Dynamic tracking of life cycle carbon emissions in power grids based on a flow network model
This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model a...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 26990 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model allocates emissions from generators to loads and power lines, incorporating life cycle emissions and eliminating matrix inversion. Validated via a 24-hour simulation on the IEEE 30-bus system, results demonstrate significant fluctuations in emission factors driven by renewable generation variability. Loads near renewables achieve near-zero emission factors during peak green generation, while loads remote from renewable sources exhibit weaker responses. The grid-level emission factor, inversely correlates with renewable output, reaching minimum during the highest renewable penetration. Furthermore, the model reveals that transmission losses contribute marginally to total emissions compared to loads, emphasizing the need for demand-side optimisation. This framework enables dynamic carbon-aware grid operations, such as aligning consumption with renewable availability and prioritizing low-loss pathways. By incorporating life cycle emissions, the model provides critical insights for sustainable grid planning, highlighting trade-offs between renewable deployment, storage integration, and emission reduction costs. The methodology’s scalability and compatibility with both transmission and distribution networks position it as a robust tool for advancing analysis of low-carbon power systems. |
---|---|
AbstractList | This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model allocates emissions from generators to loads and power lines, incorporating life cycle emissions and eliminating matrix inversion. Validated via a 24-hour simulation on the IEEE 30-bus system, results demonstrate significant fluctuations in emission factors driven by renewable generation variability. Loads near renewables achieve near-zero emission factors during peak green generation, while loads remote from renewable sources exhibit weaker responses. The grid-level emission factor, inversely correlates with renewable output, reaching minimum during the highest renewable penetration. Furthermore, the model reveals that transmission losses contribute marginally to total emissions compared to loads, emphasizing the need for demand-side optimisation. This framework enables dynamic carbon-aware grid operations, such as aligning consumption with renewable availability and prioritizing low-loss pathways. By incorporating life cycle emissions, the model provides critical insights for sustainable grid planning, highlighting trade-offs between renewable deployment, storage integration, and emission reduction costs. The methodology’s scalability and compatibility with both transmission and distribution networks position it as a robust tool for advancing analysis of low-carbon power systems. This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model allocates emissions from generators to loads and power lines, incorporating life cycle emissions and eliminating matrix inversion. Validated via a 24-hour simulation on the IEEE 30-bus system, results demonstrate significant fluctuations in emission factors driven by renewable generation variability. Loads near renewables achieve near-zero emission factors during peak green generation, while loads remote from renewable sources exhibit weaker responses. The grid-level emission factor, inversely correlates with renewable output, reaching minimum during the highest renewable penetration. Furthermore, the model reveals that transmission losses contribute marginally to total emissions compared to loads, emphasizing the need for demand-side optimisation. This framework enables dynamic carbon-aware grid operations, such as aligning consumption with renewable availability and prioritizing low-loss pathways. By incorporating life cycle emissions, the model provides critical insights for sustainable grid planning, highlighting trade-offs between renewable deployment, storage integration, and emission reduction costs. The methodology's scalability and compatibility with both transmission and distribution networks position it as a robust tool for advancing analysis of low-carbon power systems.This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model allocates emissions from generators to loads and power lines, incorporating life cycle emissions and eliminating matrix inversion. Validated via a 24-hour simulation on the IEEE 30-bus system, results demonstrate significant fluctuations in emission factors driven by renewable generation variability. Loads near renewables achieve near-zero emission factors during peak green generation, while loads remote from renewable sources exhibit weaker responses. The grid-level emission factor, inversely correlates with renewable output, reaching minimum during the highest renewable penetration. Furthermore, the model reveals that transmission losses contribute marginally to total emissions compared to loads, emphasizing the need for demand-side optimisation. This framework enables dynamic carbon-aware grid operations, such as aligning consumption with renewable availability and prioritizing low-loss pathways. By incorporating life cycle emissions, the model provides critical insights for sustainable grid planning, highlighting trade-offs between renewable deployment, storage integration, and emission reduction costs. The methodology's scalability and compatibility with both transmission and distribution networks position it as a robust tool for advancing analysis of low-carbon power systems. Abstract This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming grids into directed graphs with virtual sink nodes for transmission losses. Using Markov chain-based probabilistic flow analysis, the model allocates emissions from generators to loads and power lines, incorporating life cycle emissions and eliminating matrix inversion. Validated via a 24-hour simulation on the IEEE 30-bus system, results demonstrate significant fluctuations in emission factors driven by renewable generation variability. Loads near renewables achieve near-zero emission factors during peak green generation, while loads remote from renewable sources exhibit weaker responses. The grid-level emission factor, inversely correlates with renewable output, reaching minimum during the highest renewable penetration. Furthermore, the model reveals that transmission losses contribute marginally to total emissions compared to loads, emphasizing the need for demand-side optimisation. This framework enables dynamic carbon-aware grid operations, such as aligning consumption with renewable availability and prioritizing low-loss pathways. By incorporating life cycle emissions, the model provides critical insights for sustainable grid planning, highlighting trade-offs between renewable deployment, storage integration, and emission reduction costs. The methodology’s scalability and compatibility with both transmission and distribution networks position it as a robust tool for advancing analysis of low-carbon power systems. |
ArticleNumber | 26990 |
Author | Wang, Haijin Li, Pei Wang, Chengwei Yang, Zhiyuan |
Author_xml | – sequence: 1 givenname: Chengwei surname: Wang fullname: Wang, Chengwei email: chengwei.wang@hotmail.com organization: Energy Development Research Institute, CSG – sequence: 2 givenname: Pei surname: Li fullname: Li, Pei organization: Energy Development Research Institute, CSG – sequence: 3 givenname: Zhiyuan surname: Yang fullname: Yang, Zhiyuan organization: Energy Development Research Institute, CSG – sequence: 4 givenname: Haijin surname: Wang fullname: Wang, Haijin organization: Energy Development Research Institute, CSG |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40707600$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtVARLaV_gAOyxIVLYOKPODkhVFqoVIkL3JAsx54EbxN7sXdZ7b_H25TScsAH2_K8eZ55856ToxADEvKyhrc18PZdFrXs2gqYrKAFyav2CTlhIGTFOGNHD-7H5CznFZQlWSfq7hk5FqBANQAn5PvHfTCzt3STjL3xYaRxoJMfkNq9ncpuUh8Dxdnn7GPI1Ae6jjtMdEzeZdqbjI4WhKHDFHc04GYX0w2do8PpBXk6mCnj2d15Sr5dXnw9_1xdf_l0df7hurICSg9SggOHgxNWNgI5yKZRtmNDb1TdcC64qwFVx9B2DQwCheOsYW3rFC8B5KfkauF10az0OvnZpL2Oxuvbh5hGbdLGl3700HPLpFWiiCEEQKdaNwgDUGM5elW43i9c620_o7MYijLTI9LHkeB_6DH-0jVjHQA7MLy5Y0jx5xbzRhfxLE6TCRi3WXPGOZOqDKNAX_8DXcVtCkWrA4p1tWrUgfDVw5Lua_kzxQJgC8CmmHPC4R5Sgz64RS9u0cUt-tYtui1JfEnKBRxGTH___k_Wb3qjv84 |
Cites_doi | 10.1016/j.jclepro.2018.02.309 10.3969/j.issn.1000-1026.2012.11.008 10.1016/j.apenergy.2024.122681 10.1016/j.energy.2015.05.106 10.1016/j.apenergy.2014.11.057 10.1038/s41598-024-82188-y 10.1016/j.rser.2017.03.078 10.1016/j.dss.2005.03.007 10.1016/j.renene.2022.02.054 10.7500/AEPS20170502011 10.1109/TII.2011.2173944 10.1016/j.enpol.2016.03.038 10.1016/j.apenergy.2021.117901 10.1016/j.apenergy.2014.08.071 10.1109/TPWRS.2021.3098479 10.1049/enc2.12078 10.1038/s41560-017-0032-9 10.1073/pnas.1312753111 10.1016/j.apenergy.2014.06.078 10.1109/TSG.2018.2830775 10.1016/j.enpol.2017.10.058 10.1016/j.scs.2024.105316 10.1209/0295-5075/118/58001 10.1017/CBO9780511810633 10.1109/CDC.2009.5400740 10.1109/TPWRS.2010.2051168 10.1016/j.apenergy.2017.08.119 10.1109/TPWRS.2018.2829021 10.13334/j.0258-8013.pcsee.220308 10.1191/0143624402bt044oa 10.1109/tpwrs.2023.3263844 10.1038/srep00479 10.1007/s11356-022-21297-5 10.1016/j.ijepes.2019.03.074 10.3389/fenrg.2022.959786 10.1017/9781316888568 10.1109/TSG.2015.2388695 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-08053-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_fb3c25c740524400978df4a001ef4ab7 PMC12290027 40707600 10_1038_s41598_025_08053_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: CSG technology projects: ZBKJXM20232244, ZBKJXM20232245, ZBKJXM20232246 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM 3V. 7XB 88A 8FK AARCD K9. M48 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c4098-550d0defd4c564e305667c92fba7163343d10e792ec960f4e4d326288d7310ee3 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:25:27 EDT 2025 Thu Aug 21 18:24:30 EDT 2025 Fri Jul 25 18:52:07 EDT 2025 Wed Aug 13 11:05:04 EDT 2025 Wed Jul 30 01:37:02 EDT 2025 Thu Jul 31 00:06:49 EDT 2025 Fri Jul 25 01:20:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Life cycle assessment Markov chain Flow network model Power grids Carbon emissions |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4098-550d0defd4c564e305667c92fba7163343d10e792ec960f4e4d326288d7310ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/fb3c25c740524400978df4a001ef4ab7 |
PMID | 40707600 |
PQID | 3232917677 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fb3c25c740524400978df4a001ef4ab7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12290027 proquest_miscellaneous_3233257529 proquest_journals_3232917677 pubmed_primary_40707600 crossref_primary_10_1038_s41598_025_08053_8 springer_journals_10_1038_s41598_025_08053_8 |
PublicationCentury | 2000 |
PublicationDate | 20250724 |
PublicationDateYYYYMMDD | 2025-07-24 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250724 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | C Wang (8053_CR24) 2017; 118 8053_CR26 8053_CR27 8053_CR28 C Kang (8053_CR1) 2012; 2 Y Li (8053_CR7) 2024; 359 8053_CR29 BW Ang (8053_CR9) 2016; 94 L Thurner (8053_CR38) 2018; 33 EG Hertwich (8053_CR16) 2015; 112 8053_CR41 N Scarlat (8053_CR10) 2022; 305 C Yang (8053_CR43) 2022; 10 H Zhuge (8053_CR25) 2006; 42 C Li (8053_CR40) 2023; 39 G Zhou (8053_CR21) 2019; 111 M Pehl (8053_CR14) 2017; 2 J Liu (8053_CR34) 2023; 4 C Kang (8053_CR2) 2015; 6 Y Zhu (8053_CR6) 2015; 88 8053_CR39 T Goh (8053_CR12) 2018; 113 Y Jiang (8053_CR33) 2025; 15 Y Cheng (8053_CR4) 2018; 10 8053_CR35 X Wu (8053_CR8) 2022; 29 8053_CR36 8053_CR30 KP Guddanti (8053_CR22) 2021; 37 8053_CR31 E Hitchin (8053_CR13) 2002; 23 8053_CR32 T Gibon (8053_CR18) 2017; 76 X Li (8053_CR42) 2018; 210 J Jin (8053_CR5) 2022; 188 I Khan (8053_CR11) 2018; 184 Y Zhou (8053_CR3) 2015; 140 A Dwivedi (8053_CR23) 2011; 9 RD Zimmerman (8053_CR37) 2010; 26 M Messagie (8053_CR15) 2014; 134 C Kang (8053_CR19) 2017; 41 T Zhou (8053_CR20) 2012; 36 R Turconi (8053_CR17) 2014; 132 |
References_xml | – volume: 184 start-page: 1091 year: 2018 ident: 8053_CR11 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.02.309 – volume: 36 start-page: 44 year: 2012 ident: 8053_CR20 publication-title: Automation of Electric Power Systems doi: 10.3969/j.issn.1000-1026.2012.11.008 – volume: 359 year: 2024 ident: 8053_CR7 publication-title: Applied Energy doi: 10.1016/j.apenergy.2024.122681 – ident: 8053_CR28 – ident: 8053_CR36 – volume: 88 start-page: 636 year: 2015 ident: 8053_CR6 publication-title: Energy doi: 10.1016/j.energy.2015.05.106 – volume: 140 start-page: 350 year: 2015 ident: 8053_CR3 publication-title: Applied Energy doi: 10.1016/j.apenergy.2014.11.057 – volume: 15 start-page: 2598 year: 2025 ident: 8053_CR33 publication-title: Scientific Reports doi: 10.1038/s41598-024-82188-y – volume: 76 start-page: 1283 year: 2017 ident: 8053_CR18 publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2017.03.078 – volume: 42 start-page: 571 year: 2006 ident: 8053_CR25 publication-title: Decision support systems doi: 10.1016/j.dss.2005.03.007 – volume: 188 start-page: 425 year: 2022 ident: 8053_CR5 publication-title: Renewable Energy doi: 10.1016/j.renene.2022.02.054 – volume: 41 start-page: 10 year: 2017 ident: 8053_CR19 publication-title: Dianli Xitong Zidonghua/Automation of Electric Power Systems doi: 10.7500/AEPS20170502011 – volume: 9 start-page: 81 year: 2011 ident: 8053_CR23 publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2011.2173944 – volume: 94 start-page: 56 year: 2016 ident: 8053_CR9 publication-title: Energy Policy doi: 10.1016/j.enpol.2016.03.038 – volume: 305 year: 2022 ident: 8053_CR10 publication-title: Applied Energy doi: 10.1016/j.apenergy.2021.117901 – volume: 134 start-page: 469 year: 2014 ident: 8053_CR15 publication-title: Applied Energy doi: 10.1016/j.apenergy.2014.08.071 – volume: 37 start-page: 653 year: 2021 ident: 8053_CR22 publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2021.3098479 – volume: 4 start-page: 47 year: 2023 ident: 8053_CR34 publication-title: Energy Conversion and Economics doi: 10.1049/enc2.12078 – volume: 2 start-page: 939 year: 2017 ident: 8053_CR14 publication-title: Nature Energy doi: 10.1038/s41560-017-0032-9 – volume: 112 start-page: 6277 year: 2015 ident: 8053_CR16 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1312753111 – volume: 132 start-page: 66 year: 2014 ident: 8053_CR17 publication-title: Applied Energy doi: 10.1016/j.apenergy.2014.06.078 – volume: 10 start-page: 3562 year: 2018 ident: 8053_CR4 publication-title: IEEE Transactions on Smart Grid doi: 10.1109/TSG.2018.2830775 – volume: 113 start-page: 149 year: 2018 ident: 8053_CR12 publication-title: Energy Policy doi: 10.1016/j.enpol.2017.10.058 – ident: 8053_CR32 doi: 10.1016/j.scs.2024.105316 – volume: 118 start-page: 58001 year: 2017 ident: 8053_CR24 publication-title: Europhysics Letters doi: 10.1209/0295-5075/118/58001 – ident: 8053_CR29 – ident: 8053_CR31 doi: 10.1017/CBO9780511810633 – ident: 8053_CR35 – ident: 8053_CR39 doi: 10.1109/CDC.2009.5400740 – volume: 26 start-page: 12 year: 2010 ident: 8053_CR37 publication-title: IEEE Transactions on power systems doi: 10.1109/TPWRS.2010.2051168 – volume: 210 start-page: 1219 year: 2018 ident: 8053_CR42 publication-title: Applied energy doi: 10.1016/j.apenergy.2017.08.119 – ident: 8053_CR27 – volume: 33 start-page: 6510 year: 2018 ident: 8053_CR38 publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2018.2829021 – ident: 8053_CR41 doi: 10.13334/j.0258-8013.pcsee.220308 – volume: 23 start-page: 215 year: 2002 ident: 8053_CR13 publication-title: Building Services Engineering Research and Technology doi: 10.1191/0143624402bt044oa – volume: 39 start-page: 1287 year: 2023 ident: 8053_CR40 publication-title: IEEE Transactions on Power Systems doi: 10.1109/tpwrs.2023.3263844 – volume: 2 start-page: 479 year: 2012 ident: 8053_CR1 publication-title: Scientific reports doi: 10.1038/srep00479 – volume: 29 start-page: 78345 year: 2022 ident: 8053_CR8 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-022-21297-5 – volume: 111 start-page: 34 year: 2019 ident: 8053_CR21 publication-title: International Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2019.03.074 – volume: 10 year: 2022 ident: 8053_CR43 publication-title: Frontiers in Energy Research doi: 10.3389/fenrg.2022.959786 – ident: 8053_CR26 doi: 10.1017/9781316888568 – ident: 8053_CR30 – volume: 6 start-page: 2386 year: 2015 ident: 8053_CR2 publication-title: IEEE transactions on smart grid doi: 10.1109/TSG.2015.2388695 |
SSID | ssj0000529419 |
Score | 2.4528015 |
Snippet | This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by transforming... Abstract This study introduces a flow network model to dynamically track carbon emissions in power grids, addressing limitations of traditional methods by... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 26990 |
SubjectTerms | 639/166/987 639/4077/909/4101 639/4077/909/4110 Buses Carbon Carbon cycle Carbon emissions Carbon footprint Climate change Consumption Electricity distribution Electricity generation Emissions Emissions control Energy Flow network model Fossil fuels Greenhouse gases Humanities and Social Sciences Industrial plant emissions Life cycle assessment Life cycles Markov chain Markov chains multidisciplinary Nuclear power plants Power grids Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7alEIvIUlfzgsVemtFvJZs2aeQNgmh0J4a2ENB6JkuBHu7Tgj595mRvRu2r5PBEkYejTTfzEjfALxXjcoN4lYec-e5NNZyI6LnPrqqzq1oQiJ7_vqturiUX6bldAy49eOxyuWemDZq3zmKkR8JNP3oWlRKHc9_caoaRdnVsYTGU3hG1GWk1WqqVjEWymLJSTPelclFfdSjvaI7ZUXJESqVgtdr9ijR9v8Na_55ZPK3vGkyR-dbsDniSHYyTPw2PAntDjwfKkvev4Qfp0OleYafcRQNZ11k17MYmLvH_syZhe1aRsXeKFzWs1nL5lQwjV0tZr5nZNw8wx6GxevujrXDaXGWCue8gsvzs--fL_hYSIE7SXyh6IX43IfopSsrGchrqJRrimgNuktCSOEneVBNERw6NFEG6RHVFXXtFaK_EMRr2Gi7NrwFpvIytwE3eKEc8cpYG21T-rIxIRRG-gw-LMWp5wNfhk55blHrQfgaha-T8HWdwSeS-KoncV2nF93iSo9LR0crXFE6hdASsUi6eOKjNGhfAz6symB_OV96XIC9flSXDN6tmlGolA8xbehuUx-BOxYqSQZvhuldjUQSDRKCwQzqtYlfG-p6Szv7mei5J0Shj95-Bh-XOvI4rn_LYvf_v7EHL4qktooXch82bha34QDx0I09TEr_ABumCCQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CLWD9Xq0TwTYN7SXaz-3hqSznQFy30QQj5mNSDslvuWqT_vZPs7slp-9Cnhc3sEmYmmd_k4zcA73SrS0u4lcfSB66sc9zKGHiIvm5KJ1vMZM9fv9XHJ2pxWp3ugJjuwuRD-5nSMk_T0-mwj2sKNOkymKg4YZxK8uYe7CWqdvLtvfl88X2xWVlJe1dq1o43ZErZ3PDxVhTKZP03Icz_D0r-s1uag9DRI3g4okc2H_q7DzvYPYb7Qz3J6yfw88tQX57Rb3xaA2d9ZOfLiMxfkzzzduX6jqUSb2mRbM2WHbtIZdLY2WoZ1iyFtMBIwrJ43v9m3XBGnOVyOU_h5Ojwx-djPpZP4F4lllDKPUIZMAblq1phyhVq7VsRnaUkSUolw6xE3Qr0lMZEhSoQlhNNEzRhPkT5DHa7vsMXwHRZlQ5pWpfaJzYZ56Jrq1C1FlFYFQp4P6nTXAwsGSbvbsvGDMo3pHyTlW-aAj4ljW8kE8N1ftGvzsxocROd9KLymgAlIZB83SREZSmqIj2cLuBgspcZh93aSMKHlH_WmprfbppJqWkXxHbYX2UZSfMUOUkBzwfzbnqiEvkRQcACmi3Db3V1u6Vb_sqk3LNEnE85fgEfJh_526_bdfHybuKv4IHIbqy5UAewe7m6wteEii7dm3EY_AHuPAdJ priority: 102 providerName: Springer Nature |
Title | Dynamic tracking of life cycle carbon emissions in power grids based on a flow network model |
URI | https://link.springer.com/article/10.1038/s41598-025-08053-8 https://www.ncbi.nlm.nih.gov/pubmed/40707600 https://www.proquest.com/docview/3232917677 https://www.proquest.com/docview/3233257529 https://pubmed.ncbi.nlm.nih.gov/PMC12290027 https://doaj.org/article/fb3c25c740524400978df4a001ef4ab7 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFD5oRfBFvDu1LhF809DZJDOZedyuLWXBImphH4SQa10oM2W3Rfrve5LMrl0v-OJTIAlD-E6S851J8h2At7KVpUbeSkNpHRXaGKp5cNQFWzel4a1PYs8fT-rjUzGbV_Nbqb7inbAsD5yB2w-GW1ZZicQCPVF6duCC0Li7eixMekeOPu9WMJVVvVkrxu3wSqbkzf4KPVV8TcYqiiSp4rTZ8kRJsP9PLPP3y5K_nJgmR3T0CB4ODJJM8sgfwx3fPYH7Oafk9VP49iHnmCf4GRv_g5M-kPNF8MReY39i9dL0HYlp3uKPshVZdOQipkojZ8uFW5Ho1hzBHpqE8_4H6fI9cZJS5jyD06PDr9NjOqRQoFZEpVCMP1zpfHDCVrXwMV6opW1ZMBoDJc4Fd-PSy5Z5i6FMEF445HOsaZxE3uc9fw47Xd_5l0BkWZXG49bOpY2KMsYE01auarX3TAtXwLs1nOoiK2WodMLNG5XBVwi-SuCrpoCDiPimZ1S5ThVoezXYXv3L9gXsre2lhqW3Uhw5IsagtcTmN5tmBDWehOjO91epD8e9CidJAS-yeTcjEVEACWlgAc2W4beGut3SLb4nYe5xFM_HOL-A9-s58nNcf8di939g8QoesDS5JWViD3Yul1f-NfKlSzOCu3IuR3BvMpl9mWF5cHjy6TPWTuvpKC2bGw9bFRo |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJuUAkaCE0T12k6cHBACSrWlj1Mr7QHJxK-yUpVsN62q_VP8RsZOstXyuvUUKbYcZzz2fJ6x5wN4LUtJK8StqafGpqLSOq24t6n1Ji-o5qWLyZ4PDvPxsfg6ySZr8HO4CxOOVQ5rYlyobWOCj3yLo-nHrUUu5YfZWRpYo0J0daDQ6NRizy0uccvWvt_dxvF9w9jOl6PP47RnFUiNCMkzEZJbap23wmS5cAFC59KUzOsK9w6cC25H1MmSOYPo3gsnLEIcVhRWIhRyjmO7N-AmGl4aNntyIpc-nRA1E6Oyv5tDebHVon0Md9hYliI0y3harNi_SBPwN2z75xHN3-K00fzt3IO7PW4lHztFuw9rrn4Atzomy8VD-LbdMdsTbMYE7ztpPDmdekfMAusTU811U5NALhfccy2Z1mQWCNrIyXxqWxKMqSVYoyL-tLkkdXc6nUSinkdwfC0ifgzrdVO7p0Akzah2aFC4NCGPjdZel5nNyso5VgmbwNtBnGrW5edQMa7OC9UJX6HwVRS-KhL4FCS-rBlya8cXzfxE9VNVec0Ny4xEKIvYJ150sV5UaM8dPrRMYHMYL9VP-FZdqWcCr5bFKNQQf6lq11zEOhxXSFSSBJ50w7vsiQhplxB8JlCsDPxKV1dL6umPmA58FFL2U4YffjfoyFW__i2Ljf__xku4PT462Ff7u4d7z-AOiyosUyY2Yf18fuGeIxY71y_iBCDw_bpn3C_890M1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4g2aztxckCIsl21FFYVolIPSG78KitVybJpVe1f49cxdpKtltetp0iJlTjz8Hz22PMBvBSFSErErbFLtIl5qVRcMmdi43SWJ4oVNhR7_jzNdg_5x6P0aAN-9mdh_LbKfkwMA7WptV8jHzIM_Ti1yIQYum5bxMF48m7-I_YMUj7T2tNptCayb5cXOH1r3u6NUdevKJ3sfP2wG3cMA7HmvpAmwnOTGOsM12nGrYfTmdAFdarEeQRjnJlRYkVBrUak77jlBuEOzXMjEBZZy_C912BT-FnRADa3d6YHX1YrPD6HxkdFd1InYfmwwWjpT7TRNEaglrI4X4uGgTTgb0j3zw2bv2VtQzCc3IZbHYol71uzuwMbtroL11tey-U9-DZuee4Jvkb7tXhSO3I6c5boJbYnulyouiKeas4v1jVkVpG5p2sjJ4uZaYgPrYZgi5K40_qCVO1edRJoe-7D4ZUI-QEMqrqyj4CIJE2UxfDChPZVbZRyqkhNWpTW0pKbCF734pTztlqHDFl2lstW-BKFL4PwZR7Btpf4qqWvtB1u1IsT2TmudIppmmpUcYpIKBx7MY6XGN0tXpSIYKvXl-zcv5GXxhrBi9VjFKrPxpSVrc9DG4bjJRpJBA9b9a56wn0RJoSiEeRril_r6vqTavY9FAcf-QL-CcUPv-lt5LJf_5bF4___xnO4gd4mP-1N95_ATRosWMSUb8HgbHFunyIwO1PPOg8gcHzVTvcLwURI0A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+tracking+of+life+cycle+carbon+emissions+in+power+grids+based+on+a+flow+network+model&rft.jtitle=Scientific+reports&rft.au=Chengwei+Wang&rft.au=Pei+Li&rft.au=Zhiyuan+Yang&rft.au=Haijin+Wang&rft.date=2025-07-24&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41598-025-08053-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fb3c25c740524400978df4a001ef4ab7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |