The Spatiotemporal Evolution of Rainfall Extremes in a Changing Climate: A CONUS‐Wide Assessment Based on Multifractal Scaling Arguments
Given the rapidly changing climate, accurate spatiotemporal information on the evolution of extreme rainfall events is required for flood risk assessment and the design of resilient infrastructure. Consequently, various research efforts have focused on investigating the appropriateness of various pa...
Saved in:
Published in | Earth's future Vol. 10; no. 3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
John Wiley & Sons, Inc
01.03.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Given the rapidly changing climate, accurate spatiotemporal information on the evolution of extreme rainfall events is required for flood risk assessment and the design of resilient infrastructure. Consequently, various research efforts have focused on investigating the appropriateness of various parametric and non‐parametric approaches in modeling the observed changes in the frequency of extreme rainfall over time. Yet, the assumption of stationarity, or the change of model parameters when accounting for nonstationary rainfall, may magnify estimation uncertainty of rain rates associated with low exceedance probabilities. Moreover, the use of climate model results may yield inconclusive outcomes, given the existence of epistemic uncertainties in the frequency of extreme events developing on smaller spatial scales or over complex terrain. Herein, we employ a parametric approach based on multifractal scaling arguments, along with high‐resolution (4‐km) hourly precipitation estimates covering a 40‐year period over CONUS, to derive Intensity‐Duration‐Frequency curves and investigate the spatiotemporal evolution of extreme rainfall over a wide range of characteristic temporal scales and exceedance probability levels. Considering the robustness of the multifractal models even when fitted to short rainfall records, we uniquely apply the framework to sequential 10‐year segments of data, where the rainfall process can be reasonably assumed stationary. The obtained results reveal that existing infrastructure may be severely impacted by the intensification of precipitation extremes due to climate change, with the observed trends being significantly influenced by the topography and rainfall climatology of each region, while depending on the averaging durations and return periods of interest.
Key Points
A robust multifractal scheme is applied to sequential data segments to assess the evolution of Intensity‐Duration‐Frequency curves
The spatiotemporal evolution of extreme rainfall for various averaging durations and return periods reveals infrastructure vulnerabilities
The observed extreme rainfall trends are significantly influenced by local topography and rainfall climatology |
---|---|
AbstractList | Given the rapidly changing climate, accurate spatiotemporal information on the evolution of extreme rainfall events is required for flood risk assessment and the design of resilient infrastructure. Consequently, various research efforts have focused on investigating the appropriateness of various parametric and non‐parametric approaches in modeling the observed changes in the frequency of extreme rainfall over time. Yet, the assumption of stationarity, or the change of model parameters when accounting for nonstationary rainfall, may magnify estimation uncertainty of rain rates associated with low exceedance probabilities. Moreover, the use of climate model results may yield inconclusive outcomes, given the existence of epistemic uncertainties in the frequency of extreme events developing on smaller spatial scales or over complex terrain. Herein, we employ a parametric approach based on multifractal scaling arguments, along with high‐resolution (4‐km) hourly precipitation estimates covering a 40‐year period over CONUS, to derive Intensity‐Duration‐Frequency curves and investigate the spatiotemporal evolution of extreme rainfall over a wide range of characteristic temporal scales and exceedance probability levels. Considering the robustness of the multifractal models even when fitted to short rainfall records, we uniquely apply the framework to sequential 10‐year segments of data, where the rainfall process can be reasonably assumed stationary. The obtained results reveal that existing infrastructure may be severely impacted by the intensification of precipitation extremes due to climate change, with the observed trends being significantly influenced by the topography and rainfall climatology of each region, while depending on the averaging durations and return periods of interest. Abstract Given the rapidly changing climate, accurate spatiotemporal information on the evolution of extreme rainfall events is required for flood risk assessment and the design of resilient infrastructure. Consequently, various research efforts have focused on investigating the appropriateness of various parametric and non‐parametric approaches in modeling the observed changes in the frequency of extreme rainfall over time. Yet, the assumption of stationarity, or the change of model parameters when accounting for nonstationary rainfall, may magnify estimation uncertainty of rain rates associated with low exceedance probabilities. Moreover, the use of climate model results may yield inconclusive outcomes, given the existence of epistemic uncertainties in the frequency of extreme events developing on smaller spatial scales or over complex terrain. Herein, we employ a parametric approach based on multifractal scaling arguments, along with high‐resolution (4‐km) hourly precipitation estimates covering a 40‐year period over CONUS, to derive Intensity‐Duration‐Frequency curves and investigate the spatiotemporal evolution of extreme rainfall over a wide range of characteristic temporal scales and exceedance probability levels. Considering the robustness of the multifractal models even when fitted to short rainfall records, we uniquely apply the framework to sequential 10‐year segments of data, where the rainfall process can be reasonably assumed stationary. The obtained results reveal that existing infrastructure may be severely impacted by the intensification of precipitation extremes due to climate change, with the observed trends being significantly influenced by the topography and rainfall climatology of each region, while depending on the averaging durations and return periods of interest. Given the rapidly changing climate, accurate spatiotemporal information on the evolution of extreme rainfall events is required for flood risk assessment and the design of resilient infrastructure. Consequently, various research efforts have focused on investigating the appropriateness of various parametric and non‐parametric approaches in modeling the observed changes in the frequency of extreme rainfall over time. Yet, the assumption of stationarity, or the change of model parameters when accounting for nonstationary rainfall, may magnify estimation uncertainty of rain rates associated with low exceedance probabilities. Moreover, the use of climate model results may yield inconclusive outcomes, given the existence of epistemic uncertainties in the frequency of extreme events developing on smaller spatial scales or over complex terrain. Herein, we employ a parametric approach based on multifractal scaling arguments, along with high‐resolution (4‐km) hourly precipitation estimates covering a 40‐year period over CONUS, to derive Intensity‐Duration‐Frequency curves and investigate the spatiotemporal evolution of extreme rainfall over a wide range of characteristic temporal scales and exceedance probability levels. Considering the robustness of the multifractal models even when fitted to short rainfall records, we uniquely apply the framework to sequential 10‐year segments of data, where the rainfall process can be reasonably assumed stationary. The obtained results reveal that existing infrastructure may be severely impacted by the intensification of precipitation extremes due to climate change, with the observed trends being significantly influenced by the topography and rainfall climatology of each region, while depending on the averaging durations and return periods of interest. A robust multifractal scheme is applied to sequential data segments to assess the evolution of Intensity‐Duration‐Frequency curves The spatiotemporal evolution of extreme rainfall for various averaging durations and return periods reveals infrastructure vulnerabilities The observed extreme rainfall trends are significantly influenced by local topography and rainfall climatology Given the rapidly changing climate, accurate spatiotemporal information on the evolution of extreme rainfall events is required for flood risk assessment and the design of resilient infrastructure. Consequently, various research efforts have focused on investigating the appropriateness of various parametric and non‐parametric approaches in modeling the observed changes in the frequency of extreme rainfall over time. Yet, the assumption of stationarity, or the change of model parameters when accounting for nonstationary rainfall, may magnify estimation uncertainty of rain rates associated with low exceedance probabilities. Moreover, the use of climate model results may yield inconclusive outcomes, given the existence of epistemic uncertainties in the frequency of extreme events developing on smaller spatial scales or over complex terrain. Herein, we employ a parametric approach based on multifractal scaling arguments, along with high‐resolution (4‐km) hourly precipitation estimates covering a 40‐year period over CONUS, to derive Intensity‐Duration‐Frequency curves and investigate the spatiotemporal evolution of extreme rainfall over a wide range of characteristic temporal scales and exceedance probability levels. Considering the robustness of the multifractal models even when fitted to short rainfall records, we uniquely apply the framework to sequential 10‐year segments of data, where the rainfall process can be reasonably assumed stationary. The obtained results reveal that existing infrastructure may be severely impacted by the intensification of precipitation extremes due to climate change, with the observed trends being significantly influenced by the topography and rainfall climatology of each region, while depending on the averaging durations and return periods of interest. Key Points A robust multifractal scheme is applied to sequential data segments to assess the evolution of Intensity‐Duration‐Frequency curves The spatiotemporal evolution of extreme rainfall for various averaging durations and return periods reveals infrastructure vulnerabilities The observed extreme rainfall trends are significantly influenced by local topography and rainfall climatology |
Author | Langousis, Andreas Nikolopoulos, Efthymios I. Emmanouil, Stergios Anagnostou, Emmanouil N. |
Author_xml | – sequence: 1 givenname: Stergios orcidid: 0000-0002-8772-3409 surname: Emmanouil fullname: Emmanouil, Stergios organization: University of Connecticut – sequence: 2 givenname: Andreas orcidid: 0000-0002-0643-2520 surname: Langousis fullname: Langousis, Andreas organization: University of Patras – sequence: 3 givenname: Efthymios I. orcidid: 0000-0002-5206-1249 surname: Nikolopoulos fullname: Nikolopoulos, Efthymios I. organization: Florida Institute of Technology – sequence: 4 givenname: Emmanouil N. orcidid: 0000-0002-1622-0302 surname: Anagnostou fullname: Anagnostou, Emmanouil N. email: manos@uconn.edu organization: University of Connecticut |
BookMark | eNp9kc1uEzEURkeolShtdzyAJbYE_Du22YVRApUKlUgqlpbH40kdTexgewrdsWbFM_IkeEgrVUjgja2rc8_95PusOvLB26p6juArBLF8jSFGiyWEmBH5pDrBBIsZxZwfPXo_rc5T2sJyJIeE8ZPqx_rGgtVeZxey3e1D1ANY3IZhLAUPQg8-aed7PZTqtxztzibgPNCgudF-4_wGNIPb6WzfgDlorj5er359__nZdRbMU7Ip7azP4K1OtgNF92EcsuujNrlMWRk9TIJ53IwTls6q4zIo2fP7-7S6Xi7WzfvZ5dW7i2Z-OTMUSjlrGe-Qga3AbS0Z7qDuWstIazThHEkhGOrbtuaMQEpJS1Etu85gQXphOiIEOa0uDt4u6K3ax5I_3qmgnfpTCHGjdMzODFYJBongda-LgPa01tgaZDgi1LAa6cn14uDax_BltCmrbRijL_EVrimlCCPGC4UPlIkhpWh7ZVyevtznqN2gEFTTCtXjFZaml381PUT9B44O-Fc32Lv_smqxXGNZS_IbyvmsKw |
CitedBy_id | crossref_primary_10_1016_j_ejrh_2023_101601 crossref_primary_10_1029_2024EF004977 crossref_primary_10_3390_atmos14111611 crossref_primary_10_1016_j_jhydrol_2022_128775 crossref_primary_10_1016_j_jhydrol_2023_130440 crossref_primary_10_1007_s00477_022_02256_5 crossref_primary_10_1016_j_jhydrol_2024_131300 crossref_primary_10_1007_s00477_023_02508_y crossref_primary_10_1080_02626667_2024_2436634 crossref_primary_10_1002_eco_2742 crossref_primary_10_1080_19475705_2024_2375767 crossref_primary_10_1007_s00477_024_02678_3 crossref_primary_10_1016_j_advwatres_2024_104781 crossref_primary_10_1080_02626667_2024_2385686 crossref_primary_10_1007_s00477_023_02573_3 crossref_primary_10_1029_2022EF003039 crossref_primary_10_1007_s00477_023_02558_2 |
Cites_doi | 10.1038/s41558-018-0245-3 10.1038/nclimate2051 10.1029/2004WR003765 10.1016/S0309-1708(98)00043-8 10.1016/S0022-1694(00)00170-0 10.1029/2001WR000372 10.1038/382700a0 10.1007/s40641-018-0110-5 10.1256/qj.04.96 10.1002/2015EF000336 10.1002/wrcr.20352 10.1029/2011GL048426 10.1061/TACEAT.0004323 10.1007/s00382-018-4339-4 10.1175/BAMS-D-15-0004.1 10.1175/1520-0442(2000)013<3711:COWUSP>2.0.CO;2 10.3354/cr00953 10.1029/JD092iD08p09693 10.1175/JAM2404.1 10.1029/2019JD030855 10.1016/S0022-1694(98)00097-3 10.1142/9789814307987_0004 10.1002/2016WR019578 10.1002/2013WR014211 10.1007/s10584-020-02692-8 10.1029/2020EF001824 10.1175/1520-0477(1986)067<1233:OTDONR>2.0.CO;2 10.1175/JCLI-D-14-00183.1 10.1016/j.jhydrol.2020.125151 10.1016/j.jhydrol.2010.12.020 10.1127/0941-2948/2006/0130 10.1016/j.jhydrol.2013.12.013 10.1029/2006WR005245 10.1007/s00477-013-0687-0 10.1175/BAMS-D-15-00267.1 10.1038/s41598-017-17966-y 10.1175/JCLI-D-15-0441.1 10.1007/s40641-015-0009-3 10.1002/2014RG000464 10.1029/2020JD034287 10.1142/S0218348X0500291X 10.1038/s41558-020-00963-x 10.1061/TACEAT.0004286 10.1175/BAMS-84-9-1205 10.1007/s11069-020-04420-y 10.1029/2020WR029548 10.1016/j.physa.2004.02.043 10.1061/(ASCE)HE.1943-5584.0001969 10.1038/d41586-018-07638-w 10.1016/j.jhydrol.2014.04.014 10.1175/JCLI-D-17-0683.1 10.1016/S0022-1694(96)03086-7 10.1029/2008WR007624 10.1038/ngeo262 10.1038/srep07093 10.1002/2013WR014936 10.1016/j.jhydrol.2015.05.035 10.1029/2018WR024067 10.1016/j.wace.2019.100219 10.1088/1748-9326/5/2/025208 10.1016/j.chaos.2007.06.004 10.1029/2012WR012557 10.1016/S0022-1694(97)00117-0 10.1038/s41467-021-22838-1 10.1029/2009WR008257 10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2 10.1002/2014RG000475 10.1080/02626667.2014.923889 10.1175/JCLI-D-20-0938.1 10.1038/s43247-020-0003-0 10.1038/nclimate3287 10.1029/2021WR030172 10.1038/s41467-018-04722-7 10.1016/j.jhydrol.2019.05.090 10.1002/andp.18501550306 10.1002/joc.6339 10.1007/s00477-018-1577-2 10.1029/2007WR006040 10.5194/hess-17-5041-2013 10.1038/nclimate3168 10.1002/joc.5953 10.1016/j.jhydrol.2017.02.013 10.1029/2000WR900197 |
ContentType | Journal Article |
Copyright | 2022 The Authors. 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7ST 7TG ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ KL. PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PYCSY SOI DOA |
DOI | 10.1029/2021EF002539 |
DatabaseName | Wiley Online Library Open Access CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2328-4277 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_8503876fadc24f46a2ec1c7134c561a8 10_1029_2021EF002539 EFT2969 |
Genre | article |
GroupedDBID | 0R~ 1OC 24P 5VS 7XC 8-1 8FE 8FH 8GL AAHBH AAHHS AAZKR ACCFJ ACCMX ACQOY ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AENEX AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ATCPS AVUZU BCNDV BENPR BHPHI BKSAR CCPQU EBS EDH EJD GICCO GODZA GROUPED_DOAJ HCIFZ IEP ISN ITC LK5 M7R M~E OK1 PATMY PCBAR PIMPY PROAC PYCSY SUPJJ WIN ~OA AAYXX CITATION PHGZM PHGZT 7ST 7TG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO GNUQQ KL. PKEHL PQEST PQQKQ PQUKI SOI PUEGO |
ID | FETCH-LOGICAL-c4099-b57d1c0b82b6952d0adbe53bca377198851fbb67530443b4169ddc283f8cd3883 |
IEDL.DBID | 24P |
ISSN | 2328-4277 |
IngestDate | Wed Aug 27 01:31:28 EDT 2025 Sat Jul 26 00:10:20 EDT 2025 Tue Jul 01 02:48:24 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Wed Jan 22 16:25:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4099-b57d1c0b82b6952d0adbe53bca377198851fbb67530443b4169ddc283f8cd3883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1622-0302 0000-0002-8772-3409 0000-0002-5206-1249 0000-0002-0643-2520 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021EF002539 |
PQID | 2644412157 |
PQPubID | 2034575 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8503876fadc24f46a2ec1c7134c561a8 proquest_journals_2644412157 crossref_citationtrail_10_1029_2021EF002539 crossref_primary_10_1029_2021EF002539 wiley_primary_10_1029_2021EF002539_EFT2969 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earth's future |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2011; 116 2009; 45 2017; 7 2013; 3 2013; 27 2005; 131 2019; 55 2021; 126 2018; 564 2020; 160 2014; 27 1996; 382 2019; 124 2005b; 13 1996; 187 2020; 55 1932; 96 1931; 95 2008; 1 2011; 402 2018; 9 2005a; 41 2014; 4 2013; 17 2018; 4 2020; 1 2015; 531 2000; 13 2019; 26 1998; 206 2014; 59 2019; 116 1998; 204 2004; 338 2014; 50 2010; 5 2018; 31 1988 2021; 9 2014; 514 2002; 38 2013; 49 2020; 40 2019; 33 2010 1987; 92 2021; 105 2006; 15 2020; 589 2019; 39 1999; 22 2000; 230 1850; 155 2003 2011; 38 2014; 510 2003; 131 2016; 4 2021; 57 2017; 53 2021; 12 2021; 11 2000; 36 2006; 45 2021 1986; 67 2017; 98 2018 2019; 575 2017 2020; 25 2016 2015 2014 2013 2011; 47 2016; 29 2007; 43 1834; 23 2017; 547 2009; 39 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_71_1 Chow V. T. (e_1_2_9_13_1) 1988 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 National Centers for Environmental Information (e_1_2_9_49_1) 2017 e_1_2_9_2_1 Trenberth K. E. (e_1_2_9_74_1) 2011; 47 Easterling D. R. (e_1_2_9_18_1) 2017 e_1_2_9_26_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_70_1 Wang B. (e_1_2_9_87_1) 2019; 116 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Clapeyron E. (e_1_2_9_15_1) 1834; 23 Jones T. R. (e_1_2_9_30_1) 2011; 116 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 Cannon A. (e_1_2_9_10_1) 2018 Wuertz D. (e_1_2_9_92_1) 2018 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 15 start-page: 259 issue: 3 year: 2006 end-page: 263 article-title: World Map of the Köppen‐Geiger climate classification updated publication-title: Meteorologische Zeitschrift – volume: 1 issue: 1 year: 2020 article-title: Atmospheric convection, dynamics and topography shape the scaling pattern of hourly rainfall extremes with temperature globally publication-title: Communications Earth & Environment – volume: 59 issue: 7 year: 2014 article-title: Catchment‐scale storm velocity: Quantification, scale dependence and effect on flood response publication-title: Hydrological Sciences Journal – volume: 43 issue: 10 year: 2007 article-title: Marginal methods of intensity‐duration‐frequency estimation in scaling and nonscaling rainfall publication-title: Water Resources Research – year: 2018 article-title: Detection of continental‐scale intensification of hourly rainfall extremes publication-title: Nature Climate Change – volume: 4 issue: 5 year: 2016 article-title: Uncertainty partition challenges the predictability of vital details of climate change publication-title: Earth's Future – start-page: 1 year: 2018 end-page: 29 article-title: Projected intensification of sub‐daily and daily rainfall extremes in convection‐permitting climate model simulations over North America: Implications for future intensity–duration–frequency curves publication-title: Natural Hazards and Earth System Sciences Discussions – volume: 204 issue: 1–4 year: 1998 article-title: Transformation of point rainfall to areal rainfall: Intensity‐duration‐frequency curves publication-title: Journal of Hydrology – volume: 589 year: 2020 article-title: Quantitative assessment of annual maxima, peaks‐over‐threshold and multifractal parametric approaches in estimating intensity‐duration‐frequency curves from short rainfall records publication-title: Journal of Hydrology – volume: 96 start-page: 592 issue: 1 year: 1932 end-page: 606 article-title: Formulas for rainfall intensities of long duration publication-title: Transactions of the American Society of Civil Engineers – volume: 7 issue: 1 year: 2017 article-title: Precipitation variability increases in a warmer climate publication-title: Scientific Reports – volume: 5 issue: 2 year: 2010 article-title: Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes publication-title: Environmental Research Letters – volume: 45 issue: 11 year: 2009 article-title: Long‐term rainfall risk from tropical cyclones in coastal areas publication-title: Water Resources Research – volume: 55 issue: 6 year: 2019 article-title: Global and regional increase of precipitation extremes under global warming publication-title: Water Resources Research – volume: 38 issue: 16 year: 2011 article-title: Does higher surface temperature intensify extreme precipitation? publication-title: Geophysical Research Letters – volume: 31 start-page: 6505 issue: 16 year: 2018 end-page: 6525 article-title: Assessing the robustness of future extreme precipitation intensification in the CMIP5 ensemble publication-title: Journal of Climate – year: 2018 – volume: 67 issue: 10 year: 1986 article-title: On the design of national, real‐time warning systems with capability for site‐specific, flash‐ flood forecasts publication-title: Bulletin of the American Meteorological Society – volume: 55 issue: 1–2 year: 2020 article-title: Analysis of Alpine precipitation extremes using generalized extreme value theory in convection‐resolving climate simulations publication-title: Climate Dynamics – volume: 116 issue: 8 year: 2011 article-title: Quantifying the limits of convective parameterizations publication-title: Journal of Geophysical Research: Atmospheres – volume: 7 start-page: 48 issue: 1 year: 2017 end-page: 52 article-title: The future intensification of hourly precipitation extremes publication-title: Nature Climate Change – volume: 160 issue: 2 year: 2020 article-title: The economic costs of Hurricane Harvey attributable to climate change publication-title: Climatic Change – volume: 4 start-page: 355 year: 2018 end-page: 370 article-title: Response of the intertropical convergence zone to climate change: Location, width, and strength publication-title: Current Climate Change Reports – volume: 33 issue: 1 year: 2019 article-title: Estimation of intensity–duration–frequency curves using max‐stable processes publication-title: Stochastic Environmental Research and Risk Assessment – volume: 13 issue: 4 year: 2005b article-title: The maximum of multifractal cascades: Exact distribution and approximations publication-title: Fractals – volume: 564 issue: 7735 year: 2018 article-title: El Niño events will intensify under global warming publication-title: Nature – volume: 230 start-page: 55 issue: 1–2 year: 2000 end-page: 69 article-title: Precipitation areal‐reduction factor estimation using an annual‐maxima centered approach publication-title: Journal of Hydrology – volume: 547 year: 2017 article-title: Uncertainty of intensity–duration–frequency (IDF) curves due to varied climate baseline periods publication-title: Journal of Hydrology – volume: 12 issue: 1 year: 2021 article-title: Economic damages from Hurricane Sandy attributable to sea level rise caused by anthropogenic climate change publication-title: Nature Communications – year: 2015 article-title: A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges publication-title: Reviews of Geophysics – year: 2014 article-title: Future changes to the intensity and frequency of short‐duration extreme rainfall publication-title: Reviews of Geophysics – volume: 29 issue: 7 year: 2016 article-title: Characterizing recent trends in U.S. heavy precipitation publication-title: Journal of Climate – volume: 382 issue: 6593 year: 1996 article-title: Widespread increases in low‐frequency variability of precipitation over the past century publication-title: Nature – volume: 57 issue: 11 year: 2021 article-title: On the role of serial correlation and field significance in detecting changes in extreme precipitation frequency publication-title: Water Resources Research – volume: 531 start-page: 389 year: 2015 end-page: 407 article-title: Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi‐catchment investigation publication-title: Journal of Hydrology – volume: 53 start-page: 2149 issue: 3 year: 2017 end-page: 2170 article-title: A parametric approach for simultaneous bias correction and high‐resolution downscaling of climate model rainfall publication-title: Water Resources Research – volume: 49 issue: 7 year: 2013 article-title: Rainfall extremes, excesses, and intensity‐duration‐frequency curves: A unified asymptotic framework and new nonasymptotic results based on multifractal measures publication-title: Water Resources Research – volume: 39 issue: 4 year: 2019 article-title: Non‐stationary intensity‐duration‐frequency curves integrating information concerning teleconnections and climate change publication-title: International Journal of Climatology – year: 2015 article-title: Precipitation extremes under climate change publication-title: Current Climate Change Reports – volume: 7 start-page: 423 issue: 6 year: 2017 end-page: 427 article-title: Understanding the regional pattern of projected future changes in extreme precipitation publication-title: Nature Climate Change – volume: 27 issue: 22 year: 2014 article-title: Changes in the distribution of rain frequency and intensity in response to global warming publication-title: Journal of Climate – volume: 338 start-page: 206 year: 2004 end-page: 210 article-title: Intensity‐duration‐area‐frequency functions for precipitation in a multifractal framework publication-title: Physica A: Statistical Mechanics and its Applications – volume: 1 issue: 8 year: 2008 article-title: Increase in hourly precipitation extremes beyond expectations from temperature changes publication-title: Nature Geoscience – volume: 131 issue: 608 year: 2005 article-title: Mechanisms of ENSO‐forcing of hemispherically symmetric precipitation variability publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 45 issue: 11 year: 2009 article-title: New asymptotic and preasymptotic results on rainfall maxima from multifractal theory publication-title: Water Resources Research – year: 2016 article-title: “The stippling shows statistically significant grid points”: How research results are routinely overstated and overinterpreted, and what to do about it publication-title: Bulletin of the American Meteorological Society – volume: 36 issue: 11 year: 2000 article-title: Modeling of rainfall time series and extremes using bounded random cascades and Levy‐stable distributions publication-title: Water Resources Research – year: 2021 article-title: Extreme rainfall events in the Northeastern USA become more frequent with rising temperatures, but their intensity distribution remains stable publication-title: Journal of Climate – volume: 98 issue: 1 year: 2017 article-title: Do convection‐permitting regional climate models improve projections of future precipitation change? publication-title: Bulletin of the American Meteorological Society – volume: 11 issue: 2 year: 2021 article-title: Zonally contrasting shifts of the tropical rain belt in response to climate change publication-title: Nature Climate Change – year: 2003 article-title: The changing character of precipitation publication-title: Bulletin of the American Meteorological Society – volume: 95 issue: 1 year: 1931 article-title: Frequency and intensity of excessive rainfalls at Boston, Massachusetts publication-title: Transactions of the American Society of Civil Engineers – volume: 187 start-page: 45 issue: 1–2 year: 1996 end-page: 64 article-title: Scaling and multiscaling models of depth‐duration‐frequency curves for storm precipitation publication-title: Journal of Hydrology – volume: 47 issue: 1–2 year: 2011 article-title: Changes in precipitation with climate change publication-title: Climate Research – volume: 510 year: 2014 article-title: Rainfall organization control on the flood response of mild‐slope basins publication-title: Journal of Hydrology – volume: 27 start-page: 1525 issue: 6 year: 2013 end-page: 1531 article-title: A simple approximation to multifractal rainfall maxima using a generalized extreme value distribution model publication-title: Stochastic Environmental Research and Risk Assessment – year: 2013 article-title: Battle of extreme value distributions: A global survey on extreme daily rainfall publication-title: Water Resources Research – volume: 9 issue: 1 year: 2018 article-title: A new interhemispheric teleconnection increases predictability of winter precipitation in southwestern US publication-title: Nature Communications – volume: 38 issue: 12 year: 2002 article-title: Multifractality of rainfall and scaling of intensity‐duration‐frequency curves publication-title: Water Resources Research – volume: 575 year: 2019 article-title: Nonstationary frequency analysis of the recent extreme precipitation events in the United States publication-title: Journal of Hydrology – volume: 26 year: 2019 article-title: A synthesis of hourly and daily precipitation extremes in different climatic regions publication-title: Weather and Climate Extremes – volume: 155 start-page: 368 issue: 3 year: 1850 end-page: 397 article-title: Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen publication-title: Annalen der Physik – volume: 17 start-page: 5041 issue: 12 year: 2013 end-page: 5059 article-title: Regional climate models’ performance in representing precipitation and temperature over selected Mediterranean areas publication-title: Hydrology and Earth System Sciences – start-page: 207 year: 2017 end-page: 230 – volume: 22 start-page: 585 issue: 6 year: 1999 end-page: 595 article-title: On the estimation of radar rainfall error variance publication-title: Advances in Water Resources – year: 2010 – volume: 116 issue: 45 year: 2019 article-title: Historical change of El Niño properties sheds light on future changes of extreme El Niño publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 3 start-page: 1033 issue: 12 year: 2013 end-page: 1038 article-title: Robust spatially aggregated projections of climate extremes publication-title: Nature Climate Change – volume: 131 issue: 12 year: 2003 article-title: Distribution of mesoscale convective complex rainfall in the United States publication-title: Monthly Weather Review – volume: 50 issue: 1 year: 2014 article-title: Rainfall extremes: Toward reconciliation after the battle of distributions publication-title: Water Resources Research – volume: 514 year: 2014 article-title: On the effects of small scale space‐time variability of rainfall on basin flood response publication-title: Journal of Hydrology – volume: 124 issue: 21 year: 2019 article-title: Assessment of water cycle intensification over land using a multisource global gridded precipitation dataset publication-title: Journal of Geophysical Research: Atmospheres – volume: 23 start-page: 153 year: 1834 end-page: 190 article-title: Mémoire sur la Puissance Motrice de la Chaleur publication-title: Journal de l’École Royale Polytechnique – volume: 126 issue: 7 year: 2021 article-title: U.S. extreme precipitation weather types increased in frequency during the 20th century publication-title: Journal of Geophysical Research: Atmospheres – volume: 57 start-page: 1 issue: 6 year: 2021 end-page: 17 article-title: An ERA‐5 derived CONUS‐wide high‐resolution precipitation dataset based on a refined parametric statistical downscaling framework publication-title: Water Resources Research – volume: 43 start-page: 2422 issue: 2 year: 2007 article-title: Intensity‐duration‐frequency curves from scaling representations of rainfall publication-title: Water Resources Research – volume: 39 start-page: 1182 issue: 3 year: 2009 end-page: 1194 article-title: Multifractal rainfall extremes: Theoretical analysis and practical estimation publication-title: Chaos, Solitons & Fractals – volume: 25 issue: 9 year: 2020 article-title: Hydrologic impacts of surface elevation and spatial resolution in statistical correction approaches: Case study of Flumendosa Basin, Italy publication-title: Journal of Hydrologic Engineering – volume: 45 issue: 9 year: 2006 article-title: On “field significance” and the false discovery rate publication-title: Journal of Applied Meteorology and Climatology – year: 1988 – volume: 40 issue: 4 year: 2020 article-title: Uncertainty of stationary and nonstationary models for rainfall frequency analysis publication-title: International Journal of Climatology – volume: 9 start-page: 1 issue: 3 year: 2021 end-page: 15 article-title: Seasonality, intensity, and duration of rainfall extremes change in a warmer climate publication-title: Earth's Future – volume: 105 issue: 3 year: 2021 article-title: Extreme storm surges and waves and vulnerability of coastal bridges in New York city metropolitan region: An assessment based on Hurricane Sandy publication-title: Natural Hazards – volume: 50 start-page: 3907 issue: 5 year: 2014 end-page: 3932 article-title: Statistical framework to simulate daily rainfall series conditional on upper‐air predictor variables publication-title: Water Resources Research – volume: 41 issue: 7 year: 2005a article-title: The areal reduction factor: A multifractal analysis publication-title: Water Resources Research – volume: 402 issue: 3–4 year: 2011 article-title: Sensitivity of a mountain basin flash flood to initial wetness condition and rainfall variability publication-title: Journal of Hydrology – year: 2017 – volume: 92 issue: D8 year: 1987 article-title: Physical modeling and analysis of rain and clouds by anisotropic scaling mutiplicative processes publication-title: Journal of Geophysical Research – volume: 4 start-page: 1 year: 2014 end-page: 6 article-title: Nonstationary precipitation intensity‐duration‐frequency curves for infrastructure design in a changing climate publication-title: Scientific Reports – volume: 206 issue: 1–2 year: 1998 article-title: A mathematical framework for studying rainfall intensity‐duration‐frequency relationships publication-title: Journal of Hydrology – volume: 13 issue: 20 year: 2000 article-title: Covariabilities of winter U.S. precipitation and Pacific Sea surface temperatures publication-title: Journal of Climate – ident: e_1_2_9_27_1 doi: 10.1038/s41558-018-0245-3 – ident: e_1_2_9_24_1 doi: 10.1038/nclimate2051 – ident: e_1_2_9_80_1 doi: 10.1029/2004WR003765 – ident: e_1_2_9_14_1 doi: 10.1016/S0309-1708(98)00043-8 – ident: e_1_2_9_3_1 doi: 10.1016/S0022-1694(00)00170-0 – ident: e_1_2_9_79_1 doi: 10.1029/2001WR000372 – ident: e_1_2_9_76_1 doi: 10.1038/382700a0 – ident: e_1_2_9_9_1 doi: 10.1007/s40641-018-0110-5 – ident: e_1_2_9_69_1 doi: 10.1256/qj.04.96 – ident: e_1_2_9_23_1 doi: 10.1002/2015EF000336 – ident: e_1_2_9_85_1 doi: 10.1002/wrcr.20352 – ident: e_1_2_9_78_1 doi: 10.1029/2011GL048426 – ident: e_1_2_9_7_1 doi: 10.1061/TACEAT.0004323 – ident: e_1_2_9_5_1 doi: 10.1007/s00382-018-4339-4 – ident: e_1_2_9_31_1 doi: 10.1175/BAMS-D-15-0004.1 – ident: e_1_2_9_88_1 doi: 10.1175/1520-0442(2000)013<3711:COWUSP>2.0.CO;2 – volume: 47 issue: 1 year: 2011 ident: e_1_2_9_74_1 article-title: Changes in precipitation with climate change publication-title: Climate Research doi: 10.3354/cr00953 – ident: e_1_2_9_68_1 doi: 10.1029/JD092iD08p09693 – ident: e_1_2_9_90_1 doi: 10.1175/JAM2404.1 – ident: e_1_2_9_44_1 doi: 10.1029/2019JD030855 – ident: e_1_2_9_33_1 doi: 10.1016/S0022-1694(98)00097-3 – ident: e_1_2_9_82_1 doi: 10.1142/9789814307987_0004 – ident: e_1_2_9_41_1 doi: 10.1002/2016WR019578 – ident: e_1_2_9_70_1 doi: 10.1002/2013WR014211 – ident: e_1_2_9_25_1 doi: 10.1007/s10584-020-02692-8 – ident: e_1_2_9_48_1 doi: 10.1029/2020EF001824 – ident: e_1_2_9_26_1 doi: 10.1175/1520-0477(1986)067<1233:OTDONR>2.0.CO;2 – start-page: 207 volume-title: Climate science special report: Fourth national climate assessment, Volume I, I year: 2017 ident: e_1_2_9_18_1 – ident: e_1_2_9_60_1 doi: 10.1175/JCLI-D-14-00183.1 – volume-title: Applied hydrology year: 1988 ident: e_1_2_9_13_1 – ident: e_1_2_9_19_1 doi: 10.1016/j.jhydrol.2020.125151 – ident: e_1_2_9_50_1 doi: 10.1016/j.jhydrol.2010.12.020 – ident: e_1_2_9_32_1 doi: 10.1127/0941-2948/2006/0130 – ident: e_1_2_9_45_1 doi: 10.1016/j.jhydrol.2013.12.013 – ident: e_1_2_9_36_1 doi: 10.1029/2006WR005245 – ident: e_1_2_9_34_1 doi: 10.1007/s00477-013-0687-0 – ident: e_1_2_9_91_1 doi: 10.1175/BAMS-D-15-00267.1 – ident: e_1_2_9_61_1 doi: 10.1038/s41598-017-17966-y – ident: e_1_2_9_29_1 doi: 10.1175/JCLI-D-15-0441.1 – ident: e_1_2_9_53_1 doi: 10.1007/s40641-015-0009-3 – ident: e_1_2_9_89_1 doi: 10.1002/2014RG000464 – ident: e_1_2_9_65_1 doi: 10.1029/2020JD034287 – ident: e_1_2_9_81_1 doi: 10.1142/S0218348X0500291X – volume: 116 issue: 45 year: 2019 ident: e_1_2_9_87_1 article-title: Historical change of El Niño properties sheds light on future changes of extreme El Niño publication-title: Proceedings of the National Academy of Sciences of the United States of America – ident: e_1_2_9_42_1 doi: 10.1038/s41558-020-00963-x – ident: e_1_2_9_71_1 doi: 10.1061/TACEAT.0004286 – ident: e_1_2_9_75_1 doi: 10.1175/BAMS-84-9-1205 – ident: e_1_2_9_67_1 doi: 10.1007/s11069-020-04420-y – volume-title: Cooperative observer program (COOP) hourly precipitation data (HPD), version 2.0 beta year: 2018 ident: e_1_2_9_92_1 – ident: e_1_2_9_20_1 doi: 10.1029/2020WR029548 – ident: e_1_2_9_11_1 doi: 10.1016/j.physa.2004.02.043 – ident: e_1_2_9_62_1 doi: 10.1061/(ASCE)HE.1943-5584.0001969 – volume: 23 start-page: 153 year: 1834 ident: e_1_2_9_15_1 article-title: Mémoire sur la Puissance Motrice de la Chaleur publication-title: Journal de l’École Royale Polytechnique – ident: e_1_2_9_28_1 doi: 10.1038/d41586-018-07638-w – ident: e_1_2_9_59_1 doi: 10.1016/j.jhydrol.2014.04.014 – ident: e_1_2_9_4_1 doi: 10.1175/JCLI-D-17-0683.1 – ident: e_1_2_9_8_1 doi: 10.1016/S0022-1694(96)03086-7 – ident: e_1_2_9_37_1 doi: 10.1029/2008WR007624 – ident: e_1_2_9_39_1 doi: 10.1038/ngeo262 – ident: e_1_2_9_12_1 doi: 10.1038/srep07093 – ident: e_1_2_9_35_1 doi: 10.1002/2013WR014936 – volume-title: Cooperative observers program hourly precipitation dataset (C‐HPD), version 2.0 beta year: 2017 ident: e_1_2_9_49_1 – start-page: 1 year: 2018 ident: e_1_2_9_10_1 article-title: Projected intensification of sub‐daily and daily rainfall extremes in convection‐permitting climate model simulations over North America: Implications for future intensity–duration–frequency curves publication-title: Natural Hazards and Earth System Sciences Discussions – ident: e_1_2_9_52_1 doi: 10.1016/j.jhydrol.2015.05.035 – ident: e_1_2_9_58_1 doi: 10.1029/2018WR024067 – ident: e_1_2_9_6_1 doi: 10.1016/j.wace.2019.100219 – volume: 116 issue: 8 year: 2011 ident: e_1_2_9_30_1 article-title: Quantifying the limits of convective parameterizations publication-title: Journal of Geophysical Research: Atmospheres – ident: e_1_2_9_40_1 doi: 10.1088/1748-9326/5/2/025208 – ident: e_1_2_9_38_1 doi: 10.1016/j.chaos.2007.06.004 – ident: e_1_2_9_57_1 doi: 10.1029/2012WR012557 – ident: e_1_2_9_72_1 doi: 10.1016/S0022-1694(97)00117-0 – ident: e_1_2_9_73_1 doi: 10.1038/s41467-021-22838-1 – ident: e_1_2_9_83_1 doi: 10.1029/2009WR008257 – ident: e_1_2_9_2_1 doi: 10.1175/1520-0493(2003)131<3003:DOMCCR>2.0.CO;2 – ident: e_1_2_9_64_1 doi: 10.1002/2014RG000475 – ident: e_1_2_9_51_1 doi: 10.1080/02626667.2014.923889 – ident: e_1_2_9_54_1 doi: 10.1175/JCLI-D-20-0938.1 – ident: e_1_2_9_47_1 doi: 10.1038/s43247-020-0003-0 – ident: e_1_2_9_63_1 doi: 10.1038/nclimate3287 – ident: e_1_2_9_22_1 doi: 10.1029/2021WR030172 – ident: e_1_2_9_43_1 doi: 10.1038/s41467-018-04722-7 – ident: e_1_2_9_86_1 doi: 10.1016/j.jhydrol.2019.05.090 – ident: e_1_2_9_16_1 doi: 10.1002/andp.18501550306 – ident: e_1_2_9_55_1 doi: 10.1002/joc.6339 – ident: e_1_2_9_77_1 doi: 10.1007/s00477-018-1577-2 – ident: e_1_2_9_84_1 doi: 10.1029/2007WR006040 – ident: e_1_2_9_17_1 doi: 10.5194/hess-17-5041-2013 – ident: e_1_2_9_66_1 doi: 10.1038/nclimate3168 – ident: e_1_2_9_56_1 doi: 10.1002/joc.5953 – ident: e_1_2_9_21_1 doi: 10.1016/j.jhydrol.2017.02.013 – ident: e_1_2_9_46_1 doi: 10.1029/2000WR900197 |
SSID | ssj0000970357 |
Score | 2.3232615 |
Snippet | Given the rapidly changing climate, accurate spatiotemporal information on the evolution of extreme rainfall events is required for flood risk assessment and... Abstract Given the rapidly changing climate, accurate spatiotemporal information on the evolution of extreme rainfall events is required for flood risk... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Approximation Climate change Climate models Climatic extremes Climatology Environmental risk Evolution extreme rainfall Extreme weather Flood risk Hydrology Infrastructure intensity‐duration‐frequency curves Modelling multifractals Precipitation Precipitation estimation Probability Rain Rainfall Rainfall climatology rainfall intensification Risk assessment Trends Uncertainty |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJy6o5UPdsiAf4NIqIrGd2O5tWWWFkEoPsIJb5I-4Wmm1IHZBPfbMid_YX8KM1yzh0HLp1bGikWeceY7nvSHkUOfKu8DLrAKsnAkvTWaDdlkIugK44W0bJYW-n1enY3F2XV53Wn1hTdhSHni5cMcK9UpkFYx3TARRGda6wiED0kHqN5HmCzmvc5iK32ANkVzKVOmeM42H_KIeYYrHvuCdHBSl-t_gyy5KjWlm9IFsJnxIB0u7PpK1drZFdutXOho8TPtxvk0ewcv0IhZFJ42pKa0fUjTRm0Dx-iaYKYz-WuCfwDmdzKihkVMASYsOpxOArO03OqDDH-fjiz-_n64mvqWDlWAnPYE85ym8LnJ1A7Kqog0Giexg6M_7yJLbIeNRfTk8zVJ3hcwJlOW0pfSFy61ittIl87kBx5TcOsOlLLQCKBashfMEz4XgFoCb9uADxYNynivFd8n67GbWfiI0aMtDkXPHWiV0cIYJIwrvjZVGSc975OvLejcuSY9jB4xpE6_AmW663umRo9Xs26Xkxl_mnaDrVnNQKDsOQPg0KXya98KnR_ovjm_S7p03CBIFym7IHvkSg-GfhjT16JJBaH_-HwbtkQ2GDItY5tYn64u7-3YfcM_CHsQQfwbWTv31 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxELUoXHqpWihqgCIfyqXVqru2d21zQUm0EarUUBWiclv5Y40iRQmQUPXYMyd-Y39JZ4wT0kO5ei1rtDP2PI9n3hDyQefKu8DLrAKsnAkvTWaDdlkIugK44W0bKYW-DqvTkfhyWV6mgNs8pVUuz8R4UPuZwxj5Z3TcAqkQ5Mn1TYZdo_B1NbXQeEG24AhWcPna6tXDb99XUZZcg0WXMmW850zjZb-oB-jqsT_4mi-KlP3_4Mx1tBrdzeA1eZVwIu0-KvYN2Win22S3fipLg49pX853yD1om57H5OjENTWh9c9kVXQWKD7jBDOB0V8LjAjO6XhKDY21BeC8aH8yBujaHtMu7Z8NR-d_fj_8GPuWdlfEnbQH_s5TWC7W7AasrooyGCxoB0Gv7mK13FsyGtQX_dMsdVnInEB6TltKX7jcKmYrXTKfG1BQya0zXMpCK4BkwVq4V_BcCG4BwGnvHaCSoJznSvFdsjmdTdt3hAZteShy7lirhA7OMGFE4b2x0ijpeYd8Wv7vxiUKcuyEMWniUzjTzbp2OuRoNfv6kXrjP_N6qLrVHCTMjgOz26sm7b9GIe2NrIIB0UUQlWGtKxwW0jpAkEZ1yMFS8U3axfPmyeY65GM0hmcFaerBBQMT33t-rX3ykmENRUxkOyCbi9u79j0gm4U9TOb7F16U9xw priority: 102 providerName: ProQuest |
Title | The Spatiotemporal Evolution of Rainfall Extremes in a Changing Climate: A CONUS‐Wide Assessment Based on Multifractal Scaling Arguments |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021EF002539 https://www.proquest.com/docview/2644412157 https://doaj.org/article/8503876fadc24f46a2ec1c7134c561a8 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NbxMxELWgvXBBBVoRWiIf4EK1Ytf2ru3ekmijColQ0Ub0tvLHuooUJahJEUfOnPob-0s647hLegCJ665ljXZmdp7Hfs-EvNO58i7wMqsAK2fCS5PZoF0Wgq4AbnjbRkmhz5PqdCo-XZaXqeGGXJiNPkTXcMPMiP9rTHBjV0lsADUyYdVe1GOs2Vw_JbvIrkXtfCbOuh5LriGeo9gn4AaVCSZlOvsOU3zcnuBRVYri_Y8Q5zZujYVnvEeeJ8RIBxsXvyBP2sVLclD_IajBy5Shq1fkN_idnsdj0kl1ak7rHym-6DJQ3NAJZg5Pf66xN7iiswU1NLIMoIzR0XwGILY9oQM6-jKZnt_9uv028y0ddBKedAiVz1OYLrJ3A_Ksog0Gqe1g6NVN5M3tk-m4vhidZum-hcwJFOq0pfSFy61ittIl87kBV5XcOsOlLLQCcBashRUGz4XgFqCc9t4BPgnKea4UPyA7i-WifU1o0JaHIueOtUro4AwTRhTeGyuNkp73yPHD925cEiPHOzHmTdwUZ7rZ9k6PvO9Gf9-IcPxl3BBd141B6ez4YHl91aRMbBQK4MgqGDBdBFEZ1rrCIaXWAZY0qkeOHhzfpHxeNQgbBQpxyB75EIPhn4Y09fiCQbC_-Z_Bh-QZQ25FPOB2RHbW1zftW0A8a9uPYd0nu8N6cva1H_sG92Cz-iE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeoALKo-KQAEf6AW0YmN7H0ZCKAkbpbQNiCait8WPdRUpStom5XHjzIlfwo_ilzDjeNNwoLdevZY1Wo89n-35viHkmYxzaxxPohSwciRspiLtpImckynADasrLyl0OEj7I_HuODneIL9rLgymVdZ7ot-o7czgHflLDNwCpRCyN6dnEVaNwtfVuoTG0i32q-9f4cg2f733FuZ3l7FeMez2o1BVIDIC5Sh1ktmWiXXOdCoTZmMFBiVcG8WzDI7gAEGc1oCj4aAvuAbAIq01EIVdbizPcw7j3iCbgsNRpkE2O8Xgw8fVrU4sYQUlWciwj5nEy4VW0UNogfXI12KfLxHwD65dR8c-vPW2yO2AS2l76Uh3yEY1vUu2i0saHHwM-8D8HvkJ3kWPfDJ20Laa0OJL8GI6cxSfjZyaQOu3Bd5Azul4ShX1XAYIlrQ7GQNUrl7RNu2-H4yO_vz49WlsK9peCYXSDsRXS2E4zxF2yObyNigk0IOhJxeenXefjK7l_2-TxnQ2rR4Q6qTmrhVzw6pcSGcUE0q0rFU6U3lmeZO8qP93aYLkOVbemJT-6Z3Jcn12mmR31ft0KfXxn34dnLpVHxTo9g2z85MyrPcyR5mdLHUKTBdOpIpVpmWQuGsAsaq8SXbqiS_DrjEvL328SZ57Z7jSkLLoDRksqYdXj_WU3OwPDw_Kg73B_iNyiyF_wyfR7ZDG4vyiegyoaqGfBFem5PN1r56_2BMzAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKiEuiFdFoIAP9AJaddfrXa-REErSXbUUQkUb0dvWj3UVKUpKk_K4cebE7-Hn8EuYcZw0HOitV69ljdbz-GzPN0PIcxkX1rg0i3LAyhG3QkXaSRM5J3OAG1Y3vqTQ-36-O-Bvj7PjNfJ7wYXBtMqFT_SO2k4M3pFvY-DmWApBbLuQFnGwU705-xxhByl8aV2005iryH7z_Ssc36av93Zgr7cYq8qj3m4UOgxEhmNpSp0Jm5hYF0znMmM2ViBclmqjUiHgOA5wxGkNmBoO_TzVAF6ktQYisiuMTYsihXVvkHUBp6K4Rda7Zf_g4_KGJ5ZgTZkI2fYxk3jRkJQVwgzsTb4SB327gH8w7ipS9qGuukNuB4xKO3OlukvWmvE9slFeUuLgY_AJ0_vkJ2gaPfSJ2aHO1YiWX4JG04mj-ITk1AhGv83wNnJKh2OqqOc1QOCkvdEQYHPzinZo70N_cPjnx69PQ9vQzrJoKO1CrLUUlvN8YYfMLi-DQjI9CHp64Zl6D8jgWv7_BmmNJ-PmIaFO6tQlcWpYU3DpjGJc8cRapYUqhE3b5OXif9cmlD_HLhyj2j_DM1mv7k6bbC1nn83LfvxnXhe3bjkHi3X7gcn5aR1svy6w5I7InQLRueO5Yo1JDJJ4DaBXVbTJ5mLj6-BBpvWlvrfJC68MVwpSl9URA_N6dPVaz8hNsJr63V5__zG5xZDK4fPpNklrdn7RPAGANdNPgyZTcnLdxvMXJdU3Nw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Spatiotemporal+Evolution+of+Rainfall+Extremes+in+a+Changing+Climate%3A+A+CONUS%E2%80%90Wide+Assessment+Based+on+Multifractal+Scaling+Arguments&rft.jtitle=Earth%27s+future&rft.au=Emmanouil%2C+Stergios&rft.au=Langousis%2C+Andreas&rft.au=Nikolopoulos%2C+Efthymios+I.&rft.au=Anagnostou%2C+Emmanouil+N.&rft.date=2022-03-01&rft.issn=2328-4277&rft.eissn=2328-4277&rft.volume=10&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021EF002539&rft.externalDBID=10.1029%252F2021EF002539&rft.externalDocID=EFT2969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon |