Meta-regression approximations to reduce publication selection bias

Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta‐regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a l...

Full description

Saved in:
Bibliographic Details
Published inResearch synthesis methods Vol. 5; no. 1; pp. 60 - 78
Main Authors Stanley, T. D., Doucouliagos, Hristos
Format Journal Article
LanguageEnglish
Published Chichester Blackwell Publishing Ltd 01.03.2014
Wiley-Blackwell
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta‐regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision‐effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most cases and to outperform conventional meta‐analysis estimators, often by a great deal. Monte Carlo simulations also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accommodate systematic heterogeneity along with complex and differential publication selection bias that is related to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the Egger regression works so well and when it does not. These meta‐regression methods are applied to several policy‐relevant areas of research including antidepressant effectiveness, the value of a statistical life, the minimum wage, and nicotine replacement therapy. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most cases and to outperform conventional meta-analysis estimators, often by a great deal. Monte Carlo simulations also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accommodate systematic heterogeneity along with complex and differential publication selection bias that is related to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the Egger regression works so well and when it does not. These meta-regression methods are applied to several policy-relevant areas of research including antidepressant effectiveness, the value of a statistical life, the minimum wage, and nicotine replacement therapy.
Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most cases and to outperform conventional meta-analysis estimators, often by a great deal. Monte Carlo simulations also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accommodate systematic heterogeneity along with complex and differential publication selection bias that is related to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the Egger regression works so well and when it does not. These meta-regression methods are applied to several policy-relevant areas of research including antidepressant effectiveness, the value of a statistical life, the minimum wage, and nicotine replacement therapy. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta‐regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision‐effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most cases and to outperform conventional meta‐analysis estimators, often by a great deal. Monte Carlo simulations also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accommodate systematic heterogeneity along with complex and differential publication selection bias that is related to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the Egger regression works so well and when it does not. These meta‐regression methods are applied to several policy‐relevant areas of research including antidepressant effectiveness, the value of a statistical life, the minimum wage, and nicotine replacement therapy. Copyright © 2013 John Wiley & Sons, Ltd.
Author Doucouliagos, Hristos
Stanley, T. D.
Author_xml – sequence: 1
  givenname: T. D.
  surname: Stanley
  fullname: Stanley, T. D.
  email: Stanley@hendrix.edu
  organization: Economics, Hendrix College, 1600 Washington St., AR, 72032, Conway, USA
– sequence: 2
  givenname: Hristos
  surname: Doucouliagos
  fullname: Doucouliagos, Hristos
  organization: School of Accounting, Economics, and Finance and Alfred Deakin Research Institute, Deakin University, 221 Burwood Highway, Victoria, 3125, Burwood, Australia
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1109033$$DView record in ERIC
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28269496$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/26054026$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtP3DAUhS0EAkpZ9AcURUKVugn4_VhWEaVQhkqliKXleG4qD5lkaicC_n0dZphK9cbHvt-x7vV5h3a7vgOEPhB8RjCm54uYllkZsYMOiRKmpFqr3a1W5gAdp7TAeTEjqVT76IBKLDim8hBVMxhcGeF3hJRC3xVutYr9c1i6IZ9SMfRFhPnooViNdRv863WRoAX_qurg0nu017g2wfFmP0L3Xy9-Vd_Kmx-XV9WXm9Lz3F7pBK6FVw0hXIPxWAiunSBcMtPAvFZSYQG1ZsqBprjhvGlITRVVDQeFMbAj9Hn9bu7wzwhpsMuQPLSt66AfkyVSKyYxpSajp_-hi36MXe7OEpFn58ponamTDTXWS5jbVcxzxxf79j0Z-LQBXPKubaLrfEj_OE2l4WbiPq45iMFvyxfXJOeCGcv183X9KbTwsgUItlOEdorQThHa6593s0lkR7l2hDTA89bh4qOViilhH24vbcWq6u77zNgH9hf9nJvp
CitedBy_id crossref_primary_10_1016_j_econmod_2017_03_030
crossref_primary_10_1017_S0140525X20000643
crossref_primary_10_1007_s10640_022_00742_6
crossref_primary_10_1111_joes_12241
crossref_primary_10_1177_1948550617693062
crossref_primary_10_1080_15248372_2023_2248259
crossref_primary_10_1093_jeea_jvac053
crossref_primary_10_1016_j_ijinfomgt_2022_102536
crossref_primary_10_1177_0735275118794987
crossref_primary_10_1026_1612_5010_a000167
crossref_primary_10_15626_MP_2018_884
crossref_primary_10_1073_pnas_2200300119
crossref_primary_10_1080_20008198_2018_1450595
crossref_primary_10_1111_peps_12443
crossref_primary_10_1007_s10648_022_09705_1
crossref_primary_10_1111_gcb_15972
crossref_primary_10_2139_ssrn_4180594
crossref_primary_10_1016_j_yfrne_2019_100775
crossref_primary_10_1111_cdev_13039
crossref_primary_10_1111_joes_12598
crossref_primary_10_1111_joes_12595
crossref_primary_10_15626_MP_2018_878
crossref_primary_10_3758_s13423_021_02025_5
crossref_primary_10_1080_01441647_2018_1464078
crossref_primary_10_1177_0956797620924765
crossref_primary_10_1007_s10648_024_09886_x
crossref_primary_10_1002_bdd_2357
crossref_primary_10_1186_s13643_018_0931_2
crossref_primary_10_1016_j_dr_2019_100885
crossref_primary_10_1016_j_jesp_2015_09_013
crossref_primary_10_1111_1471_0528_17304
crossref_primary_10_1111_bjso_12256
crossref_primary_10_1093_oep_gpab044
crossref_primary_10_1111_cogs_13310
crossref_primary_10_1177_0146167218796473
crossref_primary_10_1080_17524032_2023_2280749
crossref_primary_10_1111_1477_9552_12528
crossref_primary_10_1007_s00181_015_0971_6
crossref_primary_10_1016_j_irfa_2020_101524
crossref_primary_10_1111_jopy_12305
crossref_primary_10_1111_twec_12587
crossref_primary_10_1007_s00426_018_1035_2
crossref_primary_10_1007_s42952_022_00169_1
crossref_primary_10_1080_17437199_2019_1630293
crossref_primary_10_1016_j_cpr_2022_102175
crossref_primary_10_1111_joes_12588
crossref_primary_10_1111_joes_12211
crossref_primary_10_1016_j_ecolecon_2014_08_015
crossref_primary_10_3389_fpsyg_2016_01382
crossref_primary_10_1080_17437199_2020_1760728
crossref_primary_10_1016_j_euroecorev_2021_103714
crossref_primary_10_1016_j_stueduc_2016_08_007
crossref_primary_10_1080_2372966X_2023_2178769
crossref_primary_10_1038_s41562_023_01554_4
crossref_primary_10_1111_joes_12560
crossref_primary_10_1257_aer_20180310
crossref_primary_10_1016_j_obhdp_2023_104280
crossref_primary_10_1017_S0140525X20000606
crossref_primary_10_1038_s44159_023_00213_9
crossref_primary_10_1016_j_regsciurbeco_2022_103826
crossref_primary_10_1016_j_jsp_2020_08_007
crossref_primary_10_1186_s40359_016_0126_3
crossref_primary_10_1017_bca_2020_21
crossref_primary_10_1111_ecoj_12461
crossref_primary_10_1093_scipol_scab025
crossref_primary_10_1371_journal_pbio_3002423
crossref_primary_10_2139_ssrn_3247630
crossref_primary_10_1016_j_avrs_2023_100086
crossref_primary_10_1111_biom_13560
crossref_primary_10_1016_j_neuropsychologia_2024_108886
crossref_primary_10_1002_jcpy_1353
crossref_primary_10_3389_fonc_2021_698076
crossref_primary_10_1016_j_jrp_2020_104036
crossref_primary_10_1080_10508422_2023_2219356
crossref_primary_10_3233_JAD_210364
crossref_primary_10_1002_acp_3776
crossref_primary_10_1016_j_neubiorev_2018_12_004
crossref_primary_10_1007_s10648_023_09801_w
crossref_primary_10_1016_j_edurev_2022_100436
crossref_primary_10_1016_j_jvb_2023_103863
crossref_primary_10_1002_acp_3777
crossref_primary_10_1007_s10683_021_09716_9
crossref_primary_10_1016_j_intell_2021_101566
crossref_primary_10_1027_2151_2604_a000513
crossref_primary_10_1186_s12915_022_01485_y
crossref_primary_10_2139_ssrn_3469150
crossref_primary_10_1016_j_ijchp_2021_100278
crossref_primary_10_1080_1750984X_2021_1966824
crossref_primary_10_1093_ej_ueaa115
crossref_primary_10_2139_ssrn_4188287
crossref_primary_10_1002_sim_6481
crossref_primary_10_1111_peps_12514
crossref_primary_10_1136_bmj_2023_076851
crossref_primary_10_2139_ssrn_4188289
crossref_primary_10_1371_journal_pone_0141468
crossref_primary_10_1136_jnnp_2020_323497
crossref_primary_10_1007_s10803_022_05656_2
crossref_primary_10_1007_s11065_024_09638_2
crossref_primary_10_3389_fpsyg_2014_01589
crossref_primary_10_1002_sim_7228
crossref_primary_10_1093_isq_sqy014
crossref_primary_10_1007_s10648_022_09672_7
crossref_primary_10_1016_j_socec_2024_102181
crossref_primary_10_1177_25152459221109259
crossref_primary_10_3390_children10121903
crossref_primary_10_1177_2515245919847196
crossref_primary_10_3390_sym9070098
crossref_primary_10_1177_0019466220951787
crossref_primary_10_3390_su13168962
crossref_primary_10_1002_jrsm_1701
crossref_primary_10_1177_10888683221104002
crossref_primary_10_1080_13607863_2022_2122931
crossref_primary_10_1080_1351847X_2020_1816559
crossref_primary_10_1177_0741932517731887
crossref_primary_10_1016_j_scitotenv_2023_165175
crossref_primary_10_1016_j_chb_2023_108055
crossref_primary_10_1002_jrsm_1711
crossref_primary_10_1016_j_red_2019_05_004
crossref_primary_10_1016_j_ijpsycho_2020_05_008
crossref_primary_10_1177_10690727221148717
crossref_primary_10_22495_cgobrv7i2sip4
crossref_primary_10_5018_economics_ejournal_ja_2015_11
crossref_primary_10_1111_twec_13011
crossref_primary_10_1111_joes_12528
crossref_primary_10_1093_chemse_bjx049
crossref_primary_10_1111_joes_12647
crossref_primary_10_1111_joes_12527
crossref_primary_10_1177_00076503231202018
crossref_primary_10_1016_j_ejpoleco_2018_03_004
crossref_primary_10_1016_j_jclinepi_2017_02_014
crossref_primary_10_1111_joes_12630
crossref_primary_10_1371_journal_pbio_3001009
crossref_primary_10_2139_ssrn_2519168
crossref_primary_10_1016_j_ssresearch_2020_102416
crossref_primary_10_1016_j_maturitas_2020_10_021
crossref_primary_10_5018_economics_ejournal_ja_2015_19
crossref_primary_10_1177_01461672231178518
crossref_primary_10_1177_14614448231180257
crossref_primary_10_3758_s13423_024_02516_1
crossref_primary_10_1111_2041_210X_13724
crossref_primary_10_1016_j_jpsychores_2023_111328
