvR3VYnEcs0wbME1-XbLtlxNyXSQTOE1eCX80RcF0kqMPbzj242-alpGoU6T5s-PMHcDivDuk0skl4R_Yn32j13eHZdGHQl5CRO_GkYYXA-Eca7PN3pCLD4dcZHWB4dOQzeqSzdqsnqVr88ocwvxGRPYLeOYrhMRAfPOd5opnGJ6zmUpeZzlJbs3RKxvvwtpOQsi1KeSTLOFVYrUSBqisC7cPrdfOLBp7juoaDKO51o4iqXV9YLE9Ua6TKCcnzEgsuI5wwWSid5VkQPvPChCLYPryJnaWi7eNPWd1uYcDvRBQtVRUlJsAMj33Y6vpTtU7hUv1T4Sf_v_0Cbo8PpntqbzLbfQp3GOZRzRrLLeitlj_9M8yDVuZ5q3wEjm9a3_8CAugZMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRUJcEAgQAwV8YLlgTWI7iY2EUMp06FBmWKfqzXitKpVOmQ5C_DV-Hc9ZBvVQbr1EUeLY0fPzW7x8H8ATaTHm4MxQ7pWhwpaGmkJwaqrcxVgxIRuOpems3J2LdwfFwQb86c_CpG2VvU1sDLVfuDRHPuQJWCQvSyaGsdsW8XE0fn36gyYGqbTS2tNptCqyF37_wvTt7NVkhH39lLHxztc3u7RjGKAO85oVxXBI-TwYYTCyjjj2JY-eVS7zgnMVXIUDIqGtRJ9ZFi1X0aBHD1FIJxueXqz3ClyteKVS4ifHb9fzOyytKKq8hfXEyrKhXyb0fZklCD1xzg02bAEX-YTG0Y1vwo0uQiV1q1K3YCOc3Ib9eb1Pp4lXInjyefKF1kce76YLi1aF7PjDQFp-CPSEpEVBf0lqMhp9mtFtdJSefEDb9L079EnqDsn8DswvRWB3YfMExXAPSIiB8zIzzOAXznBpVGGK3DV8nZLxAbzoJaRdh1eeaDOONeYtSaD6nEAH8Gxd_LQF6rio4HYS97pQwtduHiyWh7obrtoLyUuFqZcVXtgiKu94EUUogrCxim4Az1Nn6WQF8Kec6Q4zYDsJT0vXlcJQmOF1AFt9f-rOPJzpf8p8__-vH8M11HL9fjLbewDXGQZU7WbLLdhcLX-GhxgQreyjRvMIfLtsVf8LJRAcAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UAV-Mounted+RIS-Aided+Mobile+Edge+Computing+System%3A+A+DDQN-Based+Optimization+Approach&rft.jtitle=Drones+%28Basel%29&rft.au=Wu%2C+Min&rft.au=Zhu%2C+Shibing&rft.au=Li%2C+Changqing&rft.au=Zhu%2C+Jiao&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.eissn=2504-446X&rft.volume=8&rft.issue=5&rft.spage=184&rft_id=info:doi/10.3390%2Fdrones8050184&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon |