UAV-Mounted RIS-Aided Mobile Edge Computing System: A DDQN-Based Optimization Approach

Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are increasingly employed in mobile edge computing (MEC) systems to flexibly modify the signal transmission environment. This is achieved through the active manipulation of the wireless channel facilitated by the mobile d...

Full description

Saved in:
Bibliographic Details
Published inDrones (Basel) Vol. 8; no. 5; p. 184
Main Authors Wu, Min, Zhu, Shibing, Li, Changqing, Zhu, Jiao, Chen, Yudi, Liu, Xiangyu, Liu, Rui
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2024
Subjects
Online AccessGet full text
ISSN2504-446X
2504-446X
DOI10.3390/drones8050184

Cover

Abstract Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are increasingly employed in mobile edge computing (MEC) systems to flexibly modify the signal transmission environment. This is achieved through the active manipulation of the wireless channel facilitated by the mobile deployment of UAVs and the intelligent reflection of signals by RISs. However, these technologies are subject to inherent limitations such as the restricted range of UAVs and limited RIS coverage, which hinder their broader application. The integration of UAVs and RISs into UAV–RIS schemes presents a promising approach to surmounting these limitations by leveraging the strengths of both technologies. Motivated by the above observations, we contemplate a novel UAV–RIS-aided MEC system, wherein UAV–RIS plays a pivotal role in facilitating communication between terrestrial vehicle users and MEC servers. To address this challenging non-convex problem, we propose an energy-constrained approach to maximize the system’s energy efficiency based on a double-deep Q-network (DDQN), which is employed to realize joint control of the UAVs, passive beamforming, and resource allocation for MEC. Numerical results demonstrate that the proposed optimization scheme significantly enhances the system efficiency of the UAV–RIS-aided time division multiple access (TDMA) network.
AbstractList Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are increasingly employed in mobile edge computing (MEC) systems to flexibly modify the signal transmission environment. This is achieved through the active manipulation of the wireless channel facilitated by the mobile deployment of UAVs and the intelligent reflection of signals by RISs. However, these technologies are subject to inherent limitations such as the restricted range of UAVs and limited RIS coverage, which hinder their broader application. The integration of UAVs and RISs into UAV–RIS schemes presents a promising approach to surmounting these limitations by leveraging the strengths of both technologies. Motivated by the above observations, we contemplate a novel UAV–RIS-aided MEC system, wherein UAV–RIS plays a pivotal role in facilitating communication between terrestrial vehicle users and MEC servers. To address this challenging non-convex problem, we propose an energy-constrained approach to maximize the system’s energy efficiency based on a double-deep Q-network (DDQN), which is employed to realize joint control of the UAVs, passive beamforming, and resource allocation for MEC. Numerical results demonstrate that the proposed optimization scheme significantly enhances the system efficiency of the UAV–RIS-aided time division multiple access (TDMA) network.
Audience Academic
Author Wu, Min
Zhu, Shibing
Liu, Rui
Li, Changqing
Zhu, Jiao
Liu, Xiangyu
Chen, Yudi
Author_xml – sequence: 1
  givenname: Min
  orcidid: 0000-0001-9379-7714
  surname: Wu
  fullname: Wu, Min
– sequence: 2
  givenname: Shibing
  surname: Zhu
  fullname: Zhu, Shibing
– sequence: 3
  givenname: Changqing
  orcidid: 0000-0001-5260-0794
  surname: Li
  fullname: Li, Changqing
– sequence: 4
  givenname: Jiao
  surname: Zhu
  fullname: Zhu, Jiao
– sequence: 5
  givenname: Yudi
  orcidid: 0000-0001-8237-7861
  surname: Chen
  fullname: Chen, Yudi
– sequence: 6
  givenname: Xiangyu
  surname: Liu
  fullname: Liu, Xiangyu
– sequence: 7
  givenname: Rui
  orcidid: 0000-0003-3147-878X
  surname: Liu
  fullname: Liu, Rui
BookMark eNp1UU1v1DAQtVCRKKVH7pE4pzj22Im5hW2BlVoqKK24WY4_Fq82cep4D-XXM3QRAiRkyR6P3nvz8Z6ToylNnpCXDT3jXNHXLuN_6aigTQdPyDETFGoA-fXoj_gZOV2WLaWUMRBSNcfk7ra_q6_SfireVZ_XN3UfHUZXaYg7X124ja9WaZz3JU6b6uZhKX58U_XV-fmnj_VbsyD0ei5xjN9NiWmq-nnOydhvL8jTYHaLP_31npDbdxdfVh_qy-v361V_WVugqtRNI5RrvAHDhAiCdx0PjrWWOsChvG1pSyUIFRwdWBi4CkZiPkBnO8kQfULWB12XzFbPOY4mP-hkon5MpLzRJpdod1476LhUHZMDOBhEUM5yEcALD0Nog0WtVwctHOF-75eit2mfJ2xfcyoUNFIyQNTZAbUxKBqnkEo2Fo_zY7ToQcDF6b5VAijDGwn1gWBzWpbsw-82G6p_Wqf_sg7x_B-8jeVxu1go7v7D-gGF5p2L
CitedBy_id crossref_primary_10_3390_drones8070301
crossref_primary_10_3390_electronics13132479
crossref_primary_10_3390_drones8100574
crossref_primary_10_1109_JIOT_2025_3527041
Cites_doi 10.1109/TWC.2019.2928539
10.1109/TCOMM.2024.3370618
10.1109/TWC.2019.2902559
10.1109/TWC.2022.3212830
10.1109/TWC.2020.3024860
10.3390/drones7040266
10.1109/TCOMM.2020.3009153
10.1109/TVT.2020.2968343
10.1109/JSAC.2020.3000835
10.3390/drones7120688
10.1109/WCNC51071.2022.9771971
10.1109/TCCN.2021.3066619
10.1109/JIOT.2021.3052498
10.1109/JIOT.2019.2958975
10.1109/TWC.2019.2892461
10.1109/MWC.121.2100058
10.1109/TWC.2021.3086521
10.1109/ACCESS.2024.3375345
10.1109/LWC.2023.3236411
10.1109/JSAC.2020.3007035
10.1109/TVT.2019.2935450
10.1109/LWC.2022.3206587
10.1109/TNSE.2022.3154760
10.1109/TII.2021.3106402
10.1109/TITS.2023.3267607
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/drones8050184
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-446X
ExternalDocumentID oai_doaj_org_article_d48369826b4d4b5f9dc35f4e5e4bf7fc
A795402795
10_3390_drones8050184
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PMFND
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c409t-1159d1ea4a255f53883fd27c0d4339ec70706459fd0b2fb39fa639ef48c862883
IEDL.DBID 8FG
ISSN 2504-446X
IngestDate Wed Aug 27 01:29:59 EDT 2025
Fri Jul 25 07:53:12 EDT 2025
Tue Jun 10 21:04:14 EDT 2025
Tue Jul 01 01:49:54 EDT 2025
Thu Apr 24 22:57:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c409t-1159d1ea4a255f53883fd27c0d4339ec70706459fd0b2fb39fa639ef48c862883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3147-878X
0000-0001-8237-7861
0000-0001-9379-7714
0000-0001-5260-0794
OpenAccessLink https://www.proquest.com/docview/3059416624?pq-origsite=%requestingapplication%
PQID 3059416624
PQPubID 5046906
ParticipantIDs doaj_primary_oai_doaj_org_article_d48369826b4d4b5f9dc35f4e5e4bf7fc
proquest_journals_3059416624
gale_infotracacademiconefile_A795402795
crossref_primary_10_3390_drones8050184
crossref_citationtrail_10_3390_drones8050184
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Drones (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yang (ref_8) 2021; 28
Yang (ref_23) 2021; 20
ref_13
ref_10
Xia (ref_2) 2023; 10
Liu (ref_18) 2020; 7
Guo (ref_6) 2023; 24
Zhuo (ref_12) 2024; 12
Xu (ref_5) 2021; 20
Hu (ref_17) 2019; 18
Zhai (ref_11) 2022; 11
ref_16
Zhang (ref_24) 2020; 68
Li (ref_4) 2020; 69
Ale (ref_15) 2021; 7
Zhang (ref_22) 2019; 18
Yang (ref_21) 2022; 18
Zhang (ref_9) 2023; 12
Liu (ref_14) 2019; 68
Bai (ref_7) 2020; 38
ref_3
Zeng (ref_19) 2019; 18
Hwang (ref_1) 2021; 8
Zhang (ref_20) 2023; 22
Huang (ref_25) 2020; 38
References_xml – volume: 18
  start-page: 4738
  year: 2019
  ident: ref_17
  article-title: UAV-assisted relaying and edge computing: Scheduling and trajectory optimization
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2019.2928539
– ident: ref_13
  doi: 10.1109/TCOMM.2024.3370618
– volume: 18
  start-page: 2329
  year: 2019
  ident: ref_19
  article-title: Energy minimization for wireless communication with rotary-wing UAV
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2019.2902559
– volume: 22
  start-page: 2583
  year: 2023
  ident: ref_20
  article-title: Capacity Maximization RIS-UAV Networks: A DDQN-Based Trajectory Phase Shift Optimization Approach
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2022.3212830
– volume: 20
  start-page: 375
  year: 2021
  ident: ref_23
  article-title: Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2020.3024860
– ident: ref_16
  doi: 10.3390/drones7040266
– volume: 68
  start-page: 6483
  year: 2020
  ident: ref_24
  article-title: Energy-efficient resource allocation and trajectory design for UAV relaying systems
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2020.3009153
– volume: 69
  start-page: 3424
  year: 2020
  ident: ref_4
  article-title: Energy efficient UAV-assisted mobile edge computing: Resource allocation and trajectory optimization
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.2968343
– volume: 38
  start-page: 1839
  year: 2020
  ident: ref_25
  article-title: Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3000835
– ident: ref_10
  doi: 10.3390/drones7120688
– ident: ref_3
  doi: 10.1109/WCNC51071.2022.9771971
– volume: 7
  start-page: 881
  year: 2021
  ident: ref_15
  article-title: Delay-aware and energy-efficient computation offloading in mobile-edge computing using deep reinforcement learning
  publication-title: IEEE Trans. Cognit. Commun. Netw.
  doi: 10.1109/TCCN.2021.3066619
– volume: 8
  start-page: 11526
  year: 2021
  ident: ref_1
  article-title: IoT service slicing and task offloading for edge computing
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3052498
– volume: 7
  start-page: 2777
  year: 2020
  ident: ref_18
  article-title: UAV-assisted wireless powered cooperative mobile edge computing: Joint offloading, CPU control, and trajectory optimization
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2958975
– volume: 18
  start-page: 1376
  year: 2019
  ident: ref_22
  article-title: Securing UAV communications via joint trajectory and power control
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2019.2892461
– volume: 28
  start-page: 66
  year: 2021
  ident: ref_8
  article-title: AI-driven UAV-NOMA-MEC in next generation wireless networks
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.121.2100058
– volume: 20
  start-page: 7712
  year: 2021
  ident: ref_5
  article-title: UAV-assisted MEC networks with aerial and ground cooperation
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2021.3086521
– volume: 12
  start-page: 39678
  year: 2024
  ident: ref_12
  article-title: Method of minimizing energy consumption for RIS assisted UAV mobile edge computing system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3375345
– volume: 12
  start-page: 610
  year: 2023
  ident: ref_9
  article-title: Resource allocation for energy efficient STAR-RIS aided MEC systems
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2023.3236411
– volume: 38
  start-page: 2666
  year: 2020
  ident: ref_7
  article-title: Latency minimization for intelligent reflecting surface aided mobile edge computing
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3007035
– volume: 68
  start-page: 11158
  year: 2019
  ident: ref_14
  article-title: Deep reinforcement learning for offloading and resource allocation in vehicle edge computing and networks
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2935450
– volume: 11
  start-page: 2507
  year: 2022
  ident: ref_11
  article-title: Energy-efficient UAV-mounted RIS assisted mobile edge computing
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2022.3206587
– volume: 10
  start-page: 1256
  year: 2023
  ident: ref_2
  article-title: AI-driven and MEC-empowered confident information coverage hole recovery in 6G-enabled IoT
  publication-title: IEEE Trans. Netw. Sci. Eng.
  doi: 10.1109/TNSE.2022.3154760
– volume: 18
  start-page: 3150
  year: 2022
  ident: ref_21
  article-title: Policy gradient adaptive critic design with dynamic prioritized experience replay for wastewater treatment process control
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3106402
– volume: 24
  start-page: 10197
  year: 2023
  ident: ref_6
  article-title: Deep reinforcement learning and NOMA-based multiobjective RIS-assisted IS-UAV-TNs: Trajectory optimization and beamforming design
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3267607
SSID ssj0002245691
Score 2.28854
Snippet Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are increasingly employed in mobile edge computing (MEC) systems to flexibly...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 184
SubjectTerms Algorithms
Beamforming
Capital costs
Data processing
double-deep Q-network
Drone aircraft
Edge computing
Energy consumption
Energy efficiency
Internet of Things
Investigations
Methods
Mobile communication systems
Mobile computing
mobile edge computing
Optimization
Reconfigurable intelligent surfaces
Resource allocation
Signal processing
Signal reflection
Signal transmission
Time Division Multiple Access
Unmanned aerial vehicles
Wireless communication systems
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7SkxdRVKwvchC9GLqbZHcTb1vbUoVWfFS8hTxF8YXW_-9kd1vsoXjxsixLlk1mdma-geT7EDoSBjAHo5owJzXhJtdEZ5wRXaQ2hIJyUWksjcb5cMIvH7KHX1JfcU9YTQ9cG67juGC5BBBsuOMmC9JZlgXuM89NKIKN2TeRya9m6rkidQFgINOaVJNBX99xn5H7XiSRwI4vFKGKq39ZRq7KzGAdrTX4EJf1vDbQin_bRPeT8p6MoqqDd_jm4paUTw7uRu8GYhr33aPHtToD1CFcc5Cf4RL3etdj0oUy5fAVZIbX5sglLhse8S00GfTvzoekEUQgFtqwKQH0Jl3qNdfQCARIVYIFRwubOA5r9LaA-I3kMMElhgbDZNAAQHzgwopKVngbtd7ADDsI--AZyxNNNbxhNRNaZjpLbaWWKShro9OZhZRt2MKjaMWLgq4hGlQtGLSNjufDP2qajGUDu9Hc80GR3bp6AD5Xjc_VXz5vo5PoLBVjECZldXOUAL4T2axUWUgAohSubbQ_86dqgvNLschRk-Y55bv_MZs9tEoB6dS7IPdRa_r57Q8AqUzNYfVT_gDv8OWI
  priority: 102
  providerName: Directory of Open Access Journals
Title UAV-Mounted RIS-Aided Mobile Edge Computing System: A DDQN-Based Optimization Approach
URI https://www.proquest.com/docview/3059416624
https://doaj.org/article/d48369826b4d4b5f9dc35f4e5e4bf7fc
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFLc2uOwyMbGJbqzyAW0XLBrbSZxdUArtGFI7PlbEzfInmrRRKOX_33uOW8SBXaIoeVGSZ78vf_x-hOwpCzmH4IYJ3xgmbWWYKaVgpi5cjDWXKnEsTabVyUyeXpfXecDtIS-rXPnE5Kj93OEY-YFAYJGiqrg8vLtnyBqFs6uZQuM12Swg0mA_V-Pv6zEWjrN6TdFBawqo7g_8AhHw1QBh7OSzUJQQ-1_yyynYjLfI25wl0rZr1nfkVbjdJlez9opNkNsheHrx45K1vz2cTeYWLJuO_E2gHUcDRCPaIZF_oy09Pj6fsiEEK09_gn_4mzde0jajib8ns_Ho19EJy7QIzEExtmSQwzW-CEYaKAciOCwloue1G3gJ_xhcDVaMEDHRDyyPVjTRQBoSolROJXLhD2TjFtSwQ2iIQYhqYLiBJ5wRyjSlKQuXODMVFz2yv9KQdhkzHKkr_mioHVCh-plCe-TLWvyuA8t4SXCI6l4LIcZ1ujBf3OhsMtpLJaoGyh8rvbRlbLwTZZShDNLGOroe-YqNpdES4aOcyRsK4D2IaaXbuoF0lMOxR3ZX7amziT7opw718f-3P5E3HDKZbpXjLtlYLh7DZ8hElrafulufbA5H07OLfqrn_wH6at6H
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4q6QEuCASIQIE5sFwY1Z4Z22MkhBySKqFNgNJUvU1nrZDapqRBiD_Fb-SNl6Aeyq0Xy7LHi968dZbvA3gpDeYcnGnKXampMLmmOhOc6iK1IRRMyJpjaTrLx3Px6Sg72oA_3V6YuKyy84m1o3YLG8fIt3kEFknznIkPFz9oZI2Ks6sdhUajFrv-9y8s2S7fT4bYv68Y2xkdfBzTllWAWqxlVhRToNKlXguN2XRAe5c8OFbYxAnOS28LNIKIsBJcYlgwvAwao7gPQlpZc_Pie2_Bpog7WnuwORjNvuyvR3VYnEcs0wbME1-XbLtlxNyXSQTOE1eCX80RcF0kqMPbzj242-alpGoU6T5s-PMHcDivDuk0skl4R_Yn32j13eHZdGHQl5CRO_GkYYXA-Eca7PN3pCLD4dcZHWB4dOQzeqSzdqsnqVr88ocwvxGRPYLeOYrhMRAfPOd5opnGJ6zmUpeZzlJbs3RKxvvwtpOQsi1KeSTLOFVYrUSBqisC7cPrdfOLBp7juoaDKO51o4iqXV9YLE9Ua6TKCcnzEgsuI5wwWSid5VkQPvPChCLYPryJnaWi7eNPWd1uYcDvRBQtVRUlJsAMj33Y6vpTtU7hUv1T4Sf_v_0Cbo8PpntqbzLbfQp3GOZRzRrLLeitlj_9M8yDVuZ5q3wEjm9a3_8CAugZMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRUJcEAgQAwV8YLlgTWI7iY2EUMp06FBmWKfqzXitKpVOmQ5C_DV-Hc9ZBvVQbr1EUeLY0fPzW7x8H8ATaTHm4MxQ7pWhwpaGmkJwaqrcxVgxIRuOpems3J2LdwfFwQb86c_CpG2VvU1sDLVfuDRHPuQJWCQvSyaGsdsW8XE0fn36gyYGqbTS2tNptCqyF37_wvTt7NVkhH39lLHxztc3u7RjGKAO85oVxXBI-TwYYTCyjjj2JY-eVS7zgnMVXIUDIqGtRJ9ZFi1X0aBHD1FIJxueXqz3ClyteKVS4ifHb9fzOyytKKq8hfXEyrKhXyb0fZklCD1xzg02bAEX-YTG0Y1vwo0uQiV1q1K3YCOc3Ib9eb1Pp4lXInjyefKF1kce76YLi1aF7PjDQFp-CPSEpEVBf0lqMhp9mtFtdJSefEDb9L079EnqDsn8DswvRWB3YfMExXAPSIiB8zIzzOAXznBpVGGK3DV8nZLxAbzoJaRdh1eeaDOONeYtSaD6nEAH8Gxd_LQF6rio4HYS97pQwtduHiyWh7obrtoLyUuFqZcVXtgiKu94EUUogrCxim4Az1Nn6WQF8Kec6Q4zYDsJT0vXlcJQmOF1AFt9f-rOPJzpf8p8__-vH8M11HL9fjLbewDXGQZU7WbLLdhcLX-GhxgQreyjRvMIfLtsVf8LJRAcAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UAV-Mounted+RIS-Aided+Mobile+Edge+Computing+System%3A+A+DDQN-Based+Optimization+Approach&rft.jtitle=Drones+%28Basel%29&rft.au=Wu%2C+Min&rft.au=Zhu%2C+Shibing&rft.au=Li%2C+Changqing&rft.au=Zhu%2C+Jiao&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.eissn=2504-446X&rft.volume=8&rft.issue=5&rft.spage=184&rft_id=info:doi/10.3390%2Fdrones8050184&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon