SSL‐QALAS: Self‐Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D‐QALAS
Purpose To develop and evaluate a method for rapid estimation of multiparametric T1, T2, proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) w...
Saved in:
Published in | Magnetic resonance in medicine Vol. 90; no. 5; pp. 2019 - 2032 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To develop and evaluate a method for rapid estimation of multiparametric T1, T2, proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) without the need for an external dictionary.
Methods
An SSL‐based QALAS mapping method (SSL‐QALAS) was developed for rapid and dictionary‐free estimation of multiparametric maps from 3D‐QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL‐QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL‐QALAS and the dictionary‐matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan‐specific, pre‐trained, and transfer learning models.
Results
Phantom experiments showed that both the dictionary‐matching and SSL‐QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL‐QALAS showed similar performance with dictionary matching in reconstructing the T1, T2, proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre‐trained SSL‐QALAS model within 10 s. Fast scan‐specific tuning was also demonstrated by fine‐tuning the pre‐trained model with the target subject's data within 15 min.
Conclusion
The proposed SSL‐QALAS method enabled rapid reconstruction of multiparametric maps from 3D‐QALAS measurements without an external dictionary or labeled ground‐truth training data. |
---|---|
AbstractList | To develop and evaluate a method for rapid estimation of multiparametric T1 , T2 , proton density, and inversion efficiency maps from 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) measurements using self-supervised learning (SSL) without the need for an external dictionary.PURPOSETo develop and evaluate a method for rapid estimation of multiparametric T1 , T2 , proton density, and inversion efficiency maps from 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) measurements using self-supervised learning (SSL) without the need for an external dictionary.An SSL-based QALAS mapping method (SSL-QALAS) was developed for rapid and dictionary-free estimation of multiparametric maps from 3D-QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL-QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL-QALAS and the dictionary-matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan-specific, pre-trained, and transfer learning models.METHODSAn SSL-based QALAS mapping method (SSL-QALAS) was developed for rapid and dictionary-free estimation of multiparametric maps from 3D-QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL-QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL-QALAS and the dictionary-matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan-specific, pre-trained, and transfer learning models.Phantom experiments showed that both the dictionary-matching and SSL-QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL-QALAS showed similar performance with dictionary matching in reconstructing the T1 , T2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre-trained SSL-QALAS model within 10 s. Fast scan-specific tuning was also demonstrated by fine-tuning the pre-trained model with the target subject's data within 15 min.RESULTSPhantom experiments showed that both the dictionary-matching and SSL-QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL-QALAS showed similar performance with dictionary matching in reconstructing the T1 , T2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre-trained SSL-QALAS model within 10 s. Fast scan-specific tuning was also demonstrated by fine-tuning the pre-trained model with the target subject's data within 15 min.The proposed SSL-QALAS method enabled rapid reconstruction of multiparametric maps from 3D-QALAS measurements without an external dictionary or labeled ground-truth training data.CONCLUSIONThe proposed SSL-QALAS method enabled rapid reconstruction of multiparametric maps from 3D-QALAS measurements without an external dictionary or labeled ground-truth training data. To develop and evaluate a method for rapid estimation of multiparametric T , T , proton density, and inversion efficiency maps from 3D-quantification using an interleaved Look-Locker acquisition sequence with T preparation pulse (3D-QALAS) measurements using self-supervised learning (SSL) without the need for an external dictionary. An SSL-based QALAS mapping method (SSL-QALAS) was developed for rapid and dictionary-free estimation of multiparametric maps from 3D-QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL-QALAS was evaluated by comparing the estimated T and T values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL-QALAS and the dictionary-matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan-specific, pre-trained, and transfer learning models. Phantom experiments showed that both the dictionary-matching and SSL-QALAS methods produced T and T estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL-QALAS showed similar performance with dictionary matching in reconstructing the T , T , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre-trained SSL-QALAS model within 10 s. Fast scan-specific tuning was also demonstrated by fine-tuning the pre-trained model with the target subject's data within 15 min. The proposed SSL-QALAS method enabled rapid reconstruction of multiparametric maps from 3D-QALAS measurements without an external dictionary or labeled ground-truth training data. Purpose To develop and evaluate a method for rapid estimation of multiparametric T1, T2, proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) without the need for an external dictionary. Methods An SSL‐based QALAS mapping method (SSL‐QALAS) was developed for rapid and dictionary‐free estimation of multiparametric maps from 3D‐QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL‐QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL‐QALAS and the dictionary‐matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan‐specific, pre‐trained, and transfer learning models. Results Phantom experiments showed that both the dictionary‐matching and SSL‐QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL‐QALAS showed similar performance with dictionary matching in reconstructing the T1, T2, proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre‐trained SSL‐QALAS model within 10 s. Fast scan‐specific tuning was also demonstrated by fine‐tuning the pre‐trained model with the target subject's data within 15 min. Conclusion The proposed SSL‐QALAS method enabled rapid reconstruction of multiparametric maps from 3D‐QALAS measurements without an external dictionary or labeled ground‐truth training data. Abstract Purpose To develop and evaluate a method for rapid estimation of multiparametric T 1 , T 2 , proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T 2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) without the need for an external dictionary. Methods An SSL‐based QALAS mapping method (SSL‐QALAS) was developed for rapid and dictionary‐free estimation of multiparametric maps from 3D‐QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL‐QALAS was evaluated by comparing the estimated T 1 and T 2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL‐QALAS and the dictionary‐matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan‐specific, pre‐trained, and transfer learning models. Results Phantom experiments showed that both the dictionary‐matching and SSL‐QALAS methods produced T 1 and T 2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL‐QALAS showed similar performance with dictionary matching in reconstructing the T 1 , T 2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre‐trained SSL‐QALAS model within 10 s. Fast scan‐specific tuning was also demonstrated by fine‐tuning the pre‐trained model with the target subject's data within 15 min. Conclusion The proposed SSL‐QALAS method enabled rapid reconstruction of multiparametric maps from 3D‐QALAS measurements without an external dictionary or labeled ground‐truth training data. PurposeTo develop and evaluate a method for rapid estimation of multiparametric T1, T2, proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) without the need for an external dictionary.MethodsAn SSL‐based QALAS mapping method (SSL‐QALAS) was developed for rapid and dictionary‐free estimation of multiparametric maps from 3D‐QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL‐QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL‐QALAS and the dictionary‐matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan‐specific, pre‐trained, and transfer learning models.ResultsPhantom experiments showed that both the dictionary‐matching and SSL‐QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL‐QALAS showed similar performance with dictionary matching in reconstructing the T1, T2, proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre‐trained SSL‐QALAS model within 10 s. Fast scan‐specific tuning was also demonstrated by fine‐tuning the pre‐trained model with the target subject's data within 15 min.ConclusionThe proposed SSL‐QALAS method enabled rapid reconstruction of multiparametric maps from 3D‐QALAS measurements without an external dictionary or labeled ground‐truth training data. |
Author | Grant, P. Ellen Jun, Yohan Bilgic, Berkin Cho, Jaejin Gagoski, Borjan Gee, Michael Wang, Xiaoqing |
AuthorAffiliation | 2 Department of Radiology, Harvard Medical School, Boston, MA, United States 3 Department of Radiology, Massachusetts General Hospital, Boston, MA, United States 1 Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States 5 Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States 4 Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States |
AuthorAffiliation_xml | – name: 5 Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States – name: 3 Department of Radiology, Massachusetts General Hospital, Boston, MA, United States – name: 1 Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States – name: 2 Department of Radiology, Harvard Medical School, Boston, MA, United States – name: 4 Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States |
Author_xml | – sequence: 1 givenname: Yohan orcidid: 0000-0003-4787-4760 surname: Jun fullname: Jun, Yohan email: yjun@mgh.harvard.edu organization: Harvard Medical School – sequence: 2 givenname: Jaejin orcidid: 0000-0001-5672-6765 surname: Cho fullname: Cho, Jaejin organization: Harvard Medical School – sequence: 3 givenname: Xiaoqing orcidid: 0000-0001-7036-7930 surname: Wang fullname: Wang, Xiaoqing organization: Harvard Medical School – sequence: 4 givenname: Michael orcidid: 0000-0002-6117-5168 surname: Gee fullname: Gee, Michael organization: Massachusetts General Hospital – sequence: 5 givenname: P. Ellen orcidid: 0000-0003-1005-4013 surname: Grant fullname: Grant, P. Ellen organization: Boston Children's Hospital – sequence: 6 givenname: Berkin orcidid: 0000-0002-9080-7865 surname: Bilgic fullname: Bilgic, Berkin organization: Harvard/MIT Health Sciences and Technology – sequence: 7 givenname: Borjan orcidid: 0000-0003-3777-2621 surname: Gagoski fullname: Gagoski, Borjan organization: Boston Children's Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37415389$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1O3DAUha2Kqgy0C16gssSmLAK2Y09iNtWI_oCUUVXC3vI4N9QosYOdTMWOR-gz9knqYQCVSl1dHfm7x-fq7KEd5x0gdEDJMSWEnfShP2ayKOev0IwKxjImJN9BM1JwkuVU8l20F-MNIUTKgr9Bu3nBqchLOUNDXVe_7399X1SL-hTX0LVJ1dMAYW0jNLgCHZx117j1AQc92Ab3UzfaQQfdwwgBQxxtr0frHbYO307ajXZMeg14eXmBp7jZzj89ffIWvW51F-Hd49xHV18-X52dZ9W3rxdniyoznMh5ZiQzxrA5zCWlRlCyahoQpWBtuq_hXIqiXZWMJC00L0VBZVJpGKqblcj30cet7TCtemgMuDHoTg0hZQ13ymurXr44-0Nd-7WiRLBCiCI5fHh0CP52Sleq3kYDXacd-CkqVuaClZSLPKGH_6A3fgounZeoFJrKnG2ooy1lgo8xQPuchhK16VGlHtVDj4l9_3f8Z_KpuAScbIGftoO7_zup5eVya_kHsd-rnw |
CitedBy_id | crossref_primary_10_1109_TCI_2024_3388869 crossref_primary_10_1002_mrm_30018 |
Cites_doi | 10.1016/j.media.2021.102017 10.1109/MSP.2021.3119273 10.1002/jmri.26319 10.1016/j.mri.2019.08.031 10.1002/mrm.29059 10.1016/j.mri.2021.01.001 10.1007/s00330-021-07783-3 10.1016/j.mri.2019.11.015 10.1002/mrm.26867 10.1212/WNL.52.9.1870 10.1016/j.neuroimage.2020.117573 10.1016/j.neuroimage.2021.117756 10.1002/mrm.26886 10.1002/mrm.25347 10.1016/j.neuroimage.2016.09.047 10.1002/cam4.966 10.1002/mrm.27707 10.1016/j.neuroimage.2019.116329 10.1002/mrm.29219 10.1007/s11682-016-9550-5 10.1016/j.neuroimage.2009.10.002 10.1038/s41551-018-0217-y 10.1002/nbm.1163 10.1002/mrm.28659 10.1371/journal.pone.0095161 10.1093/brain/awab029 10.1016/j.mri.2020.01.005 10.1186/s12968-014-0102-0 10.1002/jmri.27820 10.1148/radiol.211519 10.1016/j.mri.2016.12.014 10.1002/mrm.25439 10.3389/fcvm.2022.928546 10.1016/j.neuroimage.2022.119033 10.1002/mrm.22423 10.3390/bioengineering9120736 10.1038/s41598-018-27742-1 10.1002/mrm.20314 10.1002/jmri.26598 10.1109/TMI.2014.2337321 10.1016/j.neuroimage.2022.118963 10.1097/RLI.0000000000000435 10.1148/radiol.2411050628 10.1007/s10278-017-9983-4 10.1001/archneur.64.3.411 10.1097/RLI.0000000000000744 10.1002/jmri.22831 10.1002/mrm.25674 10.1007/s00234-014-1445-9 10.1038/nature11971 10.3174/ajnr.A6930 10.1002/jmri.26744 10.1002/mrm.26649 10.1088/1361‐6560/ac9e3e 10.1002/mrm.28344 10.1016/j.neuroimage.2006.01.015 |
ContentType | Journal Article |
Copyright | 2023 International Society for Magnetic Resonance in Medicine 2023 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2023 International Society for Magnetic Resonance in Medicine – notice: 2023 International Society for Magnetic Resonance in Medicine. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.29786 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 2032 |
ExternalDocumentID | 10_1002_mrm_29786 37415389 MRM29786 |
Genre | rapidPublication Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Nvidia – fundername: National Institutes of Health funderid: P41EB030006; R01EB028797; R01EB032378; R03EB031175; U01EB025162; U01EB026996; U01DA055353 – fundername: NICHD NIH HHS grantid: P50 HD105351 – fundername: NIDA NIH HHS grantid: U01 DA055353 – fundername: NIBIB NIH HHS grantid: R03 EB031175 – fundername: NIBIB NIH HHS grantid: R01 EB032378 – fundername: NIBIB NIH HHS grantid: U01 EB026996 – fundername: NIBIB NIH HHS grantid: R01 EB028797 – fundername: NIH HHS grantid: P41EB030006 – fundername: NIBIB NIH HHS grantid: U01 EB025162 – fundername: NIH HHS grantid: R03EB031175 – fundername: NIBIB NIH HHS grantid: P41 EB030006 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N G8K GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT ABDPE CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FD FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-c4096-c92ccc26e6911c510bdde5852f522d44957fb8202f55a485719820571c1adb53 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Sat Nov 02 05:26:27 EDT 2024 Sat Nov 02 16:45:06 EDT 2024 Thu Oct 10 22:48:34 EDT 2024 Fri Aug 23 00:46:56 EDT 2024 Sat Nov 02 12:12:43 EDT 2024 Sat Aug 24 00:50:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | quantitative MRI self-supervised learning 3D-QALAS multiparametric mapping |
Language | English |
License | 2023 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4096-c92ccc26e6911c510bdde5852f522d44957fb8202f55a485719820571c1adb53 |
Notes | Berkin Bilgic and Borjan Gagoski contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Equal contribution as last authors |
ORCID | 0000-0002-6117-5168 0000-0003-1005-4013 0000-0003-3777-2621 0000-0002-9080-7865 0000-0001-5672-6765 0000-0001-7036-7930 0000-0003-4787-4760 |
PMID | 37415389 |
PQID | 2858519323 |
PQPubID | 1016391 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10527557 proquest_miscellaneous_2835281453 proquest_journals_2858519323 crossref_primary_10_1002_mrm_29786 pubmed_primary_37415389 wiley_primary_10_1002_mrm_29786_MRM29786 |
PublicationCentury | 2000 |
PublicationDate | November 2023 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2022; 253 2022; 250 2012; 2012 2006; 31 2019; 50 2015; 73 2015; 74 2022; 67 2016; 75 2020; 206 2021; 70 2017; 30 2018; 8 2010; 64 2018; 2 2021; 31 2021; 78 2019; 63 2017; 38 2006; 27 2014; 16 2006; 241 2021; 230 1999; 52 2007; 20 2014; 9 2007; 64 2021; 85 2022; 39 2018; 79 2015; 57 2021; 42 2020; 84 2021; 226 2005 2021; 144 2022; 87 2022; 88 2012; 35 2010; 49 2019; 82 2021; 56 2022 2017; 11 2022; 9 2019; 49 2019 2005; 53 2020; 68 2016 2013; 495 2020; 66 2014 2022; 55 2017; 144 2022; 305 2018; 53 2014; 33 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 House MJ (e_1_2_8_19_1) 2006; 27 e_1_2_8_3_1 e_1_2_8_5_1 Paszke A (e_1_2_8_61_1) 2019 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 Kingma DP (e_1_2_8_60_1) 2014 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 Cho J (e_1_2_8_65_1) 2022 e_1_2_8_51_1 Fatania K (e_1_2_8_58_1) 2022 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 Tofts P (e_1_2_8_10_1) 2005 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 Tardif CL (e_1_2_8_9_1) 2012; 2012 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Ulyanov D (e_1_2_8_59_1) 2016 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 55 start-page: 620 year: 2022 end-page: 622 article-title: T and T mapping for early detection of treatment‐related myocardial changes in breast cancer patients publication-title: J Magn Reson Imaging – volume: 79 start-page: 2392 year: 2018 end-page: 2400 article-title: Low rank approximation methods for MR fingerprinting with large scale dictionaries publication-title: Magn Reson Med – volume: 8 start-page: 9450 year: 2018 article-title: Deep‐learned 3D black‐blood imaging using automatic labelling technique and 3D convolutional neural networks for detecting metastatic brain tumors publication-title: Sci Rep – volume: 75 start-page: 1040 year: 2016 end-page: 1053 article-title: MPnRAGE: a technique to simultaneously acquire hundreds of differently contrasted MPRAGE images with applications to quantitative T mapping publication-title: Magn Reson Med – year: 2005 – volume: 35 start-page: 300 year: 2012 end-page: 308 article-title: Age‐related regional brain T ‐relaxation changes in healthy adults publication-title: J Magn Reson Imaging – volume: 74 start-page: 523 year: 2015 end-page: 528 article-title: Fast group matching for MR fingerprinting reconstruction publication-title: Magn Reson Med – volume: 33 start-page: 2311 year: 2014 end-page: 2322 article-title: SVD compression for magnetic resonance fingerprinting in the time domain publication-title: IEEE Trans Med Imaging – volume: 206 year: 2020 article-title: High‐resolution 3D MR fingerprinting using parallel imaging and deep learning publication-title: Neuroimage – volume: 230 year: 2021 article-title: Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions publication-title: Neuroimage – volume: 73 start-page: 2152 year: 2015 end-page: 2162 article-title: Wave‐CAIPI for highly accelerated 3D imaging publication-title: Magn Reson Med – volume: 49 start-page: e26 year: 2019 end-page: e39 article-title: Recommendations towards standards for quantitative MRI (qMRI) and outstanding needs publication-title: J Magn Reson Imaging – year: 2016 article-title: Instance normalization: The missing ingredient for fast stylization publication-title: arXiv preprint: arXiv:1607.08022 – volume: 16 start-page: 102 year: 2014 article-title: Simultaneous three‐dimensional myocardial T and T mapping in one breath hold with 3D‐QALAS publication-title: J Cardiovasc Magn Reson – volume: 53 start-page: 236 year: 2018 end-page: 245 article-title: Age‐related changes in tissue value properties in children: simultaneous quantification of relaxation times and proton density using synthetic magnetic resonance imaging publication-title: Invest Radiol – volume: 64 start-page: 439 year: 2010 end-page: 446 article-title: Rapid mapping using a preconditioning RF pulse with TurboFLASH readout publication-title: Magn Reson Med – volume: 31 start-page: 6686 year: 2021 end-page: 6695 article-title: Robust performance of deep learning for automatic detection and segmentation of brain metastases using three‐dimensional black‐blood and three‐dimensional gradient echo imaging publication-title: Eur Radiol – volume: 11 start-page: 744 year: 2017 end-page: 753 article-title: Multi‐parametric quantitative MRI of normal appearing white matter in multiple sclerosis, and the effect of disease activity on T publication-title: Brain Imaging Behav – volume: 85 start-page: 3211 year: 2021 end-page: 3226 article-title: Magnetic resonance parameter mapping using model‐guided self‐supervised deep learning publication-title: Magn Reson Med – volume: 38 start-page: 13 year: 2017 end-page: 20 article-title: Clinical feasibility of 3D‐QALAS – single breath‐hold 3D myocardial T ‐ and T ‐mapping publication-title: Magn Reson Imaging – volume: 495 start-page: 187 year: 2013 end-page: 192 article-title: Magnetic resonance fingerprinting publication-title: Nature – volume: 67 start-page: 225019 year: 2022 article-title: Uncertainty‐aware self‐supervised neural network for livermapping with relaxation constraint publication-title: Phys Med Biol – volume: 144 start-page: 203 year: 2017 end-page: 216 article-title: Whole brain MP2RAGE‐based mapping of the longitudinal relaxation time at 9.4T publication-title: Neuroimage – volume: 66 start-page: 248 year: 2020 end-page: 256 article-title: snapMRF: GPU‐accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs publication-title: Magn Reson Imaging – volume: 79 start-page: 401 year: 2018 end-page: 406 article-title: Wave‐CAIPI for highly accelerated MP‐RAGE imaging publication-title: Magn Reson Med – volume: 42 start-page: 471 year: 2021 end-page: 478 article-title: 3D quantitative synthetic MRI in the evaluation of multiple sclerosis lesions publication-title: AJNR Am J Neuroradiol – volume: 6 start-page: 89 year: 2017 end-page: 99 article-title: Quantitative T ‐mapping detects cloudy‐enhancing tumor compartments predicting outcome of patients with glioblastoma publication-title: Cancer Med – year: 2022 article-title: Nonlinear equivariant imaging: learning multi‐parametric tissue mapping without ground truth for compressive quantitative MRI publication-title: arXiv preprint: arXiv:2211.12786 – volume: 63 start-page: 235 year: 2019 end-page: 243 article-title: Three‐dimensional high‐resolution simultaneous quantitative mapping of the whole brain with 3D‐QALAS: An accuracy and repeatability study publication-title: Magn Reson Imaging – volume: 79 start-page: 2190 year: 2018 end-page: 2197 article-title: Fast 3D magnetic resonance fingerprinting for a whole‐brain coverage publication-title: Magn Reson Med – year: 2019 – volume: 52 start-page: 1870 year: 1999 end-page: 1876 article-title: Entorhinal cortex in temporal lobe epilepsy: a quantitative MRI study publication-title: Neurology – volume: 9 year: 2014 article-title: Normal appearing and diffusely abnormal white matter in patients with multiple sclerosis assessed with quantitative MR publication-title: PLoS One – volume: 27 start-page: 430 year: 2006 end-page: 439 article-title: Quantitative MR imaging relaxometry in elderly participants reporting memory loss publication-title: AJNR Am J Neuroradiol – volume: 9 year: 2022 article-title: A self‐supervised deep learning reconstruction for shortening the breathhold and acquisition window in cardiac magnetic resonance fingerprinting publication-title: Front Cardiovasc Med – volume: 9 start-page: 736 year: 2022 article-title: Wave‐encoded model‐based deep learning for highly accelerated imaging with joint reconstruction publication-title: Bioengineering (Basel) – volume: 78 start-page: 90 year: 2021 end-page: 97 article-title: Effect of hybrid of compressed sensing and parallel imaging on the quantitative values measured by 3D quantitative synthetic MRI: a phantom study publication-title: Magn Reson Imaging – year: 2022 article-title: Time‐efficient, high resolution 3T whole brain quantitative relaxometry using 3D‐QALAS with Wave‐CAIPI readouts publication-title: arXiv preprint: arXiv:2211.04426 – volume: 2 start-page: 215 year: 2018 end-page: 226 article-title: Magnetic resonance multitasking for motion‐resolved quantitative cardiovascular imaging publication-title: Nat Biomed Eng – volume: 305 start-page: 5 year: 2022 end-page: 18 article-title: Primary multiparametric quantitative brain MRI: state‐of‐the‐art Relaxometric and proton density mapping techniques publication-title: Radiology – volume: 30 start-page: 449 year: 2017 end-page: 459 article-title: Deep learning for brain MRI segmentation: state of the art and future directions publication-title: J Digit Imaging – volume: 68 start-page: 95 year: 2020 end-page: 105 article-title: Denoising arterial spin labeling perfusion MRI with deep machine learning publication-title: Magn Reson Imaging – volume: 226 year: 2021 article-title: Three dimensional MRF obtains highly repeatable and reproducible multi‐parametric estimations in the healthy human brain at 1.5T and 3T publication-title: Neuroimage – volume: 53 start-page: 237 year: 2005 end-page: 241 article-title: High‐resolution T and T mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2 publication-title: Magn Reson Med – volume: 50 start-page: 1834 year: 2019 end-page: 1842 article-title: 3D quantitative synthetic MRI‐derived cortical thickness and subcortical brain volumes: scan‐rescan repeatability and comparison with conventional T‐weighted images publication-title: J Magn Reson Imaging – volume: 84 start-page: 2932 year: 2020 end-page: 2942 article-title: Deep learning using a biophysical model for robust and accelerated reconstruction of quantitative, artifact‐free and denoised images publication-title: Magn Reson Med – volume: 144 start-page: 1296 year: 2021 end-page: 1311 article-title: Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis publication-title: Brain – volume: 20 start-page: 343 year: 2007 end-page: 351 article-title: Quantitative MRI reveals aging‐associated T changes in mouse models of Alzheimer's disease publication-title: NMR Biomed – year: 2014 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint: arXiv:1412.6980 – volume: 87 start-page: 1375 year: 2022 end-page: 1389 article-title: Three‐dimensional simultaneous brain mapping of T , T , and magnetic susceptibility with MR multitasking publication-title: Magn Reson Med – volume: 241 start-page: 26 year: 2006 end-page: 44 article-title: Quantitative MR imaging in Alzheimer disease publication-title: Radiology – volume: 88 start-page: 633 year: 2022 end-page: 650 article-title: Blip up‐down acquisition for spin‐ and gradient‐echo imaging (BUDA‐SAGE) with self‐supervised denoising enables efficient T , , para‐and dia‐magnetic susceptibility mapping publication-title: Magn Reson Med – volume: 49 start-page: 1271 year: 2010 end-page: 1281 article-title: MP2RAGE, a self bias‐field corrected sequence for improved segmentation and T ‐mapping at high field publication-title: Neuroimage – volume: 253 year: 2022 article-title: SDnDTI: self‐supervised deep learning‐based denoising for diffusion tensor MRI publication-title: Neuroimage – volume: 49 start-page: 1333 year: 2019 end-page: 1346 article-title: Development of high‐resolution 3D MR fingerprinting for detection and characterization of epileptic lesions publication-title: J Magn Reson Imaging – volume: 82 start-page: 174 year: 2019 end-page: 188 article-title: MANTIS: model‐augmented neural neTwork with incoherent k‐space sampling for efficient MR parameter mapping publication-title: Magn Reson Med – volume: 39 start-page: 28 year: 2022 end-page: 44 article-title: Unsupervised deep learning methods for biological image reconstruction and enhancement: An overview from a signal processing perspective publication-title: IEEE Signal Process Mag – volume: 64 start-page: 411 year: 2007 end-page: 415 article-title: Normal‐appearing brain T relaxation time predicts disability in early primary progressive multiple sclerosis publication-title: Arch Neurol – volume: 31 start-page: 1116 year: 2006 end-page: 1128 article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage – volume: 2012 year: 2012 article-title: Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology publication-title: Mult Scler Int – volume: 56 start-page: 292 year: 2021 end-page: 300 article-title: Accelerated isotropic multiparametric imaging by high spatial resolution 3D‐QALAS with compressed sensing: a phantom, volunteer, and patient study publication-title: Invest Radiol – volume: 70 year: 2021 article-title: Deep model‐based magnetic resonance parameter mapping network (DOPAMINE) for fast T mapping using variable flip angle method publication-title: Med Image Anal – volume: 250 year: 2022 article-title: 3D Echo planar time‐resolved imaging (3D‐EPTI) for ultrafast multi‐parametric quantitative MRI publication-title: Neuroimage – volume: 57 start-page: 11 year: 2015 end-page: 20 article-title: Quantitative T and T mapping in recurrent glioblastomas under bevacizumab: earlier detection of tumor progression compared to conventional MRI publication-title: Neuroradiology – ident: e_1_2_8_47_1 doi: 10.1016/j.media.2021.102017 – ident: e_1_2_8_53_1 doi: 10.1109/MSP.2021.3119273 – ident: e_1_2_8_5_1 doi: 10.1002/jmri.26319 – ident: e_1_2_8_30_1 doi: 10.1016/j.mri.2019.08.031 – year: 2022 ident: e_1_2_8_65_1 article-title: Time‐efficient, high resolution 3T whole brain quantitative relaxometry using 3D‐QALAS with Wave‐CAIPI readouts publication-title: arXiv preprint: arXiv:2211.04426 contributor: fullname: Cho J – ident: e_1_2_8_28_1 doi: 10.1002/mrm.29059 – ident: e_1_2_8_35_1 doi: 10.1016/j.mri.2021.01.001 – ident: e_1_2_8_43_1 doi: 10.1007/s00330-021-07783-3 – ident: e_1_2_8_39_1 doi: 10.1016/j.mri.2019.11.015 – ident: e_1_2_8_41_1 doi: 10.1002/mrm.26867 – ident: e_1_2_8_2_1 doi: 10.1212/WNL.52.9.1870 – ident: e_1_2_8_27_1 doi: 10.1016/j.neuroimage.2020.117573 – year: 2016 ident: e_1_2_8_59_1 article-title: Instance normalization: The missing ingredient for fast stylization publication-title: arXiv preprint: arXiv:1607.08022 contributor: fullname: Ulyanov D – ident: e_1_2_8_48_1 doi: 10.1016/j.neuroimage.2021.117756 – ident: e_1_2_8_26_1 doi: 10.1002/mrm.26886 – ident: e_1_2_8_36_1 doi: 10.1002/mrm.25347 – ident: e_1_2_8_64_1 doi: 10.1016/j.neuroimage.2016.09.047 – ident: e_1_2_8_6_1 doi: 10.1002/cam4.966 – ident: e_1_2_8_50_1 doi: 10.1002/mrm.27707 – ident: e_1_2_8_49_1 doi: 10.1016/j.neuroimage.2019.116329 – ident: e_1_2_8_52_1 doi: 10.1002/mrm.29219 – ident: e_1_2_8_8_1 doi: 10.1007/s11682-016-9550-5 – ident: e_1_2_8_21_1 doi: 10.1016/j.neuroimage.2009.10.002 – ident: e_1_2_8_25_1 doi: 10.1038/s41551-018-0217-y – ident: e_1_2_8_3_1 doi: 10.1002/nbm.1163 – ident: e_1_2_8_54_1 doi: 10.1002/mrm.28659 – ident: e_1_2_8_11_1 doi: 10.1371/journal.pone.0095161 – ident: e_1_2_8_14_1 doi: 10.1093/brain/awab029 – ident: e_1_2_8_45_1 doi: 10.1016/j.mri.2020.01.005 – ident: e_1_2_8_29_1 doi: 10.1186/s12968-014-0102-0 – ident: e_1_2_8_33_1 doi: 10.1002/jmri.27820 – ident: e_1_2_8_12_1 doi: 10.1148/radiol.211519 – ident: e_1_2_8_32_1 doi: 10.1016/j.mri.2016.12.014 – ident: e_1_2_8_40_1 doi: 10.1002/mrm.25439 – ident: e_1_2_8_57_1 doi: 10.3389/fcvm.2022.928546 – ident: e_1_2_8_51_1 doi: 10.1016/j.neuroimage.2022.119033 – ident: e_1_2_8_62_1 doi: 10.1002/mrm.22423 – year: 2014 ident: e_1_2_8_60_1 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint: arXiv:1412.6980 contributor: fullname: Kingma DP – ident: e_1_2_8_38_1 doi: 10.3390/bioengineering9120736 – ident: e_1_2_8_46_1 doi: 10.1038/s41598-018-27742-1 – volume: 27 start-page: 430 year: 2006 ident: e_1_2_8_19_1 article-title: Quantitative MR imaging R 2 relaxometry in elderly participants reporting memory loss publication-title: AJNR Am J Neuroradiol contributor: fullname: House MJ – volume-title: Quantitative MRI of the Brain: Measuring Changes Caused by Disease year: 2005 ident: e_1_2_8_10_1 contributor: fullname: Tofts P – ident: e_1_2_8_20_1 doi: 10.1002/mrm.20314 – ident: e_1_2_8_13_1 doi: 10.1002/jmri.26598 – ident: e_1_2_8_42_1 doi: 10.1109/TMI.2014.2337321 – ident: e_1_2_8_24_1 doi: 10.1016/j.neuroimage.2022.118963 – ident: e_1_2_8_16_1 doi: 10.1097/RLI.0000000000000435 – ident: e_1_2_8_7_1 doi: 10.1148/radiol.2411050628 – ident: e_1_2_8_44_1 doi: 10.1007/s10278-017-9983-4 – ident: e_1_2_8_18_1 doi: 10.1001/archneur.64.3.411 – ident: e_1_2_8_34_1 doi: 10.1097/RLI.0000000000000744 – ident: e_1_2_8_17_1 doi: 10.1002/jmri.22831 – ident: e_1_2_8_22_1 doi: 10.1002/mrm.25674 – year: 2022 ident: e_1_2_8_58_1 article-title: Nonlinear equivariant imaging: learning multi‐parametric tissue mapping without ground truth for compressive quantitative MRI publication-title: arXiv preprint: arXiv:2211.12786 contributor: fullname: Fatania K – ident: e_1_2_8_4_1 doi: 10.1007/s00234-014-1445-9 – volume: 2012 year: 2012 ident: e_1_2_8_9_1 article-title: Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology publication-title: Mult Scler Int contributor: fullname: Tardif CL – ident: e_1_2_8_23_1 doi: 10.1038/nature11971 – ident: e_1_2_8_15_1 doi: 10.3174/ajnr.A6930 – ident: e_1_2_8_31_1 doi: 10.1002/jmri.26744 – ident: e_1_2_8_37_1 doi: 10.1002/mrm.26649 – ident: e_1_2_8_55_1 doi: 10.1088/1361‐6560/ac9e3e – ident: e_1_2_8_56_1 doi: 10.1002/mrm.28344 – volume-title: Proceedings 33rd Conference on Neural Information Processing Systems (NeurIPS 2019) year: 2019 ident: e_1_2_8_61_1 contributor: fullname: Paszke A – ident: e_1_2_8_63_1 doi: 10.1016/j.neuroimage.2006.01.015 |
SSID | ssj0009974 |
Score | 2.4959912 |
Snippet | Purpose
To develop and evaluate a method for rapid estimation of multiparametric T1, T2, proton density, and inversion efficiency maps from 3D‐quantification... To develop and evaluate a method for rapid estimation of multiparametric T , T , proton density, and inversion efficiency maps from 3D-quantification using an... Abstract Purpose To develop and evaluate a method for rapid estimation of multiparametric T 1 , T 2 , proton density, and inversion efficiency maps from... PurposeTo develop and evaluate a method for rapid estimation of multiparametric T1, T2, proton density, and inversion efficiency maps from 3D‐quantification... To develop and evaluate a method for rapid estimation of multiparametric T1 , T2 , proton density, and inversion efficiency maps from 3D-quantification using... |
SourceID | pubmedcentral proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2019 |
SubjectTerms | 3D‐QALAS Dictionaries Image Processing, Computer-Assisted - methods Image reconstruction In vivo methods and tests Inversion Magnetic resonance Magnetic Resonance Imaging - methods Matching multiparametric mapping Phantoms, Imaging Proton density (concentration) Protons quantitative MRI Reproducibility of Results self‐supervised learning Supervised learning Supervised Machine Learning Technology Transfer learning Tuning |
Title | SSL‐QALAS: Self‐Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D‐QALAS |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29786 https://www.ncbi.nlm.nih.gov/pubmed/37415389 https://www.proquest.com/docview/2858519323 https://www.proquest.com/docview/2835281453 https://pubmed.ncbi.nlm.nih.gov/PMC10527557 |
Volume | 90 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlUBceJRXoCCDOHDJduNHsoHTilIV1CCxKVIPSJHt2GUFTZfdzYUTP4HfyC9hbCcpS4WEOCWWJ4pjz4y_icefAZ5NmKJ2ouqYmczGnKkkVnk2ji23yppsnEp_fkrxLj38wN-eiJMteNnvhQn8EMMPN2cZ3l87A5dqtXdBGnq2PBtRjIEc3XbCMpfOtT-7oI7K88DAnHHnZ3LeswqN6d7w5OZcdAlgXs6T_B2_-gno4AZ87Jse8k4-j9q1Gulvf7A6_ue33YTrHTAl06BJt2DLNDtwteiW3nfgis8V1avbsCjLo5_ff7yfHk3LF6Q0XyyWynbhvM7K1KSjbD0liIfJUi7mNQlpi9IlguE4EsfsEbZMknlDvray8Vvd0PGSYvaGuFz8U8L2-5fcgeOD18evDuPu4IZYY7iYxjqnWmuamhRdqUarV-hEMS6hFtFezTEmy6xC6IFlIflEZEmOJbzoRNZKsLuw3Zw35j4QayRXAlEgpQmXiE1sarioDeWGKy3HETztR7BaBHqOKhAx0wo7sfKdGMFuP7ZVZ6GrivoFUUSvLIInQzXallswkY05b52M475JuECZe0EVhrcwB8UQ7UUw2VCSQcDxdm_WNPNPnr8bIS3NhMgieO6V4O8tr4pZ4W8e_LvoQ7iGPcvCfsld2F4vW_MIgdNaPfYW8gvlfBeX |
link.rule.ids | 230,315,783,787,888,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIn4u_BQogQIGceCS7cZxkg3isqJUW9hUYrNIvVSR7dhlVZouu5sLJx6BZ-RJGNtJylIhIU6JZUd27JnxN_b4M8DLQSioHojSD1WifRaKwBdp0vc100KrpB9ze39KdhiPPrH3R9HRBrxpz8I4fohuwc1ohrXXRsHNgvTuBWvo2eKsR9EJiq_AVVT30FzcsDe5II9KU8fBnDBjaVLW8gr16W736fpsdAliXo6U_B3B2ilo_zYct413kSenvXolevLbH7yO__t3d-BWg03J0AnTXdhQ1RZcz5rd9y24ZsNF5fIezPN8_PP7j4_D8TB_TXL1RWMqr-fG8CxVSRrW1hOCkJgs-HxWEhe5yE0sGA4lMeQe7tQkmVXka80re9oNbS_JJgfEhOOfkHCvreQ-TPffTd-O_ObuBl-ixxj7MqVSShqrGK2pRMUXaEfRNaEaAV_J0C1LtED0gemIs0GUBCmm8CEDXooofACb1XmlHgLRijMRIRCkNGAc4YmOFYtKRZliQvK-By_aISzmjqGjcFzMtMBOLGwnerDTDm7RKOmyoHZPFAFs6MHzLhvVy-yZ8Eqd16aMob8JWIRltp0sdLWEBo0h4PNgsCYlXQFD3b2eU80-WwpvRLU0iaLEg1dWCv7e8iKbZPbl0b8XfQY3RtNsXIwPDj88hpvYy6E7PrkDm6tFrZ4gjlqJp1ZdfgEyAxuv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIiou_JS_QAGDOHDJduM4yQZOK8qqhU0FmyL1gBTZjl1W0DTsbi6ceASekSdhbCcpS4WEOCWWJ4pjz4y_icefAZ6NQkH1SJR-qBLts1AEvkiToa-ZFlolw5jb81Oyw3j_A3tzHB1vwMtuL4zjh-h_uBnLsP7aGHhd6t1z0tDTxemAYgwUX4LLLEbkaxDR7Jw7Kk0dBXPCjKNJWUcrNKS7_aPrk9EFhHkxUfJ3AGtnoMl1-Ni13SWefB40KzGQ3_6gdfzPj7sB11pkSsZOlW7Chqq2YStr19634YpNFpXLW1Dn-fTn9x_vx9Nx_oLk6ovGUt7Uxu0sVUlaztYTgoCYLHg9L4nLW-QmEwwHkhhqD7dnkswr8rXhld3rhp6XZLMDYpLxT0i4173kNhxNXh-92vfbkxt8ifFi7MuUSilprGL0pRLNXqAXxcCEaoR7JcOgLNECsQeWI85GURKkWMKLDHgpovAObFZnlboHRCvORIQwkNKAcQQnOlYsKhVlignJhx487UawqB0_R-GYmGmBnVjYTvRgpxvbojXRZUHtiijC19CDJ301GpdZMeGVOmuMjCG_CViEMnedKvRvCQ0WQ7jnwWhNSXoBQ9y9XlPNP1kCb8S0NImixIPnVgn-3vIim2X25v6_iz6GrXd7k2J6cPj2AVzFTg7d3skd2FwtGvUQQdRKPLLG8gvYZBpe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSL-QALAS%3A+Self-Supervised+Learning+for+rapid+multiparameter+estimation+in+quantitative+MRI+using+3D-QALAS&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Jun%2C+Yohan&rft.au=Cho%2C+Jaejin&rft.au=Wang%2C+Xiaoqing&rft.au=Gee%2C+Michael&rft.date=2023-11-01&rft.eissn=1522-2594&rft.volume=90&rft.issue=5&rft.spage=2019&rft_id=info:doi/10.1002%2Fmrm.29786&rft_id=info%3Apmid%2F37415389&rft.externalDocID=37415389 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |