Type I AIE photosensitizers: Mechanism and application
Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In the past decade, abundant photosensitizers (PSs) with aggregation‐induced emission (AIE) property make the development of PSs enter upon a new phase,...
Saved in:
Published in | View (Beijing, China) Vol. 3; no. 2 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
John Wiley & Sons, Inc
01.03.2022
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In the past decade, abundant photosensitizers (PSs) with aggregation‐induced emission (AIE) property make the development of PSs enter upon a new phase, offering incomparable merits. Recently, Type I AIE PSs with capability of generating radical reactive oxygen species (ROS) have emerged as strong candidates to overcome the inherent hypoxia nature of solid tumors. In this review, detailed discussions on the mechanisms of PDT are drawn to highlight the basic advantages of Type I pathway over Type II one in hypoxic PDT, followed by a summary of frequently‐used detection methods for the accurate distinguishing of the nature of ROS. Finally, the latest representative advances are summarized, and future perspectives of Type I AIE PSs are discussed.
Photodynamic therapy (PDT) is emerging as a promising cancer therapeutic treatment and receiving increasing interests. Focusing on this specific theme, this review presents a detailed introduction on the PDT mechanism, summarizes the detection methods for the nature of reactive oxygen species, and discusses the superiority of Type I photosensitizers with aggregation‐induced emission (AIE) property. At last, the latest advances on Type I AIE photosensitizers are reviewed. |
---|---|
AbstractList | Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In the past decade, abundant photosensitizers (PSs) with aggregation‐induced emission (AIE) property make the development of PSs enter upon a new phase, offering incomparable merits. Recently, Type I AIE PSs with capability of generating radical reactive oxygen species (ROS) have emerged as strong candidates to overcome the inherent hypoxia nature of solid tumors. In this review, detailed discussions on the mechanisms of PDT are drawn to highlight the basic advantages of Type I pathway over Type II one in hypoxic PDT, followed by a summary of frequently‐used detection methods for the accurate distinguishing of the nature of ROS. Finally, the latest representative advances are summarized, and future perspectives of Type I AIE PSs are discussed.
Photodynamic therapy (PDT) is emerging as a promising cancer therapeutic treatment and receiving increasing interests. Focusing on this specific theme, this review presents a detailed introduction on the PDT mechanism, summarizes the detection methods for the nature of reactive oxygen species, and discusses the superiority of Type I photosensitizers with aggregation‐induced emission (AIE) property. At last, the latest advances on Type I AIE photosensitizers are reviewed. Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In the past decade, abundant photosensitizers (PSs) with aggregation‐induced emission (AIE) property make the development of PSs enter upon a new phase, offering incomparable merits. Recently, Type I AIE PSs with capability of generating radical reactive oxygen species (ROS) have emerged as strong candidates to overcome the inherent hypoxia nature of solid tumors. In this review, detailed discussions on the mechanisms of PDT are drawn to highlight the basic advantages of Type I pathway over Type II one in hypoxic PDT, followed by a summary of frequently‐used detection methods for the accurate distinguishing of the nature of ROS. Finally, the latest representative advances are summarized, and future perspectives of Type I AIE PSs are discussed. Abstract Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In the past decade, abundant photosensitizers (PSs) with aggregation‐induced emission (AIE) property make the development of PSs enter upon a new phase, offering incomparable merits. Recently, Type I AIE PSs with capability of generating radical reactive oxygen species (ROS) have emerged as strong candidates to overcome the inherent hypoxia nature of solid tumors. In this review, detailed discussions on the mechanisms of PDT are drawn to highlight the basic advantages of Type I pathway over Type II one in hypoxic PDT, followed by a summary of frequently‐used detection methods for the accurate distinguishing of the nature of ROS. Finally, the latest representative advances are summarized, and future perspectives of Type I AIE PSs are discussed. |
Author | Li, Jianqing Zhao, Zujin Zhuang, Zeyan Tang, Ben Zhong |
Author_xml | – sequence: 1 givenname: Jianqing surname: Li fullname: Li, Jianqing organization: South China University of Technology – sequence: 2 givenname: Zeyan surname: Zhuang fullname: Zhuang, Zeyan organization: South China University of Technology – sequence: 3 givenname: Zujin orcidid: 0000-0002-0618-6024 surname: Zhao fullname: Zhao, Zujin email: mszjzhao@scut.edu.cn organization: South China University of Technology – sequence: 4 givenname: Ben Zhong surname: Tang fullname: Tang, Ben Zhong organization: Guangzhou Development District |
BookMark | eNp9kEtLAzEUhYMoWGt3_oABt7bmnRl3pVQdqLipj13IZDI2ZToZkylSf73pQxeCbpLc8J1zD-cMHDeuMQBcIDhCEOLr5_xlhCGGEGF0BHqYp-kwHq_HhzfJ0vQUDEJYwogzhETGeoDPN61J8mScT5N24ToXTBNsZz-NDzfJg9EL1diwSlRTJqpta6tVZ11zDk4qVQczONx98HQ7nU_uh7PHu3wyng01hRkbUg0R5yWHPBWcGlIQpVlVZhoVhDGGmcBloSkthUBFVqG0YtRwHBValCmkpA_yvW_p1FK23q6U30inrNx9OP8mle-sro1UVAsDuShIxilRVUZSXShsSqy4qDiOXpd7r9a797UJnVy6tW9ifIl5jEtYTBGpqz2lvQvBm-pnK4JyW7SMRcvvoiOOf-HadruKOq9s_ZcI7UUftjabfxdsB4wYI1_xLI5I |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2024_10_029 crossref_primary_10_3390_molecules29061209 crossref_primary_10_1002_smtd_202400945 crossref_primary_10_1002_ange_202401036 crossref_primary_10_1002_bio_4659 crossref_primary_10_1002_ange_202212673 crossref_primary_10_1002_smll_202410031 crossref_primary_10_1002_smll_202411643 crossref_primary_10_1002_agt2_462 crossref_primary_10_1016_j_apcatb_2024_124687 crossref_primary_10_1002_adfm_202406150 crossref_primary_10_1039_D3TB00545C crossref_primary_10_1021_acsbiomedchemau_3c00028 crossref_primary_10_1088_1361_6528_ac22df crossref_primary_10_1016_j_gce_2022_07_006 crossref_primary_10_1021_acsmaterialslett_4c00592 crossref_primary_10_1002_adhm_202404505 crossref_primary_10_1002_adma_202207546 crossref_primary_10_1002_adhm_202300134 crossref_primary_10_1016_j_surfcoat_2025_131814 crossref_primary_10_1039_D3CP05718F crossref_primary_10_1016_j_flatc_2024_100663 crossref_primary_10_1039_D2TB01224C crossref_primary_10_1021_jacs_4c09470 crossref_primary_10_1021_jacs_2c11868 crossref_primary_10_1002_adtp_202200165 crossref_primary_10_1002_smll_202401334 crossref_primary_10_1016_j_ccr_2023_215481 crossref_primary_10_1016_j_foodchem_2023_136464 crossref_primary_10_1016_j_envres_2023_117362 crossref_primary_10_1021_acs_inorgchem_3c01982 crossref_primary_10_1016_j_dyepig_2024_112208 crossref_primary_10_1002_VIW_20220068 crossref_primary_10_1007_s11426_024_1971_4 crossref_primary_10_1016_j_biomaterials_2022_121899 crossref_primary_10_1016_j_actbio_2024_02_005 crossref_primary_10_1002_mco2_603 crossref_primary_10_1021_acsnano_4c06808 crossref_primary_10_1002_adma_202407707 crossref_primary_10_1002_adfm_202300818 crossref_primary_10_1016_j_molstruc_2024_140902 crossref_primary_10_1039_D4CC06079B crossref_primary_10_1016_j_jphotochem_2024_115635 crossref_primary_10_1021_acsbiomedchemau_1c00066 crossref_primary_10_1002_smll_202402439 crossref_primary_10_1039_D4TB01440E crossref_primary_10_1002_smll_202200743 crossref_primary_10_1021_acsanm_3c02015 crossref_primary_10_3389_fonc_2022_918416 crossref_primary_10_1002_smll_202400654 crossref_primary_10_1021_acsnano_3c00326 crossref_primary_10_1002_smtd_202300880 crossref_primary_10_1002_adfm_202301692 crossref_primary_10_1021_acsnano_3c04256 crossref_primary_10_1021_acsmaterialslett_4c00600 crossref_primary_10_26599_NTM_2022_9130010 crossref_primary_10_1016_j_ccr_2024_215986 crossref_primary_10_1039_D3MA00382E crossref_primary_10_1002_adma_202210085 crossref_primary_10_1002_agt2_657 crossref_primary_10_1039_D4SC05345A crossref_primary_10_3390_bios12090722 crossref_primary_10_1021_acsmaterialslett_4c00162 crossref_primary_10_1002_smtd_202301143 crossref_primary_10_6023_cjoc202403055 crossref_primary_10_3390_nano13152225 crossref_primary_10_3390_pharmaceutics15020567 crossref_primary_10_1002_agt2_540 crossref_primary_10_1016_j_biomaterials_2023_122407 crossref_primary_10_1039_D3NA00341H crossref_primary_10_1007_s11426_023_1790_0 crossref_primary_10_1002_agt2_705 crossref_primary_10_1016_j_snb_2023_135091 crossref_primary_10_1039_D3BM00730H crossref_primary_10_1002_adfm_202307267 crossref_primary_10_1039_D4RA00928B crossref_primary_10_1016_j_dyepig_2023_111569 crossref_primary_10_1002_anie_202401036 crossref_primary_10_1021_acsmaterialslett_3c01210 crossref_primary_10_1002_adfm_202418711 crossref_primary_10_1002_adma_202209529 crossref_primary_10_1021_acs_inorgchem_4c03219 crossref_primary_10_1021_acs_langmuir_2c01036 crossref_primary_10_1002_agt2_676 crossref_primary_10_1016_j_ccr_2022_214754 crossref_primary_10_1021_acsnano_3c03925 crossref_primary_10_1002_smtd_202301095 crossref_primary_10_1039_D3QM00206C crossref_primary_10_1016_j_cej_2024_158529 crossref_primary_10_1002_advs_202305516 crossref_primary_10_1007_s40820_025_01685_5 crossref_primary_10_1016_j_apsb_2023_11_007 crossref_primary_10_1021_acsnano_3c03654 crossref_primary_10_1039_D3QI01666H crossref_primary_10_2217_nnm_2023_0047 crossref_primary_10_3390_jfb15110333 crossref_primary_10_3390_molecules28073153 crossref_primary_10_1016_j_colsurfb_2023_113547 crossref_primary_10_1002_adma_202402182 crossref_primary_10_1016_j_fpsl_2024_101354 crossref_primary_10_1002_adma_202109010 crossref_primary_10_1016_j_molstruc_2024_139956 crossref_primary_10_1016_j_cej_2022_136381 crossref_primary_10_1039_D2SC01469F crossref_primary_10_1039_D3TB01422C crossref_primary_10_1039_D4TB01847H crossref_primary_10_1002_adfm_202416317 crossref_primary_10_1002_anie_202212673 crossref_primary_10_1021_acsmaterialslett_4c01214 crossref_primary_10_1002_agt2_291 crossref_primary_10_1002_adfm_202414817 crossref_primary_10_1016_j_jphotobiol_2024_113052 crossref_primary_10_1039_D3TB00632H |
Cites_doi | 10.3109/10715769009149895 10.1002/anie.202000845 10.1002/agt2.7 10.1002/anie.201914768 10.1016/j.ymeth.2016.06.025 10.1039/b105159h 10.1016/j.freeradbiomed.2012.09.006 10.1016/j.biomaterials.2019.119330 10.3390/cancers12010190 10.3390/ma6030817 10.1021/acs.nanolett.6b00068 10.1038/s41572-019-0064-5 10.1016/j.biopha.2018.07.049 10.1111/j.1751-1097.2011.00900.x 10.1021/acs.chemrev.7b00161 10.1021/acsnano.9b04430 10.1016/j.biopha.2020.109821 10.1039/C8CS00001H 10.1039/C9TB00721K 10.1615/JEnvironPatholToxicolOncol.v25.i1-2.20 10.1021/jacs.5b01881 10.1038/nrc1071 10.1007/s10103-008-0539-1 10.1007/s10555-007-9055-1 10.1074/jbc.M209264200 10.18632/genesandcancer.155 10.1039/D0CS00671H 10.1006/abio.1997.2391 10.1023/A:1012369120376 10.1021/acsnano.9b07972 10.1038/nphoton.2014.166 10.1039/C1CS15188F 10.1039/cs9952400019 10.1038/s41598-018-31638-5 10.1002/ijc.31937 10.1039/C6CS00271D 10.1002/adma.201801350 10.1039/D0SC00785D 10.1002/adfm.202002057 10.1111/j.1751-1097.1989.tb04126.x 10.1016/j.freeradbiomed.2010.01.028 10.1007/s10147-019-01588-7 10.1016/j.oraloncology.2017.08.017 10.1126/sciadv.abb2712 10.1093/jxb/erj181 10.1016/j.ccr.2019.213076 10.3109/10715761003709802 10.1021/jm00162a004 10.1002/anie.201805138 10.1002/anie.202006649 10.1016/S0891-5849(87)80033-3 10.1021/jf0401165 10.1021/jacs.8b13141 10.1016/j.ccr.2019.05.016 10.1016/j.pdpdt.2019.04.033 10.1021/acs.jmedchem.9b02014 10.1016/S1011-1344(96)07428-3 10.1002/ange.201914874 10.1111/j.1432-1033.1993.tb18328.x 10.1002/adma.201602111 10.3390/molecules17010098 10.1002/adma.202004208 10.1021/jacs.8b10235 10.1016/j.freeradbiomed.2014.08.020 10.1038/s41467-017-00424-8 10.1039/C6CS00616G 10.1038/nrc1367 10.1021/cr5004198 10.1016/S0891-5849(01)00619-0 10.1016/j.jphotobiol.2020.111787 10.1093/jnci/90.12.889 10.1016/j.freeradbiomed.2012.06.034 10.1021/jacs.8b08658 10.2307/3578173 10.1021/acsnano.0c05610 10.1016/j.bmc.2018.12.006 10.1002/adma.201401356 10.1021/acs.accounts.9b00356 10.1016/S0076-6879(00)19037-8 10.1117/1.1854679 10.1111/j.1751-1097.1991.tb02071.x 10.1039/C2CS35216H 10.1002/viw2.6 10.1039/C8SC00633D 10.3390/molecules26020268 10.1111/php.12716 10.3322/caac.21590 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/VIW.20200121 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2688-268X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_a4c7e067b39643af938cba2ed2a67f62 10_1002_VIW_20200121 VIW2155 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21788102 – fundername: Natural Science Foundation of Guangdong Province funderid: 2019B030301003 |
GroupedDBID | 0R~ 1OC 24P 7X7 8FI 8FJ AAHHS ABUWG ACCFJ ACCMX ACXQS ADKYN ADPDF ADZMN AEEZP AEQDE AFKRA AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BENPR CCPQU EBS FYUFA GROUPED_DOAJ HMCUK IAO IHR INH ITC M~E OVD PIMPY TEORI UKHRP WIN AAYXX CITATION IGS PHGZM PHGZT 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c4095-4c0166d6068764e3b3ac5fd9c1b35552572dbc44d771b9f18f54e626d6c7d8043 |
IEDL.DBID | DOA |
ISSN | 2688-3988 2688-268X |
IngestDate | Wed Aug 27 00:59:36 EDT 2025 Wed Aug 13 09:03:47 EDT 2025 Tue Jul 01 02:42:39 EDT 2025 Thu Apr 24 22:55:51 EDT 2025 Wed Jan 22 16:25:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4095-4c0166d6068764e3b3ac5fd9c1b35552572dbc44d771b9f18f54e626d6c7d8043 |
Notes | Both the authors contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0618-6024 |
OpenAccessLink | https://doaj.org/article/a4c7e067b39643af938cba2ed2a67f62 |
PQID | 2640935771 |
PQPubID | 5068494 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a4c7e067b39643af938cba2ed2a67f62 proquest_journals_2640935771 crossref_primary_10_1002_VIW_20200121 crossref_citationtrail_10_1002_VIW_20200121 wiley_primary_10_1002_VIW_20200121_VIW2155 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 20220301 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | View (Beijing, China) |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 8 1990; 10 2017 1991; 93 54 2016; 109 2011 2018; 87 8 2004 2007; 4 26 2020 2019; 59 7 2019; 13 2017 2019 2016; 73 5 28 2020; 14 2012 1997; 53 253 2020; 12 2020; 11 2003; 278 2012; 53 2017; 117 2013 2013; 6 42 1993; 217 2014 2005; 8 10 2020; 1 2020 2018 2019 2020 2020 2020 2020; 63 30 218 49 32 1 59 2020; 132 2015 2012; 115 41 2006; 25 2014 2020; 26 7 2019; 27 2001 1987; 31 3 2016; 45 2019; 395 2000; 319 2016 2019; 45 48 2009; 24 2004 1989; 52 50 2018; 106 2006; 57 2020 2019; 70 144 2020 2019 2020; 59 52 402 1998 2017 2020; 90 8 6 2016; 16 2018 2019; 140 141 2010; 44 2019 2003; 26 3 2001 2021; 18 26 2010; 48 2020 2020; 25 124 2020; 30 2020 2001; 204 71 1997; 39 1986; 29 1955 1995 2012 2018; 59 24 17 9 2015 2018; 137 140 1991; 126 2014; 77 2018; 57 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 Förster T. (e_1_2_7_19_1) 1955; 59 e_1_2_7_9_2 e_1_2_7_7_3 e_1_2_7_9_1 e_1_2_7_19_4 e_1_2_7_7_2 e_1_2_7_19_3 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_45_2 e_1_2_7_45_3 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_39_2 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_44_2 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_46_2 e_1_2_7_48_1 Tu Y. (e_1_2_7_21_2) 2020; 7 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_22_7 e_1_2_7_51_1 e_1_2_7_22_6 e_1_2_7_22_5 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_22_4 e_1_2_7_24_2 e_1_2_7_22_3 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_53_3 e_1_2_7_55_1 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 319 start-page: 376 year: 2000 publication-title: Method. Enzymol. – volume: 90 8 6 start-page: 889 682 year: 1998 2017 2020 publication-title: J. Natl. Cancer Inst. Genes. Cancer Sci. Adv. – volume: 57 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 265 year: 1990 publication-title: Free Radical Res. Commun. – volume: 48 start-page: 983 year: 2010 publication-title: Free Radical Biol. Med. – volume: 8 10 start-page: 723 year: 2014 2005 publication-title: Nat. Photonics J. Biomed. Opt. – volume: 29 start-page: 2439 year: 1986 publication-title: J. Med. Chem. – volume: 26 7 start-page: 5429 year: 2014 2020 publication-title: Adv. Mater. Natl. Sci. Rev. – volume: 132 start-page: 1 year: 2020 publication-title: Angew. Chem. – volume: 126 start-page: 73 year: 1991 publication-title: Radiat. Res. – volume: 395 start-page: 46 year: 2019 publication-title: Coord. Chem. Rev. – volume: 4 26 start-page: 437 225 year: 2004 2007 publication-title: Nat. Rev. Cancer Cancer Metastasis Rev – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 259 year: 2009 publication-title: Lasers Med. Sci. – volume: 25 start-page: 7 year: 2006 publication-title: J. Environ. Pathol. Toxicol. Oncol. – volume: 93 54 start-page: 912 69 year: 2017 1991 publication-title: Photochem. Photobiol. Photochem. Photobiol. – volume: 16 start-page: 2512 year: 2016 publication-title: Nano Lett. – volume: 70 144 start-page: 7 1941 year: 2020 2019 publication-title: Ca‐Cancer J. Clin. Int. J. Cancer – volume: 1 year: 2020 publication-title: VIEW – volume: 140 141 start-page: 2695 year: 2018 2019 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 11 start-page: 3405 year: 2020 publication-title: Chem. Sci. – volume: 45 48 start-page: 6488 38 year: 2016 2019 publication-title: Chem. Soc. Rev. Chem. Soc. Rev. – volume: 6 42 start-page: 817 77 year: 2013 2013 publication-title: Materials Chem. Soc. Rev. – volume: 14 start-page: 854 year: 2020 publication-title: ACS Nano – volume: 59 52 402 start-page: 9868 3051 year: 2020 2019 2020 publication-title: Angew. Chem. Int. Ed. Acc. Chem. Res. Coord. Chem. Rev. – volume: 53 253 start-page: 1080 162 year: 2012 1997 publication-title: Free Radical Biol. Med. Anal. Biochem. – volume: 39 start-page: 1 year: 1997 publication-title: J. Photoch. Photobio. B – volume: 59 7 start-page: 4440 year: 2020 2019 publication-title: Angew. Chem. Int. Ed. J. Mater. Chem. B – volume: 25 124 start-page: 790 year: 2020 2020 publication-title: Int. J. Clin. Oncol. Biomed. Pharmacother. – volume: 8 start-page: 357 year: 2017 publication-title: Nat. Commun. – volume: 137 140 start-page: 6837 year: 2015 2018 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 31 3 start-page: 599 259 year: 2001 1987 publication-title: Free Radical Biol. Med. Free Radical Biol. Med. – volume: 217 start-page: 973 year: 1993 publication-title: Eur. J. Biochem. – volume: 26 3 start-page: 395 380 year: 2019 2003 publication-title: Photodiagn. Photodyn. Ther. Nat. Rev. Cancer – volume: 278 start-page: 3170 year: 2003 publication-title: J. Biol. Chem. – volume: 27 start-page: 315 year: 2019 publication-title: Bioorg. Med. Chem. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 45 start-page: 6597 year: 2016 publication-title: Chem. Soc. Rev. – volume: 204 71 start-page: 36 year: 2020 2001 publication-title: J. Photochem. Photobiol. B Russ. J. Gen. Chem. – volume: 87 8 start-page: 671 year: 2011 2018 publication-title: Photochem. Photobiol. Sci. Rep. – volume: 73 5 28 start-page: 124 13 7143 year: 2017 2019 2016 publication-title: Oral Oncol. Nat. Rev. Dis. Primers. Adv. Mater. – volume: 59 24 17 9 start-page: 976 19 98 5165 year: 1955 1995 2012 2018 publication-title: Z. Elektrochem. Chem. Soc. Rev. Molecules Chem. Sci. – volume: 57 start-page: 1725 year: 2006 publication-title: J. Exp. Bot. – volume: 44 start-page: 587 year: 2010 publication-title: Free Radical Res. – volume: 63 30 218 49 32 1 59 start-page: 1996 8179 80 2 year: 2020 2018 2019 2020 2020 2020 2020 publication-title: J. Med. Chem. Adv. Mater. Biomaterials Chem. Soc. Rev. Adv. Mater. Aggregate Angew. Chem. Int. Ed. – volume: 52 50 start-page: 6602 29 year: 2004 1989 publication-title: J. Agric. Food Chem. Photochem. Photobiol. – volume: 53 start-page: 2062 year: 2012 publication-title: Free Radical Biol. Med. – volume: 106 start-page: 1098 year: 2018 publication-title: Biomed. Pharmacother. – volume: 18 26 start-page: 1740 268 year: 2001 2021 publication-title: Chem. Commun. Molecules – volume: 109 start-page: 158 year: 2016 publication-title: Methods – volume: 115 41 start-page: 1990 2323 year: 2015 2012 publication-title: Chem. Rev. Chem. Soc. Rev. – volume: 12 start-page: 190 year: 2020 publication-title: Cancers – volume: 77 start-page: 64 year: 2014 publication-title: Free Radical Biol. Med. – ident: e_1_2_7_25_1 doi: 10.3109/10715769009149895 – ident: e_1_2_7_53_1 doi: 10.1002/anie.202000845 – ident: e_1_2_7_45_3 – ident: e_1_2_7_22_6 doi: 10.1002/agt2.7 – ident: e_1_2_7_22_7 doi: 10.1002/anie.201914768 – ident: e_1_2_7_36_1 doi: 10.1016/j.ymeth.2016.06.025 – ident: e_1_2_7_20_1 doi: 10.1039/b105159h – ident: e_1_2_7_34_1 doi: 10.1016/j.freeradbiomed.2012.09.006 – ident: e_1_2_7_22_3 doi: 10.1016/j.biomaterials.2019.119330 – ident: e_1_2_7_48_1 doi: 10.3390/cancers12010190 – ident: e_1_2_7_9_1 doi: 10.3390/ma6030817 – ident: e_1_2_7_56_1 doi: 10.1021/acs.nanolett.6b00068 – ident: e_1_2_7_3_2 doi: 10.1038/s41572-019-0064-5 – ident: e_1_2_7_27_1 doi: 10.1016/j.biopha.2018.07.049 – ident: e_1_2_7_45_1 doi: 10.1111/j.1751-1097.2011.00900.x – ident: e_1_2_7_30_1 doi: 10.1021/acs.chemrev.7b00161 – ident: e_1_2_7_52_1 doi: 10.1021/acsnano.9b04430 – ident: e_1_2_7_5_2 doi: 10.1016/j.biopha.2020.109821 – ident: e_1_2_7_15_2 doi: 10.1039/C8CS00001H – ident: e_1_2_7_18_2 doi: 10.1039/C9TB00721K – ident: e_1_2_7_11_1 doi: 10.1615/JEnvironPatholToxicolOncol.v25.i1-2.20 – ident: e_1_2_7_39_1 doi: 10.1021/jacs.5b01881 – ident: e_1_2_7_6_2 doi: 10.1038/nrc1071 – ident: e_1_2_7_8_1 doi: 10.1007/s10103-008-0539-1 – ident: e_1_2_7_14_2 doi: 10.1007/s10555-007-9055-1 – ident: e_1_2_7_43_1 doi: 10.1074/jbc.M209264200 – ident: e_1_2_7_7_2 doi: 10.18632/genesandcancer.155 – ident: e_1_2_7_22_4 doi: 10.1039/D0CS00671H – ident: e_1_2_7_42_2 doi: 10.1006/abio.1997.2391 – ident: e_1_2_7_46_2 doi: 10.1023/A:1012369120376 – ident: e_1_2_7_54_1 doi: 10.1021/acsnano.9b07972 – volume: 7 year: 2020 ident: e_1_2_7_21_2 publication-title: Natl. Sci. Rev. – ident: e_1_2_7_12_1 doi: 10.1038/nphoton.2014.166 – ident: e_1_2_7_17_2 doi: 10.1039/C1CS15188F – ident: e_1_2_7_19_2 doi: 10.1039/cs9952400019 – ident: e_1_2_7_45_2 doi: 10.1038/s41598-018-31638-5 – ident: e_1_2_7_2_2 doi: 10.1002/ijc.31937 – ident: e_1_2_7_10_1 doi: 10.1039/C6CS00271D – ident: e_1_2_7_22_2 doi: 10.1002/adma.201801350 – ident: e_1_2_7_50_1 doi: 10.1039/D0SC00785D – ident: e_1_2_7_51_1 doi: 10.1002/adfm.202002057 – ident: e_1_2_7_24_2 doi: 10.1111/j.1751-1097.1989.tb04126.x – ident: e_1_2_7_38_1 doi: 10.1016/j.freeradbiomed.2010.01.028 – ident: e_1_2_7_5_1 doi: 10.1007/s10147-019-01588-7 – ident: e_1_2_7_3_1 doi: 10.1016/j.oraloncology.2017.08.017 – ident: e_1_2_7_7_3 doi: 10.1126/sciadv.abb2712 – ident: e_1_2_7_47_1 doi: 10.1093/jxb/erj181 – ident: e_1_2_7_53_3 doi: 10.1016/j.ccr.2019.213076 – ident: e_1_2_7_37_1 doi: 10.3109/10715761003709802 – ident: e_1_2_7_35_1 doi: 10.1021/jm00162a004 – ident: e_1_2_7_16_1 doi: 10.1002/anie.201805138 – ident: e_1_2_7_18_1 doi: 10.1002/anie.202006649 – ident: e_1_2_7_44_2 doi: 10.1016/S0891-5849(87)80033-3 – ident: e_1_2_7_24_1 doi: 10.1021/jf0401165 – ident: e_1_2_7_40_2 doi: 10.1021/jacs.8b13141 – ident: e_1_2_7_26_1 doi: 10.1016/j.ccr.2019.05.016 – ident: e_1_2_7_6_1 doi: 10.1016/j.pdpdt.2019.04.033 – ident: e_1_2_7_22_1 doi: 10.1021/acs.jmedchem.9b02014 – ident: e_1_2_7_29_1 doi: 10.1016/S1011-1344(96)07428-3 – ident: e_1_2_7_31_1 doi: 10.1002/ange.201914874 – ident: e_1_2_7_41_1 doi: 10.1111/j.1432-1033.1993.tb18328.x – ident: e_1_2_7_3_3 doi: 10.1002/adma.201602111 – ident: e_1_2_7_19_3 doi: 10.3390/molecules17010098 – ident: e_1_2_7_22_5 doi: 10.1002/adma.202004208 – ident: e_1_2_7_39_2 doi: 10.1021/jacs.8b10235 – ident: e_1_2_7_49_1 doi: 10.1016/j.freeradbiomed.2014.08.020 – ident: e_1_2_7_4_1 doi: 10.1038/s41467-017-00424-8 – ident: e_1_2_7_15_1 doi: 10.1039/C6CS00616G – ident: e_1_2_7_14_1 doi: 10.1038/nrc1367 – ident: e_1_2_7_17_1 doi: 10.1021/cr5004198 – ident: e_1_2_7_44_1 doi: 10.1016/S0891-5849(01)00619-0 – ident: e_1_2_7_46_1 doi: 10.1016/j.jphotobiol.2020.111787 – ident: e_1_2_7_7_1 doi: 10.1093/jnci/90.12.889 – ident: e_1_2_7_42_1 doi: 10.1016/j.freeradbiomed.2012.06.034 – ident: e_1_2_7_40_1 doi: 10.1021/jacs.8b08658 – ident: e_1_2_7_13_1 doi: 10.2307/3578173 – ident: e_1_2_7_55_1 doi: 10.1021/acsnano.0c05610 – ident: e_1_2_7_33_1 doi: 10.1016/j.bmc.2018.12.006 – ident: e_1_2_7_21_1 doi: 10.1002/adma.201401356 – ident: e_1_2_7_53_2 doi: 10.1021/acs.accounts.9b00356 – ident: e_1_2_7_32_1 doi: 10.1016/S0076-6879(00)19037-8 – ident: e_1_2_7_12_2 doi: 10.1117/1.1854679 – ident: e_1_2_7_23_2 doi: 10.1111/j.1751-1097.1991.tb02071.x – ident: e_1_2_7_9_2 doi: 10.1039/C2CS35216H – ident: e_1_2_7_28_1 doi: 10.1002/viw2.6 – ident: e_1_2_7_19_4 doi: 10.1039/C8SC00633D – ident: e_1_2_7_20_2 doi: 10.3390/molecules26020268 – ident: e_1_2_7_23_1 doi: 10.1111/php.12716 – volume: 59 start-page: 976 year: 1955 ident: e_1_2_7_19_1 publication-title: Z. Elektrochem. – ident: e_1_2_7_2_1 doi: 10.3322/caac.21590 |
SSID | ssj0002511795 |
Score | 2.5471916 |
SecondaryResourceType | review_article |
Snippet | Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In the past... Abstract Photodynamic therapy (PDT) with plenty of advantages is expected to become a promising modality for cancer treatment, but challenges still remain. In... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | aggregation‐induced emission Amino acids Cancer therapies cancer treatment Competition Cytotoxicity Hypoxia Light Mass spectrometry Photodynamic therapy photosensitizer Reactive oxygen species Reproducibility Scientific imaging Tumors |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEN4oXrwYjRpRND3oRdNA99l6MWggYIInUW5N91ElUYqAF3-9M2VBOMhxm0nTzuzufDM7-w0hlwq8EM11HIokdiFnmQ4Ty2TILDfWRLmMI7w73HuSnT5_HIiBT7hNfVnlYk8sN2pbGMyR18Fx45mdUtHd-CvErlF4uupbaGyTHaQuw5IuNVDLHAvCZ5UIX-8O4_pL9xViQloyma15opKwfw1lrmLV0tm098meR4lBc27WA7LlRodEYswYdINmtxWM34tZMcXi89nwBxDcbdBzeId3OP0MspENVs6lj0i_3Xp-6IS-7UFo4BdFyA3AMGkhsoCdijumWWZEbhMTaQAHyF5KrTacW9CFTvIozgV3EJdYaZSNG5wdk8qoGLkTEgA84kiwbsEr8yynmkXSCKa4dSYRDVMlNwsVpMZzgmNrio90zmZMU1BYulBYlVwtpcdzLox_5O5Rm0sZZLAuHxSTt9QviDTjRjlwlZohI1iWJyw2OqPO0kyqXNIqqS1skfplNU3_JkGVXJf22fghOABII043v-uM7FK81FBWltVIZTb5ducANWb6opxPvygJzXE priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oXrwYjRpRND3oRdNA99XWGxoImGA8iHJr9lU1UUooXvz1ziwF4aCJx7aTpp3d2flmd-YbQs5j8EI010ko0sSFnCkdppbJkFlurIlymURYOzy4l70hvxuJUbXhhrUwc36I5YYbWoZfr9HAlS6bP6ShT_1nCO-oJyXbJFtYXYvc-ZQ_LPdYED7HvvEKlTAhWJokVe47PGuuvmDNK3ny_jXEuYpbvePp7pKdCjEG7fkQ75ENN94nEuPHoB-0-51g8lrMihIT0WdvX4DmroOBw3ret_IjUGMbrJxRH5Bht_N42wurFgihgcBLhNwAJJMWogxYtbhjmikjcpuaSANQQCZTarXh3MZxpNM8SnLBHcQoVprYJi3ODkltXIzdEQkAKnEkW7fgobnKqWaRNILF3DqTipapk6uFCjJT8YNjm4r3bM5sTDNQWLZQWJ1cLKUnc16MX-RuUJtLGWSz9jeK6UtWGUemuIkduE3NkB1M5SlLjFbUWapknEtaJ43FWGSViZUZIDk8xIUfr5NLPz5_fgheALwRx_8RPiHbFMsdfM5Zg9Rm0093CiBkps_8TPsGRgrPxQ priority: 102 providerName: Wiley-Blackwell |
Title | Type I AIE photosensitizers: Mechanism and application |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20200121 https://www.proquest.com/docview/2640935771 https://doaj.org/article/a4c7e067b39643af938cba2ed2a67f62 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgLCwIBIhAqTLAAora2I6dsLUoVYvUqkIUukX-ikCCtKJhYeC3c07SKh2AhcVSYg_OnXP3Tr57h9AFBy-EUxl6QRQajxIhvUgT5hFNlVZ-ykLf1g6PxmwwpXezYFZr9WVzwkp64FJwbUEVN2BSJbHMUSKNSKikwEZjwXhaWl_webVgytpgC5x50XIFMzgKJArDKusd5tqPwyeIDHHBZ7bhjwra_g2sWUeshcvp76O9Ciu63XKPB2jLZIeI2cjRHbrdYewunuf5fGlT0POXT8BxN-7I2Erel-WbKzLt1m6nj9C0Hz_cDryq-YGnIOQKPKoAjDEN8QXYK2qIJEIFqY6ULwEiWA5TrKWiVHPuyyj1wzSgBqITzRTXYYeSY9TI5pk5QS6AJGpp1jX4ZipSLInPVEA41UZFQUc56HolgkRVzOC2QcVrUnIa4wQElqwE5qDL9epFyYjxw7qeleZ6jeWxLl6AdpNKu8lf2nVQc6WLpPq5lglgOHt9Cx_uoKtCP79uxD4AsAlO_2NDZ2gX2wKIIgutiRr5-4c5B1iSyxbaxnQCI5_xFtrpxePJfas4lTCOvuJvUvbc4w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gctALgaBxFaUPcNFMYPo1MybE8FiyI-zGGFBu7fRjlAR3VnYJ0R_lb7RqdmaBA9w49qTTPamu7vqqu-orgI0ErRAvbRqpLA2RFIWNMi90JLx03sWlTmPKHR4Mdf9UfjpTZwvwr82FobDK9kysD2pfOboj30LDTW92SRJ_HP-OqGoUva62JTRmanEU_lyjyzbZyQ9wfTc5P-yd7PejpqpA5HAEFUmHKEd7BO54EMggrCicKn3mYou2l8hBubdOSo9T2ayM01LJgLDfa5f4dFsKHPcJLEqBrkwHFvd6w89f5rc6BNiTTDUR9tje-pp_Qy-U19xpd2xfXSLgDq69jY5r83a4DEsNLmW7M0VagYUwWgVNXirL2W7eY-Of1bSaULj79PwvYsYPbBAoa_h88osVI89uvYQ_h9NHEckL6IyqUXgJDAGZJEp3jzhAFiW3ItZOiUT64DK17brwvhWBcQ0LORXDuDAz_mRuUGCmFVgXNue9xzP2jXv67ZE0532IM7v-UF3-MM0WNIV0SUDjbAVxkBVlJlJnCx48L3RSat6FtXYtTLORJ-ZG7brwrl6fB3-EGgii1KuHx1qHp_2TwbE5zodHr-EZp5SKOq5tDTrTy6vwBoHO1L5ttIvB98dW6P_oIAoD |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuFQgQCy34QC-gaBs_k0oVKrSrhtKKA4W9mfgFlcpm6S6q4Kfx65jJJkt7oLceHVl2NB57vrFnvgF4YdAK8eSKTJVFzKSoXVYGoTMRpA8-T7rIKXf46FgfnMh3YzVegT99LgyFVfZnYntQh8bTHfkQDTe92RmTD1MXFvFhb_R6-iOjClL00tqX01ioyGH8dYHu22yn2sO13uR8tP_x7UHWVRjIPI6mMukR8eiAIB4PBRmFE7VXKZQ-d2iHiSiUB-elDDitK1NeJCUjugBBexOKLSlw3Ftw2wiV0x4zY7O83yHobkrVxdpje_ip-oz-KG9Z1K5YwbZYwBWEexknt4ZudA_WOoTKdhcqdR9W4uQBaPJXWcV2q302_dbMmxkFvs9PfyN63GZHkfKHT2ffWT0J7NKb-EM4uRGBPILVSTOJj4EhNJNE7h4QEcg6cSdy7ZUwMkRfqi0_gFe9CKzv-MipLMaZXTApc4sCs73ABrC57D1d8HD8p98bkuayD7Fntx-a86-224y2lt5ENNNOEBtZnUpReFfzGHitTdJ8AOv9WthuS8_sPwUcwMt2fa79EWognFJPrh_rOdxBNbbvq-PDp3CXU25FG-C2Dqvz859xAxHP3D1rVYvBl5vW5b-_nwzT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Type+I+AIE+photosensitizers%3A+Mechanism+and+application&rft.jtitle=View+%28Beijing%2C+China%29&rft.au=Li%2C+Jianqing&rft.au=Zhuang%2C+Zeyan&rft.au=Zhao%2C+Zujin&rft.au=Tang%2C+Ben+Zhong&rft.date=2022-03-01&rft.issn=2688-268X&rft.eissn=2688-268X&rft.volume=3&rft.issue=2&rft_id=info:doi/10.1002%2FVIW.20200121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_VIW_20200121 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-3988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-3988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-3988&client=summon |