SSL‐QALAS: Self‐Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D‐QALAS

Purpose To develop and evaluate a method for rapid estimation of multiparametric T1, T2, proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) w...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 90; no. 5; pp. 2019 - 2032
Main Authors Jun, Yohan, Cho, Jaejin, Wang, Xiaoqing, Gee, Michael, Grant, P. Ellen, Bilgic, Berkin, Gagoski, Borjan
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To develop and evaluate a method for rapid estimation of multiparametric T1, T2, proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) without the need for an external dictionary. Methods An SSL‐based QALAS mapping method (SSL‐QALAS) was developed for rapid and dictionary‐free estimation of multiparametric maps from 3D‐QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL‐QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL‐QALAS and the dictionary‐matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan‐specific, pre‐trained, and transfer learning models. Results Phantom experiments showed that both the dictionary‐matching and SSL‐QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL‐QALAS showed similar performance with dictionary matching in reconstructing the T1, T2, proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre‐trained SSL‐QALAS model within 10 s. Fast scan‐specific tuning was also demonstrated by fine‐tuning the pre‐trained model with the target subject's data within 15 min. Conclusion The proposed SSL‐QALAS method enabled rapid reconstruction of multiparametric maps from 3D‐QALAS measurements without an external dictionary or labeled ground‐truth training data.
AbstractList To develop and evaluate a method for rapid estimation of multiparametric T1 , T2 , proton density, and inversion efficiency maps from 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) measurements using self-supervised learning (SSL) without the need for an external dictionary.PURPOSETo develop and evaluate a method for rapid estimation of multiparametric T1 , T2 , proton density, and inversion efficiency maps from 3D-quantification using an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) measurements using self-supervised learning (SSL) without the need for an external dictionary.An SSL-based QALAS mapping method (SSL-QALAS) was developed for rapid and dictionary-free estimation of multiparametric maps from 3D-QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL-QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL-QALAS and the dictionary-matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan-specific, pre-trained, and transfer learning models.METHODSAn SSL-based QALAS mapping method (SSL-QALAS) was developed for rapid and dictionary-free estimation of multiparametric maps from 3D-QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL-QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL-QALAS and the dictionary-matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan-specific, pre-trained, and transfer learning models.Phantom experiments showed that both the dictionary-matching and SSL-QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL-QALAS showed similar performance with dictionary matching in reconstructing the T1 , T2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre-trained SSL-QALAS model within 10 s. Fast scan-specific tuning was also demonstrated by fine-tuning the pre-trained model with the target subject's data within 15 min.RESULTSPhantom experiments showed that both the dictionary-matching and SSL-QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL-QALAS showed similar performance with dictionary matching in reconstructing the T1 , T2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre-trained SSL-QALAS model within 10 s. Fast scan-specific tuning was also demonstrated by fine-tuning the pre-trained model with the target subject's data within 15 min.The proposed SSL-QALAS method enabled rapid reconstruction of multiparametric maps from 3D-QALAS measurements without an external dictionary or labeled ground-truth training data.CONCLUSIONThe proposed SSL-QALAS method enabled rapid reconstruction of multiparametric maps from 3D-QALAS measurements without an external dictionary or labeled ground-truth training data.
To develop and evaluate a method for rapid estimation of multiparametric T , T , proton density, and inversion efficiency maps from 3D-quantification using an interleaved Look-Locker acquisition sequence with T preparation pulse (3D-QALAS) measurements using self-supervised learning (SSL) without the need for an external dictionary. An SSL-based QALAS mapping method (SSL-QALAS) was developed for rapid and dictionary-free estimation of multiparametric maps from 3D-QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL-QALAS was evaluated by comparing the estimated T and T values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL-QALAS and the dictionary-matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan-specific, pre-trained, and transfer learning models. Phantom experiments showed that both the dictionary-matching and SSL-QALAS methods produced T and T estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL-QALAS showed similar performance with dictionary matching in reconstructing the T , T , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre-trained SSL-QALAS model within 10 s. Fast scan-specific tuning was also demonstrated by fine-tuning the pre-trained model with the target subject's data within 15 min. The proposed SSL-QALAS method enabled rapid reconstruction of multiparametric maps from 3D-QALAS measurements without an external dictionary or labeled ground-truth training data.
Purpose To develop and evaluate a method for rapid estimation of multiparametric T1, T2, proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) without the need for an external dictionary. Methods An SSL‐based QALAS mapping method (SSL‐QALAS) was developed for rapid and dictionary‐free estimation of multiparametric maps from 3D‐QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL‐QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL‐QALAS and the dictionary‐matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan‐specific, pre‐trained, and transfer learning models. Results Phantom experiments showed that both the dictionary‐matching and SSL‐QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL‐QALAS showed similar performance with dictionary matching in reconstructing the T1, T2, proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre‐trained SSL‐QALAS model within 10 s. Fast scan‐specific tuning was also demonstrated by fine‐tuning the pre‐trained model with the target subject's data within 15 min. Conclusion The proposed SSL‐QALAS method enabled rapid reconstruction of multiparametric maps from 3D‐QALAS measurements without an external dictionary or labeled ground‐truth training data.
Abstract Purpose To develop and evaluate a method for rapid estimation of multiparametric T 1 , T 2 , proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T 2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) without the need for an external dictionary. Methods An SSL‐based QALAS mapping method (SSL‐QALAS) was developed for rapid and dictionary‐free estimation of multiparametric maps from 3D‐QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL‐QALAS was evaluated by comparing the estimated T 1 and T 2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL‐QALAS and the dictionary‐matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan‐specific, pre‐trained, and transfer learning models. Results Phantom experiments showed that both the dictionary‐matching and SSL‐QALAS methods produced T 1 and T 2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL‐QALAS showed similar performance with dictionary matching in reconstructing the T 1 , T 2 , proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre‐trained SSL‐QALAS model within 10 s. Fast scan‐specific tuning was also demonstrated by fine‐tuning the pre‐trained model with the target subject's data within 15 min. Conclusion The proposed SSL‐QALAS method enabled rapid reconstruction of multiparametric maps from 3D‐QALAS measurements without an external dictionary or labeled ground‐truth training data.
PurposeTo develop and evaluate a method for rapid estimation of multiparametric T1, T2, proton density, and inversion efficiency maps from 3D‐quantification using an interleaved Look‐Locker acquisition sequence with T2 preparation pulse (3D‐QALAS) measurements using self‐supervised learning (SSL) without the need for an external dictionary.MethodsAn SSL‐based QALAS mapping method (SSL‐QALAS) was developed for rapid and dictionary‐free estimation of multiparametric maps from 3D‐QALAS measurements. The accuracy of the reconstructed quantitative maps using dictionary matching and SSL‐QALAS was evaluated by comparing the estimated T1 and T2 values with those obtained from the reference methods on an International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. The SSL‐QALAS and the dictionary‐matching methods were also compared in vivo, and generalizability was evaluated by comparing the scan‐specific, pre‐trained, and transfer learning models.ResultsPhantom experiments showed that both the dictionary‐matching and SSL‐QALAS methods produced T1 and T2 estimates that had a strong linear agreement with the reference values in the International Society for Magnetic Resonance in Medicine/National Institute of Standards and Technology phantom. Further, SSL‐QALAS showed similar performance with dictionary matching in reconstructing the T1, T2, proton density, and inversion efficiency maps on in vivo data. Rapid reconstruction of multiparametric maps was enabled by inferring the data using a pre‐trained SSL‐QALAS model within 10 s. Fast scan‐specific tuning was also demonstrated by fine‐tuning the pre‐trained model with the target subject's data within 15 min.ConclusionThe proposed SSL‐QALAS method enabled rapid reconstruction of multiparametric maps from 3D‐QALAS measurements without an external dictionary or labeled ground‐truth training data.
Author Grant, P. Ellen
Jun, Yohan
Bilgic, Berkin
Cho, Jaejin
Gagoski, Borjan
Gee, Michael
Wang, Xiaoqing
AuthorAffiliation 2 Department of Radiology, Harvard Medical School, Boston, MA, United States
3 Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
1 Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
5 Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States
4 Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States
AuthorAffiliation_xml – name: 5 Harvard/MIT Health Sciences and Technology, Cambridge, MA, United States
– name: 3 Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
– name: 1 Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
– name: 2 Department of Radiology, Harvard Medical School, Boston, MA, United States
– name: 4 Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, United States
Author_xml – sequence: 1
  givenname: Yohan
  orcidid: 0000-0003-4787-4760
  surname: Jun
  fullname: Jun, Yohan
  email: yjun@mgh.harvard.edu
  organization: Harvard Medical School
– sequence: 2
  givenname: Jaejin
  orcidid: 0000-0001-5672-6765
  surname: Cho
  fullname: Cho, Jaejin
  organization: Harvard Medical School
– sequence: 3
  givenname: Xiaoqing
  orcidid: 0000-0001-7036-7930
  surname: Wang
  fullname: Wang, Xiaoqing
  organization: Harvard Medical School
– sequence: 4
  givenname: Michael
  orcidid: 0000-0002-6117-5168
  surname: Gee
  fullname: Gee, Michael
  organization: Massachusetts General Hospital
– sequence: 5
  givenname: P. Ellen
  orcidid: 0000-0003-1005-4013
  surname: Grant
  fullname: Grant, P. Ellen
  organization: Boston Children's Hospital
– sequence: 6
  givenname: Berkin
  orcidid: 0000-0002-9080-7865
  surname: Bilgic
  fullname: Bilgic, Berkin
  organization: Harvard/MIT Health Sciences and Technology
– sequence: 7
  givenname: Borjan
  orcidid: 0000-0003-3777-2621
  surname: Gagoski
  fullname: Gagoski, Borjan
  organization: Boston Children's Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37415389$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAUha2Kqgy0C16gssSmLAK2Y09iNtWI_oCUUVXC3vI4N9QosYOdTMWOR-gz9knqYQCVSl1dHfm7x-fq7KEd5x0gdEDJMSWEnfShP2ayKOev0IwKxjImJN9BM1JwkuVU8l20F-MNIUTKgr9Bu3nBqchLOUNDXVe_7399X1SL-hTX0LVJ1dMAYW0jNLgCHZx117j1AQc92Ab3UzfaQQfdwwgBQxxtr0frHbYO307ajXZMeg14eXmBp7jZzj89ffIWvW51F-Hd49xHV18-X52dZ9W3rxdniyoznMh5ZiQzxrA5zCWlRlCyahoQpWBtuq_hXIqiXZWMJC00L0VBZVJpGKqblcj30cet7TCtemgMuDHoTg0hZQ13ymurXr44-0Nd-7WiRLBCiCI5fHh0CP52Sleq3kYDXacd-CkqVuaClZSLPKGH_6A3fgounZeoFJrKnG2ooy1lgo8xQPuchhK16VGlHtVDj4l9_3f8Z_KpuAScbIGftoO7_zup5eVya_kHsd-rnw
CitedBy_id crossref_primary_10_1109_TCI_2024_3388869
crossref_primary_10_1002_mrm_30018
Cites_doi 10.1016/j.media.2021.102017
10.1109/MSP.2021.3119273
10.1002/jmri.26319
10.1016/j.mri.2019.08.031
10.1002/mrm.29059
10.1016/j.mri.2021.01.001
10.1007/s00330-021-07783-3
10.1016/j.mri.2019.11.015
10.1002/mrm.26867
10.1212/WNL.52.9.1870
10.1016/j.neuroimage.2020.117573
10.1016/j.neuroimage.2021.117756
10.1002/mrm.26886
10.1002/mrm.25347
10.1016/j.neuroimage.2016.09.047
10.1002/cam4.966
10.1002/mrm.27707
10.1016/j.neuroimage.2019.116329
10.1002/mrm.29219
10.1007/s11682-016-9550-5
10.1016/j.neuroimage.2009.10.002
10.1038/s41551-018-0217-y
10.1002/nbm.1163
10.1002/mrm.28659
10.1371/journal.pone.0095161
10.1093/brain/awab029
10.1016/j.mri.2020.01.005
10.1186/s12968-014-0102-0
10.1002/jmri.27820
10.1148/radiol.211519
10.1016/j.mri.2016.12.014
10.1002/mrm.25439
10.3389/fcvm.2022.928546
10.1016/j.neuroimage.2022.119033
10.1002/mrm.22423
10.3390/bioengineering9120736
10.1038/s41598-018-27742-1
10.1002/mrm.20314
10.1002/jmri.26598
10.1109/TMI.2014.2337321
10.1016/j.neuroimage.2022.118963
10.1097/RLI.0000000000000435
10.1148/radiol.2411050628
10.1007/s10278-017-9983-4
10.1001/archneur.64.3.411
10.1097/RLI.0000000000000744
10.1002/jmri.22831
10.1002/mrm.25674
10.1007/s00234-014-1445-9
10.1038/nature11971
10.3174/ajnr.A6930
10.1002/jmri.26744
10.1002/mrm.26649
10.1088/1361‐6560/ac9e3e
10.1002/mrm.28344
10.1016/j.neuroimage.2006.01.015
ContentType Journal Article
Copyright 2023 International Society for Magnetic Resonance in Medicine
2023 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2023 International Society for Magnetic Resonance in Medicine
– notice: 2023 International Society for Magnetic Resonance in Medicine.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.29786
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Biochemistry Abstracts 1
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2032
ExternalDocumentID 10_1002_mrm_29786
37415389
MRM29786
Genre rapidPublication
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Nvidia
– fundername: National Institutes of Health
  funderid: P41EB030006; R01EB028797; R01EB032378; R03EB031175; U01EB025162; U01EB026996; U01DA055353
– fundername: NICHD NIH HHS
  grantid: P50 HD105351
– fundername: NIDA NIH HHS
  grantid: U01 DA055353
– fundername: NIBIB NIH HHS
  grantid: R03 EB031175
– fundername: NIBIB NIH HHS
  grantid: R01 EB032378
– fundername: NIBIB NIH HHS
  grantid: U01 EB026996
– fundername: NIBIB NIH HHS
  grantid: R01 EB028797
– fundername: NIH HHS
  grantid: P41EB030006
– fundername: NIBIB NIH HHS
  grantid: U01 EB025162
– fundername: NIH HHS
  grantid: R03EB031175
– fundername: NIBIB NIH HHS
  grantid: P41 EB030006
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
G8K
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
ABDPE
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c4096-c92ccc26e6911c510bdde5852f522d44957fb8202f55a485719820571c1adb53
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Sat Nov 02 05:26:27 EDT 2024
Sat Nov 02 16:45:06 EDT 2024
Thu Oct 10 22:48:34 EDT 2024
Fri Aug 23 00:46:56 EDT 2024
Sat Nov 02 12:12:43 EDT 2024
Sat Aug 24 00:50:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords quantitative MRI
self-supervised learning
3D-QALAS
multiparametric mapping
Language English
License 2023 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4096-c92ccc26e6911c510bdde5852f522d44957fb8202f55a485719820571c1adb53
Notes Berkin Bilgic and Borjan Gagoski contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Equal contribution as last authors
ORCID 0000-0002-6117-5168
0000-0003-1005-4013
0000-0003-3777-2621
0000-0002-9080-7865
0000-0001-5672-6765
0000-0001-7036-7930
0000-0003-4787-4760
PMID 37415389
PQID 2858519323
PQPubID 1016391
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10527557
proquest_miscellaneous_2835281453
proquest_journals_2858519323
crossref_primary_10_1002_mrm_29786
pubmed_primary_37415389
wiley_primary_10_1002_mrm_29786_MRM29786
PublicationCentury 2000
PublicationDate November 2023
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2022; 253
2022; 250
2012; 2012
2006; 31
2019; 50
2015; 73
2015; 74
2022; 67
2016; 75
2020; 206
2021; 70
2017; 30
2018; 8
2010; 64
2018; 2
2021; 31
2021; 78
2019; 63
2017; 38
2006; 27
2014; 16
2006; 241
2021; 230
1999; 52
2007; 20
2014; 9
2007; 64
2021; 85
2022; 39
2018; 79
2015; 57
2021; 42
2020; 84
2021; 226
2005
2021; 144
2022; 87
2022; 88
2012; 35
2010; 49
2019; 82
2021; 56
2022
2017; 11
2022; 9
2019; 49
2019
2005; 53
2020; 68
2016
2013; 495
2020; 66
2014
2022; 55
2017; 144
2022; 305
2018; 53
2014; 33
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
House MJ (e_1_2_8_19_1) 2006; 27
e_1_2_8_3_1
e_1_2_8_5_1
Paszke A (e_1_2_8_61_1) 2019
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
Kingma DP (e_1_2_8_60_1) 2014
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Cho J (e_1_2_8_65_1) 2022
e_1_2_8_51_1
Fatania K (e_1_2_8_58_1) 2022
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Tofts P (e_1_2_8_10_1) 2005
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Tardif CL (e_1_2_8_9_1) 2012; 2012
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Ulyanov D (e_1_2_8_59_1) 2016
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 55
  start-page: 620
  year: 2022
  end-page: 622
  article-title: T and T mapping for early detection of treatment‐related myocardial changes in breast cancer patients
  publication-title: J Magn Reson Imaging
– volume: 79
  start-page: 2392
  year: 2018
  end-page: 2400
  article-title: Low rank approximation methods for MR fingerprinting with large scale dictionaries
  publication-title: Magn Reson Med
– volume: 8
  start-page: 9450
  year: 2018
  article-title: Deep‐learned 3D black‐blood imaging using automatic labelling technique and 3D convolutional neural networks for detecting metastatic brain tumors
  publication-title: Sci Rep
– volume: 75
  start-page: 1040
  year: 2016
  end-page: 1053
  article-title: MPnRAGE: a technique to simultaneously acquire hundreds of differently contrasted MPRAGE images with applications to quantitative T mapping
  publication-title: Magn Reson Med
– year: 2005
– volume: 35
  start-page: 300
  year: 2012
  end-page: 308
  article-title: Age‐related regional brain T ‐relaxation changes in healthy adults
  publication-title: J Magn Reson Imaging
– volume: 74
  start-page: 523
  year: 2015
  end-page: 528
  article-title: Fast group matching for MR fingerprinting reconstruction
  publication-title: Magn Reson Med
– volume: 33
  start-page: 2311
  year: 2014
  end-page: 2322
  article-title: SVD compression for magnetic resonance fingerprinting in the time domain
  publication-title: IEEE Trans Med Imaging
– volume: 206
  year: 2020
  article-title: High‐resolution 3D MR fingerprinting using parallel imaging and deep learning
  publication-title: Neuroimage
– volume: 230
  year: 2021
  article-title: Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions
  publication-title: Neuroimage
– volume: 73
  start-page: 2152
  year: 2015
  end-page: 2162
  article-title: Wave‐CAIPI for highly accelerated 3D imaging
  publication-title: Magn Reson Med
– volume: 49
  start-page: e26
  year: 2019
  end-page: e39
  article-title: Recommendations towards standards for quantitative MRI (qMRI) and outstanding needs
  publication-title: J Magn Reson Imaging
– year: 2016
  article-title: Instance normalization: The missing ingredient for fast stylization
  publication-title: arXiv preprint: arXiv:1607.08022
– volume: 16
  start-page: 102
  year: 2014
  article-title: Simultaneous three‐dimensional myocardial T and T mapping in one breath hold with 3D‐QALAS
  publication-title: J Cardiovasc Magn Reson
– volume: 53
  start-page: 236
  year: 2018
  end-page: 245
  article-title: Age‐related changes in tissue value properties in children: simultaneous quantification of relaxation times and proton density using synthetic magnetic resonance imaging
  publication-title: Invest Radiol
– volume: 64
  start-page: 439
  year: 2010
  end-page: 446
  article-title: Rapid mapping using a preconditioning RF pulse with TurboFLASH readout
  publication-title: Magn Reson Med
– volume: 31
  start-page: 6686
  year: 2021
  end-page: 6695
  article-title: Robust performance of deep learning for automatic detection and segmentation of brain metastases using three‐dimensional black‐blood and three‐dimensional gradient echo imaging
  publication-title: Eur Radiol
– volume: 11
  start-page: 744
  year: 2017
  end-page: 753
  article-title: Multi‐parametric quantitative MRI of normal appearing white matter in multiple sclerosis, and the effect of disease activity on T
  publication-title: Brain Imaging Behav
– volume: 85
  start-page: 3211
  year: 2021
  end-page: 3226
  article-title: Magnetic resonance parameter mapping using model‐guided self‐supervised deep learning
  publication-title: Magn Reson Med
– volume: 38
  start-page: 13
  year: 2017
  end-page: 20
  article-title: Clinical feasibility of 3D‐QALAS – single breath‐hold 3D myocardial T ‐ and T ‐mapping
  publication-title: Magn Reson Imaging
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 67
  start-page: 225019
  year: 2022
  article-title: Uncertainty‐aware self‐supervised neural network for livermapping with relaxation constraint
  publication-title: Phys Med Biol
– volume: 144
  start-page: 203
  year: 2017
  end-page: 216
  article-title: Whole brain MP2RAGE‐based mapping of the longitudinal relaxation time at 9.4T
  publication-title: Neuroimage
– volume: 66
  start-page: 248
  year: 2020
  end-page: 256
  article-title: snapMRF: GPU‐accelerated magnetic resonance fingerprinting dictionary generation and matching using extended phase graphs
  publication-title: Magn Reson Imaging
– volume: 79
  start-page: 401
  year: 2018
  end-page: 406
  article-title: Wave‐CAIPI for highly accelerated MP‐RAGE imaging
  publication-title: Magn Reson Med
– volume: 42
  start-page: 471
  year: 2021
  end-page: 478
  article-title: 3D quantitative synthetic MRI in the evaluation of multiple sclerosis lesions
  publication-title: AJNR Am J Neuroradiol
– volume: 6
  start-page: 89
  year: 2017
  end-page: 99
  article-title: Quantitative T ‐mapping detects cloudy‐enhancing tumor compartments predicting outcome of patients with glioblastoma
  publication-title: Cancer Med
– year: 2022
  article-title: Nonlinear equivariant imaging: learning multi‐parametric tissue mapping without ground truth for compressive quantitative MRI
  publication-title: arXiv preprint: arXiv:2211.12786
– volume: 63
  start-page: 235
  year: 2019
  end-page: 243
  article-title: Three‐dimensional high‐resolution simultaneous quantitative mapping of the whole brain with 3D‐QALAS: An accuracy and repeatability study
  publication-title: Magn Reson Imaging
– volume: 79
  start-page: 2190
  year: 2018
  end-page: 2197
  article-title: Fast 3D magnetic resonance fingerprinting for a whole‐brain coverage
  publication-title: Magn Reson Med
– year: 2019
– volume: 52
  start-page: 1870
  year: 1999
  end-page: 1876
  article-title: Entorhinal cortex in temporal lobe epilepsy: a quantitative MRI study
  publication-title: Neurology
– volume: 9
  year: 2014
  article-title: Normal appearing and diffusely abnormal white matter in patients with multiple sclerosis assessed with quantitative MR
  publication-title: PLoS One
– volume: 27
  start-page: 430
  year: 2006
  end-page: 439
  article-title: Quantitative MR imaging relaxometry in elderly participants reporting memory loss
  publication-title: AJNR Am J Neuroradiol
– volume: 9
  year: 2022
  article-title: A self‐supervised deep learning reconstruction for shortening the breathhold and acquisition window in cardiac magnetic resonance fingerprinting
  publication-title: Front Cardiovasc Med
– volume: 9
  start-page: 736
  year: 2022
  article-title: Wave‐encoded model‐based deep learning for highly accelerated imaging with joint reconstruction
  publication-title: Bioengineering (Basel)
– volume: 78
  start-page: 90
  year: 2021
  end-page: 97
  article-title: Effect of hybrid of compressed sensing and parallel imaging on the quantitative values measured by 3D quantitative synthetic MRI: a phantom study
  publication-title: Magn Reson Imaging
– year: 2022
  article-title: Time‐efficient, high resolution 3T whole brain quantitative relaxometry using 3D‐QALAS with Wave‐CAIPI readouts
  publication-title: arXiv preprint: arXiv:2211.04426
– volume: 2
  start-page: 215
  year: 2018
  end-page: 226
  article-title: Magnetic resonance multitasking for motion‐resolved quantitative cardiovascular imaging
  publication-title: Nat Biomed Eng
– volume: 305
  start-page: 5
  year: 2022
  end-page: 18
  article-title: Primary multiparametric quantitative brain MRI: state‐of‐the‐art Relaxometric and proton density mapping techniques
  publication-title: Radiology
– volume: 30
  start-page: 449
  year: 2017
  end-page: 459
  article-title: Deep learning for brain MRI segmentation: state of the art and future directions
  publication-title: J Digit Imaging
– volume: 68
  start-page: 95
  year: 2020
  end-page: 105
  article-title: Denoising arterial spin labeling perfusion MRI with deep machine learning
  publication-title: Magn Reson Imaging
– volume: 226
  year: 2021
  article-title: Three dimensional MRF obtains highly repeatable and reproducible multi‐parametric estimations in the healthy human brain at 1.5T and 3T
  publication-title: Neuroimage
– volume: 53
  start-page: 237
  year: 2005
  end-page: 241
  article-title: High‐resolution T and T mapping of the brain in a clinically acceptable time with DESPOT1 and DESPOT2
  publication-title: Magn Reson Med
– volume: 50
  start-page: 1834
  year: 2019
  end-page: 1842
  article-title: 3D quantitative synthetic MRI‐derived cortical thickness and subcortical brain volumes: scan‐rescan repeatability and comparison with conventional T‐weighted images
  publication-title: J Magn Reson Imaging
– volume: 84
  start-page: 2932
  year: 2020
  end-page: 2942
  article-title: Deep learning using a biophysical model for robust and accelerated reconstruction of quantitative, artifact‐free and denoised images
  publication-title: Magn Reson Med
– volume: 144
  start-page: 1296
  year: 2021
  end-page: 1311
  article-title: Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis
  publication-title: Brain
– volume: 20
  start-page: 343
  year: 2007
  end-page: 351
  article-title: Quantitative MRI reveals aging‐associated T changes in mouse models of Alzheimer's disease
  publication-title: NMR Biomed
– year: 2014
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint: arXiv:1412.6980
– volume: 87
  start-page: 1375
  year: 2022
  end-page: 1389
  article-title: Three‐dimensional simultaneous brain mapping of T , T , and magnetic susceptibility with MR multitasking
  publication-title: Magn Reson Med
– volume: 241
  start-page: 26
  year: 2006
  end-page: 44
  article-title: Quantitative MR imaging in Alzheimer disease
  publication-title: Radiology
– volume: 88
  start-page: 633
  year: 2022
  end-page: 650
  article-title: Blip up‐down acquisition for spin‐ and gradient‐echo imaging (BUDA‐SAGE) with self‐supervised denoising enables efficient T , , para‐and dia‐magnetic susceptibility mapping
  publication-title: Magn Reson Med
– volume: 49
  start-page: 1271
  year: 2010
  end-page: 1281
  article-title: MP2RAGE, a self bias‐field corrected sequence for improved segmentation and T ‐mapping at high field
  publication-title: Neuroimage
– volume: 253
  year: 2022
  article-title: SDnDTI: self‐supervised deep learning‐based denoising for diffusion tensor MRI
  publication-title: Neuroimage
– volume: 49
  start-page: 1333
  year: 2019
  end-page: 1346
  article-title: Development of high‐resolution 3D MR fingerprinting for detection and characterization of epileptic lesions
  publication-title: J Magn Reson Imaging
– volume: 82
  start-page: 174
  year: 2019
  end-page: 188
  article-title: MANTIS: model‐augmented neural neTwork with incoherent k‐space sampling for efficient MR parameter mapping
  publication-title: Magn Reson Med
– volume: 39
  start-page: 28
  year: 2022
  end-page: 44
  article-title: Unsupervised deep learning methods for biological image reconstruction and enhancement: An overview from a signal processing perspective
  publication-title: IEEE Signal Process Mag
– volume: 64
  start-page: 411
  year: 2007
  end-page: 415
  article-title: Normal‐appearing brain T relaxation time predicts disability in early primary progressive multiple sclerosis
  publication-title: Arch Neurol
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  article-title: User‐guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
– volume: 2012
  year: 2012
  article-title: Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology
  publication-title: Mult Scler Int
– volume: 56
  start-page: 292
  year: 2021
  end-page: 300
  article-title: Accelerated isotropic multiparametric imaging by high spatial resolution 3D‐QALAS with compressed sensing: a phantom, volunteer, and patient study
  publication-title: Invest Radiol
– volume: 70
  year: 2021
  article-title: Deep model‐based magnetic resonance parameter mapping network (DOPAMINE) for fast T mapping using variable flip angle method
  publication-title: Med Image Anal
– volume: 250
  year: 2022
  article-title: 3D Echo planar time‐resolved imaging (3D‐EPTI) for ultrafast multi‐parametric quantitative MRI
  publication-title: Neuroimage
– volume: 57
  start-page: 11
  year: 2015
  end-page: 20
  article-title: Quantitative T and T mapping in recurrent glioblastomas under bevacizumab: earlier detection of tumor progression compared to conventional MRI
  publication-title: Neuroradiology
– ident: e_1_2_8_47_1
  doi: 10.1016/j.media.2021.102017
– ident: e_1_2_8_53_1
  doi: 10.1109/MSP.2021.3119273
– ident: e_1_2_8_5_1
  doi: 10.1002/jmri.26319
– ident: e_1_2_8_30_1
  doi: 10.1016/j.mri.2019.08.031
– year: 2022
  ident: e_1_2_8_65_1
  article-title: Time‐efficient, high resolution 3T whole brain quantitative relaxometry using 3D‐QALAS with Wave‐CAIPI readouts
  publication-title: arXiv preprint: arXiv:2211.04426
  contributor:
    fullname: Cho J
– ident: e_1_2_8_28_1
  doi: 10.1002/mrm.29059
– ident: e_1_2_8_35_1
  doi: 10.1016/j.mri.2021.01.001
– ident: e_1_2_8_43_1
  doi: 10.1007/s00330-021-07783-3
– ident: e_1_2_8_39_1
  doi: 10.1016/j.mri.2019.11.015
– ident: e_1_2_8_41_1
  doi: 10.1002/mrm.26867
– ident: e_1_2_8_2_1
  doi: 10.1212/WNL.52.9.1870
– ident: e_1_2_8_27_1
  doi: 10.1016/j.neuroimage.2020.117573
– year: 2016
  ident: e_1_2_8_59_1
  article-title: Instance normalization: The missing ingredient for fast stylization
  publication-title: arXiv preprint: arXiv:1607.08022
  contributor:
    fullname: Ulyanov D
– ident: e_1_2_8_48_1
  doi: 10.1016/j.neuroimage.2021.117756
– ident: e_1_2_8_26_1
  doi: 10.1002/mrm.26886
– ident: e_1_2_8_36_1
  doi: 10.1002/mrm.25347
– ident: e_1_2_8_64_1
  doi: 10.1016/j.neuroimage.2016.09.047
– ident: e_1_2_8_6_1
  doi: 10.1002/cam4.966
– ident: e_1_2_8_50_1
  doi: 10.1002/mrm.27707
– ident: e_1_2_8_49_1
  doi: 10.1016/j.neuroimage.2019.116329
– ident: e_1_2_8_52_1
  doi: 10.1002/mrm.29219
– ident: e_1_2_8_8_1
  doi: 10.1007/s11682-016-9550-5
– ident: e_1_2_8_21_1
  doi: 10.1016/j.neuroimage.2009.10.002
– ident: e_1_2_8_25_1
  doi: 10.1038/s41551-018-0217-y
– ident: e_1_2_8_3_1
  doi: 10.1002/nbm.1163
– ident: e_1_2_8_54_1
  doi: 10.1002/mrm.28659
– ident: e_1_2_8_11_1
  doi: 10.1371/journal.pone.0095161
– ident: e_1_2_8_14_1
  doi: 10.1093/brain/awab029
– ident: e_1_2_8_45_1
  doi: 10.1016/j.mri.2020.01.005
– ident: e_1_2_8_29_1
  doi: 10.1186/s12968-014-0102-0
– ident: e_1_2_8_33_1
  doi: 10.1002/jmri.27820
– ident: e_1_2_8_12_1
  doi: 10.1148/radiol.211519
– ident: e_1_2_8_32_1
  doi: 10.1016/j.mri.2016.12.014
– ident: e_1_2_8_40_1
  doi: 10.1002/mrm.25439
– ident: e_1_2_8_57_1
  doi: 10.3389/fcvm.2022.928546
– ident: e_1_2_8_51_1
  doi: 10.1016/j.neuroimage.2022.119033
– ident: e_1_2_8_62_1
  doi: 10.1002/mrm.22423
– year: 2014
  ident: e_1_2_8_60_1
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint: arXiv:1412.6980
  contributor:
    fullname: Kingma DP
– ident: e_1_2_8_38_1
  doi: 10.3390/bioengineering9120736
– ident: e_1_2_8_46_1
  doi: 10.1038/s41598-018-27742-1
– volume: 27
  start-page: 430
  year: 2006
  ident: e_1_2_8_19_1
  article-title: Quantitative MR imaging R 2 relaxometry in elderly participants reporting memory loss
  publication-title: AJNR Am J Neuroradiol
  contributor:
    fullname: House MJ
– volume-title: Quantitative MRI of the Brain: Measuring Changes Caused by Disease
  year: 2005
  ident: e_1_2_8_10_1
  contributor:
    fullname: Tofts P
– ident: e_1_2_8_20_1
  doi: 10.1002/mrm.20314
– ident: e_1_2_8_13_1
  doi: 10.1002/jmri.26598
– ident: e_1_2_8_42_1
  doi: 10.1109/TMI.2014.2337321
– ident: e_1_2_8_24_1
  doi: 10.1016/j.neuroimage.2022.118963
– ident: e_1_2_8_16_1
  doi: 10.1097/RLI.0000000000000435
– ident: e_1_2_8_7_1
  doi: 10.1148/radiol.2411050628
– ident: e_1_2_8_44_1
  doi: 10.1007/s10278-017-9983-4
– ident: e_1_2_8_18_1
  doi: 10.1001/archneur.64.3.411
– ident: e_1_2_8_34_1
  doi: 10.1097/RLI.0000000000000744
– ident: e_1_2_8_17_1
  doi: 10.1002/jmri.22831
– ident: e_1_2_8_22_1
  doi: 10.1002/mrm.25674
– year: 2022
  ident: e_1_2_8_58_1
  article-title: Nonlinear equivariant imaging: learning multi‐parametric tissue mapping without ground truth for compressive quantitative MRI
  publication-title: arXiv preprint: arXiv:2211.12786
  contributor:
    fullname: Fatania K
– ident: e_1_2_8_4_1
  doi: 10.1007/s00234-014-1445-9
– volume: 2012
  year: 2012
  ident: e_1_2_8_9_1
  article-title: Quantitative magnetic resonance imaging of cortical multiple sclerosis pathology
  publication-title: Mult Scler Int
  contributor:
    fullname: Tardif CL
– ident: e_1_2_8_23_1
  doi: 10.1038/nature11971
– ident: e_1_2_8_15_1
  doi: 10.3174/ajnr.A6930
– ident: e_1_2_8_31_1
  doi: 10.1002/jmri.26744
– ident: e_1_2_8_37_1
  doi: 10.1002/mrm.26649
– ident: e_1_2_8_55_1
  doi: 10.1088/1361‐6560/ac9e3e
– ident: e_1_2_8_56_1
  doi: 10.1002/mrm.28344
– volume-title: Proceedings 33rd Conference on Neural Information Processing Systems (NeurIPS 2019)
  year: 2019
  ident: e_1_2_8_61_1
  contributor:
    fullname: Paszke A
– ident: e_1_2_8_63_1
  doi: 10.1016/j.neuroimage.2006.01.015
SSID ssj0009974
Score 2.4959912
Snippet Purpose To develop and evaluate a method for rapid estimation of multiparametric T1, T2, proton density, and inversion efficiency maps from 3D‐quantification...
To develop and evaluate a method for rapid estimation of multiparametric T , T , proton density, and inversion efficiency maps from 3D-quantification using an...
Abstract Purpose To develop and evaluate a method for rapid estimation of multiparametric T 1 , T 2 , proton density, and inversion efficiency maps from...
PurposeTo develop and evaluate a method for rapid estimation of multiparametric T1, T2, proton density, and inversion efficiency maps from 3D‐quantification...
To develop and evaluate a method for rapid estimation of multiparametric T1 , T2 , proton density, and inversion efficiency maps from 3D-quantification using...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2019
SubjectTerms 3D‐QALAS
Dictionaries
Image Processing, Computer-Assisted - methods
Image reconstruction
In vivo methods and tests
Inversion
Magnetic resonance
Magnetic Resonance Imaging - methods
Matching
multiparametric mapping
Phantoms, Imaging
Proton density (concentration)
Protons
quantitative MRI
Reproducibility of Results
self‐supervised learning
Supervised learning
Supervised Machine Learning
Technology
Transfer learning
Tuning
Title SSL‐QALAS: Self‐Supervised Learning for rapid multiparameter estimation in quantitative MRI using 3D‐QALAS
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29786
https://www.ncbi.nlm.nih.gov/pubmed/37415389
https://www.proquest.com/docview/2858519323
https://www.proquest.com/docview/2835281453
https://pubmed.ncbi.nlm.nih.gov/PMC10527557
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VlUBceJRXoCCDOHDJduNHsoHTilIV1CCxKVIPSJHt2GUFTZfdzYUTP4HfyC9hbCcpS4WEOCWWJ4pjz4y_icefAZ5NmKJ2ouqYmczGnKkkVnk2ji23yppsnEp_fkrxLj38wN-eiJMteNnvhQn8EMMPN2cZ3l87A5dqtXdBGnq2PBtRjIEc3XbCMpfOtT-7oI7K88DAnHHnZ3LeswqN6d7w5OZcdAlgXs6T_B2_-gno4AZ87Jse8k4-j9q1Gulvf7A6_ue33YTrHTAl06BJt2DLNDtwteiW3nfgis8V1avbsCjLo5_ff7yfHk3LF6Q0XyyWynbhvM7K1KSjbD0liIfJUi7mNQlpi9IlguE4EsfsEbZMknlDvray8Vvd0PGSYvaGuFz8U8L2-5fcgeOD18evDuPu4IZYY7iYxjqnWmuamhRdqUarV-hEMS6hFtFezTEmy6xC6IFlIflEZEmOJbzoRNZKsLuw3Zw35j4QayRXAlEgpQmXiE1sarioDeWGKy3HETztR7BaBHqOKhAx0wo7sfKdGMFuP7ZVZ6GrivoFUUSvLIInQzXallswkY05b52M475JuECZe0EVhrcwB8UQ7UUw2VCSQcDxdm_WNPNPnr8bIS3NhMgieO6V4O8tr4pZ4W8e_LvoQ7iGPcvCfsld2F4vW_MIgdNaPfYW8gvlfBeX
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIn4u_BQogQIGceCS7cZxkg3isqJUW9hUYrNIvVSR7dhlVZouu5sLJx6BZ-RJGNtJylIhIU6JZUd27JnxN_b4M8DLQSioHojSD1WifRaKwBdp0vc100KrpB9ze39KdhiPPrH3R9HRBrxpz8I4fohuwc1ohrXXRsHNgvTuBWvo2eKsR9EJiq_AVVT30FzcsDe5II9KU8fBnDBjaVLW8gr16W736fpsdAliXo6U_B3B2ilo_zYct413kSenvXolevLbH7yO__t3d-BWg03J0AnTXdhQ1RZcz5rd9y24ZsNF5fIezPN8_PP7j4_D8TB_TXL1RWMqr-fG8CxVSRrW1hOCkJgs-HxWEhe5yE0sGA4lMeQe7tQkmVXka80re9oNbS_JJgfEhOOfkHCvreQ-TPffTd-O_ObuBl-ixxj7MqVSShqrGK2pRMUXaEfRNaEaAV_J0C1LtED0gemIs0GUBCmm8CEDXooofACb1XmlHgLRijMRIRCkNGAc4YmOFYtKRZliQvK-By_aISzmjqGjcFzMtMBOLGwnerDTDm7RKOmyoHZPFAFs6MHzLhvVy-yZ8Eqd16aMob8JWIRltp0sdLWEBo0h4PNgsCYlXQFD3b2eU80-WwpvRLU0iaLEg1dWCv7e8iKbZPbl0b8XfQY3RtNsXIwPDj88hpvYy6E7PrkDm6tFrZ4gjlqJp1ZdfgEyAxuv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIiou_JS_QAGDOHDJduM4yQZOK8qqhU0FmyL1gBTZjl1W0DTsbi6ceASekSdhbCcpS4WEOCWWJ4pjz4y_icefAZ6NQkH1SJR-qBLts1AEvkiToa-ZFlolw5jb81Oyw3j_A3tzHB1vwMtuL4zjh-h_uBnLsP7aGHhd6t1z0tDTxemAYgwUX4LLLEbkaxDR7Jw7Kk0dBXPCjKNJWUcrNKS7_aPrk9EFhHkxUfJ3AGtnoMl1-Ni13SWefB40KzGQ3_6gdfzPj7sB11pkSsZOlW7Chqq2YStr19634YpNFpXLW1Dn-fTn9x_vx9Nx_oLk6ovGUt7Uxu0sVUlaztYTgoCYLHg9L4nLW-QmEwwHkhhqD7dnkswr8rXhld3rhp6XZLMDYpLxT0i4173kNhxNXh-92vfbkxt8ifFi7MuUSilprGL0pRLNXqAXxcCEaoR7JcOgLNECsQeWI85GURKkWMKLDHgpovAObFZnlboHRCvORIQwkNKAcQQnOlYsKhVlignJhx487UawqB0_R-GYmGmBnVjYTvRgpxvbojXRZUHtiijC19CDJ301GpdZMeGVOmuMjCG_CViEMnedKvRvCQ0WQ7jnwWhNSXoBQ9y9XlPNP1kCb8S0NImixIPnVgn-3vIim2X25v6_iz6GrXd7k2J6cPj2AVzFTg7d3skd2FwtGvUQQdRKPLLG8gvYZBpe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SSL-QALAS%3A+Self-Supervised+Learning+for+rapid+multiparameter+estimation+in+quantitative+MRI+using+3D-QALAS&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Jun%2C+Yohan&rft.au=Cho%2C+Jaejin&rft.au=Wang%2C+Xiaoqing&rft.au=Gee%2C+Michael&rft.date=2023-11-01&rft.eissn=1522-2594&rft.volume=90&rft.issue=5&rft.spage=2019&rft_id=info:doi/10.1002%2Fmrm.29786&rft_id=info%3Apmid%2F37415389&rft.externalDocID=37415389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon