Dynamic tracking of life cycle carbon emissions in power grids based on a flow network model

This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model a...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 26990 - 11
Main Authors Wang, Chengwei, Li, Pei, Yang, Zhiyuan, Wang, Haijin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model allocates emissions from generators to loads and power lines, incorporating life cycle emissions and eliminating matrix inversion. Validated via a 24-hour simulation on the IEEE 30-bus system, results demonstrate significant fluctuations in emission factors driven by renewable generation variability. Loads near renewables achieve near-zero emission factors during peak green generation, while loads remote from renewable sources exhibit weaker responses. The grid-level emission factor, inversely correlates with renewable output, reaching minimum during the highest renewable penetration. Furthermore, the model reveals that transmission losses contribute marginally to total emissions compared to loads, emphasizing the need for demand-side optimisation. This framework enables dynamic carbon-aware grid operations, such as aligning consumption with renewable availability and prioritizing low-loss pathways. By incorporating life cycle emissions, the model provides critical insights for sustainable grid planning, highlighting trade-offs between renewable deployment, storage integration, and emission reduction costs. The methodology’s scalability and compatibility with both transmission and distribution networks position it as a robust tool for advancing analysis of low-carbon power systems.
AbstractList This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model allocates emissions from generators to loads and power lines, incorporating life cycle emissions and eliminating matrix inversion. Validated via a 24-hour simulation on the IEEE 30-bus system, results demonstrate significant fluctuations in emission factors driven by renewable generation variability. Loads near renewables achieve near-zero emission factors during peak green generation, while loads remote from renewable sources exhibit weaker responses. The grid-level emission factor, inversely correlates with renewable output, reaching minimum during the highest renewable penetration. Furthermore, the model reveals that transmission losses contribute marginally to total emissions compared to loads, emphasizing the need for demand-side optimisation. This framework enables dynamic carbon-aware grid operations, such as aligning consumption with renewable availability and prioritizing low-loss pathways. By incorporating life cycle emissions, the model provides critical insights for sustainable grid planning, highlighting trade-offs between renewable deployment, storage integration, and emission reduction costs. The methodology’s scalability and compatibility with both transmission and distribution networks position it as a robust tool for advancing analysis of low-carbon power systems.
This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model allocates emissions from generators to loads and power lines, incorporating life cycle emissions and eliminating matrix inversion. Validated via a 24-hour simulation on the IEEE 30-bus system, results demonstrate significant fluctuations in emission factors driven by renewable generation variability. Loads near renewables achieve near-zero emission factors during peak green generation, while loads remote from renewable sources exhibit weaker responses. The grid-level emission factor, inversely correlates with renewable output, reaching minimum during the highest renewable penetration. Furthermore, the model reveals that transmission losses contribute marginally to total emissions compared to loads, emphasizing the need for demand-side optimisation. This framework enables dynamic carbon-aware grid operations, such as aligning consumption with renewable availability and prioritizing low-loss pathways. By incorporating life cycle emissions, the model provides critical insights for sustainable grid planning, highlighting trade-offs between renewable deployment, storage integration, and emission reduction costs. The methodology's scalability and compatibility with both transmission and distribution networks position it as a robust tool for advancing analysis of low-carbon power systems.This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model allocates emissions from generators to loads and power lines, incorporating life cycle emissions and eliminating matrix inversion. Validated via a 24-hour simulation on the IEEE 30-bus system, results demonstrate significant fluctuations in emission factors driven by renewable generation variability. Loads near renewables achieve near-zero emission factors during peak green generation, while loads remote from renewable sources exhibit weaker responses. The grid-level emission factor, inversely correlates with renewable output, reaching minimum during the highest renewable penetration. Furthermore, the model reveals that transmission losses contribute marginally to total emissions compared to loads, emphasizing the need for demand-side optimisation. This framework enables dynamic carbon-aware grid operations, such as aligning consumption with renewable availability and prioritizing low-loss pathways. By incorporating life cycle emissions, the model provides critical insights for sustainable grid planning, highlighting trade-offs between renewable deployment, storage integration, and emission reduction costs. The methodology's scalability and compatibility with both transmission and distribution networks position it as a robust tool for advancing analysis of low-carbon power systems.
Abstract This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model allocates emissions from generators to loads and power lines, incorporating life cycle emissions and eliminating matrix inversion. Validated via a 24-hour simulation on the IEEE 30-bus system, results demonstrate significant fluctuations in emission factors driven by renewable generation variability. Loads near renewables achieve near-zero emission factors during peak green generation, while loads remote from renewable sources exhibit weaker responses. The grid-level emission factor, inversely correlates with renewable output, reaching minimum during the highest renewable penetration. Furthermore, the model reveals that transmission losses contribute marginally to total emissions compared to loads, emphasizing the need for demand-side optimisation. This framework enables dynamic carbon-aware grid operations, such as aligning consumption with renewable availability and prioritizing low-loss pathways. By incorporating life cycle emissions, the model provides critical insights for sustainable grid planning, highlighting trade-offs between renewable deployment, storage integration, and emission reduction costs. The methodology’s scalability and compatibility with both transmission and distribution networks position it as a robust tool for advancing analysis of low-carbon power systems.
ArticleNumber 26990
Author Wang, Haijin
Li, Pei
Wang, Chengwei
Yang, Zhiyuan
Author_xml – sequence: 1
  givenname: Chengwei
  surname: Wang
  fullname: Wang, Chengwei
  email: chengwei.wang@hotmail.com
  organization: Energy Development Research Institute, CSG
– sequence: 2
  givenname: Pei
  surname: Li
  fullname: Li, Pei
  organization: Energy Development Research Institute, CSG
– sequence: 3
  givenname: Zhiyuan
  surname: Yang
  fullname: Yang, Zhiyuan
  organization: Energy Development Research Institute, CSG
– sequence: 4
  givenname: Haijin
  surname: Wang
  fullname: Wang, Haijin
  organization: Energy Development Research Institute, CSG
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40707600$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVARLaV_gAOyxIVLYOKPODkhVFqoVIkL3JAsx54EbxN7sXdZ7b_H25TScsAH2_K8eZ55856ToxADEvKyhrc18PZdFrXs2gqYrKAFyav2CTlhIGTFOGNHD-7H5CznFZQlWSfq7hk5FqBANQAn5PvHfTCzt3STjL3xYaRxoJMfkNq9ncpuUh8Dxdnn7GPI1Ae6jjtMdEzeZdqbjI4WhKHDFHc04GYX0w2do8PpBXk6mCnj2d15Sr5dXnw9_1xdf_l0df7hurICSg9SggOHgxNWNgI5yKZRtmNDb1TdcC64qwFVx9B2DQwCheOsYW3rFC8B5KfkauF10az0OvnZpL2Oxuvbh5hGbdLGl3700HPLpFWiiCEEQKdaNwgDUGM5elW43i9c620_o7MYijLTI9LHkeB_6DH-0jVjHQA7MLy5Y0jx5xbzRhfxLE6TCRi3WXPGOZOqDKNAX_8DXcVtCkWrA4p1tWrUgfDVw5Lua_kzxQJgC8CmmHPC4R5Sgz64RS9u0cUt-tYtui1JfEnKBRxGTH___k_Wb3qjv84
Cites_doi 10.1016/j.jclepro.2018.02.309
10.3969/j.issn.1000-1026.2012.11.008
10.1016/j.apenergy.2024.122681
10.1016/j.energy.2015.05.106
10.1016/j.apenergy.2014.11.057
10.1038/s41598-024-82188-y
10.1016/j.rser.2017.03.078
10.1016/j.dss.2005.03.007
10.1016/j.renene.2022.02.054
10.7500/AEPS20170502011
10.1109/TII.2011.2173944
10.1016/j.enpol.2016.03.038
10.1016/j.apenergy.2021.117901
10.1016/j.apenergy.2014.08.071
10.1109/TPWRS.2021.3098479
10.1049/enc2.12078
10.1038/s41560-017-0032-9
10.1073/pnas.1312753111
10.1016/j.apenergy.2014.06.078
10.1109/TSG.2018.2830775
10.1016/j.enpol.2017.10.058
10.1016/j.scs.2024.105316
10.1209/0295-5075/118/58001
10.1017/CBO9780511810633
10.1109/CDC.2009.5400740
10.1109/TPWRS.2010.2051168
10.1016/j.apenergy.2017.08.119
10.1109/TPWRS.2018.2829021
10.13334/j.0258-8013.pcsee.220308
10.1191/0143624402bt044oa
10.1109/tpwrs.2023.3263844
10.1038/srep00479
10.1007/s11356-022-21297-5
10.1016/j.ijepes.2019.03.074
10.3389/fenrg.2022.959786
10.1017/9781316888568
10.1109/TSG.2015.2388695
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-08053-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic



PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_fb3c25c740524400978df4a001ef4ab7
PMC12290027
40707600
10_1038_s41598_025_08053_8
Genre Journal Article
GrantInformation_xml – fundername: CSG technology projects: ZBKJXM20232244, ZBKJXM20232245, ZBKJXM20232246
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
3V.
7XB
88A
8FK
AARCD
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c4098-550d0defd4c564e305667c92fba7163343d10e792ec960f4e4d326288d7310ee3
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:25:27 EDT 2025
Thu Aug 21 18:24:30 EDT 2025
Fri Jul 25 18:52:07 EDT 2025
Wed Aug 13 11:05:04 EDT 2025
Wed Jul 30 01:37:02 EDT 2025
Thu Jul 31 00:06:49 EDT 2025
Fri Jul 25 01:20:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Life cycle assessment
Markov chain
Flow network model
Power grids
Carbon emissions
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4098-550d0defd4c564e305667c92fba7163343d10e792ec960f4e4d326288d7310ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/fb3c25c740524400978df4a001ef4ab7
PMID 40707600
PQID 3232917677
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_fb3c25c740524400978df4a001ef4ab7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12290027
proquest_miscellaneous_3233257529
proquest_journals_3232917677
pubmed_primary_40707600
crossref_primary_10_1038_s41598_025_08053_8
springer_journals_10_1038_s41598_025_08053_8
PublicationCentury 2000
PublicationDate 20250724
PublicationDateYYYYMMDD 2025-07-24
PublicationDate_xml – month: 7
  year: 2025
  text: 20250724
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References C Wang (8053_CR24) 2017; 118
8053_CR26
8053_CR27
8053_CR28
C Kang (8053_CR1) 2012; 2
Y Li (8053_CR7) 2024; 359
8053_CR29
BW Ang (8053_CR9) 2016; 94
L Thurner (8053_CR38) 2018; 33
EG Hertwich (8053_CR16) 2015; 112
8053_CR41
N Scarlat (8053_CR10) 2022; 305
C Yang (8053_CR43) 2022; 10
H Zhuge (8053_CR25) 2006; 42
C Li (8053_CR40) 2023; 39
G Zhou (8053_CR21) 2019; 111
M Pehl (8053_CR14) 2017; 2
J Liu (8053_CR34) 2023; 4
C Kang (8053_CR2) 2015; 6
Y Zhu (8053_CR6) 2015; 88
8053_CR39
T Goh (8053_CR12) 2018; 113
Y Jiang (8053_CR33) 2025; 15
Y Cheng (8053_CR4) 2018; 10
8053_CR35
X Wu (8053_CR8) 2022; 29
8053_CR36
8053_CR30
KP Guddanti (8053_CR22) 2021; 37
8053_CR31
E Hitchin (8053_CR13) 2002; 23
8053_CR32
T Gibon (8053_CR18) 2017; 76
X Li (8053_CR42) 2018; 210
J Jin (8053_CR5) 2022; 188
I Khan (8053_CR11) 2018; 184
Y Zhou (8053_CR3) 2015; 140
A Dwivedi (8053_CR23) 2011; 9
RD Zimmerman (8053_CR37) 2010; 26
M Messagie (8053_CR15) 2014; 134
C Kang (8053_CR19) 2017; 41
T Zhou (8053_CR20) 2012; 36
R Turconi (8053_CR17) 2014; 132
References_xml – volume: 184
  start-page: 1091
  year: 2018
  ident: 8053_CR11
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.02.309
– volume: 36
  start-page: 44
  year: 2012
  ident: 8053_CR20
  publication-title: Automation of Electric Power Systems
  doi: 10.3969/j.issn.1000-1026.2012.11.008
– volume: 359
  year: 2024
  ident: 8053_CR7
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2024.122681
– ident: 8053_CR28
– ident: 8053_CR36
– volume: 88
  start-page: 636
  year: 2015
  ident: 8053_CR6
  publication-title: Energy
  doi: 10.1016/j.energy.2015.05.106
– volume: 140
  start-page: 350
  year: 2015
  ident: 8053_CR3
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2014.11.057
– volume: 15
  start-page: 2598
  year: 2025
  ident: 8053_CR33
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-82188-y
– volume: 76
  start-page: 1283
  year: 2017
  ident: 8053_CR18
  publication-title: Renewable and Sustainable Energy Reviews
  doi: 10.1016/j.rser.2017.03.078
– volume: 42
  start-page: 571
  year: 2006
  ident: 8053_CR25
  publication-title: Decision support systems
  doi: 10.1016/j.dss.2005.03.007
– volume: 188
  start-page: 425
  year: 2022
  ident: 8053_CR5
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2022.02.054
– volume: 41
  start-page: 10
  year: 2017
  ident: 8053_CR19
  publication-title: Dianli Xitong Zidonghua/Automation of Electric Power Systems
  doi: 10.7500/AEPS20170502011
– volume: 9
  start-page: 81
  year: 2011
  ident: 8053_CR23
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2011.2173944
– volume: 94
  start-page: 56
  year: 2016
  ident: 8053_CR9
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2016.03.038
– volume: 305
  year: 2022
  ident: 8053_CR10
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2021.117901
– volume: 134
  start-page: 469
  year: 2014
  ident: 8053_CR15
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2014.08.071
– volume: 37
  start-page: 653
  year: 2021
  ident: 8053_CR22
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2021.3098479
– volume: 4
  start-page: 47
  year: 2023
  ident: 8053_CR34
  publication-title: Energy Conversion and Economics
  doi: 10.1049/enc2.12078
– volume: 2
  start-page: 939
  year: 2017
  ident: 8053_CR14
  publication-title: Nature Energy
  doi: 10.1038/s41560-017-0032-9
– volume: 112
  start-page: 6277
  year: 2015
  ident: 8053_CR16
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1312753111
– volume: 132
  start-page: 66
  year: 2014
  ident: 8053_CR17
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2014.06.078
– volume: 10
  start-page: 3562
  year: 2018
  ident: 8053_CR4
  publication-title: IEEE Transactions on Smart Grid
  doi: 10.1109/TSG.2018.2830775
– volume: 113
  start-page: 149
  year: 2018
  ident: 8053_CR12
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2017.10.058
– ident: 8053_CR32
  doi: 10.1016/j.scs.2024.105316
– volume: 118
  start-page: 58001
  year: 2017
  ident: 8053_CR24
  publication-title: Europhysics Letters
  doi: 10.1209/0295-5075/118/58001
– ident: 8053_CR29
– ident: 8053_CR31
  doi: 10.1017/CBO9780511810633
– ident: 8053_CR35
– ident: 8053_CR39
  doi: 10.1109/CDC.2009.5400740
– volume: 26
  start-page: 12
  year: 2010
  ident: 8053_CR37
  publication-title: IEEE Transactions on power systems
  doi: 10.1109/TPWRS.2010.2051168
– volume: 210
  start-page: 1219
  year: 2018
  ident: 8053_CR42
  publication-title: Applied energy
  doi: 10.1016/j.apenergy.2017.08.119
– ident: 8053_CR27
– volume: 33
  start-page: 6510
  year: 2018
  ident: 8053_CR38
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2018.2829021
– ident: 8053_CR41
  doi: 10.13334/j.0258-8013.pcsee.220308
– volume: 23
  start-page: 215
  year: 2002
  ident: 8053_CR13
  publication-title: Building Services Engineering Research and Technology
  doi: 10.1191/0143624402bt044oa
– volume: 39
  start-page: 1287
  year: 2023
  ident: 8053_CR40
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/tpwrs.2023.3263844
– volume: 2
  start-page: 479
  year: 2012
  ident: 8053_CR1
  publication-title: Scientific reports
  doi: 10.1038/srep00479
– volume: 29
  start-page: 78345
  year: 2022
  ident: 8053_CR8
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-022-21297-5
– volume: 111
  start-page: 34
  year: 2019
  ident: 8053_CR21
  publication-title: International Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2019.03.074
– volume: 10
  year: 2022
  ident: 8053_CR43
  publication-title: Frontiers in Energy Research
  doi: 10.3389/fenrg.2022.959786
– ident: 8053_CR26
  doi: 10.1017/9781316888568
– ident: 8053_CR30
– volume: 6
  start-page: 2386
  year: 2015
  ident: 8053_CR2
  publication-title: IEEE transactions on smart grid
  doi: 10.1109/TSG.2015.2388695
SSID ssj0000529419
Score 2.4528015
Snippet This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming...
Abstract This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 26990
SubjectTerms 639/166/987
639/4077/909/4101
639/4077/909/4110
Buses
Carbon
Carbon cycle
Carbon emissions
Carbon footprint
Climate change
Consumption
Electricity distribution
Electricity generation
Emissions
Emissions control
Energy
Flow network model
Fossil fuels
Greenhouse gases
Humanities and Social Sciences
Industrial plant emissions
Life cycle assessment
Life cycles
Markov chain
Markov chains
multidisciplinary
Nuclear power plants
Power grids
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7alEIvIUlfzgsVemtFvJZs2aeQNgmh0J4a2ENB6JkuBHu7Tgj595mRvRu2r5PBEkYejTTfzEjfALxXjcoN4lYec-e5NNZyI6LnPrqqzq1oQiJ7_vqturiUX6bldAy49eOxyuWemDZq3zmKkR8JNP3oWlRKHc9_caoaRdnVsYTGU3hG1GWk1WqqVjEWymLJSTPelclFfdSjvaI7ZUXJESqVgtdr9ijR9v8Na_55ZPK3vGkyR-dbsDniSHYyTPw2PAntDjwfKkvev4Qfp0OleYafcRQNZ11k17MYmLvH_syZhe1aRsXeKFzWs1nL5lQwjV0tZr5nZNw8wx6GxevujrXDaXGWCue8gsvzs--fL_hYSIE7SXyh6IX43IfopSsrGchrqJRrimgNuktCSOEneVBNERw6NFEG6RHVFXXtFaK_EMRr2Gi7NrwFpvIytwE3eKEc8cpYG21T-rIxIRRG-gw-LMWp5wNfhk55blHrQfgaha-T8HWdwSeS-KoncV2nF93iSo9LR0crXFE6hdASsUi6eOKjNGhfAz6symB_OV96XIC9flSXDN6tmlGolA8xbehuUx-BOxYqSQZvhuldjUQSDRKCwQzqtYlfG-p6Szv7mei5J0Shj95-Bh-XOvI4rn_LYvf_v7EHL4qktooXch82bha34QDx0I09TEr_ABumCCQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CLWD9Xq0TwTYN7SXaz-3hqSznQFy30QQj5mNSDslvuWqT_vZPs7slp-9Cnhc3sEmYmmd_k4zcA73SrS0u4lcfSB66sc9zKGHiIvm5KJ1vMZM9fv9XHJ2pxWp3ugJjuwuRD-5nSMk_T0-mwj2sKNOkymKg4YZxK8uYe7CWqdvLtvfl88X2xWVlJe1dq1o43ZErZ3PDxVhTKZP03Icz_D0r-s1uag9DRI3g4okc2H_q7DzvYPYb7Qz3J6yfw88tQX57Rb3xaA2d9ZOfLiMxfkzzzduX6jqUSb2mRbM2WHbtIZdLY2WoZ1iyFtMBIwrJ43v9m3XBGnOVyOU_h5Ojwx-djPpZP4F4lllDKPUIZMAblq1phyhVq7VsRnaUkSUolw6xE3Qr0lMZEhSoQlhNNEzRhPkT5DHa7vsMXwHRZlQ5pWpfaJzYZ56Jrq1C1FlFYFQp4P6nTXAwsGSbvbsvGDMo3pHyTlW-aAj4ljW8kE8N1ftGvzsxocROd9KLymgAlIZB83SREZSmqIj2cLuBgspcZh93aSMKHlH_WmprfbppJqWkXxHbYX2UZSfMUOUkBzwfzbnqiEvkRQcACmi3Db3V1u6Vb_sqk3LNEnE85fgEfJh_526_bdfHybuKv4IHIbqy5UAewe7m6wteEii7dm3EY_AHuPAdJ
  priority: 102
  providerName: Springer Nature
Title Dynamic tracking of life cycle carbon emissions in power grids based on a flow network model
URI https://link.springer.com/article/10.1038/s41598-025-08053-8
https://www.ncbi.nlm.nih.gov/pubmed/40707600
https://www.proquest.com/docview/3232917677
https://www.proquest.com/docview/3233257529
https://pubmed.ncbi.nlm.nih.gov/PMC12290027
https://doaj.org/article/fb3c25c740524400978df4a001ef4ab7
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFD5oRfBFvDu1LhF809DZJDOZedyuLWXBImphH4SQa10oM2W3Rfrve5LMrl0v-OJTIAlD-E6S851J8h2At7KVpUbeSkNpHRXaGKp5cNQFWzel4a1PYs8fT-rjUzGbV_Nbqb7inbAsD5yB2w-GW1ZZicQCPVF6duCC0Li7eixMekeOPu9WMJVVvVkrxu3wSqbkzf4KPVV8TcYqiiSp4rTZ8kRJsP9PLPP3y5K_nJgmR3T0CB4ODJJM8sgfwx3fPYH7Oafk9VP49iHnmCf4GRv_g5M-kPNF8MReY39i9dL0HYlp3uKPshVZdOQipkojZ8uFW5Ho1hzBHpqE8_4H6fI9cZJS5jyD06PDr9NjOqRQoFZEpVCMP1zpfHDCVrXwMV6opW1ZMBoDJc4Fd-PSy5Z5i6FMEF445HOsaZxE3uc9fw47Xd_5l0BkWZXG49bOpY2KMsYE01auarX3TAtXwLs1nOoiK2WodMLNG5XBVwi-SuCrpoCDiPimZ1S5ThVoezXYXv3L9gXsre2lhqW3Uhw5IsagtcTmN5tmBDWehOjO91epD8e9CidJAS-yeTcjEVEACWlgAc2W4beGut3SLb4nYe5xFM_HOL-A9-s58nNcf8di939g8QoesDS5JWViD3Yul1f-NfKlSzOCu3IuR3BvMpl9mWF5cHjy6TPWTuvpKC2bGw9bFRo
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJuUAkaCE0T12k6cHBACSrWlj1Mr7QHJxK-yUpVsN62q_VP8RsZOstXyuvUUKbYcZzz2fJ6x5wN4LUtJK8StqafGpqLSOq24t6n1Ji-o5qWLyZ4PDvPxsfg6ySZr8HO4CxOOVQ5rYlyobWOCj3yLo-nHrUUu5YfZWRpYo0J0daDQ6NRizy0uccvWvt_dxvF9w9jOl6PP47RnFUiNCMkzEZJbap23wmS5cAFC59KUzOsK9w6cC25H1MmSOYPo3gsnLEIcVhRWIhRyjmO7N-AmGl4aNntyIpc-nRA1E6Oyv5tDebHVon0Md9hYliI0y3harNi_SBPwN2z75xHN3-K00fzt3IO7PW4lHztFuw9rrn4Atzomy8VD-LbdMdsTbMYE7ztpPDmdekfMAusTU811U5NALhfccy2Z1mQWCNrIyXxqWxKMqSVYoyL-tLkkdXc6nUSinkdwfC0ifgzrdVO7p0Akzah2aFC4NCGPjdZel5nNyso5VgmbwNtBnGrW5edQMa7OC9UJX6HwVRS-KhL4FCS-rBlya8cXzfxE9VNVec0Ny4xEKIvYJ150sV5UaM8dPrRMYHMYL9VP-FZdqWcCr5bFKNQQf6lq11zEOhxXSFSSBJ50w7vsiQhplxB8JlCsDPxKV1dL6umPmA58FFL2U4YffjfoyFW__i2Ljf__xku4PT462Ff7u4d7z-AOiyosUyY2Yf18fuGeIxY71y_iBCDw_bpn3C_890M1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4g2aztxckCIsl21FFYVolIPSG78KitVybJpVe1f49cxdpKtltetp0iJlTjz8Hz22PMBvBSFSErErbFLtIl5qVRcMmdi43SWJ4oVNhR7_jzNdg_5x6P0aAN-9mdh_LbKfkwMA7WptV8jHzIM_Ti1yIQYum5bxMF48m7-I_YMUj7T2tNptCayb5cXOH1r3u6NUdevKJ3sfP2wG3cMA7HmvpAmwnOTGOsM12nGrYfTmdAFdarEeQRjnJlRYkVBrUak77jlBuEOzXMjEBZZy_C912BT-FnRADa3d6YHX1YrPD6HxkdFd1InYfmwwWjpT7TRNEaglrI4X4uGgTTgb0j3zw2bv2VtQzCc3IZbHYol71uzuwMbtroL11tey-U9-DZuee4Jvkb7tXhSO3I6c5boJbYnulyouiKeas4v1jVkVpG5p2sjJ4uZaYgPrYZgi5K40_qCVO1edRJoe-7D4ZUI-QEMqrqyj4CIJE2UxfDChPZVbZRyqkhNWpTW0pKbCF734pTztlqHDFl2lstW-BKFL4PwZR7Btpf4qqWvtB1u1IsT2TmudIppmmpUcYpIKBx7MY6XGN0tXpSIYKvXl-zcv5GXxhrBi9VjFKrPxpSVrc9DG4bjJRpJBA9b9a56wn0RJoSiEeRril_r6vqTavY9FAcf-QL-CcUPv-lt5LJf_5bF4___xnO4gd4mP-1N95_ATRosWMSUb8HgbHFunyIwO1PPOg8gcHzVTvcLwURI0A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+tracking+of+life+cycle+carbon+emissions+in+power+grids+based+on+a+flow+network+model&rft.jtitle=Scientific+reports&rft.au=Chengwei+Wang&rft.au=Pei+Li&rft.au=Zhiyuan+Yang&rft.au=Haijin+Wang&rft.date=2025-07-24&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41598-025-08053-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fb3c25c740524400978df4a001ef4ab7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon