Type I AIE photosensitizers: Mechanism and application

Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In the past decade, abundant photosensitizers (PSs) with aggregation‐induced emission (AIE) property make the development of PSs enter upon a new phase,...

Full description

Saved in:
Bibliographic Details
Published inView (Beijing, China) Vol. 3; no. 2
Main Authors Li, Jianqing, Zhuang, Zeyan, Zhao, Zujin, Tang, Ben Zhong
Format Journal Article
LanguageEnglish
Published Beijing John Wiley & Sons, Inc 01.03.2022
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In the past decade, abundant photosensitizers (PSs) with aggregation‐induced emission (AIE) property make the development of PSs enter upon a new phase, offering incomparable merits. Recently, Type I AIE PSs with capability of generating radical reactive oxygen species (ROS) have emerged as strong candidates to overcome the inherent hypoxia nature of solid tumors. In this review, detailed discussions on the mechanisms of PDT are drawn to highlight the basic advantages of Type I pathway over Type II one in hypoxic PDT, followed by a summary of frequently‐used detection methods for the accurate distinguishing of the nature of ROS. Finally, the latest representative advances are summarized, and future perspectives of Type I AIE PSs are discussed. Photodynamic therapy (PDT) is emerging as a promising cancer therapeutic treatment and receiving increasing interests. Focusing on this specific theme, this review presents a detailed introduction on the PDT mechanism, summarizes the detection methods for the nature of reactive oxygen species, and discusses the superiority of Type I photosensitizers with aggregation‐induced emission (AIE) property. At last, the latest advances on Type I AIE photosensitizers are reviewed.
AbstractList Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In the past decade, abundant photosensitizers (PSs) with aggregation‐induced emission (AIE) property make the development of PSs enter upon a new phase, offering incomparable merits. Recently, Type I AIE PSs with capability of generating radical reactive oxygen species (ROS) have emerged as strong candidates to overcome the inherent hypoxia nature of solid tumors. In this review, detailed discussions on the mechanisms of PDT are drawn to highlight the basic advantages of Type I pathway over Type II one in hypoxic PDT, followed by a summary of frequently‐used detection methods for the accurate distinguishing of the nature of ROS. Finally, the latest representative advances are summarized, and future perspectives of Type I AIE PSs are discussed. Photodynamic therapy (PDT) is emerging as a promising cancer therapeutic treatment and receiving increasing interests. Focusing on this specific theme, this review presents a detailed introduction on the PDT mechanism, summarizes the detection methods for the nature of reactive oxygen species, and discusses the superiority of Type I photosensitizers with aggregation‐induced emission (AIE) property. At last, the latest advances on Type I AIE photosensitizers are reviewed.
Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In the past decade, abundant photosensitizers (PSs) with aggregation‐induced emission (AIE) property make the development of PSs enter upon a new phase, offering incomparable merits. Recently, Type I AIE PSs with capability of generating radical reactive oxygen species (ROS) have emerged as strong candidates to overcome the inherent hypoxia nature of solid tumors. In this review, detailed discussions on the mechanisms of PDT are drawn to highlight the basic advantages of Type I pathway over Type II one in hypoxic PDT, followed by a summary of frequently‐used detection methods for the accurate distinguishing of the nature of ROS. Finally, the latest representative advances are summarized, and future perspectives of Type I AIE PSs are discussed.
Abstract Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In the past decade, abundant photosensitizers (PSs) with aggregation‐induced emission (AIE) property make the development of PSs enter upon a new phase, offering incomparable merits. Recently, Type I AIE PSs with capability of generating radical reactive oxygen species (ROS) have emerged as strong candidates to overcome the inherent hypoxia nature of solid tumors. In this review, detailed discussions on the mechanisms of PDT are drawn to highlight the basic advantages of Type I pathway over Type II one in hypoxic PDT, followed by a summary of frequently‐used detection methods for the accurate distinguishing of the nature of ROS. Finally, the latest representative advances are summarized, and future perspectives of Type I AIE PSs are discussed.
Author Li, Jianqing
Zhao, Zujin
Zhuang, Zeyan
Tang, Ben Zhong
Author_xml – sequence: 1
  givenname: Jianqing
  surname: Li
  fullname: Li, Jianqing
  organization: South China University of Technology
– sequence: 2
  givenname: Zeyan
  surname: Zhuang
  fullname: Zhuang, Zeyan
  organization: South China University of Technology
– sequence: 3
  givenname: Zujin
  orcidid: 0000-0002-0618-6024
  surname: Zhao
  fullname: Zhao, Zujin
  email: mszjzhao@scut.edu.cn
  organization: South China University of Technology
– sequence: 4
  givenname: Ben Zhong
  surname: Tang
  fullname: Tang, Ben Zhong
  organization: Guangzhou Development District
BookMark eNp9kEtLAzEUhYMoWGt3_oABt7bmnRl3pVQdqLipj13IZDI2ZToZkylSf73pQxeCbpLc8J1zD-cMHDeuMQBcIDhCEOLr5_xlhCGGEGF0BHqYp-kwHq_HhzfJ0vQUDEJYwogzhETGeoDPN61J8mScT5N24ToXTBNsZz-NDzfJg9EL1diwSlRTJqpta6tVZ11zDk4qVQczONx98HQ7nU_uh7PHu3wyng01hRkbUg0R5yWHPBWcGlIQpVlVZhoVhDGGmcBloSkthUBFVqG0YtRwHBValCmkpA_yvW_p1FK23q6U30inrNx9OP8mle-sro1UVAsDuShIxilRVUZSXShsSqy4qDiOXpd7r9a797UJnVy6tW9ifIl5jEtYTBGpqz2lvQvBm-pnK4JyW7SMRcvvoiOOf-HadruKOq9s_ZcI7UUftjabfxdsB4wYI1_xLI5I
CitedBy_id crossref_primary_10_1016_j_bioactmat_2024_10_029
crossref_primary_10_3390_molecules29061209
crossref_primary_10_1002_smtd_202400945
crossref_primary_10_1002_ange_202401036
crossref_primary_10_1002_bio_4659
crossref_primary_10_1002_ange_202212673
crossref_primary_10_1002_smll_202410031
crossref_primary_10_1002_smll_202411643
crossref_primary_10_1002_agt2_462
crossref_primary_10_1016_j_apcatb_2024_124687
crossref_primary_10_1002_adfm_202406150
crossref_primary_10_1039_D3TB00545C
crossref_primary_10_1021_acsbiomedchemau_3c00028
crossref_primary_10_1088_1361_6528_ac22df
crossref_primary_10_1016_j_gce_2022_07_006
crossref_primary_10_1021_acsmaterialslett_4c00592
crossref_primary_10_1002_adhm_202404505
crossref_primary_10_1002_adma_202207546
crossref_primary_10_1002_adhm_202300134
crossref_primary_10_1016_j_surfcoat_2025_131814
crossref_primary_10_1039_D3CP05718F
crossref_primary_10_1016_j_flatc_2024_100663
crossref_primary_10_1039_D2TB01224C
crossref_primary_10_1021_jacs_4c09470
crossref_primary_10_1021_jacs_2c11868
crossref_primary_10_1002_adtp_202200165
crossref_primary_10_1002_smll_202401334
crossref_primary_10_1016_j_ccr_2023_215481
crossref_primary_10_1016_j_foodchem_2023_136464
crossref_primary_10_1016_j_envres_2023_117362
crossref_primary_10_1021_acs_inorgchem_3c01982
crossref_primary_10_1016_j_dyepig_2024_112208
crossref_primary_10_1002_VIW_20220068
crossref_primary_10_1007_s11426_024_1971_4
crossref_primary_10_1016_j_biomaterials_2022_121899
crossref_primary_10_1016_j_actbio_2024_02_005
crossref_primary_10_1002_mco2_603
crossref_primary_10_1021_acsnano_4c06808
crossref_primary_10_1002_adma_202407707
crossref_primary_10_1002_adfm_202300818
crossref_primary_10_1016_j_molstruc_2024_140902
crossref_primary_10_1039_D4CC06079B
crossref_primary_10_1016_j_jphotochem_2024_115635
crossref_primary_10_1021_acsbiomedchemau_1c00066
crossref_primary_10_1002_smll_202402439
crossref_primary_10_1039_D4TB01440E
crossref_primary_10_1002_smll_202200743
crossref_primary_10_1021_acsanm_3c02015
crossref_primary_10_3389_fonc_2022_918416
crossref_primary_10_1002_smll_202400654
crossref_primary_10_1021_acsnano_3c00326
crossref_primary_10_1002_smtd_202300880
crossref_primary_10_1002_adfm_202301692
crossref_primary_10_1021_acsnano_3c04256
crossref_primary_10_1021_acsmaterialslett_4c00600
crossref_primary_10_26599_NTM_2022_9130010
crossref_primary_10_1016_j_ccr_2024_215986
crossref_primary_10_1039_D3MA00382E
crossref_primary_10_1002_adma_202210085
crossref_primary_10_1002_agt2_657
crossref_primary_10_1039_D4SC05345A
crossref_primary_10_3390_bios12090722
crossref_primary_10_1021_acsmaterialslett_4c00162
crossref_primary_10_1002_smtd_202301143
crossref_primary_10_6023_cjoc202403055
crossref_primary_10_3390_nano13152225
crossref_primary_10_3390_pharmaceutics15020567
crossref_primary_10_1002_agt2_540
crossref_primary_10_1016_j_biomaterials_2023_122407
crossref_primary_10_1039_D3NA00341H
crossref_primary_10_1007_s11426_023_1790_0
crossref_primary_10_1002_agt2_705
crossref_primary_10_1016_j_snb_2023_135091
crossref_primary_10_1039_D3BM00730H
crossref_primary_10_1002_adfm_202307267
crossref_primary_10_1039_D4RA00928B
crossref_primary_10_1016_j_dyepig_2023_111569
crossref_primary_10_1002_anie_202401036
crossref_primary_10_1021_acsmaterialslett_3c01210
crossref_primary_10_1002_adfm_202418711
crossref_primary_10_1002_adma_202209529
crossref_primary_10_1021_acs_inorgchem_4c03219
crossref_primary_10_1021_acs_langmuir_2c01036
crossref_primary_10_1002_agt2_676
crossref_primary_10_1016_j_ccr_2022_214754
crossref_primary_10_1021_acsnano_3c03925
crossref_primary_10_1002_smtd_202301095
crossref_primary_10_1039_D3QM00206C
crossref_primary_10_1016_j_cej_2024_158529
crossref_primary_10_1002_advs_202305516
crossref_primary_10_1007_s40820_025_01685_5
crossref_primary_10_1016_j_apsb_2023_11_007
crossref_primary_10_1021_acsnano_3c03654
crossref_primary_10_1039_D3QI01666H
crossref_primary_10_2217_nnm_2023_0047
crossref_primary_10_3390_jfb15110333
crossref_primary_10_3390_molecules28073153
crossref_primary_10_1016_j_colsurfb_2023_113547
crossref_primary_10_1002_adma_202402182
crossref_primary_10_1016_j_fpsl_2024_101354
crossref_primary_10_1002_adma_202109010
crossref_primary_10_1016_j_molstruc_2024_139956
crossref_primary_10_1016_j_cej_2022_136381
crossref_primary_10_1039_D2SC01469F
crossref_primary_10_1039_D3TB01422C
crossref_primary_10_1039_D4TB01847H
crossref_primary_10_1002_adfm_202416317
crossref_primary_10_1002_anie_202212673
crossref_primary_10_1021_acsmaterialslett_4c01214
crossref_primary_10_1002_agt2_291
crossref_primary_10_1002_adfm_202414817
crossref_primary_10_1016_j_jphotobiol_2024_113052
crossref_primary_10_1039_D3TB00632H
Cites_doi 10.3109/10715769009149895
10.1002/anie.202000845
10.1002/agt2.7
10.1002/anie.201914768
10.1016/j.ymeth.2016.06.025
10.1039/b105159h
10.1016/j.freeradbiomed.2012.09.006
10.1016/j.biomaterials.2019.119330
10.3390/cancers12010190
10.3390/ma6030817
10.1021/acs.nanolett.6b00068
10.1038/s41572-019-0064-5
10.1016/j.biopha.2018.07.049
10.1111/j.1751-1097.2011.00900.x
10.1021/acs.chemrev.7b00161
10.1021/acsnano.9b04430
10.1016/j.biopha.2020.109821
10.1039/C8CS00001H
10.1039/C9TB00721K
10.1615/JEnvironPatholToxicolOncol.v25.i1-2.20
10.1021/jacs.5b01881
10.1038/nrc1071
10.1007/s10103-008-0539-1
10.1007/s10555-007-9055-1
10.1074/jbc.M209264200
10.18632/genesandcancer.155
10.1039/D0CS00671H
10.1006/abio.1997.2391
10.1023/A:1012369120376
10.1021/acsnano.9b07972
10.1038/nphoton.2014.166
10.1039/C1CS15188F
10.1039/cs9952400019
10.1038/s41598-018-31638-5
10.1002/ijc.31937
10.1039/C6CS00271D
10.1002/adma.201801350
10.1039/D0SC00785D
10.1002/adfm.202002057
10.1111/j.1751-1097.1989.tb04126.x
10.1016/j.freeradbiomed.2010.01.028
10.1007/s10147-019-01588-7
10.1016/j.oraloncology.2017.08.017
10.1126/sciadv.abb2712
10.1093/jxb/erj181
10.1016/j.ccr.2019.213076
10.3109/10715761003709802
10.1021/jm00162a004
10.1002/anie.201805138
10.1002/anie.202006649
10.1016/S0891-5849(87)80033-3
10.1021/jf0401165
10.1021/jacs.8b13141
10.1016/j.ccr.2019.05.016
10.1016/j.pdpdt.2019.04.033
10.1021/acs.jmedchem.9b02014
10.1016/S1011-1344(96)07428-3
10.1002/ange.201914874
10.1111/j.1432-1033.1993.tb18328.x
10.1002/adma.201602111
10.3390/molecules17010098
10.1002/adma.202004208
10.1021/jacs.8b10235
10.1016/j.freeradbiomed.2014.08.020
10.1038/s41467-017-00424-8
10.1039/C6CS00616G
10.1038/nrc1367
10.1021/cr5004198
10.1016/S0891-5849(01)00619-0
10.1016/j.jphotobiol.2020.111787
10.1093/jnci/90.12.889
10.1016/j.freeradbiomed.2012.06.034
10.1021/jacs.8b08658
10.2307/3578173
10.1021/acsnano.0c05610
10.1016/j.bmc.2018.12.006
10.1002/adma.201401356
10.1021/acs.accounts.9b00356
10.1016/S0076-6879(00)19037-8
10.1117/1.1854679
10.1111/j.1751-1097.1991.tb02071.x
10.1039/C2CS35216H
10.1002/viw2.6
10.1039/C8SC00633D
10.3390/molecules26020268
10.1111/php.12716
10.3322/caac.21590
ContentType Journal Article
Copyright 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/VIW.20200121
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2688-268X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_a4c7e067b39643af938cba2ed2a67f62
10_1002_VIW_20200121
VIW2155
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21788102
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2019B030301003
GroupedDBID 0R~
1OC
24P
7X7
8FI
8FJ
AAHHS
ABUWG
ACCFJ
ACCMX
ACXQS
ADKYN
ADPDF
ADZMN
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BENPR
CCPQU
EBS
FYUFA
GROUPED_DOAJ
HMCUK
IAO
IHR
INH
ITC
M~E
OVD
PIMPY
TEORI
UKHRP
WIN
AAYXX
CITATION
IGS
PHGZM
PHGZT
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c4095-4c0166d6068764e3b3ac5fd9c1b35552572dbc44d771b9f18f54e626d6c7d8043
IEDL.DBID DOA
ISSN 2688-3988
2688-268X
IngestDate Wed Aug 27 00:59:36 EDT 2025
Wed Aug 13 09:03:47 EDT 2025
Tue Jul 01 02:42:39 EDT 2025
Thu Apr 24 22:55:51 EDT 2025
Wed Jan 22 16:25:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4095-4c0166d6068764e3b3ac5fd9c1b35552572dbc44d771b9f18f54e626d6c7d8043
Notes Both the authors contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0618-6024
OpenAccessLink https://doaj.org/article/a4c7e067b39643af938cba2ed2a67f62
PQID 2640935771
PQPubID 5068494
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_a4c7e067b39643af938cba2ed2a67f62
proquest_journals_2640935771
crossref_primary_10_1002_VIW_20200121
crossref_citationtrail_10_1002_VIW_20200121
wiley_primary_10_1002_VIW_20200121_VIW2155
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
20220301
2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle View (Beijing, China)
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 8
1990; 10
2017 1991; 93 54
2016; 109
2011 2018; 87 8
2004 2007; 4 26
2020 2019; 59 7
2019; 13
2017 2019 2016; 73 5 28
2020; 14
2012 1997; 53 253
2020; 12
2020; 11
2003; 278
2012; 53
2017; 117
2013 2013; 6 42
1993; 217
2014 2005; 8 10
2020; 1
2020 2018 2019 2020 2020 2020 2020; 63 30 218 49 32 1 59
2020; 132
2015 2012; 115 41
2006; 25
2014 2020; 26 7
2019; 27
2001 1987; 31 3
2016; 45
2019; 395
2000; 319
2016 2019; 45 48
2009; 24
2004 1989; 52 50
2018; 106
2006; 57
2020 2019; 70 144
2020 2019 2020; 59 52 402
1998 2017 2020; 90 8 6
2016; 16
2018 2019; 140 141
2010; 44
2019 2003; 26 3
2001 2021; 18 26
2010; 48
2020 2020; 25 124
2020; 30
2020 2001; 204 71
1997; 39
1986; 29
1955 1995 2012 2018; 59 24 17 9
2015 2018; 137 140
1991; 126
2014; 77
2018; 57
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
Förster T. (e_1_2_7_19_1) 1955; 59
e_1_2_7_9_2
e_1_2_7_7_3
e_1_2_7_9_1
e_1_2_7_19_4
e_1_2_7_7_2
e_1_2_7_19_3
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_45_2
e_1_2_7_45_3
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_39_2
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_44_2
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_46_2
e_1_2_7_48_1
Tu Y. (e_1_2_7_21_2) 2020; 7
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_22_7
e_1_2_7_51_1
e_1_2_7_22_6
e_1_2_7_22_5
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_22_4
e_1_2_7_24_2
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_53_3
e_1_2_7_55_1
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 319
  start-page: 376
  year: 2000
  publication-title: Method. Enzymol.
– volume: 90 8 6
  start-page: 889 682
  year: 1998 2017 2020
  publication-title: J. Natl. Cancer Inst. Genes. Cancer Sci. Adv.
– volume: 57
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 265
  year: 1990
  publication-title: Free Radical Res. Commun.
– volume: 48
  start-page: 983
  year: 2010
  publication-title: Free Radical Biol. Med.
– volume: 8 10
  start-page: 723
  year: 2014 2005
  publication-title: Nat. Photonics J. Biomed. Opt.
– volume: 29
  start-page: 2439
  year: 1986
  publication-title: J. Med. Chem.
– volume: 26 7
  start-page: 5429
  year: 2014 2020
  publication-title: Adv. Mater. Natl. Sci. Rev.
– volume: 132
  start-page: 1
  year: 2020
  publication-title: Angew. Chem.
– volume: 126
  start-page: 73
  year: 1991
  publication-title: Radiat. Res.
– volume: 395
  start-page: 46
  year: 2019
  publication-title: Coord. Chem. Rev.
– volume: 4 26
  start-page: 437 225
  year: 2004 2007
  publication-title: Nat. Rev. Cancer Cancer Metastasis Rev
– volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 259
  year: 2009
  publication-title: Lasers Med. Sci.
– volume: 25
  start-page: 7
  year: 2006
  publication-title: J. Environ. Pathol. Toxicol. Oncol.
– volume: 93 54
  start-page: 912 69
  year: 2017 1991
  publication-title: Photochem. Photobiol. Photochem. Photobiol.
– volume: 16
  start-page: 2512
  year: 2016
  publication-title: Nano Lett.
– volume: 70 144
  start-page: 7 1941
  year: 2020 2019
  publication-title: Ca‐Cancer J. Clin. Int. J. Cancer
– volume: 1
  year: 2020
  publication-title: VIEW
– volume: 140 141
  start-page: 2695
  year: 2018 2019
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 11
  start-page: 3405
  year: 2020
  publication-title: Chem. Sci.
– volume: 45 48
  start-page: 6488 38
  year: 2016 2019
  publication-title: Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 6 42
  start-page: 817 77
  year: 2013 2013
  publication-title: Materials Chem. Soc. Rev.
– volume: 14
  start-page: 854
  year: 2020
  publication-title: ACS Nano
– volume: 59 52 402
  start-page: 9868 3051
  year: 2020 2019 2020
  publication-title: Angew. Chem. Int. Ed. Acc. Chem. Res. Coord. Chem. Rev.
– volume: 53 253
  start-page: 1080 162
  year: 2012 1997
  publication-title: Free Radical Biol. Med. Anal. Biochem.
– volume: 39
  start-page: 1
  year: 1997
  publication-title: J. Photoch. Photobio. B
– volume: 59 7
  start-page: 4440
  year: 2020 2019
  publication-title: Angew. Chem. Int. Ed. J. Mater. Chem. B
– volume: 25 124
  start-page: 790
  year: 2020 2020
  publication-title: Int. J. Clin. Oncol. Biomed. Pharmacother.
– volume: 8
  start-page: 357
  year: 2017
  publication-title: Nat. Commun.
– volume: 137 140
  start-page: 6837
  year: 2015 2018
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 31 3
  start-page: 599 259
  year: 2001 1987
  publication-title: Free Radical Biol. Med. Free Radical Biol. Med.
– volume: 217
  start-page: 973
  year: 1993
  publication-title: Eur. J. Biochem.
– volume: 26 3
  start-page: 395 380
  year: 2019 2003
  publication-title: Photodiagn. Photodyn. Ther. Nat. Rev. Cancer
– volume: 278
  start-page: 3170
  year: 2003
  publication-title: J. Biol. Chem.
– volume: 27
  start-page: 315
  year: 2019
  publication-title: Bioorg. Med. Chem.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 45
  start-page: 6597
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 204 71
  start-page: 36
  year: 2020 2001
  publication-title: J. Photochem. Photobiol. B Russ. J. Gen. Chem.
– volume: 87 8
  start-page: 671
  year: 2011 2018
  publication-title: Photochem. Photobiol. Sci. Rep.
– volume: 73 5 28
  start-page: 124 13 7143
  year: 2017 2019 2016
  publication-title: Oral Oncol. Nat. Rev. Dis. Primers. Adv. Mater.
– volume: 59 24 17 9
  start-page: 976 19 98 5165
  year: 1955 1995 2012 2018
  publication-title: Z. Elektrochem. Chem. Soc. Rev. Molecules Chem. Sci.
– volume: 57
  start-page: 1725
  year: 2006
  publication-title: J. Exp. Bot.
– volume: 44
  start-page: 587
  year: 2010
  publication-title: Free Radical Res.
– volume: 63 30 218 49 32 1 59
  start-page: 1996 8179 80 2
  year: 2020 2018 2019 2020 2020 2020 2020
  publication-title: J. Med. Chem. Adv. Mater. Biomaterials Chem. Soc. Rev. Adv. Mater. Aggregate Angew. Chem. Int. Ed.
– volume: 52 50
  start-page: 6602 29
  year: 2004 1989
  publication-title: J. Agric. Food Chem. Photochem. Photobiol.
– volume: 53
  start-page: 2062
  year: 2012
  publication-title: Free Radical Biol. Med.
– volume: 106
  start-page: 1098
  year: 2018
  publication-title: Biomed. Pharmacother.
– volume: 18 26
  start-page: 1740 268
  year: 2001 2021
  publication-title: Chem. Commun. Molecules
– volume: 109
  start-page: 158
  year: 2016
  publication-title: Methods
– volume: 115 41
  start-page: 1990 2323
  year: 2015 2012
  publication-title: Chem. Rev. Chem. Soc. Rev.
– volume: 12
  start-page: 190
  year: 2020
  publication-title: Cancers
– volume: 77
  start-page: 64
  year: 2014
  publication-title: Free Radical Biol. Med.
– ident: e_1_2_7_25_1
  doi: 10.3109/10715769009149895
– ident: e_1_2_7_53_1
  doi: 10.1002/anie.202000845
– ident: e_1_2_7_45_3
– ident: e_1_2_7_22_6
  doi: 10.1002/agt2.7
– ident: e_1_2_7_22_7
  doi: 10.1002/anie.201914768
– ident: e_1_2_7_36_1
  doi: 10.1016/j.ymeth.2016.06.025
– ident: e_1_2_7_20_1
  doi: 10.1039/b105159h
– ident: e_1_2_7_34_1
  doi: 10.1016/j.freeradbiomed.2012.09.006
– ident: e_1_2_7_22_3
  doi: 10.1016/j.biomaterials.2019.119330
– ident: e_1_2_7_48_1
  doi: 10.3390/cancers12010190
– ident: e_1_2_7_9_1
  doi: 10.3390/ma6030817
– ident: e_1_2_7_56_1
  doi: 10.1021/acs.nanolett.6b00068
– ident: e_1_2_7_3_2
  doi: 10.1038/s41572-019-0064-5
– ident: e_1_2_7_27_1
  doi: 10.1016/j.biopha.2018.07.049
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1751-1097.2011.00900.x
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.chemrev.7b00161
– ident: e_1_2_7_52_1
  doi: 10.1021/acsnano.9b04430
– ident: e_1_2_7_5_2
  doi: 10.1016/j.biopha.2020.109821
– ident: e_1_2_7_15_2
  doi: 10.1039/C8CS00001H
– ident: e_1_2_7_18_2
  doi: 10.1039/C9TB00721K
– ident: e_1_2_7_11_1
  doi: 10.1615/JEnvironPatholToxicolOncol.v25.i1-2.20
– ident: e_1_2_7_39_1
  doi: 10.1021/jacs.5b01881
– ident: e_1_2_7_6_2
  doi: 10.1038/nrc1071
– ident: e_1_2_7_8_1
  doi: 10.1007/s10103-008-0539-1
– ident: e_1_2_7_14_2
  doi: 10.1007/s10555-007-9055-1
– ident: e_1_2_7_43_1
  doi: 10.1074/jbc.M209264200
– ident: e_1_2_7_7_2
  doi: 10.18632/genesandcancer.155
– ident: e_1_2_7_22_4
  doi: 10.1039/D0CS00671H
– ident: e_1_2_7_42_2
  doi: 10.1006/abio.1997.2391
– ident: e_1_2_7_46_2
  doi: 10.1023/A:1012369120376
– ident: e_1_2_7_54_1
  doi: 10.1021/acsnano.9b07972
– volume: 7
  year: 2020
  ident: e_1_2_7_21_2
  publication-title: Natl. Sci. Rev.
– ident: e_1_2_7_12_1
  doi: 10.1038/nphoton.2014.166
– ident: e_1_2_7_17_2
  doi: 10.1039/C1CS15188F
– ident: e_1_2_7_19_2
  doi: 10.1039/cs9952400019
– ident: e_1_2_7_45_2
  doi: 10.1038/s41598-018-31638-5
– ident: e_1_2_7_2_2
  doi: 10.1002/ijc.31937
– ident: e_1_2_7_10_1
  doi: 10.1039/C6CS00271D
– ident: e_1_2_7_22_2
  doi: 10.1002/adma.201801350
– ident: e_1_2_7_50_1
  doi: 10.1039/D0SC00785D
– ident: e_1_2_7_51_1
  doi: 10.1002/adfm.202002057
– ident: e_1_2_7_24_2
  doi: 10.1111/j.1751-1097.1989.tb04126.x
– ident: e_1_2_7_38_1
  doi: 10.1016/j.freeradbiomed.2010.01.028
– ident: e_1_2_7_5_1
  doi: 10.1007/s10147-019-01588-7
– ident: e_1_2_7_3_1
  doi: 10.1016/j.oraloncology.2017.08.017
– ident: e_1_2_7_7_3
  doi: 10.1126/sciadv.abb2712
– ident: e_1_2_7_47_1
  doi: 10.1093/jxb/erj181
– ident: e_1_2_7_53_3
  doi: 10.1016/j.ccr.2019.213076
– ident: e_1_2_7_37_1
  doi: 10.3109/10715761003709802
– ident: e_1_2_7_35_1
  doi: 10.1021/jm00162a004
– ident: e_1_2_7_16_1
  doi: 10.1002/anie.201805138
– ident: e_1_2_7_18_1
  doi: 10.1002/anie.202006649
– ident: e_1_2_7_44_2
  doi: 10.1016/S0891-5849(87)80033-3
– ident: e_1_2_7_24_1
  doi: 10.1021/jf0401165
– ident: e_1_2_7_40_2
  doi: 10.1021/jacs.8b13141
– ident: e_1_2_7_26_1
  doi: 10.1016/j.ccr.2019.05.016
– ident: e_1_2_7_6_1
  doi: 10.1016/j.pdpdt.2019.04.033
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.jmedchem.9b02014
– ident: e_1_2_7_29_1
  doi: 10.1016/S1011-1344(96)07428-3
– ident: e_1_2_7_31_1
  doi: 10.1002/ange.201914874
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1432-1033.1993.tb18328.x
– ident: e_1_2_7_3_3
  doi: 10.1002/adma.201602111
– ident: e_1_2_7_19_3
  doi: 10.3390/molecules17010098
– ident: e_1_2_7_22_5
  doi: 10.1002/adma.202004208
– ident: e_1_2_7_39_2
  doi: 10.1021/jacs.8b10235
– ident: e_1_2_7_49_1
  doi: 10.1016/j.freeradbiomed.2014.08.020
– ident: e_1_2_7_4_1
  doi: 10.1038/s41467-017-00424-8
– ident: e_1_2_7_15_1
  doi: 10.1039/C6CS00616G
– ident: e_1_2_7_14_1
  doi: 10.1038/nrc1367
– ident: e_1_2_7_17_1
  doi: 10.1021/cr5004198
– ident: e_1_2_7_44_1
  doi: 10.1016/S0891-5849(01)00619-0
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jphotobiol.2020.111787
– ident: e_1_2_7_7_1
  doi: 10.1093/jnci/90.12.889
– ident: e_1_2_7_42_1
  doi: 10.1016/j.freeradbiomed.2012.06.034
– ident: e_1_2_7_40_1
  doi: 10.1021/jacs.8b08658
– ident: e_1_2_7_13_1
  doi: 10.2307/3578173
– ident: e_1_2_7_55_1
  doi: 10.1021/acsnano.0c05610
– ident: e_1_2_7_33_1
  doi: 10.1016/j.bmc.2018.12.006
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.201401356
– ident: e_1_2_7_53_2
  doi: 10.1021/acs.accounts.9b00356
– ident: e_1_2_7_32_1
  doi: 10.1016/S0076-6879(00)19037-8
– ident: e_1_2_7_12_2
  doi: 10.1117/1.1854679
– ident: e_1_2_7_23_2
  doi: 10.1111/j.1751-1097.1991.tb02071.x
– ident: e_1_2_7_9_2
  doi: 10.1039/C2CS35216H
– ident: e_1_2_7_28_1
  doi: 10.1002/viw2.6
– ident: e_1_2_7_19_4
  doi: 10.1039/C8SC00633D
– ident: e_1_2_7_20_2
  doi: 10.3390/molecules26020268
– ident: e_1_2_7_23_1
  doi: 10.1111/php.12716
– volume: 59
  start-page: 976
  year: 1955
  ident: e_1_2_7_19_1
  publication-title: Z. Elektrochem.
– ident: e_1_2_7_2_1
  doi: 10.3322/caac.21590
SSID ssj0002511795
Score 2.5471916
SecondaryResourceType review_article
Snippet Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In the past...
Abstract Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms aggregation‐induced emission
Amino acids
Cancer therapies
cancer treatment
Competition
Cytotoxicity
Hypoxia
Light
Mass spectrometry
Photodynamic therapy
photosensitizer
Reactive oxygen species
Reproducibility
Scientific imaging
Tumors
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oXrwYjRpRND3oRdNA99l6MWggYIInUW5N91ElUYqAF3-9M2VBOMhxm0nTzuzufDM7-w0hlwq8EM11HIokdiFnmQ4Ty2TILDfWRLmMI7w73HuSnT5_HIiBT7hNfVnlYk8sN2pbGMyR18Fx45mdUtHd-CvErlF4uupbaGyTHaQuw5IuNVDLHAvCZ5UIX-8O4_pL9xViQloyma15opKwfw1lrmLV0tm098meR4lBc27WA7LlRodEYswYdINmtxWM34tZMcXi89nwBxDcbdBzeId3OP0MspENVs6lj0i_3Xp-6IS-7UFo4BdFyA3AMGkhsoCdijumWWZEbhMTaQAHyF5KrTacW9CFTvIozgV3EJdYaZSNG5wdk8qoGLkTEgA84kiwbsEr8yynmkXSCKa4dSYRDVMlNwsVpMZzgmNrio90zmZMU1BYulBYlVwtpcdzLox_5O5Rm0sZZLAuHxSTt9QviDTjRjlwlZohI1iWJyw2OqPO0kyqXNIqqS1skfplNU3_JkGVXJf22fghOABII043v-uM7FK81FBWltVIZTb5ducANWb6opxPvygJzXE
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oXrwYjRpRND3oRdNA99XWGxoImGA8iHJr9lU1UUooXvz1ziwF4aCJx7aTpp3d2flmd-YbQs5j8EI010ko0sSFnCkdppbJkFlurIlymURYOzy4l70hvxuJUbXhhrUwc36I5YYbWoZfr9HAlS6bP6ShT_1nCO-oJyXbJFtYXYvc-ZQ_LPdYED7HvvEKlTAhWJokVe47PGuuvmDNK3ny_jXEuYpbvePp7pKdCjEG7fkQ75ENN94nEuPHoB-0-51g8lrMihIT0WdvX4DmroOBw3ret_IjUGMbrJxRH5Bht_N42wurFgihgcBLhNwAJJMWogxYtbhjmikjcpuaSANQQCZTarXh3MZxpNM8SnLBHcQoVprYJi3ODkltXIzdEQkAKnEkW7fgobnKqWaRNILF3DqTipapk6uFCjJT8YNjm4r3bM5sTDNQWLZQWJ1cLKUnc16MX-RuUJtLGWSz9jeK6UtWGUemuIkduE3NkB1M5SlLjFbUWapknEtaJ43FWGSViZUZIDk8xIUfr5NLPz5_fgheALwRx_8RPiHbFMsdfM5Zg9Rm0093CiBkps_8TPsGRgrPxQ
  priority: 102
  providerName: Wiley-Blackwell
Title Type I AIE photosensitizers: Mechanism and application
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20200121
https://www.proquest.com/docview/2640935771
https://doaj.org/article/a4c7e067b39643af938cba2ed2a67f62
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgLCwIBIhAqTLAAora2I6dsLUoVYvUqkIUukX-ikCCtKJhYeC3c07SKh2AhcVSYg_OnXP3Tr57h9AFBy-EUxl6QRQajxIhvUgT5hFNlVZ-ykLf1g6PxmwwpXezYFZr9WVzwkp64FJwbUEVN2BSJbHMUSKNSKikwEZjwXhaWl_webVgytpgC5x50XIFMzgKJArDKusd5tqPwyeIDHHBZ7bhjwra_g2sWUeshcvp76O9Ciu63XKPB2jLZIeI2cjRHbrdYewunuf5fGlT0POXT8BxN-7I2Erel-WbKzLt1m6nj9C0Hz_cDryq-YGnIOQKPKoAjDEN8QXYK2qIJEIFqY6ULwEiWA5TrKWiVHPuyyj1wzSgBqITzRTXYYeSY9TI5pk5QS6AJGpp1jX4ZipSLInPVEA41UZFQUc56HolgkRVzOC2QcVrUnIa4wQElqwE5qDL9epFyYjxw7qeleZ6jeWxLl6AdpNKu8lf2nVQc6WLpPq5lglgOHt9Cx_uoKtCP79uxD4AsAlO_2NDZ2gX2wKIIgutiRr5-4c5B1iSyxbaxnQCI5_xFtrpxePJfas4lTCOvuJvUvbc4w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gctALgaBxFaUPcNFMYPo1MybE8FiyI-zGGFBu7fRjlAR3VnYJ0R_lb7RqdmaBA9w49qTTPamu7vqqu-orgI0ErRAvbRqpLA2RFIWNMi90JLx03sWlTmPKHR4Mdf9UfjpTZwvwr82FobDK9kysD2pfOboj30LDTW92SRJ_HP-OqGoUva62JTRmanEU_lyjyzbZyQ9wfTc5P-yd7PejpqpA5HAEFUmHKEd7BO54EMggrCicKn3mYou2l8hBubdOSo9T2ayM01LJgLDfa5f4dFsKHPcJLEqBrkwHFvd6w89f5rc6BNiTTDUR9tje-pp_Qy-U19xpd2xfXSLgDq69jY5r83a4DEsNLmW7M0VagYUwWgVNXirL2W7eY-Of1bSaULj79PwvYsYPbBAoa_h88osVI89uvYQ_h9NHEckL6IyqUXgJDAGZJEp3jzhAFiW3ItZOiUT64DK17brwvhWBcQ0LORXDuDAz_mRuUGCmFVgXNue9xzP2jXv67ZE0532IM7v-UF3-MM0WNIV0SUDjbAVxkBVlJlJnCx48L3RSat6FtXYtTLORJ-ZG7brwrl6fB3-EGgii1KuHx1qHp_2TwbE5zodHr-EZp5SKOq5tDTrTy6vwBoHO1L5ttIvB98dW6P_oIAoD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuFQgQCy34QC-gaBs_k0oVKrSrhtKKA4W9mfgFlcpm6S6q4Kfx65jJJkt7oLceHVl2NB57vrFnvgF4YdAK8eSKTJVFzKSoXVYGoTMRpA8-T7rIKXf46FgfnMh3YzVegT99LgyFVfZnYntQh8bTHfkQDTe92RmTD1MXFvFhb_R6-iOjClL00tqX01ioyGH8dYHu22yn2sO13uR8tP_x7UHWVRjIPI6mMukR8eiAIB4PBRmFE7VXKZQ-d2iHiSiUB-elDDitK1NeJCUjugBBexOKLSlw3Ftw2wiV0x4zY7O83yHobkrVxdpje_ip-oz-KG9Z1K5YwbZYwBWEexknt4ZudA_WOoTKdhcqdR9W4uQBaPJXWcV2q302_dbMmxkFvs9PfyN63GZHkfKHT2ffWT0J7NKb-EM4uRGBPILVSTOJj4EhNJNE7h4QEcg6cSdy7ZUwMkRfqi0_gFe9CKzv-MipLMaZXTApc4sCs73ABrC57D1d8HD8p98bkuayD7Fntx-a86-224y2lt5ENNNOEBtZnUpReFfzGHitTdJ8AOv9WthuS8_sPwUcwMt2fa79EWognFJPrh_rOdxBNbbvq-PDp3CXU25FG-C2Dqvz859xAxHP3D1rVYvBl5vW5b-_nwzT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Type+I+AIE+photosensitizers%3A+Mechanism+and+application&rft.jtitle=View+%28Beijing%2C+China%29&rft.au=Li%2C+Jianqing&rft.au=Zhuang%2C+Zeyan&rft.au=Zhao%2C+Zujin&rft.au=Tang%2C+Ben+Zhong&rft.date=2022-03-01&rft.issn=2688-268X&rft.eissn=2688-268X&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1002%2FVIW.20200121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_VIW_20200121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-3988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-3988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-3988&client=summon