crossref_primary_10_1016_j_chbr_2022_100227
crossref_primary_10_2139_ssrn_3164869
crossref_primary_10_1080_17437199_2017_1369140
crossref_primary_10_1177_10888683221087527
crossref_primary_10_1111_joes_12633
crossref_primary_10_1002_ejsp_2855
crossref_primary_10_1016_j_jshs_2020_03_007
crossref_primary_10_1016_j_jrp_2018_02_007
crossref_primary_10_1515_bejeap_2019_0134
crossref_primary_10_1007_s11065_020_09429_5
crossref_primary_10_1007_s40489_021_00300_8
crossref_primary_10_1016_j_dr_2020_100910
crossref_primary_10_3389_fpsyg_2024_1361163
crossref_primary_10_1016_j_edurev_2023_100552
crossref_primary_10_1111_ele_14319
crossref_primary_10_2139_ssrn_2919555
crossref_primary_10_1177_0956797616658563
crossref_primary_10_1016_j_socscimed_2024_116968
crossref_primary_10_1016_j_respol_2019_103866
crossref_primary_10_1080_21642850_2021_2012474
crossref_primary_10_1007_s10578_022_01375_y
crossref_primary_10_1186_s13643_019_1199_x
crossref_primary_10_3724_SP_J_1042_2021_01829
crossref_primary_10_1016_j_foodpol_2023_102581
crossref_primary_10_1016_j_worlddev_2023_106520
crossref_primary_10_1177_2515245918756858
crossref_primary_10_1007_s10640_021_00536_2
crossref_primary_10_1016_j_jclepro_2022_134860
crossref_primary_10_1002_jrsm_1632
crossref_primary_10_1002_jrsm_1512
crossref_primary_10_1016_j_jrp_2015_07_004
crossref_primary_10_1108_JAL_11_2021_0004
crossref_primary_10_1177_0956797618774796
crossref_primary_10_1002_per_2027
crossref_primary_10_1016_j_jhealeco_2013_10_010
crossref_primary_10_3758_s13423_023_02353_8
crossref_primary_10_1080_00036846_2018_1489503
crossref_primary_10_1057_s41267_020_00385_z
crossref_primary_10_1111_joes_12608
crossref_primary_10_1017_bca_2017_21
crossref_primary_10_1017_S000305542000012X
crossref_primary_10_1016_j_addbeh_2022_107578
crossref_primary_10_1093_jcr_ucaa047
crossref_primary_10_3389_fpsyg_2024_1388966
crossref_primary_10_1002_ejsp_2846
crossref_primary_10_1016_j_jclinepi_2016_03_024
crossref_primary_10_1007_s40797_023_00228_4
crossref_primary_10_3389_fimmu_2020_01242
crossref_primary_10_5334_irsp_945
crossref_primary_10_3102_0034654316675417
crossref_primary_10_1016_j_jvb_2022_103839
crossref_primary_10_1016_j_psyneuen_2018_12_236
crossref_primary_10_3758_s13423_022_02136_7
crossref_primary_10_1093_ej_uead104
crossref_primary_10_1111_ajps_12613
crossref_primary_10_1016_j_neubiorev_2022_104993
crossref_primary_10_1002_jrsm_1654
crossref_primary_10_1016_j_socscimed_2017_06_045
crossref_primary_10_2139_ssrn_2289327
crossref_primary_10_1093_erae_jbab014
crossref_primary_10_1017_S0007123424000024
crossref_primary_10_1177_1745691617697076
crossref_primary_10_1002_jrsm_1529
crossref_primary_10_1371_journal_pone_0149590
crossref_primary_10_1016_j_worlddev_2023_106211
crossref_primary_10_1016_j_ememar_2024_101167
crossref_primary_10_1016_j_joep_2020_102329
crossref_primary_10_1111_ecog_03926
crossref_primary_10_1111_jomf_12804
crossref_primary_10_2139_ssrn_3900864
crossref_primary_10_1111_1477_9552_12316
crossref_primary_10_1016_j_evolhumbehav_2019_01_006
crossref_primary_10_1371_journal_pone_0292717
crossref_primary_10_3102_00346543221094083
crossref_primary_10_1007_s41809_021_00084_7
crossref_primary_10_1007_s11368_022_03276_y
crossref_primary_10_1177_01461672211042315
crossref_primary_10_3389_fpsyg_2017_00197
crossref_primary_10_1016_j_econedurev_2023_102464
crossref_primary_10_1016_j_neubiorev_2022_104777
crossref_primary_10_1177_1088868319887599
crossref_primary_10_1016_j_worlddev_2017_03_015
crossref_primary_10_1177_1745691619898795
crossref_primary_10_1080_1750984X_2023_2207255
crossref_primary_10_1093_heapol_czab138
crossref_primary_10_1111_add_15312
crossref_primary_10_1002_cl2_1368
crossref_primary_10_1186_s13643_018_0797_3
crossref_primary_10_1016_j_jclinepi_2016_09_005
crossref_primary_10_2308_AJPT_2021_028
crossref_primary_10_1057_s41294_019_00092_1
crossref_primary_10_1007_s12671_023_02212_6
crossref_primary_10_1177_1089268019831645
crossref_primary_10_1002_cl2_1256
crossref_primary_10_1080_09540261_2018_1467385
crossref_primary_10_15626_MP_2023_3987
crossref_primary_10_3758_s13428_023_02132_2
crossref_primary_10_7554_eLife_71601
crossref_primary_10_1007_s10290_020_00377_z
crossref_primary_10_1016_j_ecosys_2020_100849
crossref_primary_10_1007_s00426_017_0862_x
crossref_primary_10_1016_j_ejpoleco_2019_101824
crossref_primary_10_1111_apa_13539
crossref_primary_10_1371_journal_pone_0215052
crossref_primary_10_1177_1745691616650874
crossref_primary_10_3389_fpsyg_2015_01365
crossref_primary_10_1002_jrsm_1441
crossref_primary_10_2139_ssrn_2659409
crossref_primary_10_1111_1475_4932_12307
crossref_primary_10_1089_cyber_2023_0591
crossref_primary_10_1177_01461672221100336
crossref_primary_10_1093_scan_nsy069
crossref_primary_10_1111_ijau_12232
crossref_primary_10_1093_evolut_qpac045
crossref_primary_10_1177_25152459221120427
crossref_primary_10_1080_1750984X_2021_1946835
crossref_primary_10_1007_s10551_023_05542_6
crossref_primary_10_1177_0956797618774253
crossref_primary_10_1002_tea_21765
crossref_primary_10_1002_cl2_1389
crossref_primary_10_1177_10888683221107267
crossref_primary_10_1016_j_ijpsycho_2021_01_018
crossref_primary_10_1007_s13132_015_0309_9
crossref_primary_10_1007_s10869_020_09687_3
crossref_primary_10_1002_jrsm_1452
crossref_primary_10_1002_jrsm_1211
crossref_primary_10_1016_j_neubiorev_2021_06_018
crossref_primary_10_1016_j_red_2021_05_003
crossref_primary_10_2139_ssrn_4163310
crossref_primary_10_2196_49255
crossref_primary_10_1371_journal_pone_0149794
crossref_primary_10_1007_s10869_022_09840_0
crossref_primary_10_1002_jrsm_1467
crossref_primary_10_1016_j_neubiorev_2024_105616
crossref_primary_10_1080_01944363_2016_1245112
crossref_primary_10_3102_00346543211073186
crossref_primary_10_1016_j_addbeh_2022_107590
crossref_primary_10_1016_j_psychres_2023_115134
crossref_primary_10_1016_j_jfs_2021_100880
crossref_primary_10_15626_MP_2020_2560
crossref_primary_10_1016_j_obhdp_2022_104149
crossref_primary_10_1162_ajhe_a_00002
crossref_primary_10_1093_cesifo_ifu029
crossref_primary_10_1515_bejm_2016_0109
crossref_primary_10_1007_s11409_023_09335_0
crossref_primary_10_1525_collabra_203
crossref_primary_10_1044_2018_JSLHR_L_18_0098
crossref_primary_10_1016_j_intell_2017_01_013
crossref_primary_10_3390_su10124655
crossref_primary_10_1086_730455
crossref_primary_10_1016_j_tele_2017_12_006
crossref_primary_10_3389_fpsyg_2019_02874
crossref_primary_10_1007_s12671_024_02395_6
crossref_primary_10_1057_s41287_023_00620_x
crossref_primary_10_2139_ssrn_4759865
crossref_primary_10_1002_jrsm_1352
crossref_primary_10_1002_jrsm_1594
crossref_primary_10_1177_00222194211010350
crossref_primary_10_3758_s13423_023_02372_5
crossref_primary_10_2139_ssrn_3421146
crossref_primary_10_1016_j_dr_2022_101025
crossref_primary_10_3758_s13423_017_1346_0
crossref_primary_10_1136_bmjment_2022_300626
crossref_primary_10_1108_PM_08_2019_0044
crossref_primary_10_7717_peerj_4115
crossref_primary_10_1093_hr_uhac118
crossref_primary_10_1371_journal_pmed_1002890
crossref_primary_10_1016_j_irfa_2018_11_006
crossref_primary_10_1111_sjoe_12452
crossref_primary_10_1016_j_chb_2015_11_011
crossref_primary_10_1111_add_13347
crossref_primary_10_1002_dys_1730
crossref_primary_10_1146_annurev_psych_122216_011836
crossref_primary_10_1016_j_edurev_2019_04_003
crossref_primary_10_1016_j_soilbio_2023_109158
crossref_primary_10_1177_09622802231206474
crossref_primary_10_1016_j_intell_2019_101386
crossref_primary_10_1007_s10584_021_03213_x
crossref_primary_10_1111_bjir_12483
crossref_primary_10_1089_apc_2019_0119
crossref_primary_10_1016_j_paid_2024_112776
crossref_primary_10_3389_fpsyg_2020_01458
crossref_primary_10_1007_s10902_022_00545_y
crossref_primary_10_1016_j_spl_2022_109733
crossref_primary_10_1080_03637751_2021_2018475
crossref_primary_10_3945_ajcn_115_124586
crossref_primary_10_1080_10463283_2023_2225897
crossref_primary_10_1016_j_biopsycho_2023_108548
crossref_primary_10_1016_j_foodpol_2022_102371
crossref_primary_10_2139_ssrn_4605057
crossref_primary_10_2139_ssrn_3975770
crossref_primary_10_2139_ssrn_2711044
crossref_primary_10_1016_j_cortex_2022_03_001
crossref_primary_10_1016_j_paid_2023_112244
crossref_primary_10_1027_1016_9040_a000385
crossref_primary_10_3362_1755_1986_2016_014
crossref_primary_10_1080_00220973_2019_1582470
crossref_primary_10_2139_ssrn_3221718
crossref_primary_10_1111_bjso_12626
crossref_primary_10_3390_healthcare12010003
crossref_primary_10_1007_s00181_017_1300_z
crossref_primary_10_2139_ssrn_3285107
crossref_primary_10_1017_S0033291717000459
crossref_primary_10_1080_2331186X_2021_1994105
crossref_primary_10_1096_fj_201902143R
crossref_primary_10_1016_j_scitotenv_2019_133628
crossref_primary_10_15626_MP_2021_2803
crossref_primary_10_2139_ssrn_4811931
crossref_primary_10_1016_j_reseneeco_2020_101201
crossref_primary_10_1080_1540496X_2019_1643317
crossref_primary_10_1080_17437199_2019_1650290
crossref_primary_10_1016_j_regsciurbeco_2023_103901
crossref_primary_10_1016_j_chb_2019_04_018
crossref_primary_10_3390_nu16132095
crossref_primary_10_1027_2151_2604_a000321
crossref_primary_10_1177_2515245919863296
crossref_primary_10_3389_fpsyg_2016_01639
crossref_primary_10_1080_00224545_2022_2159302
crossref_primary_10_1177_0047287519844833
crossref_primary_10_1007_s10567_019_00308_x
crossref_primary_10_3758_s13423_016_1217_0
crossref_primary_10_1111_2041_210X_14377
crossref_primary_10_1016_j_dr_2017_05_001
crossref_primary_10_1111_joes_12187
crossref_primary_10_1177_1088868317725419
crossref_primary_10_1002_jrsm_1298
crossref_primary_10_1177_01492063221110203
crossref_primary_10_1177_1747021819900098
crossref_primary_10_1016_j_labeco_2015_02_010
crossref_primary_10_3758_s13423_020_01762_3
crossref_primary_10_1136_bmjopen_2019_036280
crossref_primary_10_1016_j_jeem_2019_02_005
crossref_primary_10_1002_job_2729
crossref_primary_10_12688_f1000research_7177_1
crossref_primary_10_12688_f1000research_7177_2
crossref_primary_10_3758_s13423_015_0868_6
crossref_primary_10_1177_1088868318762183
crossref_primary_10_5334_pb_1146
crossref_primary_10_3102_00346543231221499
crossref_primary_10_2139_ssrn_2693942
crossref_primary_10_1016_j_socscimed_2017_09_021
crossref_primary_10_1177_1745691616662243
crossref_primary_10_1371_journal_pone_0252415
crossref_primary_10_1111_jomf_12693
crossref_primary_10_1016_j_jclinepi_2016_08_013
crossref_primary_10_1093_joc_jqab014
crossref_primary_10_1080_1750984X_2020_1846068
crossref_primary_10_1017_S0140525X20000448
crossref_primary_10_1111_add_14140
crossref_primary_10_1177_01650254231190926
crossref_primary_10_1111_1475_4932_12751
crossref_primary_10_1097_PSY_0000000000001011
crossref_primary_10_3389_fonc_2019_00390
crossref_primary_10_1177_2053168018818232
crossref_primary_10_1108_ITP_07_2023_0676
crossref_primary_10_1007_s11218_019_09518_1
crossref_primary_10_2139_ssrn_3120397
crossref_primary_10_1111_joes_12399
crossref_primary_10_1111_boer_12437
crossref_primary_10_1111_joes_12393
crossref_primary_10_1177_1754073919868762
crossref_primary_10_1016_j_infoecopol_2016_11_003
crossref_primary_10_1371_journal_pone_0216588
crossref_primary_10_1016_j_psychres_2024_115897
crossref_primary_10_1111_rssc_12440
crossref_primary_10_1016_j_cedpsych_2023_102225
crossref_primary_10_1080_17437199_2019_1625281
crossref_primary_10_1257_jel_20221698
crossref_primary_10_1007_s11065_023_09626_y
crossref_primary_10_1177_0890207020962330
crossref_primary_10_2139_ssrn_3794259
crossref_primary_10_1177_1091142120961775
crossref_primary_10_1257_app_20220279
crossref_primary_10_1027_1015_5759_a000821
crossref_primary_10_1007_s40489_020_00223_w
crossref_primary_10_1016_j_edurev_2019_100290
crossref_primary_10_1007_s10290_024_00529_5
crossref_primary_10_1007_s10654_021_00784_y
crossref_primary_10_1007_s40279_023_01927_9
crossref_primary_10_1111_peps_12261
crossref_primary_10_1016_j_neurobiolaging_2019_03_007
crossref_primary_10_1111_ajad_12707
crossref_primary_10_1016_j_arr_2021_101269
crossref_primary_10_1027_1864_9335_a000364
crossref_primary_10_3138_cpp_2019_070
crossref_primary_10_1027_2151_2604_a000386
crossref_primary_10_1111_joes_12269
crossref_primary_10_1186_s13750_023_00301_6
crossref_primary_10_1016_j_reseneeco_2016_03_003
crossref_primary_10_1038_s41562_023_01623_8
crossref_primary_10_1038_s41562_019_0787_z
crossref_primary_10_1016_j_socscimed_2019_05_030
crossref_primary_10_1016_j_mayocp_2018_09_023
crossref_primary_10_1016_j_jceh_2018_05_004
crossref_primary_10_1016_j_socscimed_2019_05_035
crossref_primary_10_1016_j_joep_2019_01_006
crossref_primary_10_1371_journal_pone_0270031
crossref_primary_10_1016_j_jrp_2022_104206
crossref_primary_10_1142_S021987702230004X
crossref_primary_10_2139_ssrn_2519429
crossref_primary_10_1111_spc3_12565
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID BSCLL
7SW
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/jrsm.1095
DatabaseName Istex
ERIC
ERIC (Ovid)
ERIC
ERIC
ERIC (Legacy Platform)
ERIC( SilverPlatter )
ERIC
ERIC PlusText (Legacy Platform)
Education Resources Information Center (ERIC)
ERIC
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle ERIC
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

ERIC

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: ERI
  name: ERIC
  url: https://eric.ed.gov/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
Applied Sciences
Statistics
EISSN 1759-2887
ERIC EJ1109033
EndPage 78
ExternalDocumentID 3241957591
26054026
28269496
EJ1109033
JRSM1095
ark_67375_WNG_C3CCSKM9_W
Genre article
Journal Article
GroupedDBID 05W
0R~
1OC
31~
33P
4.4
50Y
5DZ
8-0
8-1
8UM
A00
AAESR
AAHHS
AANLZ
AAZKR
ABCUV
ABDBF
ABIVO
ABJNI
ABLJU
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
BSCLL
D-A
DCZOG
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
PQQKQ
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
09C
7SW
ACDLN
ACRPL
ACYXJ
BJH
BNH
BNI
BNJ
BNO
ERI
PET
REK
WWN
AAPBV
AEUQT
IPNFZ
IQODW
PQEST
WHAIN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4095-a50b5c7f1148e9c05548a514639fedb76705eb837ae820f44ff1b2727f4e700e3
ISSN 1759-2879
IngestDate Wed Dec 04 14:40:18 EST 2024
Thu Oct 10 20:25:11 EDT 2024
Sat Sep 28 07:56:18 EDT 2024
Tue Sep 20 21:45:05 EDT 2022
Tue Dec 10 19:22:27 EST 2024
Sat Aug 24 01:02:08 EDT 2024
Wed Oct 30 09:49:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess false
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Policy
Therapy
Polynomial approximation
Bias
publication selection bias
Systematic review
Modeling
Mean square error
Metaanalysis
meta-regression
Heterogeneity
Model matching
Quadratic approximation
Metamodel
truncation
Monte Carlo method
Wage
Statistical analysis
Empirical method
Replacement
Regression analysis
Standards
Truncated shape
systematic reviews
Integrity
systematic reviews, truncation
Language English
License CC BY 4.0
Copyright © 2013 John Wiley & Sons, Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4095-a50b5c7f1148e9c05548a514639fedb76705eb837ae820f44ff1b2727f4e700e3
Notes ark:/67375/WNG-C3CCSKM9-W
ArticleID:JRSM1095
istex:56B9C4962E7D044C41AEC6CA70D0995A36EFEDC1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26054026
PQID 1505447988
PQPubID 1046372
PageCount 19
ParticipantIDs proquest_miscellaneous_1687360229
proquest_journals_1505447988
pubmed_primary_26054026
pascalfrancis_primary_28269496
eric_primary_EJ1109033
wiley_primary_10_1002_jrsm_1095_JRSM1095
istex_primary_ark_67375_WNG_C3CCSKM9_W
PublicationCentury 2000
PublicationDate March 2014
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: March 2014
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
– name: England
PublicationTitle Research synthesis methods
PublicationTitleAlternate Res. Syn. Meth
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley-Blackwell
Wiley
Wiley Subscription Services, Inc
Publisher_xml – sequence: 0
  name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Higgins JPT, Thompson SG. 2002. Quantifying heterogeneity in meta-analysis. Statistics in Medicine 21: 1539-1558.
Senn S. 2008. A note concerning a selection 'paradox' of Dawid's. American Statistician 62: 206-210.
Laplace PS. 1812. Théorie Analytique des Probabilitiés. Gauthier Villars, Paris.
Moore DS. 1997. Bayes for beginners? Some reasons to hesitate. The American Statistician 51: 254-261.
Cohen, J. 1988. Statistical Power Analysis in the Behavioral Sciences, 2nd edn. Erlbaum, Hillsdale.
Cooper HM, Hedges LV. (eds.) 1994. Handbook of Research Synthesis. Russell Sage, New York.
Johnson N, Kotz S. 1970. Distributions in Statistics: Continuous Univariate Distribution. Wiley, New York.
Abramowitz M, Stegun IA. 1964. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. U.S. Department of Commerce, Washington, DC.
Viscusi WK. 1993. The value of risks to life and health. Journal of Economic Literature 31: 1912-46.
Costa-Font J, Gammill M, Rubert G. 2011. Biases in the healthcare luxury good hypothesis: a meta-regression analysis, Journal of the Royal Statistical Society A 174: 95-107.
Rücker G, Schwarzer G, Carpenter JR, Binder H, Schumacher M. 2011. Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis. Biostatistics 12: 122-42.
Moreno SG, Sutton AJ, Thompson JR, Ades AE, Abrams KR, Cooper NJ. 2011. A generalized weighting regression-derived meta-analysis estimator robust to small-study effects and heterogeneity. Statistics in Medicine 31: 1407-17.
Havranek T. 2010. Rose effect and the Euro: is the magic gone?" Review of World Economics 146: 241-261.
Sterling TD, Rosenbaum W.L, Weinkam JJ. 1995. Publication decisions revisited: the effect of the outcome of statistical tests on the decision to publish and vice versa. American Statistician 439: 108-112.
Bellavance F, Dionne G, Lebeau M. 2009. The value of a statistical life: a meta-analysis with a mixed effects regression model. Journal of Health Economics 28: 444-464.
Doucouliagos C(H), Stanley TD. 2009. Publication selection bias in minimum-wage research? A meta-regression analysis. British Journal of Industrial Relations 47: 406-29.
Duval S, Tweedie RL. 2000. A nonparametric "trim and fill" method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association 95: 89-98.
Heckman JJ. 1979. Sample selection bias as a specification error. Econometrica 47: 153-61.
Copas J. 1999. What works? Selectivity models and meta-analysis. Journal of the Royal Statistical Society, A 161: 95-105.
Rosenthal R. 1979. The 'file drawer problem' and tolerance for null results. Psychological Bulletin 86: 638-41.
Wooldridge JM. 2002. Econometric Analysis of Cross Section and Panel Data. MIT Press, Cambridge.
Stanley TD, Doucouliagos H(C). 2012. Meta-Regression Analysis in Economics and Business. Routledge,Oxford, 2012.
Stanley TD. 2008. Meta-regression methods for detecting and estimating empirical effect in the presence of publication selection. Oxford Bulletin of Economics and Statistics 70: 103-27.
Doucouliagos C(H), Stanley TD, Giles M. 2012 Are estimates of the value of a statistical life exaggerated? Journal of Health Economics 31: 197-206.
Greene WE. 1990. Econometric Analysis. Macmillan, New York.
Begg CB, Berlin JA. 1988. Publication bias: a problem in interpreting medical data, Journal of the Royal Statistical Society A 151: 419-445.
Doucouliagos C(H), Stanley TD. 2013. Theory competition and selectivity: are all economic facts greatly exaggerated? Journal of Economic Surveys 27: 316-39.
Gordon RD. 1941. Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument. Annals of mathematical Statistics 12: 364-66.
Krakovsky M. 2004. Register or perish. Scientific American 291: 18-20.
Sterling TD. 1959. Publication decisions and their possible effects on inferences drawn from tests of significance. Journal of the American Statistical Association 54: 30-34.
Chan AW, Hrobjartsson A, Haahr MT, Gotzsche PC, Altman DG. 2004. Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. Journal of the American Medical Association 291: 2457-65.
Stanley TD, Jarrell SB, Doucouliagos H(C). 2010. Could it be better to discard 90% of the data? A statistical paradox. American Statistician 64: 70-77.
Costa-Font J, McGuire A, Stanley TD. 2013. Publication selection in health policy research: the winner's curse hypothesis. Health Policy 109: 78-87.
Egger M, Smith GD, Scheider M, Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. British Medical Journal 316: 629-34.
Hedges LV, Olkin I. 1985. Statistical Methods for Meta-Analysis. Academic Press, Orlando.
Moreno SG, Sutton AJ, Ades AE, Stanley TD, Abrams KR, Peters JL, Cooper NJ. 2009a. Assessment of regression-based methods to adjust for publication bias through a comprehensive simulation study. BMC Medical Research Methodology 9: 2. http://www.biomedcentral.com/1471-2288/9/2.
Turner EH, Matthews AM, Linardatos E, Tell RA, Rosenthal R. 2008. Selective publication of antidepressant trials and its influence on apparent efficacy. New England Journal of Medicine 358: 252-60.
Mandel M, Rinott Y. 2009. A selection bias conflict and frequentist versus Bayesian viewpoints. American Statistician 63: 211-217.
Moreno SG, Sutton AJ, Turner EH, Abrams KR, Cooper NJ, Palmer TM, Ades AE. 2009b. Novel methods to deal with publication biases: secondary analysis of antidepressant trials in the FDA trial registry database and related journal publications. BMJ 339:b2981: 494-98. DOI:10.1136/bmj.b2981.
Davidson R, MacKinnon JG. 2004. Econometric Theory and Methods. Oxford University Press, Oxford.
Feld LP, Heckemeyer JH. 2011. FDI and taxation: a meta-study. Journal of Economic Surveys 25: 233-72.
2009; 47
2009; 63
2009a; 9
1997; 316
2013; 27
2013; 109
2012
2010
1995; 439
2010; 146
2009
2011; 31
2008
2000; 95
2007
2006
1994
2004
2011; 12
2003
1970
2002
2011; 174
2008; 70
2012; 31
2009; 28
1812
2010; 64
1997; 51
1979; 47
2004; 291
1990
2009b; 339
1999; 161
1941; 12
2002; 21
1993; 31
1964
1985
2008; 358
1988; 151
2011; 25
2013
1979; 86
2008; 62
1959; 54
1988
References_xml – year: 1985
– year: 2009
– volume: 31
  start-page: 197
  year: 2012
  end-page: 206
  article-title: Are estimates of the value of a statistical life exaggerated?
  publication-title: Journal of Health Economics
– volume: 291
  start-page: 2457
  year: 2004
  end-page: 65
  article-title: Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles
  publication-title: Journal of the American Medical Association
– start-page: 2012
  year: 2012
– volume: 151
  start-page: 419
  year: 1988
  end-page: 445
  article-title: Publication bias: a problem in interpreting medical data
  publication-title: Journal of the Royal Statistical Society A
– volume: 63
  start-page: 211
  year: 2009
  end-page: 217
  article-title: A selection bias conflict and frequentist versus Bayesian viewpoints
  publication-title: American Statistician
– volume: 174
  start-page: 95
  year: 2011
  end-page: 107
  article-title: Biases in the healthcare luxury good hypothesis: a meta‐regression analysis
  publication-title: Journal of the Royal Statistical Society A
– volume: 21
  start-page: 1539
  year: 2002
  end-page: 1558
  article-title: Quantifying heterogeneity in meta‐analysis
  publication-title: Statistics in Medicine
– volume: 316
  start-page: 629
  year: 1997
  end-page: 34
  article-title: Bias in meta‐analysis detected by a simple, graphical test
  publication-title: British Medical Journal
– volume: 25
  start-page: 233
  year: 2011
  end-page: 72
  article-title: FDI and taxation: a meta‐study
  publication-title: Journal of Economic Surveys
– volume: 86
  start-page: 638
  year: 1979
  end-page: 41
  article-title: The ‘file drawer problem’ and tolerance for null results
  publication-title: Psychological Bulletin
– year: 1990
– year: 1994
– volume: 12
  start-page: 364
  year: 1941
  end-page: 66
  article-title: Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument
  publication-title: Annals of mathematical Statistics
– volume: 64
  start-page: 70
  year: 2010
  end-page: 77
  article-title: Could it be better to discard 90% of the data? A statistical paradox
  publication-title: American Statistician
– volume: 439
  start-page: 108
  year: 1995
  end-page: 112
  article-title: Publication decisions revisited: the effect of the outcome of statistical tests on the decision to publish and vice versa
  publication-title: American Statistician
– year: 2008
– volume: 28
  start-page: 444
  year: 2009
  end-page: 464
  article-title: The value of a statistical life: a meta‐analysis with a mixed effects regression model
  publication-title: Journal of Health Economics
– volume: 51
  start-page: 254
  year: 1997
  end-page: 261
  article-title: Bayes for beginners? Some reasons to hesitate
  publication-title: The American Statistician
– year: 2004
– volume: 95
  start-page: 89
  year: 2000
  end-page: 98
  article-title: A nonparametric “trim and fill” method of accounting for publication bias in meta‐analysis
  publication-title: Journal of the American Statistical Association
– volume: 47
  start-page: 406
  year: 2009
  end-page: 29
  article-title: Publication selection bias in minimum‐wage research? A meta‐regression analysis
  publication-title: British Journal of Industrial Relations
– volume: 146
  start-page: 241
  year: 2010
  end-page: 261
  article-title: Rose effect and the Euro: is the magic gone?"
  publication-title: Review of World Economics
– volume: 161
  start-page: 95
  year: 1999
  end-page: 105
  article-title: What works? Selectivity models and meta‐analysis
  publication-title: Journal of the Royal Statistical Society, A
– volume: 358
  start-page: 252
  year: 2008
  end-page: 60
  article-title: Selective publication of antidepressant trials and its influence on apparent efficacy
  publication-title: New England Journal of Medicine
– volume: 12
  start-page: 122
  year: 2011
  end-page: 42
  article-title: Treatment‐effect estimates adjusted for small‐study effects via a limit meta‐analysis
  publication-title: Biostatistics
– year: 1964
– volume: 31
  start-page: 1407
  year: 2011
  end-page: 17
  article-title: A generalized weighting regression‐derived meta‐analysis estimator robust to small‐study effects and heterogeneity
  publication-title: Statistics in Medicine
– volume: 291
  start-page: 18
  year: 2004
  end-page: 20
  article-title: Register or perish
  publication-title: Scientific American
– volume: 339
  start-page: 494
  year: 2009b
  end-page: 98
  article-title: Novel methods to deal with publication biases: secondary analysis of antidepressant trials in the FDA trial registry database and related journal publications
  publication-title: BMJ
– year: 2007
– year: 2003
– year: 1812
– year: 2010
– volume: 54
  start-page: 30
  year: 1959
  end-page: 34
  article-title: Publication decisions and their possible effects on inferences drawn from tests of significance
  publication-title: Journal of the American Statistical Association
– volume: 9
  start-page: 2
  year: 2009a
  article-title: Assessment of regression‐based methods to adjust for publication bias through a comprehensive simulation study
  publication-title: BMC Medical Research Methodology
– volume: 31
  start-page: 1912
  year: 1993
  end-page: 46
  article-title: The value of risks to life and health
  publication-title: Journal of Economic Literature
– volume: 62
  start-page: 206
  year: 2008
  end-page: 210
  article-title: A note concerning a selection ‘paradox’ of Dawid's
  publication-title: American Statistician
– year: 2002
– year: 1988
– year: 2006
– volume: 70
  start-page: 103
  year: 2008
  end-page: 27
  article-title: Meta‐regression methods for detecting and estimating empirical effect in the presence of publication selection
  publication-title: Oxford Bulletin of Economics and Statistics
– year: 1970
– volume: 47
  start-page: 153
  year: 1979
  end-page: 61
  article-title: Sample selection bias as a specification error
  publication-title: Econometrica
– volume: 27
  start-page: 316
  year: 2013
  end-page: 39
  article-title: Theory competition and selectivity: are all economic facts greatly exaggerated?
  publication-title: Journal of Economic Surveys
– start-page: 301
  year: 1994
  end-page: 321
– volume: 109
  start-page: 78
  year: 2013
  end-page: 87
  article-title: Publication selection in health policy research: the winner's curse hypothesis
  publication-title: Health Policy
– year: 2013
SSID ssj0000396267
Score 2.5152078
Snippet Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta‐regression approximations to reduce this bias. Our...
Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our...
SourceID proquest
pubmed
pascalfrancis
eric
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 60
SubjectTerms Algebra
Applied sciences
Approximation
Bias
Clinical Trials as Topic - classification
Clinical Trials as Topic - statistics & numerical data
Computer science; control theory; systems
Computer Simulation
Data Interpretation, Statistical
Error of Measurement
Evidence-Based Medicine
Exact sciences and technology
Information systems. Data bases
Linear inference, regression
Mathematical Formulas
Mathematics
Memory organisation. Data processing
Meta Analysis
Meta-Analysis as Topic
meta-regression
Models, Statistical
Monte Carlo Methods
Polynomials
Predictive Value of Tests
Probability and statistics
Publication Bias - statistics & numerical data
publication selection bias
Regression (Statistics)
Regression Analysis
Sciences and techniques of general use
Software
Statistical Bias
Statistics
systematic reviews
systematic reviews, truncation
truncation
Title Meta-regression approximations to reduce publication selection bias
URI https://api.istex.fr/ark:/67375/WNG-C3CCSKM9-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjrsm.1095
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1109033
https://www.ncbi.nlm.nih.gov/pubmed/26054026
https://www.proquest.com/docview/1505447988
https://search.proquest.com/docview/1687360229
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagvXBBDBgERhUkhMYhI03s_DhuoaUqa5FYqvVmOYkzDbQUJZk08dfzXuw6lO0wuERW3LiSP_v5ffbz9wh5B6tYVMZASwo82qWCBU7GCupIQaWIPD-jXbaGxTKYreh8zdZ9KsjudkmbHeW_7rxX8j-owjvAFW_J_gOyplF4AWXAF56AMDzvhfFCtsKp5YWKZa2UQPjN5ZUObwO3skZlVqnFrBXWTZf5BkvZpQ4N2gp06yg8lDEAvxClSlSCaeN3Y85hvcmd9rHC4ITnmFhdXKiYvVmnV7CzoTCmfUTVkVRGMGSx40V6IdRWkt0aDMriqWwAeu1U2XhuWWWl8vq9bq5QvYr1S8_2uH35lU9Xp6c8nazTh2SIooZ0QIbHJ59OpmbHzPVjYF_hVh7K9T6aFk2w-hDnxg0GuIoGxnipkpPcxR52yUjnTaRPyGNNA-xjhekeeSCrp2RPG9rGPtRq4B-ekeQvkO1dkO12YyuQ7T9Atg3INoL8nKymkzSZOTrzhZMD32aOYG7G8rBEsirj3AWfLxLg2oI7WcoiC4PQZTKL_FBI8OBKSstynHngipZUhq4r_X0yqDaVfElsIOwMSb4nI0kDKrJxweJAxGP8upCeRfax6_hPJW7CJ3PUoHV93yLvu840NaL-gVGAIePny8888ZPk7Msi5ucWGe30tvkA2HwQ0ziwyMG2-7mePQ0HIsIoRbU8i7w11WDb8MBKVHJzDb8JotAPwMuMLfJCwdY3HiDZ8KDxww5HU6F0uD2OgwPjKxiffztbYOHVPf7oNXnUz4kDMmjra_kG3M42G-nxOOq2WH4DMkiGaQ
link.rule.ids 220,314,780,784,27924,27925
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-regression+approximations+to+reduce+publication+selection+bias&rft.jtitle=Research+synthesis+methods&rft.au=Stanley%2C+T+D&rft.au=Doucouliagos%2C+Hristos&rft.date=2014-03-01&rft.eissn=1759-2887&rft.volume=5&rft.issue=1&rft.spage=60&rft.epage=78&rft_id=info:doi/10.1002%2Fjrsm.1095&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-2879&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-2879&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-2879&client=summon