Future Global Convective Environments in CMIP6 Models

The response of severe convective storms to a warming climate is poorly understood outside of a few well studied regions. Here, projections from seven global climate models from the CMIP6 archive, for both historical and future scenarios, are used to explore the global response in variables that des...

Full description

Saved in:
Bibliographic Details
Published inEarth's future Vol. 9; no. 12
Main Authors Lepore, Chiara, Abernathey, Ryan, Henderson, Naomi, Allen, John T., Tippett, Michael K.
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.12.2021
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The response of severe convective storms to a warming climate is poorly understood outside of a few well studied regions. Here, projections from seven global climate models from the CMIP6 archive, for both historical and future scenarios, are used to explore the global response in variables that describe favorability of conditions for the development of severe storms. The variables include convective available potential energy (CAPE), convection inhibition (CIN), 0–6 km vertical wind shear (S06), storm relative helicity (SRH), and covariate indices (i.e., severe weather proxies) that combine them. To better quantify uncertainty, understand variable sensitivity to increasing temperature, and present results independent from a specific scenario, we consider changes in convective variables as a function of global average temperature increase across each ensemble member. Increases to favorable convective environments show an overall frequency increases on the order of 5%–20% per °C of global temperature increase, but are not regionally uniform, with higher latitudes, particularly in the Northern Hemisphere, showing much larger relative changes. The driving mechanism of these changes is a strong increase in CAPE that is not offset by factors that either resist convection (CIN), or modify the likelihood of storm organization (S06, SRH). Severe weather proxies are not the same as severe weather events. Hence, their projected increases will not necessarily translate to severe weather occurrences, but they allow us to quantify how increases in global temperature will affect the occurrence of conditions favorable to severe weather. Plain Language Summary Severe weather can occur when some combination of atmospheric ingredients are present. These ingredients are called “convective environments” and refer to quantities that measure, for example, atmospheric instability and wind shear. By combining these convective environments into so‐called severe weather proxies, modelers can measure the favorability of occurrence of severe convective storms. Moreover, they can address a recurrent challenge in severe weather modeling: to find a way to robustly analyze phenomena (hail storms, tornadoes, straight‐line winds) that are highly intermittent and not resolved in coarse numerical models. CMIP6 models, for example, cannot resolve directly these phenomena because of both temporal and spatial resolution limitations. Therefore, we computed the convective environments for a subset of CMIP6 models and scenarios, and evaluated how severe weather proxies are projected to change as a function of global temperature increase. The results show increases of 5%–20% per °C of global temperature change. However, favorable severe weather proxies do not necessarily mean severe weather events occur, and thus we expect the overall increase to severe weather occurrences to be smaller. This analysis suggests increasing global temperature will affect the occurrence of conditions favorable to severe weather. Key Points We evaluate the global response of convective environments to a warming climate in CMIP6 models Increases in severe weather proxies frequency vary from 5% to 20% per °C of global temperature increase Atmospheric instability is the key driver, both globally and particularly in northern latitudes
AbstractList Abstract The response of severe convective storms to a warming climate is poorly understood outside of a few well studied regions. Here, projections from seven global climate models from the CMIP6 archive, for both historical and future scenarios, are used to explore the global response in variables that describe favorability of conditions for the development of severe storms. The variables include convective available potential energy (CAPE), convection inhibition (CIN), 0–6 km vertical wind shear (S06), storm relative helicity (SRH), and covariate indices (i.e., severe weather proxies) that combine them. To better quantify uncertainty, understand variable sensitivity to increasing temperature, and present results independent from a specific scenario, we consider changes in convective variables as a function of global average temperature increase across each ensemble member. Increases to favorable convective environments show an overall frequency increases on the order of 5%–20% per °C of global temperature increase, but are not regionally uniform, with higher latitudes, particularly in the Northern Hemisphere, showing much larger relative changes. The driving mechanism of these changes is a strong increase in CAPE that is not offset by factors that either resist convection (CIN), or modify the likelihood of storm organization (S06, SRH). Severe weather proxies are not the same as severe weather events. Hence, their projected increases will not necessarily translate to severe weather occurrences, but they allow us to quantify how increases in global temperature will affect the occurrence of conditions favorable to severe weather.
The response of severe convective storms to a warming climate is poorly understood outside of a few well studied regions. Here, projections from seven global climate models from the CMIP6 archive, for both historical and future scenarios, are used to explore the global response in variables that describe favorability of conditions for the development of severe storms. The variables include convective available potential energy (CAPE), convection inhibition (CIN), 0–6 km vertical wind shear (S06), storm relative helicity (SRH), and covariate indices (i.e., severe weather proxies) that combine them. To better quantify uncertainty, understand variable sensitivity to increasing temperature, and present results independent from a specific scenario, we consider changes in convective variables as a function of global average temperature increase across each ensemble member. Increases to favorable convective environments show an overall frequency increases on the order of 5%–20% per °C of global temperature increase, but are not regionally uniform, with higher latitudes, particularly in the Northern Hemisphere, showing much larger relative changes. The driving mechanism of these changes is a strong increase in CAPE that is not offset by factors that either resist convection (CIN), or modify the likelihood of storm organization (S06, SRH). Severe weather proxies are not the same as severe weather events. Hence, their projected increases will not necessarily translate to severe weather occurrences, but they allow us to quantify how increases in global temperature will affect the occurrence of conditions favorable to severe weather. Severe weather can occur when some combination of atmospheric ingredients are present. These ingredients are called “convective environments” and refer to quantities that measure, for example, atmospheric instability and wind shear. By combining these convective environments into so‐called severe weather proxies, modelers can measure the favorability of occurrence of severe convective storms. Moreover, they can address a recurrent challenge in severe weather modeling: to find a way to robustly analyze phenomena (hail storms, tornadoes, straight‐line winds) that are highly intermittent and not resolved in coarse numerical models. CMIP6 models, for example, cannot resolve directly these phenomena because of both temporal and spatial resolution limitations. Therefore, we computed the convective environments for a subset of CMIP6 models and scenarios, and evaluated how severe weather proxies are projected to change as a function of global temperature increase. The results show increases of 5%–20% per °C of global temperature change. However, favorable severe weather proxies do not necessarily mean severe weather events occur, and thus we expect the overall increase to severe weather occurrences to be smaller. This analysis suggests increasing global temperature will affect the occurrence of conditions favorable to severe weather. We evaluate the global response of convective environments to a warming climate in CMIP6 models Increases in severe weather proxies frequency vary from 5% to 20% per °C of global temperature increase Atmospheric instability is the key driver, both globally and particularly in northern latitudes
The response of severe convective storms to a warming climate is poorly understood outside of a few well studied regions. Here, projections from seven global climate models from the CMIP6 archive, for both historical and future scenarios, are used to explore the global response in variables that describe favorability of conditions for the development of severe storms. The variables include convective available potential energy (CAPE), convection inhibition (CIN), 0–6 km vertical wind shear (S06), storm relative helicity (SRH), and covariate indices (i.e., severe weather proxies) that combine them. To better quantify uncertainty, understand variable sensitivity to increasing temperature, and present results independent from a specific scenario, we consider changes in convective variables as a function of global average temperature increase across each ensemble member. Increases to favorable convective environments show an overall frequency increases on the order of 5%–20% per °C of global temperature increase, but are not regionally uniform, with higher latitudes, particularly in the Northern Hemisphere, showing much larger relative changes. The driving mechanism of these changes is a strong increase in CAPE that is not offset by factors that either resist convection (CIN), or modify the likelihood of storm organization (S06, SRH). Severe weather proxies are not the same as severe weather events. Hence, their projected increases will not necessarily translate to severe weather occurrences, but they allow us to quantify how increases in global temperature will affect the occurrence of conditions favorable to severe weather.
The response of severe convective storms to a warming climate is poorly understood outside of a few well studied regions. Here, projections from seven global climate models from the CMIP6 archive, for both historical and future scenarios, are used to explore the global response in variables that describe favorability of conditions for the development of severe storms. The variables include convective available potential energy (CAPE), convection inhibition (CIN), 0–6 km vertical wind shear (S06), storm relative helicity (SRH), and covariate indices (i.e., severe weather proxies) that combine them. To better quantify uncertainty, understand variable sensitivity to increasing temperature, and present results independent from a specific scenario, we consider changes in convective variables as a function of global average temperature increase across each ensemble member. Increases to favorable convective environments show an overall frequency increases on the order of 5%–20% per °C of global temperature increase, but are not regionally uniform, with higher latitudes, particularly in the Northern Hemisphere, showing much larger relative changes. The driving mechanism of these changes is a strong increase in CAPE that is not offset by factors that either resist convection (CIN), or modify the likelihood of storm organization (S06, SRH). Severe weather proxies are not the same as severe weather events. Hence, their projected increases will not necessarily translate to severe weather occurrences, but they allow us to quantify how increases in global temperature will affect the occurrence of conditions favorable to severe weather. Plain Language Summary Severe weather can occur when some combination of atmospheric ingredients are present. These ingredients are called “convective environments” and refer to quantities that measure, for example, atmospheric instability and wind shear. By combining these convective environments into so‐called severe weather proxies, modelers can measure the favorability of occurrence of severe convective storms. Moreover, they can address a recurrent challenge in severe weather modeling: to find a way to robustly analyze phenomena (hail storms, tornadoes, straight‐line winds) that are highly intermittent and not resolved in coarse numerical models. CMIP6 models, for example, cannot resolve directly these phenomena because of both temporal and spatial resolution limitations. Therefore, we computed the convective environments for a subset of CMIP6 models and scenarios, and evaluated how severe weather proxies are projected to change as a function of global temperature increase. The results show increases of 5%–20% per °C of global temperature change. However, favorable severe weather proxies do not necessarily mean severe weather events occur, and thus we expect the overall increase to severe weather occurrences to be smaller. This analysis suggests increasing global temperature will affect the occurrence of conditions favorable to severe weather. Key Points We evaluate the global response of convective environments to a warming climate in CMIP6 models Increases in severe weather proxies frequency vary from 5% to 20% per °C of global temperature increase Atmospheric instability is the key driver, both globally and particularly in northern latitudes
Author Lepore, Chiara
Tippett, Michael K.
Henderson, Naomi
Abernathey, Ryan
Allen, John T.
Author_xml – sequence: 1
  givenname: Chiara
  orcidid: 0000-0002-1606-6982
  surname: Lepore
  fullname: Lepore, Chiara
  email: clepore@ldeo.columbia.edu
  organization: Lamont Doherty Earth Observatory of Columbia University
– sequence: 2
  givenname: Ryan
  orcidid: 0000-0001-5999-4917
  surname: Abernathey
  fullname: Abernathey, Ryan
  organization: Lamont Doherty Earth Observatory of Columbia University
– sequence: 3
  givenname: Naomi
  orcidid: 0000-0002-9531-2159
  surname: Henderson
  fullname: Henderson, Naomi
  organization: Lamont Doherty Earth Observatory of Columbia University
– sequence: 4
  givenname: John T.
  orcidid: 0000-0002-2036-0666
  surname: Allen
  fullname: Allen, John T.
  organization: Central Michigan University
– sequence: 5
  givenname: Michael K.
  orcidid: 0000-0002-7790-5364
  surname: Tippett
  fullname: Tippett, Michael K.
  organization: Columbia University
BookMark eNp9UMtKAzEUDVLBWrvzAwbcOppkMpPJUkpbCy26qOuQp6RMk5qZVvr3RkekCHo393I5L84lGPjgDQDXCN4hiNk9hhhNZxBiTOkZGOIC1zlJ9-DkvgDjtt3ANIzCoqRDUM723T6abN4EKZpsEvzBqM4dTDb1BxeD3xrftZnz2WS1eK6yVdCmaa_AuRVNa8bfewReZtP15DFfPs0Xk4dlrghkLBeE1oTgkiCtqqI2FGqjpKqMQZBQJSUlVlXIFhJRLVKmFFFrRCWzNZEaFyOw6HV1EBu-i24r4pEH4fjXI8RXLmLnVGO4hbqsZS0kYYIoYpmiVskaWiKRKIVNWje91i6Gt71pO74J--hTfI4rhGlZlQwl1G2PUjG0bTT2xxVB_tkzP-05wfEvuHKd6FzwXRSu-YuEetK7a8zxXwM-na0xQ6z4AI85jdI
CitedBy_id crossref_primary_10_5194_nhess_24_3225_2024
crossref_primary_10_1038_s41612_025_00897_1
crossref_primary_10_1126_sciadv_adk5861
crossref_primary_10_1029_2022GL102184
crossref_primary_10_1029_2022JD036713
crossref_primary_10_1029_2023GL107713
crossref_primary_10_1038_s41612_024_00728_9
crossref_primary_10_1016_j_atmosres_2023_106843
crossref_primary_10_3390_d15111155
crossref_primary_10_3390_f16030462
crossref_primary_10_1029_2023GL105979
crossref_primary_10_2139_ssrn_4641914
crossref_primary_10_5194_nhess_23_2171_2023
crossref_primary_10_1038_s41612_023_00454_8
crossref_primary_10_1016_j_oneear_2024_03_008
crossref_primary_10_3389_fclim_2024_1385527
crossref_primary_10_1073_pnas_2315425121
crossref_primary_10_1007_s10584_024_03752_z
crossref_primary_10_1016_j_heliyon_2023_e23142
crossref_primary_10_1007_s11069_023_06321_2
crossref_primary_10_1073_pnas_2209631120
crossref_primary_10_1175_JCLI_D_21_0135_1
crossref_primary_10_1029_2022GL099796
crossref_primary_10_1007_s11069_023_05843_z
crossref_primary_10_5194_acp_24_7591_2024
crossref_primary_10_1029_2023GL104796
crossref_primary_10_1007_s00382_023_06820_9
crossref_primary_10_1029_2023MS003914
crossref_primary_10_1029_2022JD038374
crossref_primary_10_1371_journal_pone_0281312
crossref_primary_10_5194_acp_23_7699_2023
crossref_primary_10_1002_eco_2704
crossref_primary_10_1016_j_wace_2023_100622
crossref_primary_10_1038_s41612_023_00524_x
crossref_primary_10_3390_atmos16030276
crossref_primary_10_1029_2023GL104163
crossref_primary_10_3103_S106837392205003X
crossref_primary_10_5194_nhess_23_3065_2023
crossref_primary_10_1029_2023EF004041
Cites_doi 10.1002/2014RG000475
10.1002/qj.828
10.1175/JCLI-D-15-0623.1
10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2
10.1175/JCLI-D-13-00425.1
10.1038/s41612-018-0048-2
10.1002/2015GL063968
10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2
10.1175/JCLI-D-13-00777.1
10.1175/JCLI-D-16-0777.1
10.1029/2011GL050368
10.1038/s41612-019-0103-7
10.1016/j.atmosres.2019.104747
10.1175/JCLI-D-19-0826.1
10.1175/JAMC-D-17-0132.1
10.22499/2.6103.001
10.1126/sciadv.aba1981
10.1002/joc.1233
10.1002/2014JD022959
10.1073/pnas.0705494104
10.1175/JCLI-D-13-00345.1
10.1038/s41558-021-01011-y
10.1175/JCLI-D-14-00382.1
10.1016/j.atmosres.2016.10.012
10.1002/2014MS000397
10.1016/S0169-8095(03)00045-0
10.1017/CBO9781139177245
10.1175/BAMS-D-20-0004.1
10.1029/2008GL036203
10.5194/gmd-9-1937-2016
10.1038/s41612-019-0083-7
10.1007/s10584-013-1032-9
10.1016/j.atmosres.2012.05.016
10.1109/MCSE.2021.3059437
10.1073/pnas.1307758110
10.1023/A:1005475717321
10.1002/(SICI)1097-0088(199910)19:12<1357::AID-JOC422>3.0.CO;2-B
10.1007/BF01098382
10.1175/JCLI-D-13-00426.1
10.1002/joc.6619
10.5194/gmd-9-3461-2016
10.25080/Majora-7b98e3ed-013
10.1038/ncomms10668
10.1038/nclimate3321
10.1175/BAMS-D-11-00262.1
10.1126/science.aah7393
10.1007/s10584-014-1320-z
10.1073/pnas.1707603114
10.1007/s00382-016-3434-7
10.1002/joc.3769
10.1007/s00382-017-4000-7
10.1007/s10584-018-2317-9
10.1038/s41612-021-00190-x
10.1093/oso/9780195066302.001.0001
10.1016/j.atmosres.2005.08.005
10.1038/s43017-020-00133-9
10.1175/JCLI-D-17-0596.1
10.5334/jors.148
10.1175/WCAS-D-12-00023.1
10.1175/JCLI-D-16-0885.1
10.1175/JCLI-D-18-0740.1
10.1093/acrefore/9780190228620.013.62
ContentType Journal Article
Copyright 2021 The Authors. Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Earth's Future published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
7TG
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
KL.
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
DOA
DOI 10.1029/2021EF002277
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2328-4277
EndPage n/a
ExternalDocumentID oai_doaj_org_article_f0d58b8ab49a4c4f9c7fcb80f4b1a5af
10_1029_2021EF002277
EFT2919
Genre article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Science Foundation (NSF)
  funderid: OCE 17‐40648; ICER 20‐26932; AGS 1945286
– fundername: Willis Research Network
GroupedDBID 0R~
1OC
24P
5VS
7XC
8-1
8FE
8FH
8GL
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACQOY
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EDH
EJD
GICCO
GODZA
GROUPED_DOAJ
HCIFZ
IEP
ISN
ITC
LK5
M7R
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
SUPJJ
WIN
~OA
AAYXX
CITATION
PHGZM
PHGZT
7ST
7TG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
GNUQQ
KL.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
PUEGO
ID FETCH-LOGICAL-c4099-a478442541dc638e70decbc6ee1047cbb74fc61f3b17da097277dd17b9f84bd23
IEDL.DBID DOA
ISSN 2328-4277
IngestDate Wed Aug 27 01:25:51 EDT 2025
Fri Jul 25 02:27:17 EDT 2025
Tue Jul 01 02:48:24 EDT 2025
Thu Apr 24 22:52:05 EDT 2025
Wed Jan 22 16:27:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4099-a478442541dc638e70decbc6ee1047cbb74fc61f3b17da097277dd17b9f84bd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9531-2159
0000-0002-1606-6982
0000-0002-2036-0666
0000-0002-7790-5364
0000-0001-5999-4917
OpenAccessLink https://doaj.org/article/f0d58b8ab49a4c4f9c7fcb80f4b1a5af
PQID 2612756591
PQPubID 2034575
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_f0d58b8ab49a4c4f9c7fcb80f4b1a5af
proquest_journals_2612756591
crossref_primary_10_1029_2021EF002277
crossref_citationtrail_10_1029_2021EF002277
wiley_primary_10_1029_2021EF002277_EFT2919
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earth's future
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 5
1993; 25
2007; 104
2017; 7
2021; 23
2014b; 27
2017; 49
2011; 61
2014; 27
2013; 123
1999; 43
2020; 57
2003; 18
2020; 55
2013; 5
2017; 114
2005; 25
2020; 6
2017; 30
2021; 34
2000; 15
1999; 19
2018; 1
2015; 42
2013; 94
2016; 354
2013; 110
2007; 2
2014; 122
2021; 41
2018; 31
2014a; 27
2011; 137
2021; 4
2021; 2
2012
2021; 102
2011
2019; 2
2019; 32
2015; 53
2015; 120
2008
1994
2012; 39
2015; 129
2002
2015; 7
2009; 36
2016; 7
2015; 28
2021; 56
2018; 151
2021; 11
2021
2020
2019b
2019a
2019
2018
2017; 184
2016
2007; 83
2015
2020; 234
2013
2016; 29
2003; 67–68
2014; 34
2016; 9
2018; 57
e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_68_1
e_1_2_13_20_1
e_1_2_13_66_1
e_1_2_13_22_1
e_1_2_13_43_1
Voldoire A. (e_1_2_13_81_1) 2019
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_62_1
e_1_2_13_60_1
e_1_2_13_6_1
Emanuel K. A. (e_1_2_13_23_1) 1994
Tatebe H. (e_1_2_13_69_1) 2018
Xin X. (e_1_2_13_86_1) 2019
Bindoff N. (e_1_2_13_10_1) 2013
e_1_2_13_17_1
Shiogama H. (e_1_2_13_61_1) 2019
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
Wieners K.‐H. (e_1_2_13_84_1) 2019
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
Swart N. C. (e_1_2_13_63_1) 2019
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_30_1
e_1_2_13_72_1
e_1_2_13_70_1
Poujol B. (e_1_2_13_48_1) 2021; 56
e_1_2_13_4_1
Collins M. (e_1_2_13_18_1) 2013
Yukimoto S. (e_1_2_13_88_1) 2019
Voldoire A. (e_1_2_13_82_1) 2019
Abernathey R. (e_1_2_13_2_1) 2020
e_1_2_13_29_1
Bryan G. H. (e_1_2_13_15_1) 2008
Glazer R. H. (e_1_2_13_31_1) 2020; 57
e_1_2_13_25_1
Doswell C. A. (e_1_2_13_21_1) 2007; 2
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_9_1
e_1_2_13_40_1
Seferian R. (e_1_2_13_59_1) 2018
e_1_2_13_7_1
Voldoire A. (e_1_2_13_80_1) 2018
LLoyd’s (e_1_2_13_37_1) 2013
Thompson R. L. (e_1_2_13_71_1) 2002
National Academies of Sciences, Engineering, & Medicine (e_1_2_13_45_1) 2016
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_58_1
e_1_2_13_79_1
Wieners K.‐H. (e_1_2_13_83_1) 2019
e_1_2_13_56_1
e_1_2_13_77_1
Zhuang J. (e_1_2_13_89_1) 2021
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_54_1
e_1_2_13_75_1
Swart N. C. (e_1_2_13_64_1) 2019
e_1_2_13_52_1
e_1_2_13_73_1
e_1_2_13_50_1
Wu T. (e_1_2_13_85_1) 2018
e_1_2_13_5_1
e_1_2_13_3_1
Markowski P. (e_1_2_13_39_1) 2011
e_1_2_13_28_1
Yukimoto S. (e_1_2_13_87_1) 2019
References_xml – volume: 15
  start-page: 61
  issue: 1
  year: 2000
  end-page: 79
  article-title: Predicting supercell motion using a new hodograph technique
  publication-title: Weather and Forecasting
– volume: 234
  year: 2020
  article-title: Climatology of hail in the triple border Paraná, Santa Catarina (Brazil) and Argentina
  publication-title: Atmospheric Research
– volume: 28
  start-page: 2443
  issue: 6
  year: 2015
  end-page: 2458
  article-title: The effect of global warming on severe thunderstorms in the United States
  publication-title: Journal of Climate
– volume: 56
  start-page: 1
  year: 2021
  end-page: 25
  article-title: Dynamic and thermodynamic impacts of climate change on organized convection in Alaska
  publication-title: Climate Dynamics
– volume: 29
  start-page: 5251
  issue: 14
  year: 2016
  end-page: 5265
  article-title: The realization of extreme tornadic storm events under future anthropogenic climate change
  publication-title: Journal of Climate
– volume: 9
  start-page: 3461
  issue: 9
  year: 2016
  end-page: 3482
  article-title: The scenario model intercomparison project (ScenarioMIP) for CMIP6
  publication-title: Geoscientific Model Development
– volume: 7
  start-page: 516
  issue: 7
  year: 2017
  end-page: 522
  article-title: The changing hail threat over North America in response to anthropogenic climate change
  publication-title: Nature Climate Change
– volume: 30
  start-page: 6771
  issue: 17
  year: 2017
  end-page: 6794
  article-title: Future changes in European severe convection environments in a regional climate model ensemble
  publication-title: Journal of Climate
– volume: 7
  start-page: 226
  year: 2015
  end-page: 243
  article-title: An empirical model relating U.S. monthly hail occurrence to large‐scale meteorological environment
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 43
  start-page: 455
  issue: 2
  year: 1999
  end-page: 476
  article-title: The potential impact of global warming on hail losses to winter cereal crops in New South Wales
  publication-title: Climatic Change
– year: 2021
– volume: 61
  start-page: 143
  year: 2011
  end-page: 158
  article-title: A severe thunderstorm climatology for australia and associated thunderstorm environments
  publication-title: Australian Meteorological and Oceanographic Journal
– volume: 122
  start-page: 459
  issue: 3
  year: 2014
  end-page: 471
  article-title: Pattern scaling: Its strengths and limitations, and an update on the latest model simulations
  publication-title: Climatic Change
– volume: 11
  start-page: 404
  issue: 5
  year: 2021
  end-page: 410
  article-title: Future increases in arctic lightning and fire risk for permafrost carbon
  publication-title: Nature Climate Change
– volume: 53
  start-page: 323
  issue: 2
  year: 2015
  end-page: 361
  article-title: A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges
  publication-title: Reviews of Geophysics
– volume: 36
  issue: 1
  year: 2009
  article-title: Transient response of severe thunderstorm forcing to elevated greenhouse gas concentrations
  publication-title: Geophysical Research Letters
– year: 2019a
– volume: 9
  start-page: 1937
  issue: 5
  year: 2016
  end-page: 1958
  article-title: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization
  publication-title: Geoscientific Model Development
– volume: 1
  issue: 1
  year: 2018
  article-title: Spatial trends in United States tornado frequency
  publication-title: npj Climate and Atmospheric Science
– year: 2018
– year: 1994
– volume: 23
  start-page: 26
  issue: 2
  year: 2021
  end-page: 35
  article-title: Cloud‐native repositories for big scientific data
  publication-title: Computing in Science & Engineering
– volume: 39
  year: 2012
  article-title: Association of U.S. tornado occurrence with monthly environmental parameters
  publication-title: Geophysical Research Letters
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  end-page: 5
  article-title: Frequency of severe thunderstorms across Europe expected to increase in the 21st century due to rising instability
  publication-title: npj Climate and Atmospheric Science
– volume: 2
  issue: 5
  year: 2007
  article-title: Small sample size and data quality issues illustrated using tornado occurrence data
  publication-title: E‐Journal of Severe Storms Meteorology
– volume: 2
  start-page: 1
  year: 2021
  end-page: 14
  article-title: The effects of climate change on hailstorms
  publication-title: Nature Reviews Earth & Environment
– year: 2008
– volume: 25
  start-page: 369
  issue: 3
  year: 1993
  end-page: 388
  article-title: Severe thunderstorms in New South Wales: Climatology and means of assessing the impact of climate change
  publication-title: Climatic Change
– volume: 34
  start-page: 1699
  issue: 5
  year: 2014
  end-page: 1705
  article-title: Future convective environments using NARCCAP
  publication-title: International Journal of Climatology
– volume: 5
  start-page: 317
  issue: 4
  year: 2013
  end-page: 3311
  article-title: Rising variability in thunderstorm‐related U.S. losses as a reflection of changes in large‐scale thunderstorm forcing
  publication-title: Weather, Climate, and Society
– volume: 94
  start-page: 499
  issue: 4
  year: 2013
  end-page: 514
  article-title: Monitoring and understanding trends in extreme storms: State of knowledge
  publication-title: Bulletin of the American Meteorological Society
– year: 2019b
– start-page: 432
  year: 2011
– year: 2019
– year: 2015
– volume: 19
  start-page: 1357
  issue: 12
  year: 1999
  end-page: 1373
  article-title: A note on Canada’s hail climatology: 1977–1993
  publication-title: International Journal of Climatology: A Journal of the Royal Meteorological Society
– volume: 184
  start-page: 126
  year: 2017
  end-page: 138
  article-title: Climatology of destructive hailstorms in brazil
  publication-title: Atmospheric Research
– volume: 55
  start-page: 383
  issue: 1
  year: 2020
  end-page: 408
  article-title: Changes in the convective population and thermodynamic environments in convection‐permitting regional climate simulations over the United States
  publication-title: Climate Dynamics
– volume: 102
  start-page: E296
  issue: 2
  year: 2021
  end-page: E322
  article-title: Differing trends in United States and European severe thunderstorm environments in a warming climate
  publication-title: Bulletin of the American Meteorological Society
– volume: 27
  start-page: 3827
  issue: 10
  year: 2014a
  end-page: 3847
  article-title: Future Australian severe thunderstorm environments. Part I: A novel evaluation and climatology of convective parameters from two climate models for the late twentieth century
  publication-title: Journal of Climate
– volume: 18
  start-page: 530
  issue: 3
  year: 2003
  end-page: 535
  article-title: Refined supercell and tornado forecast parameters
  publication-title: Weather and Forecasting
– volume: 110
  start-page: 16361
  issue: 41
  year: 2013
  end-page: 16366
  article-title: Robust increases in severe thunderstorm environments in response to greenhouse forcing
  publication-title: Proceedings of the National Academy of Sciences
– volume: 49
  start-page: 2161
  issue: 5
  year: 2017
  end-page: 2178
  article-title: A climatology of potential severe convective environments across South Africa
  publication-title: Climate Dynamics
– volume: 34
  start-page: 1259
  issue: 4
  year: 2021
  end-page: 1272
  article-title: Trends in the extremes of environments associated with severe us thunderstorms
  publication-title: Journal of Climate
– volume: 42
  start-page: 4224
  issue: 10
  year: 2015
  end-page: 4231
  article-title: Changes in the seasonality of tornado and favorable genesis conditions in the central United States
  publication-title: Geophysical Research Letters
– start-page: 1029
  year: 2013
  end-page: 1136
– volume: 137
  start-page: 553
  issue: 656
  year: 2011
  end-page: 597
  article-title: The era‐interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: The Quarterly Journal of the Royal Meteorological Society
– volume: 83
  start-page: 294
  issue: 2
  year: 2007
  end-page: 305
  article-title: Climatological aspects of convective parameters from the NCAR/NCEP reanalysis
  publication-title: Atmospheric Research
– volume: 7
  issue: 1
  year: 2016
  article-title: Tornado outbreak variability follows Taylor’s power law of fluctuation scaling and increases dramatically with severity
  publication-title: Nature Communications
– year: 2016
– volume: 27
  start-page: 3848
  issue: 10
  year: 2014b
  end-page: 3868
  article-title: Future Australian severe thunderstorm environments. Part II: The influence of a strongly warming climate on convective environments
  publication-title: Journal of Climate
– volume: 41
  start-page: 262
  issue: 1
  year: 2021
  end-page: 277
  article-title: An ERA‐IInterim HAILCAST hail climatology for southern Africa
  publication-title: International Journal of Climatology
– volume: 151
  start-page: 555
  issue: 3
  year: 2018
  end-page: 571
  article-title: Storylines: An alternative approach to representing uncertainty in physical aspects of climate change
  publication-title: Climatic Change
– volume: 27
  start-page: 6581
  issue: 17
  year: 2014
  end-page: 6589
  article-title: Estimations of hazardous convective weather in the United States using dynamical downscaling
  publication-title: Journal of Climate
– year: 2012
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  end-page: 7
  article-title: Trends in United States large hail environments and observations
  publication-title: npj Climate and Atmospheric Science
– volume: 57
  year: 2020
  article-title: Projected changes to severe thunderstorm environments as a result of twenty‐first century warming from RegCM CORDEX‐CORE simulations
  publication-title: Climate Dynamics
– volume: 25
  start-page: 1933
  issue: 14
  year: 2005
  end-page: 1952
  article-title: The impact of climate change on hailstorms in southeastern Australia
  publication-title: International Journal of Climatology: A Journal of the Royal Meteorological Society
– volume: 354
  start-page: 1419
  issue: 6318
  year: 2016
  end-page: 1423
  article-title: More tornadoes in the most extreme us tornado outbreaks
  publication-title: Science
– volume: 129
  start-page: 307
  issue: 1
  year: 2015
  end-page: 321
  article-title: Downscaled estimates of late 21st century severe weather from CCSM3
  publication-title: Climatic Change
– volume: 123
  start-page: 211
  year: 2013
  end-page: 228
  article-title: Recent trends and variabilities of convective parameters relevant for hail events in Germany and Europe
  publication-title: Atmospheric Research
– start-page: 867
  year: 2013
  end-page: 952
– year: 2002
– year: 2020
– volume: 6
  issue: 26
  year: 2020
  article-title: Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 earth system models
  publication-title: Science Advances
– volume: 104
  start-page: 19719
  issue: 50
  year: 2007
  end-page: 19723
  article-title: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing
  publication-title: Proceedings of the National Academy of Sciences
– volume: 32
  start-page: 5493
  issue: 17
  year: 2019
  end-page: 5509
  article-title: Future changes in hail occurrence in the United States determined through convection‐permitting dynamical downscaling
  publication-title: Journal of Climate
– volume: 57
  start-page: 569
  issue: 3
  year: 2018
  end-page: 587
  article-title: Detecting severe weather trends using an additive regressive convective hazard model (AR‐CHAMO)
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 67–68
  start-page: 73
  year: 2003
  end-page: 94
  article-title: The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data
  publication-title: Atmospheric Research
– volume: 31
  start-page: 4281
  issue: 11
  year: 2018
  end-page: 4308
  article-title: Climatological aspects of convective parameters over europe: A comparison of era‐interim and sounding data
  publication-title: Journal of Climate
– volume: 114
  start-page: 11657
  issue: 44
  year: 2017
  end-page: 11662
  article-title: Increasing potential for intense tropical and subtropical thunderstorms under global warming
  publication-title: Proceedings of the National Academy of Sciences
– volume: 5
  issue: 1
  year: 2017
  article-title: xarray: N‐D labeled arrays and datasets in Python
  publication-title: Journal of Open Research Software
– volume: 120
  start-page: 3939
  issue: 9
  year: 2015
  end-page: 3956
  article-title: Development and application of a logistic model to estimate the past and future hail potential in Germany
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 4
  start-page: 1
  issue: 1
  year: 2021
  end-page: 11
  article-title: Global climatology and trends in convective environments from ERA5 and rawinsonde data
  publication-title: npj Climate and Atmospheric Science
– volume: 27
  start-page: 2983
  year: 2014
  end-page: 2999
  article-title: An empirical relation between U.S. tornado activity and monthly environmental parameters
  publication-title: Journal of Climate
– volume: 30
  start-page: 10081
  issue: 24
  year: 2017
  end-page: 10100
  article-title: The impact of climate change on hazardous convective weather in the United States: Insight from high‐resolution dynamical downscaling
  publication-title: Journal of Climate
– year: 2013
– ident: e_1_2_13_49_1
  doi: 10.1002/2014RG000475
– ident: e_1_2_13_19_1
  doi: 10.1002/qj.828
– ident: e_1_2_13_78_1
  doi: 10.1175/JCLI-D-15-0623.1
– ident: e_1_2_13_53_1
  doi: 10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2
– ident: e_1_2_13_6_1
  doi: 10.1175/JCLI-D-13-00425.1
– ident: e_1_2_13_27_1
  doi: 10.1038/s41612-018-0048-2
– ident: e_1_2_13_38_1
  doi: 10.1002/2015GL063968
– volume-title: A fortran90 subroutine to calculate convective available potential energy (CAPE) from a sounding
  year: 2008
  ident: e_1_2_13_15_1
– ident: e_1_2_13_16_1
  doi: 10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2
– ident: e_1_2_13_28_1
  doi: 10.1175/JCLI-D-13-00777.1
– ident: e_1_2_13_50_1
  doi: 10.1175/JCLI-D-16-0777.1
– ident: e_1_2_13_74_1
  doi: 10.1029/2011GL050368
– ident: e_1_2_13_65_1
  doi: 10.1038/s41612-019-0103-7
– ident: e_1_2_13_9_1
  doi: 10.1016/j.atmosres.2019.104747
– ident: e_1_2_13_35_1
  doi: 10.1175/JCLI-D-19-0826.1
– volume: 56
  start-page: 1
  year: 2021
  ident: e_1_2_13_48_1
  article-title: Dynamic and thermodynamic impacts of climate change on organized convection in Alaska
  publication-title: Climate Dynamics
– volume-title: Pangeo‐data/xesmf: v0.5.3
  year: 2021
  ident: e_1_2_13_89_1
– start-page: 432
  volume-title: Mesoscale meteorology in midlatitudes
  year: 2011
  ident: e_1_2_13_39_1
– ident: e_1_2_13_51_1
  doi: 10.1175/JAMC-D-17-0132.1
– ident: e_1_2_13_5_1
  doi: 10.22499/2.6103.001
– ident: e_1_2_13_42_1
  doi: 10.1126/sciadv.aba1981
– ident: e_1_2_13_46_1
  doi: 10.1002/joc.1233
– ident: e_1_2_13_44_1
  doi: 10.1002/2014JD022959
– volume-title: MIROC MIROC6 model output prepared for CMIP6 ScenarioMIP ssp585
  year: 2019
  ident: e_1_2_13_61_1
– ident: e_1_2_13_76_1
  doi: 10.1073/pnas.0705494104
– ident: e_1_2_13_75_1
  doi: 10.1175/JCLI-D-13-00345.1
– ident: e_1_2_13_17_1
  doi: 10.1038/s41558-021-01011-y
– volume-title: xgcm/xgcm: v0.5.1
  year: 2020
  ident: e_1_2_13_2_1
– volume: 57
  year: 2020
  ident: e_1_2_13_31_1
  article-title: Projected changes to severe thunderstorm environments as a result of twenty‐first century warming from RegCM CORDEX‐CORE simulations
  publication-title: Climate Dynamics
– ident: e_1_2_13_58_1
  doi: 10.1175/JCLI-D-14-00382.1
– volume-title: MPI‐M MPI‐ESM1.2‐LR model output prepared for CMIP6 ScenarioMIP ssp585
  year: 2019
  ident: e_1_2_13_84_1
– volume-title: Attribution of extreme weather events in the context of climate change
  year: 2016
  ident: e_1_2_13_45_1
– ident: e_1_2_13_40_1
  doi: 10.1016/j.atmosres.2016.10.012
– ident: e_1_2_13_8_1
  doi: 10.1002/2014MS000397
– ident: e_1_2_13_14_1
  doi: 10.1016/S0169-8095(03)00045-0
– ident: e_1_2_13_26_1
  doi: 10.1017/CBO9781139177245
– volume-title: CNRM‐CERFACS CNRM‐ESM2‐1 model output prepared for CMIP6 CMIP historical
  year: 2018
  ident: e_1_2_13_59_1
– ident: e_1_2_13_66_1
  doi: 10.1175/BAMS-D-20-0004.1
– ident: e_1_2_13_77_1
  doi: 10.1029/2008GL036203
– ident: e_1_2_13_25_1
  doi: 10.5194/gmd-9-1937-2016
– ident: e_1_2_13_52_1
  doi: 10.1038/s41612-019-0083-7
– ident: e_1_2_13_70_1
  doi: 10.1007/s10584-013-1032-9
– volume-title: CNRM‐CERFACS CNRM‐CM6‐1 model output prepared for CMIP6 ScenarioMIP ssp585
  year: 2019
  ident: e_1_2_13_81_1
– volume-title: MPI‐M MPI‐ESM1.2‐LR model output prepared for CMIP6 CMIP historical
  year: 2019
  ident: e_1_2_13_83_1
– ident: e_1_2_13_43_1
  doi: 10.1016/j.atmosres.2012.05.016
– ident: e_1_2_13_3_1
  doi: 10.1109/MCSE.2021.3059437
– ident: e_1_2_13_20_1
  doi: 10.1073/pnas.1307758110
– ident: e_1_2_13_41_1
  doi: 10.1023/A:1005475717321
– ident: e_1_2_13_24_1
  doi: 10.1002/(SICI)1097-0088(199910)19:12<1357::AID-JOC422>3.0.CO;2-B
– volume-title: BCC BCC‐CSM2MR model output prepared for CMIP6 CMIP historical
  year: 2018
  ident: e_1_2_13_85_1
– start-page: 1029
  volume-title: Climate change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change
  year: 2013
  ident: e_1_2_13_18_1
– volume: 2
  issue: 5
  year: 2007
  ident: e_1_2_13_21_1
  article-title: Small sample size and data quality issues illustrated using tornado occurrence data
  publication-title: E‐Journal of Severe Storms Meteorology
– ident: e_1_2_13_32_1
  doi: 10.1007/BF01098382
– volume-title: CNRM‐CERFACS CNRM‐ESM2‐1 model output prepared for CMIP6 ScenarioMIP ssp585
  year: 2019
  ident: e_1_2_13_82_1
– ident: e_1_2_13_7_1
  doi: 10.1175/JCLI-D-13-00426.1
– ident: e_1_2_13_22_1
  doi: 10.1002/joc.6619
– ident: e_1_2_13_47_1
  doi: 10.5194/gmd-9-3461-2016
– ident: e_1_2_13_56_1
  doi: 10.25080/Majora-7b98e3ed-013
– ident: e_1_2_13_72_1
  doi: 10.1038/ncomms10668
– volume-title: MIROC MIROC6 model output prepared for CMIP6 CMIP historical
  year: 2018
  ident: e_1_2_13_69_1
– ident: e_1_2_13_12_1
  doi: 10.1038/nclimate3321
– ident: e_1_2_13_36_1
  doi: 10.1175/BAMS-D-11-00262.1
– ident: e_1_2_13_73_1
  doi: 10.1126/science.aah7393
– volume-title: MRI MRI‐ESM2.0 model output prepared for CMIP6 ScenarioMIP ssp585
  year: 2019
  ident: e_1_2_13_88_1
– ident: e_1_2_13_29_1
  doi: 10.1007/s10584-014-1320-z
– ident: e_1_2_13_62_1
  doi: 10.1073/pnas.1707603114
– ident: e_1_2_13_11_1
  doi: 10.1007/s00382-016-3434-7
– ident: e_1_2_13_30_1
  doi: 10.1002/joc.3769
– volume-title: BCC BCC‐CSM2MR model output prepared for CMIP6 ScenarioMIP ssp585
  year: 2019
  ident: e_1_2_13_86_1
– volume-title: CCCMA CANESM5 model output prepared for CMIP6 CMIP historical
  year: 2019
  ident: e_1_2_13_63_1
– ident: e_1_2_13_54_1
  doi: 10.1007/s00382-017-4000-7
– volume-title: CMIP6 simulations of the CNRM‐CERFACS based on CNRM‐CM6‐1 model for CMIP experiment historical
  year: 2018
  ident: e_1_2_13_80_1
– ident: e_1_2_13_60_1
  doi: 10.1007/s10584-018-2317-9
– volume-title: Tornadoes: A rising risk?
  year: 2013
  ident: e_1_2_13_37_1
– ident: e_1_2_13_67_1
  doi: 10.1038/s41612-021-00190-x
– volume-title: Atmospheric convection
  year: 1994
  ident: e_1_2_13_23_1
  doi: 10.1093/oso/9780195066302.001.0001
– volume-title: MRI MRI‐ESM2.0 model output prepared for CMIP6 CMIP historical
  year: 2019
  ident: e_1_2_13_87_1
– ident: e_1_2_13_13_1
  doi: 10.1016/j.atmosres.2005.08.005
– ident: e_1_2_13_55_1
  doi: 10.1038/s43017-020-00133-9
– ident: e_1_2_13_68_1
  doi: 10.1175/JCLI-D-17-0596.1
– ident: e_1_2_13_34_1
  doi: 10.5334/jors.148
– ident: e_1_2_13_57_1
  doi: 10.1175/WCAS-D-12-00023.1
– ident: e_1_2_13_33_1
  doi: 10.1175/JCLI-D-16-0885.1
– volume-title: 21st conf. on severe local storms
  year: 2002
  ident: e_1_2_13_71_1
– ident: e_1_2_13_79_1
  doi: 10.1175/JCLI-D-18-0740.1
– start-page: 867
  volume-title: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change
  year: 2013
  ident: e_1_2_13_10_1
– volume-title: CCCMA CANESM5 model output prepared for CMIP6 ScenarioMIP ssp585
  year: 2019
  ident: e_1_2_13_64_1
– ident: e_1_2_13_4_1
  doi: 10.1093/acrefore/9780190228620.013.62
SSID ssj0000970357
Score 2.4338179
Snippet The response of severe convective storms to a warming climate is poorly understood outside of a few well studied regions. Here, projections from seven global...
Abstract The response of severe convective storms to a warming climate is poorly understood outside of a few well studied regions. Here, projections from seven...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Archives & records
Climate change
Climate models
Convection
Convective available potential energy
Convective storms
Environment models
Global climate
Global climate models
Global temperatures
Global warming
Helicity
Northern Hemisphere
Potential energy
Precipitation
Proxies
Severe storms
Severe weather
Simulation
Storms
Temperature rise
Trends
Vertical wind shear
Weather
Wind shear
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ULl6MX0QUzQ560SyuW7e2JyNkC5pAiIGE29JPY0IAGf7_tqV8HeS6vS5N-97r772-_R4AD1CJTKeMhZGGMkRaZiExYXMYIyWgigUlyt7o9vpZd4Q-xunYJ9wqX1a59onOUcuZsDnyF0t1hQ36oPB1_hParlH2dtW30DgGdeOCiQm-6u28P_jcZFkiajQ6xb7iPYqpDfZhXjjmPLx3FjnK_j2cuYtW3XFTnIFTjxODt9XGnoMjNb0AjXz7W5p56e2yugRp4ahBghWDf9CxpeTOkQU7I6rgexp0eu-DLLAd0CbVFRgV-bDTDX1DhFAgy6TJECbIGBmCUhi7UTiSSnCRKWUJFwTnGGmRQZ1wiCWzxDwYSwkxp5ogLuOkAWrT2VRdgyBBArEEcSpxilgGidIGCvGMUS0Nhoqb4Hm9NKXwbOG2acWkdLfWMS13F7IJHjfS8xVLxj9ybbvKGxnLbe0ezBZfpTeVUkcyJZwwjigzs9RUYC04iTTikKVMN0FrvUelN7iq3KpHEzy5fTs4kTIvhjGF9Obwt27BiR21Kl9pgdpy8avuDAhZ8nuvaX-m9tgh
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDzosX8SdWp_SgF6XYdK9NctSxMoWJBwfeSn6KIFNW_f_NS-PcDgpe09cQ8vKSb359QsgZtbpypZRZ7qjJwJkq437anBVgNbWFFtziju7kvhpP4e6pfIoLbngXpuNDLBbcMDJCf40BLlUbYQPIyPSzdjqqAwKPrZMNvF2L7PwCHhZrLLnw7TnAPr1u4Bl4y3j23WdxtZzByqgU4P0rinNZt4aBp94mW1Exptedi3fImp3tkoPRzwU1_zFGaLtHyjpAQtKO5Z8O8VB56NLSpT_a9GWWDie3D1WKb6G9tvtkWo8eh-MsPo2QaUCmpgTGwYcbUKN9BFmWG6uVrqxF9IJWioHTFXUDRZmRiOhhzBjKlHAclCkGB6Q3e5vZQ5IOQIMcgBKGlSAryq3zokhVUjjj1VSRkMvvqml05Ibj8xWvTdi_LkSzXJEJOV9Yv3e8jF_sbrCWFzZIuQ4Jb_PnJgZN43JTcsWlAiF9KZ3QzGnFcweKylK6hPS_fdTE0GsbZKIxL1MFTchF8NufBWlG9WMhqDj6j_Ex2cTk7lhLn_Q-5p_2xIuTD3UaWuAXBdrYgA
  priority: 102
  providerName: Wiley-Blackwell
Title Future Global Convective Environments in CMIP6 Models
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021EF002277
https://www.proquest.com/docview/2612756591
https://doaj.org/article/f0d58b8ab49a4c4f9c7fcb80f4b1a5af
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB60XryIr2K1lhz0ogSzySabPdqSUIWWIi30FvYJQoli6v93d5PW9KBevCabMMzszHzDzn4DcIOUSHTMmB9oJH2sZeKnpmz2Q6wEUqGgqbInupNpMl7g52W8bI36sj1hNT1wrbgHHcg45SnjmDIssKaCaMHTQGOOWMy0jb4m57WKKReDqdnJMWk63YOQ2iIfZbljzCM7OchR9e_gyzZKdWkmP4ajBh96j7VcJ7CnylPoZt_X0czLxh-rM4hzRwni1cz93si2kLsA5rW-qLzX0htNnmaJZyefrapzWOTZfDT2m0EIvsCWQZNhkmLjXBhJYfxFkUAqwUWilCVaEJwTrEWCdMQRkcwS8hAiJSKc6hRzGUZd6JRvpboALzI6ZBHmVJIYswSlShsIxBNGtTTYKezB_UY1hWhYwu2wilXhTqtDWrQV2YPb7er3mh3jh3VDq-XtGstp7R4YSxeNpYu_LN2D_sZGReNoVWEZ0IgBpRT14M7Z7VdBiiyfhxTRy_8Q6AoO7b_r5pY-dNYfn-raQJQ1H8B-iGcDOBhm09nLwO3NLxYv46M
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V2wNcEF8VCwV8oBdQRJw4cXxAiC6Jdml3VaGt1JvxJ0KqdktThPhT_EY8TrLdHuit12RiRePn8dgevwfwhjpT-kKpJPXUJszbMqnCsjnJmDPUZUZUDk9054tyesq-nBVnO_B3uAuDZZVDTIyB2q4N7pG_R6orHrIPQT9e_ExQNQpPVwcJjQ4WR-7P77Bkaz_MPof-Pciypl5OpkmvKpAYhnSUivGKBaQyak0An-OpdUab0jlkLTBac-ZNSX2uKbcK2W04t5ZyLXzFtEWigxDyd1keljIj2D2sFydfN7s6wTzNC95X2KeZwM0FWjeRqY_fmPuiRMCNvHY7O47TW_MQHvR5KfnUAekR7LjVY9irr6_BhZd9HGifQNFEKhLSKQaQCZaux8BJtr5oyY8VmcxnJyVBxbXz9imc3omr9mC0Wq_cMyA5M0zlTAvLC6ZKWjkfUi9dKuFtyNmyMbwbXCNNz06OIhnnMp6SZ0JuO3IMBxvri46V4z92h-jljQ1yaccH68vvsh-a0qe2qHSlNBMq_KUXhnujq9QzTVWh_Bj2hz6S_QBv5TUcx_A29tutPyLrZpkJKp7f3tZruDddzo_l8Wxx9ALuYwtd6cw-jK4uf7mXIQG60q961BH4dtdA_wfpuRUl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB2hRap6qaAt6vLR-lAuRRFx1onjA6rKkogtZbVCIHFz_YmQ0C4QEOKv8etqO86yHMqNazKxovHzeGyP3wP4jo0qbC5EklqsE2J1kZRu2ZxkxChsMsVK4090j8fF4Rn5fZ6fL8FTdxfGl1V2MTEEaj1Tfo9811NdUZd9MLxrY1nE5KD-eX2TeAUpf9LayWm0EDkyjw9u-dbsjQ5cX29nWV2dDg-TqDCQKOKpKQWhJXGoJVgrB0RDU22UVIUxnsFASUmJVQW2A4mpFp7phlKtMZXMlkRqT3rgwv8ydauitAfL-9V4cjLf4XHm6SCnsdo-zZjfaMBVHVj76It5MMgFvMhxFzPlMNXVK_Ah5qjoVwuqVVgy04-wVj1fiXMvY0xoPkFeB1oS1KoHoKEvYw9BFC180aDLKRoejyYF8uprV81nOHsTV61Bbzqbmi-ABkQRMSCSaZoTUeDSWJeGyUIwq13-lvVhp3MNV5Gp3AtmXPFwYp4xvujIPmzPra9bho7_2O17L89tPK92eDC7veBxmHKb6ryUpZCECfeXlilqlSxTSyQWubB92Oz6iMfB3vBnaPbhR-i3V3-EV_VpxjBbf72tb_DOAZz_GY2PNuC9b6CtotmE3t3tvdlyudCd_BpBh-DvW-P8H9JjGVo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Future+Global+Convective+Environments+in+CMIP6+Models&rft.jtitle=Earth%27s+future&rft.au=Chiara+Lepore&rft.au=Ryan+Abernathey&rft.au=Naomi+Henderson&rft.au=John+T.+Allen&rft.date=2021-12-01&rft.pub=Wiley&rft.eissn=2328-4277&rft.volume=9&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021EF002277&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f0d58b8ab49a4c4f9c7fcb80f4b1a5af
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon