Increased Flood Exposure Due to Climate Change and Population Growth in the United States

Precipitation extremes are increasing globally due to anthropogenic climate change. However, there remains uncertainty regarding impacts upon flood occurrence and subsequent population exposure. Here, we quantify changes in population exposure to flood hazard across the contiguous United States. We...

Full description

Saved in:
Bibliographic Details
Published inEarth's future Vol. 8; no. 11
Main Authors Swain, D. L., Wing, O. E. J., Bates, P. D., Done, J. M., Johnson, K. A., Cameron, D. R.
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Precipitation extremes are increasing globally due to anthropogenic climate change. However, there remains uncertainty regarding impacts upon flood occurrence and subsequent population exposure. Here, we quantify changes in population exposure to flood hazard across the contiguous United States. We combine simulations from a climate model large ensemble and a high‐resolution hydrodynamic flood model—allowing us to directly assess changes across a wide range of extreme precipitation magnitudes and accumulation timescales. We report a mean increase in the 100‐year precipitation event of ~20% (magnitude) and >200% (frequency) in a high warming scenario, yielding a ~30–127% increase in population exposure. We further find a nonlinear increase for the most intense precipitation events—suggesting accelerating societal impacts from historically rare or unprecedented precipitation events in the 21st century. Plain Language Summary Heavy rainfall is increasing globally due to human‐caused global warming. However, it is still unclear how these increases in heavy rainfall might affect flood risk. In this paper, we investigate how global warming and population changes together may be affecting the number of people at risk from floods in the United States. We combine simulations from a climate model and flood model—allowing us to consider a wide range of heavy rainfall events. We report a ~20% increase in the size and a >200% increase in the frequency of very heavy and rare rainfall events, which leads to a ~30–127% increase in the number of people at risk from floods. Finally, we find that the heaviest rainfall events increase by the widest margin—suggesting the possibility of major increases in damage and disruption caused by severe floods in the 21st century. Key Points Population exposure to flood hazard is increasing due to both climate‐driven increases in extreme rainfall as well as demographic shifts There is a wide range of plausible increases in population exposed to flood hazard, depending strongly on climate and growth scenario We find a nonlinear increase for most extreme events, suggesting accelerating societal impacts from historically unprecedented rainfall
AbstractList Precipitation extremes are increasing globally due to anthropogenic climate change. However, there remains uncertainty regarding impacts upon flood occurrence and subsequent population exposure. Here, we quantify changes in population exposure to flood hazard across the contiguous United States. We combine simulations from a climate model large ensemble and a high‐resolution hydrodynamic flood model—allowing us to directly assess changes across a wide range of extreme precipitation magnitudes and accumulation timescales. We report a mean increase in the 100‐year precipitation event of ~20% (magnitude) and >200% (frequency) in a high warming scenario, yielding a ~30–127% increase in population exposure. We further find a nonlinear increase for the most intense precipitation events—suggesting accelerating societal impacts from historically rare or unprecedented precipitation events in the 21st century. Plain Language Summary Heavy rainfall is increasing globally due to human‐caused global warming. However, it is still unclear how these increases in heavy rainfall might affect flood risk. In this paper, we investigate how global warming and population changes together may be affecting the number of people at risk from floods in the United States. We combine simulations from a climate model and flood model—allowing us to consider a wide range of heavy rainfall events. We report a ~20% increase in the size and a >200% increase in the frequency of very heavy and rare rainfall events, which leads to a ~30–127% increase in the number of people at risk from floods. Finally, we find that the heaviest rainfall events increase by the widest margin—suggesting the possibility of major increases in damage and disruption caused by severe floods in the 21st century. Key Points Population exposure to flood hazard is increasing due to both climate‐driven increases in extreme rainfall as well as demographic shifts There is a wide range of plausible increases in population exposed to flood hazard, depending strongly on climate and growth scenario We find a nonlinear increase for most extreme events, suggesting accelerating societal impacts from historically unprecedented rainfall
Precipitation extremes are increasing globally due to anthropogenic climate change. However, there remains uncertainty regarding impacts upon flood occurrence and subsequent population exposure. Here, we quantify changes in population exposure to flood hazard across the contiguous United States. We combine simulations from a climate model large ensemble and a high‐resolution hydrodynamic flood model—allowing us to directly assess changes across a wide range of extreme precipitation magnitudes and accumulation timescales. We report a mean increase in the 100‐year precipitation event of ~20% (magnitude) and >200% (frequency) in a high warming scenario, yielding a ~30–127% increase in population exposure. We further find a nonlinear increase for the most intense precipitation events—suggesting accelerating societal impacts from historically rare or unprecedented precipitation events in the 21st century. Heavy rainfall is increasing globally due to human‐caused global warming. However, it is still unclear how these increases in heavy rainfall might affect flood risk. In this paper, we investigate how global warming and population changes together may be affecting the number of people at risk from floods in the United States. We combine simulations from a climate model and flood model—allowing us to consider a wide range of heavy rainfall events. We report a ~20% increase in the size and a >200% increase in the frequency of very heavy and rare rainfall events, which leads to a ~30–127% increase in the number of people at risk from floods. Finally, we find that the heaviest rainfall events increase by the widest margin—suggesting the possibility of major increases in damage and disruption caused by severe floods in the 21st century. Population exposure to flood hazard is increasing due to both climate‐driven increases in extreme rainfall as well as demographic shifts There is a wide range of plausible increases in population exposed to flood hazard, depending strongly on climate and growth scenario We find a nonlinear increase for most extreme events, suggesting accelerating societal impacts from historically unprecedented rainfall
Precipitation extremes are increasing globally due to anthropogenic climate change. However, there remains uncertainty regarding impacts upon flood occurrence and subsequent population exposure. Here, we quantify changes in population exposure to flood hazard across the contiguous United States. We combine simulations from a climate model large ensemble and a high‐resolution hydrodynamic flood model—allowing us to directly assess changes across a wide range of extreme precipitation magnitudes and accumulation timescales. We report a mean increase in the 100‐year precipitation event of ~20% (magnitude) and >200% (frequency) in a high warming scenario, yielding a ~30–127% increase in population exposure. We further find a nonlinear increase for the most intense precipitation events—suggesting accelerating societal impacts from historically rare or unprecedented precipitation events in the 21st century.
Author Bates, P. D.
Wing, O. E. J.
Cameron, D. R.
Done, J. M.
Johnson, K. A.
Swain, D. L.
Author_xml – sequence: 1
  givenname: D. L.
  orcidid: 0000-0003-4276-3092
  surname: Swain
  fullname: Swain, D. L.
  email: dlswain@ucla.edu
  organization: The Nature Conservancy of California
– sequence: 2
  givenname: O. E. J.
  orcidid: 0000-0001-7515-6550
  surname: Wing
  fullname: Wing, O. E. J.
  organization: Fathom
– sequence: 3
  givenname: P. D.
  orcidid: 0000-0001-9192-9963
  surname: Bates
  fullname: Bates, P. D.
  organization: Fathom
– sequence: 4
  givenname: J. M.
  orcidid: 0000-0002-1007-835X
  surname: Done
  fullname: Done, J. M.
  organization: National Center for Atmospheric Research
– sequence: 5
  givenname: K. A.
  orcidid: 0000-0002-3533-2043
  surname: Johnson
  fullname: Johnson, K. A.
  organization: The Nature Conservancy
– sequence: 6
  givenname: D. R.
  orcidid: 0000-0001-7750-9049
  surname: Cameron
  fullname: Cameron, D. R.
  organization: The Nature Conservancy of California
BookMark eNp9kDFPwzAQhS1UJErpxg-wxErAsVPbGVFISqVKINEOTJEbX2mqYAfbUem_J1CGCgluuRu-907vnaOBsQYQuozJTUxoeksJJXlBSCyEPEFDyqiMEirE4Og-Q2Pvt6SfVBA2EUP0MjOVA-VB46KxVuP8o7W-c4DvO8DB4qyp31QAnG2UeQWsjMZPtu0aFWpr8NTZXdjg2uCwAbw0deiNnkMv8BfodK0aD-OfPULLIl9kD9H8cTrL7uZRlZA0iVYcGGVKroFrzpXWRCmVMp1MVlKCokrKlCuieRyzhAlZsYpWhPOVIJRyADZCVwff1tn3Dnwot7Zzpn9Z0oQzQWnKZU9dH6jKWe8drMvW9cHcvoxJ-dVfedxfj9NfeFWH78jBqbr5SxQfRLu6gf2_D8q8WFDRB_oEOWqBIQ
CitedBy_id crossref_primary_10_3390_w14132120
crossref_primary_10_1016_j_ijdrr_2025_105425
crossref_primary_10_1061_JSWBAY_SWENG_471
crossref_primary_10_1029_2021EF002083
crossref_primary_10_1002_joc_8452
crossref_primary_10_1016_j_asr_2022_06_008
crossref_primary_10_1088_1748_9326_ad5fa1
crossref_primary_10_52547_jwmr_13_25_1
crossref_primary_10_1016_j_jenvman_2025_124526
crossref_primary_10_1016_j_ijdrr_2025_105422
crossref_primary_10_1016_j_envsoft_2024_105984
crossref_primary_10_3390_w15223908
crossref_primary_10_1038_s41598_023_41735_9
crossref_primary_10_4081_jae_2023_1485
crossref_primary_10_1016_j_ijdrr_2023_103648
crossref_primary_10_1038_s41598_021_99587_0
crossref_primary_10_1111_jfr3_12842
crossref_primary_10_1146_annurev_fluid_030121_113138
crossref_primary_10_5194_nhess_25_747_2025
crossref_primary_10_1080_17477891_2024_2413673
crossref_primary_10_1016_j_jhydrol_2024_131308
crossref_primary_10_1029_2023EF003786
crossref_primary_10_1007_s11069_024_06645_7
crossref_primary_10_1007_s11356_024_33288_9
crossref_primary_10_3390_environments11050087
crossref_primary_10_1007_s40641_024_00198_4
crossref_primary_10_1016_j_jenvman_2023_119165
crossref_primary_10_1007_s00477_022_02267_2
crossref_primary_10_1016_j_ijdrr_2024_105014
crossref_primary_10_1002_met_2065
crossref_primary_10_1029_2020WR027744
crossref_primary_10_1016_j_jhydrol_2025_132971
crossref_primary_10_2139_ssrn_4218498
crossref_primary_10_1016_j_scitotenv_2023_165675
crossref_primary_10_1029_2023WR036460
crossref_primary_10_1038_s41893_023_01163_z
crossref_primary_10_1016_j_ijdrr_2024_104605
crossref_primary_10_1016_j_scib_2025_01_056
crossref_primary_10_1088_1748_9326_ac592d
crossref_primary_10_3390_w15234063
crossref_primary_10_1002_wat2_1649
crossref_primary_10_1016_j_jglr_2025_102510
crossref_primary_10_1016_j_ejrh_2022_101276
crossref_primary_10_1038_s41598_023_45827_4
crossref_primary_10_1038_s43247_022_00409_6
crossref_primary_10_2166_wcc_2024_270
crossref_primary_10_3390_rs15225349
crossref_primary_10_1016_j_scs_2024_105444
crossref_primary_10_1126_sciadv_abm0320
crossref_primary_10_1007_s10661_023_11798_2
crossref_primary_10_3390_su14010522
crossref_primary_10_3390_geographies3030025
crossref_primary_10_1088_1748_9326_ac5cf4
crossref_primary_10_1038_s44221_024_00372_w
crossref_primary_10_3390_rs14215551
crossref_primary_10_3390_rs15041102
crossref_primary_10_1007_s11269_023_03683_x
crossref_primary_10_1007_s00704_023_04577_z
crossref_primary_10_1038_s41598_024_79196_3
crossref_primary_10_1016_j_envsoft_2022_105450
crossref_primary_10_1088_1748_9326_ac1e3c
crossref_primary_10_1016_j_rineng_2024_102123
crossref_primary_10_1038_s44304_024_00021_y
crossref_primary_10_1016_j_ijdrr_2024_104905
crossref_primary_10_5194_nhess_24_375_2024
crossref_primary_10_1002_agr_21865
crossref_primary_10_1111_jfr3_12919
crossref_primary_10_1007_s11600_023_01043_2
crossref_primary_10_2208_jscejhe_77_2_I_1
crossref_primary_10_1007_s42452_024_05814_4
crossref_primary_10_4081_jlimnol_2022_2141
crossref_primary_10_1111_jfr3_13056
crossref_primary_10_3390_su16229833
crossref_primary_10_1016_j_scitotenv_2023_161566
crossref_primary_10_24057_2071_9388_2022_084
crossref_primary_10_3390_rs14051199
crossref_primary_10_1007_s40572_022_00340_0
crossref_primary_10_1016_j_atmosres_2023_106772
crossref_primary_10_1038_s41558_024_02180_2
crossref_primary_10_3390_toxins15100599
crossref_primary_10_1016_j_jhydrol_2023_129124
crossref_primary_10_1088_1748_9326_ad4e4b
crossref_primary_10_1111_nyas_15203
crossref_primary_10_1002_joc_8829
crossref_primary_10_1016_j_jclepro_2025_144694
crossref_primary_10_1016_j_ecss_2021_107476
crossref_primary_10_3390_telecom4030024
crossref_primary_10_1016_j_scitotenv_2023_165357
crossref_primary_10_1029_2021GL092549
crossref_primary_10_3390_ijerph19106259
crossref_primary_10_1029_2020EF001795
crossref_primary_10_1038_s43247_021_00248_x
crossref_primary_10_1016_j_scitotenv_2021_150424
crossref_primary_10_1029_2021EF002149
crossref_primary_10_3390_ijgi10110726
crossref_primary_10_1007_s11069_024_06908_3
crossref_primary_10_1016_j_ijdrr_2025_105247
crossref_primary_10_1002_asl_1268
crossref_primary_10_1088_1748_9326_aca491
crossref_primary_10_1088_2515_7620_ac40ef
crossref_primary_10_1007_s11069_023_05918_x
crossref_primary_10_1016_j_envdev_2024_101026
crossref_primary_10_1016_j_ijdrr_2024_105123
crossref_primary_10_3390_drones6120372
crossref_primary_10_1016_j_jhydrol_2025_133099
crossref_primary_10_1111_ecog_06401
crossref_primary_10_1111_jfr3_13033
crossref_primary_10_5194_nhess_23_891_2023
crossref_primary_10_3390_w15010192
crossref_primary_10_1088_1748_9326_ad4b43
crossref_primary_10_1002_pan3_10290
crossref_primary_10_1038_s43017_024_00624_z
crossref_primary_10_1016_j_scs_2021_102786
crossref_primary_10_3390_w14162488
crossref_primary_10_1088_2515_7620_aca9aa
crossref_primary_10_3390_rs16234357
crossref_primary_10_3390_w16050674
crossref_primary_10_1016_j_scs_2023_104880
crossref_primary_10_1016_j_ijdrr_2025_105250
crossref_primary_10_3390_atmos15030281
crossref_primary_10_5194_hess_26_5015_2022
crossref_primary_10_1016_j_wace_2022_100507
crossref_primary_10_1088_1748_9326_ac4f0f
crossref_primary_10_1007_s11069_022_05507_4
crossref_primary_10_3390_bs14010074
crossref_primary_10_1029_2021GL094505
crossref_primary_10_1002_rvr2_70001
crossref_primary_10_1016_j_catena_2022_106056
crossref_primary_10_1093_biosci_biae090
crossref_primary_10_1007_s11069_024_06791_y
crossref_primary_10_1088_1748_9326_ad178e
crossref_primary_10_3390_land12101820
crossref_primary_10_1126_sciadv_abq0995
crossref_primary_10_1007_s40808_025_02330_1
Cites_doi 10.1007/s10584-013-0705-8
10.1002/2014WR015814
10.1038/s41558-019-0602-x
10.1029/2019GL084826
10.1029/2019EF001242
10.1038/s41598-017-17966-y
10.1029/2019GL086797
10.1175/2011JCLI3979.1
10.1073/pnas.1716222114
10.1029/2019GL083235
10.1038/nclimate2392
10.1029/2019WR025571
10.1007/s10584-011-0148-z
10.1002/2017JD028213
10.1175/JCLI-D-16-0808.1
10.1029/2019GL081898
10.1029/2010JD014532
10.1029/2020GL088000
10.1038/srep04364
10.1038/nature18307
10.1126/sciadv.aba1323
10.1038/s41558-017-0007-7
10.1016/j.oneear.2020.05.011
10.5194/hess-17-851-2013
10.1175/BAMS-D-13-00255.1
10.1175/JCLI-D-18-0019.1
10.1029/2019WR025957
10.1029/2011WR011570
10.1007/s10584-016-1750-x
10.1002/2017WR020917
10.1175/WCAS-D-13-00047.1
10.1029/2019GL084015
10.1175/JCLI-D-18-0600.1
10.1007/s00382-017-3993-2
10.1126/sciadv.aaz7610
10.1073/pnas.1615333114
10.1080/02626667.2013.857411
10.1029/2012WR012514
10.1073/pnas.1618082114
10.1126/sciadv.aay2368
10.1029/2018GL079698
10.1029/2019GL083452
10.1029/2008EO100001
10.1029/2019GL086855
10.1029/2018JD029954
10.1002/hyp.9515
10.1029/2018WR023749
10.1002/2015WR016954
10.1038/s41558-018-0140-y
10.1002/hyp.9740
10.1016/j.jhydrol.2010.03.027
10.1016/j.jhydrol.2015.09.023
10.1088/1748-9326/ab10ee
10.1038/s41586-018-0158-3
10.1175/JCLI-D-13-00780.1
10.1175/BAMS-84-9-1205
10.1038/s41893-019-0437-5
ContentType Journal Article
Copyright 2020. The Authors.
2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. The Authors.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
7TG
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
KL.
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
DOI 10.1029/2020EF001778
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2328-4277
EndPage n/a
ExternalDocumentID 10_1029_2020EF001778
EFT2734
Genre article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Science Foundation (NSF)
  funderid: 1854940; 1854761
GroupedDBID 0R~
1OC
24P
5VS
7XC
8-1
8FE
8FH
8GL
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACQOY
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ATCPS
AVUZU
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
EBS
EDH
EJD
GICCO
GODZA
GROUPED_DOAJ
HCIFZ
IEP
ISN
ITC
LK5
M7R
M~E
OK1
PATMY
PCBAR
PIMPY
PROAC
PYCSY
SUPJJ
WIN
~OA
AAYXX
CITATION
PHGZM
PHGZT
7ST
7TG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
C1K
DWQXO
GNUQQ
KL.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
ID FETCH-LOGICAL-c4094-b6e323a8fe6d66add0aaa93d45b88ea2a8896a0d61134378c3c2c066b70226ee3
IEDL.DBID 24P
ISSN 2328-4277
IngestDate Fri Jul 25 05:07:26 EDT 2025
Tue Jul 01 02:48:23 EDT 2025
Thu Apr 24 23:10:19 EDT 2025
Wed Jan 22 16:32:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4094-b6e323a8fe6d66add0aaa93d45b88ea2a8896a0d61134378c3c2c066b70226ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9192-9963
0000-0002-1007-835X
0000-0003-4276-3092
0000-0001-7750-9049
0000-0002-3533-2043
0000-0001-7515-6550
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020EF001778
PQID 2463722968
PQPubID 2034575
PageCount 17
ParticipantIDs proquest_journals_2463722968
crossref_primary_10_1029_2020EF001778
crossref_citationtrail_10_1029_2020EF001778
wiley_primary_10_1029_2020EF001778_EFT2734
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earth's future
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 7
2013; 27
2019; 55
2018; 123
2010; 387
2019; 14
2014; 27
2019; 124
2020; 56
2018; 45
2013; 6
2017; 114
2019a; 46
2020; 6
2017; 30
2018; 8
2014; 4
2020; 3
2013; 17
2020; 2
2013; 119
2015; 530
2010; 115
2014; 59
1986
2020; 47
2011; 24
2014; 95
2003; 84
2018; 31
2019; 7
2019; 9
2019; 4
2015; 51
2019; 32
2018; 146
2015; 96
2019b; 0
2017; 53
2011; 109
2020
2018; 558
2019; 46
2017; 55
2008; 89
2016
2016; 534
2012; 48
2018; 54
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
Mizuta R. (e_1_2_9_29_1) 2020
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Wing O. E. J. (e_1_2_9_60_1) 2019; 4
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
Swain D. L. (e_1_2_9_47_1) 2014; 95
e_1_2_9_30_1
e_1_2_9_53_1
Brunner M. I. (e_1_2_9_7_1) 2020
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
References_xml – volume: 32
  start-page: 5397
  issue: 17
  year: 2019
  end-page: 5416
  article-title: Changes in frequency of large precipitation accumulations over land in a warming climate from the CESM large ensemble: The roles of moisture, circulation, and duration
  publication-title: Journal of Climate
– volume: 55
  start-page: 95
  issue: 1‐2
  year: 2017
  end-page: 110
  article-title: Simulating North American mesoscale convective systems with a convection‐permitting climate model
  publication-title: Climate Dynamics
– volume: 119
  start-page: 345
  issue: 2
  year: 2013
  end-page: 357
  article-title: Changes in temperature and precipitation extremes in the CMIP5 ensemble
  publication-title: Climatic Change
– volume: 46
  start-page: 10,551
  year: 2019
  end-page: 10,560
  article-title: Nonlinear response of extreme precipitation to warming in CESM1
  publication-title: Geophysical Research Letters
– volume: 56
  year: 2020
  article-title: Flood size increases nonlinearly across the Western United States in response to lower snow precipitation ratios
  publication-title: Water Resources Research
– volume: 46
  start-page: 8114
  year: 2019
  end-page: 8124
  article-title: A new perspective on terrestrial hydrologic intensity that incorporates atmospheric water demand
  publication-title: Geophysical Research Letters
– volume: 7
  issue: 1
  year: 2017
  article-title: Precipitation variability increases in a warmer climate
  publication-title: Scientific Reports
– volume: 7
  start-page: 880
  issue: 12
  year: 2017
  end-page: 884
  article-title: Increased rainfall volume from future convective storms in the US
  publication-title: Nature Climate Change
– volume: 123
  start-page: 4294
  year: 2018
  end-page: 4309
  article-title: Scale‐aware and definition‐aware evaluation of modeled near‐surface precipitation frequency using CloudSat observations
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 48
  year: 2012
  article-title: Improving the stability of a simple formulation of the shallow water equations for 2‐D flood modeling
  publication-title: Water Resources Research
– volume: 30
  start-page: 6037
  issue: 15
  year: 2017
  end-page: 6052
  article-title: Super‐Clausius–Clapeyron scaling of extreme hourly convective precipitation and its relation to large‐scale atmospheric conditions
  publication-title: Journal of Climate
– volume: 84
  start-page: 1205
  issue: 9
  year: 2003
  end-page: 1217
  article-title: The changing character of precipitation
  publication-title: Bulletin of the American Meteorological Society
– volume: 46
  start-page: 6041
  year: 2019
  end-page: 6049
  article-title: Precipitation from persistent extremes is increasing in most regions and globally
  publication-title: Geophysical Research Letters
– volume: 9
  start-page: 873
  issue: 11
  year: 2019
  end-page: 879
  article-title: The effect of plant physiological responses to rising CO on global streamflow
  publication-title: Nature Climate Change
– volume: 95
  start-page: S3
  issue: 9
  year: 2014
  end-page: S7
  article-title: The extraordinary California drought of 2013/2014: Character, context, and the role of climate change
  publication-title: Bulletin of the American Meteorological Society
– volume: 8
  start-page: 427
  issue: 5
  year: 2018
  end-page: 433
  article-title: Increasing precipitation volatility in twenty‐first‐century California
  publication-title: Nature Climate Change
– year: 1986
– volume: 6
  issue: 29
  year: 2020
  article-title: Large ensemble downscaling of extreme atmospheric river storms in California reveals large increase in fine‐scale precipitation
  publication-title: Science Advances
– volume: 4
  year: 2019
  article-title: A flood inundation forecast of Hurricane Harvey using a continental‐scale 2D hydrodynamic model
  publication-title: Journal of Hydrology
– volume: 48
  year: 2012
  article-title: A subgrid channel model for simulating river hydraulics and floodplain inundation over large and data sparse areas
  publication-title: Water Resources Research
– volume: 6
  issue: 17
  year: 2020
  article-title: Tropical cyclone motion in a changing climate
  publication-title: Science Advances
– volume: 3
  start-page: 56
  issue: 1
  year: 2020
  end-page: 62
  article-title: A benefit–cost analysis of floodplain land acquisition for US flood damage reduction
  publication-title: Nature Sustainability
– volume: 124
  start-page: 6904
  year: 2019
  end-page: 6918
  article-title: Response of extreme precipitating cell structures to atmospheric warming
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 2
  start-page: 522
  issue: 6
  year: 2020
  end-page: 527
  article-title: Attributing extreme events to climate change: A new frontier in a warming world
  publication-title: One Earth
– volume: 51
  start-page: 539
  year: 2015
  end-page: 553
  article-title: Regional flood frequency analysis at the global scale
  publication-title: Water Resources Research
– volume: 4
  start-page: 4364
  year: 2014
  article-title: The key role of dry days in changing regional climate and precipitation regimes
  publication-title: Scientific Reports
– volume: 47
  year: 2020
  article-title: Uncertainties in future U.S. extreme precipitation from downscaled climate projections
  publication-title: Geophysical Research Letters
– volume: 146
  start-page: 547
  issue: 3
  year: 2018
  end-page: 560
  article-title: Projected changes in tropical cyclone activity under future warming scenarios using a high‐resolution climate model
  publication-title: Climatic Change
– volume: 46
  start-page: 13,992
  year: 2019
  end-page: 14,002
  article-title: Variations in the intensity and spatial extent of tropical cyclone precipitation
  publication-title: Geophysical Research Letters
– volume: 55
  start-page: 11,007
  year: 2019
  end-page: 11,034
  article-title: A new automated method for improved flood defense representation in large‐scale hydraulic models
  publication-title: Water Resources Research
– volume: 53
  start-page: 7968
  year: 2017
  end-page: 7986
  article-title: Validation of a 30 m resolution flood hazard model of the conterminous United States
  publication-title: Water Resources Research
– volume: 115
  year: 2010
  article-title: Dreary state of precipitation in global models
  publication-title: Journal of Geophysical Research
– volume: 27
  start-page: 4622
  issue: 12
  year: 2014
  end-page: 4641
  article-title: Sensitivity of tropical cyclone rainfall to idealized global‐scale forcings
  publication-title: Journal of Climate
– volume: 387
  start-page: 33
  issue: 1
  year: 2010
  end-page: 45
  article-title: A simple inertial formulation of the shallow water equations for efficient two‐dimensional flood inundation modelling
  publication-title: Journal of Hydrology
– volume: 96
  start-page: 1333
  issue: 8
  year: 2015
  end-page: 1349
  article-title: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability
  publication-title: Bulletin of the American Meteorological Society
– volume: 534
  start-page: 631
  issue: 7609
  year: 2016
  end-page: 639
  article-title: Paris agreement climate proposals need a boost to keep warming well below 2 °C
  publication-title: Nature
– volume: 46
  start-page: 8144
  year: 2019a
  end-page: 8153
  article-title: U.S. hydrologic design standards insufficient due to large increases in frequency of rainfall extremes
  publication-title: Geophysical Research Letters
– volume: 4
  start-page: 850
  issue: 10
  year: 2014
  end-page: 853
  article-title: Betting on negative emissions
  publication-title: Nature Climate Change
– year: 2020
  article-title: Projected changes in extreme precipitation in a 60‐km AGCM large ensemble and their dependence on return periods
  publication-title: Geophysical Research Letters
– volume: 530
  start-page: 15
  year: 2015
  end-page: 23
  article-title: A spatial model to examine rainfall extremes in Colorado's front range
  publication-title: Journal of Hydrology
– volume: 6
  start-page: 175
  issue: 2
  year: 2013
  end-page: 193
  article-title: Spatiotemporal changes in tornado hazard exposure: The case of the expanding bull's‐eye effect in Chicago, Illinois
  publication-title: Weather, Climate, and Society
– volume: 27
  start-page: 2171
  issue: 15
  year: 2013
  end-page: 2186
  article-title: Global river hydrography and network routing: Baseline data and new approaches to study the world's large river systems
  publication-title: Hydrological Processes
– volume: 17
  start-page: 851
  issue: 2
  year: 2013
  end-page: 862
  article-title: How extreme is extreme? An assessment of daily rainfall distribution tails
  publication-title: Hydrology and Earth System Sciences
– volume: 24
  start-page: 5309
  issue: 20
  year: 2011
  end-page: 5324
  article-title: Higher Hydroclimatic intensity with global warming
  publication-title: Journal of Climate
– volume: 14
  issue: 7
  year: 2019
  article-title: Enhanced flood risk with 1.5 °C global warming in the Ganges–Brahmaputra–Meghna basin
  publication-title: Environmental Research Letters
– volume: 0
  start-page: 8144
  year: 2019b
  end-page: 8153
  article-title: U.S. hydrologic design standards insufficient due to large increases in frequency of rainfall extremes
  publication-title: Geophysical Research Letters
– year: 2016
– volume: 114
  start-page: 12,681
  issue: 48
  year: 2017
  article-title: Assessing the present and future probability of Hurricane Harvey's rainfall
  publication-title: Proceedings of the National Academy of Sciences
– volume: 54
  start-page: 8545
  year: 2018
  end-page: 8551
  article-title: If precipitation extremes are increasing, why aren't floods?
  publication-title: Water Resources Research
– year: 2020
  article-title: Spatial dependence of floods shaped by spatiotemporal variations in meteorological and land‐surface processes
  publication-title: Geophysical Research Letters
– volume: 558
  start-page: 104
  issue: 7708
  year: 2018
  end-page: 107
  article-title: A global slowdown of tropical‐cyclone translation speed
  publication-title: Nature
– volume: 114
  start-page: 4881
  issue: 19
  year: 2017
  article-title: Quantifying the influence of global warming on unprecedented extreme climate events
  publication-title: Proceedings of the National Academy of Sciences
– volume: 59
  start-page: 1
  issue: 1
  year: 2014
  end-page: 28
  article-title: Flood risk and climate change: Global and regional perspectives
  publication-title: Hydrological Sciences Journal
– volume: 27
  start-page: 467
  issue: 3
  year: 2013
  end-page: 476
  article-title: An automated routing methodology to enable direct rainfall in high resolution shallow water models
  publication-title: Hydrological Processes
– volume: 45
  start-page: 11,343
  year: 2018
  end-page: 311,351
  article-title: On the connection between global hydrologic sensitivity and regional wet extremes
  publication-title: Geophysical Research Letters
– volume: 109
  start-page: 5
  issue: 1
  year: 2011
  article-title: The representative concentration pathways: An overview
  publication-title: Climatic Change
– volume: 6
  issue: 12
  year: 2020
  article-title: Verification of extreme event attribution: Using out‐of‐sample observations to assess changes in probabilities of unprecedented events
  publication-title: Science Advances
– volume: 51
  start-page: 7358
  year: 2015
  end-page: 7381
  article-title: A high‐resolution global flood hazard model
  publication-title: Water Resources Research
– volume: 114
  start-page: 1258
  issue: 6
  year: 2017
  end-page: 1263
  article-title: Global warming precipitation accumulation increases above the current‐climate cutoff scale
  publication-title: Proceedings of the National Academy of Sciences
– volume: 7
  start-page: 854
  year: 2019
  end-page: 864
  article-title: Toward a resilient global society: Air, sea level, earthquakes, and weather
  publication-title: Earth's Future
– volume: 89
  start-page: 93
  issue: 10
  year: 2008
  end-page: 94
  article-title: New global hydrography derived from spaceborne elevation data, Eos
  publication-title: Transactions American Geophysical Union
– volume: 31
  start-page: 8023
  issue: 19
  year: 2018
  end-page: 8037
  article-title: Characterizing the spatial scales of extreme daily precipitation in the United States
  publication-title: Journal of Climate
– ident: e_1_2_9_21_1
  doi: 10.1007/s10584-013-0705-8
– ident: e_1_2_9_43_1
  doi: 10.1002/2014WR015814
– ident: e_1_2_9_14_1
  doi: 10.1038/s41558-019-0602-x
– ident: e_1_2_9_34_1
  doi: 10.1029/2019GL084826
– ident: e_1_2_9_3_1
  doi: 10.1029/2019EF001242
– ident: e_1_2_9_35_1
  doi: 10.1038/s41598-017-17966-y
– ident: e_1_2_9_28_1
  doi: 10.1029/2019GL086797
– ident: e_1_2_9_16_1
  doi: 10.1175/2011JCLI3979.1
– ident: e_1_2_9_12_1
  doi: 10.1073/pnas.1716222114
– ident: e_1_2_9_62_1
  doi: 10.1029/2019GL083235
– ident: e_1_2_9_15_1
  doi: 10.1038/nclimate2392
– ident: e_1_2_9_8_1
  doi: 10.1029/2019WR025571
– ident: e_1_2_9_57_1
  doi: 10.1007/s10584-011-0148-z
– ident: e_1_2_9_20_1
  doi: 10.1002/2017JD028213
– ident: e_1_2_9_26_1
  doi: 10.1175/JCLI-D-16-0808.1
– volume: 95
  start-page: S3
  issue: 9
  year: 2014
  ident: e_1_2_9_47_1
  article-title: The extraordinary California drought of 2013/2014: Character, context, and the role of climate change
  publication-title: Bulletin of the American Meteorological Society
– ident: e_1_2_9_11_1
  doi: 10.1029/2019GL081898
– ident: e_1_2_9_44_1
  doi: 10.1029/2010JD014532
– start-page: e2020GL088000
  year: 2020
  ident: e_1_2_9_7_1
  article-title: Spatial dependence of floods shaped by spatiotemporal variations in meteorological and land‐surface processes
  publication-title: Geophysical Research Letters
  doi: 10.1029/2020GL088000
– ident: e_1_2_9_55_1
– ident: e_1_2_9_36_1
  doi: 10.1038/srep04364
– ident: e_1_2_9_39_1
  doi: 10.1038/nature18307
– ident: e_1_2_9_17_1
  doi: 10.1126/sciadv.aba1323
– ident: e_1_2_9_38_1
  doi: 10.1038/s41558-017-0007-7
– ident: e_1_2_9_46_1
  doi: 10.1016/j.oneear.2020.05.011
– ident: e_1_2_9_33_1
  doi: 10.5194/hess-17-851-2013
– ident: e_1_2_9_19_1
  doi: 10.1175/BAMS-D-13-00255.1
– ident: e_1_2_9_49_1
  doi: 10.1175/JCLI-D-18-0019.1
– ident: e_1_2_9_58_1
  doi: 10.1029/2019WR025957
– ident: e_1_2_9_2_1
  doi: 10.1029/2011WR011570
– ident: e_1_2_9_5_1
  doi: 10.1007/s10584-016-1750-x
– ident: e_1_2_9_59_1
  doi: 10.1002/2017WR020917
– ident: e_1_2_9_4_1
  doi: 10.1175/WCAS-D-13-00047.1
– ident: e_1_2_9_13_1
  doi: 10.1029/2019GL084015
– ident: e_1_2_9_32_1
  doi: 10.1175/JCLI-D-18-0600.1
– ident: e_1_2_9_37_1
  doi: 10.1007/s00382-017-3993-2
– ident: e_1_2_9_61_1
  doi: 10.1029/2019GL083235
– ident: e_1_2_9_63_1
  doi: 10.1126/sciadv.aaz7610
– ident: e_1_2_9_31_1
  doi: 10.1073/pnas.1615333114
– ident: e_1_2_9_23_1
  doi: 10.1080/02626667.2013.857411
– ident: e_1_2_9_30_1
  doi: 10.1029/2012WR012514
– ident: e_1_2_9_10_1
  doi: 10.1073/pnas.1618082114
– volume: 4
  start-page: 100039
  year: 2019
  ident: e_1_2_9_60_1
  article-title: A flood inundation forecast of Hurricane Harvey using a continental‐scale 2D hydrodynamic model
  publication-title: Journal of Hydrology
– ident: e_1_2_9_9_1
  doi: 10.1126/sciadv.aay2368
– ident: e_1_2_9_48_1
  doi: 10.1029/2018GL079698
– ident: e_1_2_9_50_1
  doi: 10.1029/2019GL083452
– ident: e_1_2_9_25_1
  doi: 10.1029/2008EO100001
– start-page: e2019GL086855
  year: 2020
  ident: e_1_2_9_29_1
  article-title: Projected changes in extreme precipitation in a 60‐km AGCM large ensemble and their dependence on return periods
  publication-title: Geophysical Research Letters
  doi: 10.1029/2019GL086855
– ident: e_1_2_9_27_1
  doi: 10.1029/2018JD029954
– ident: e_1_2_9_40_1
  doi: 10.1002/hyp.9515
– ident: e_1_2_9_42_1
  doi: 10.1029/2018WR023749
– ident: e_1_2_9_41_1
  doi: 10.1002/2015WR016954
– ident: e_1_2_9_45_1
  doi: 10.1038/s41558-018-0140-y
– ident: e_1_2_9_24_1
  doi: 10.1002/hyp.9740
– ident: e_1_2_9_6_1
  doi: 10.1016/j.jhydrol.2010.03.027
– ident: e_1_2_9_52_1
  doi: 10.1016/j.jhydrol.2015.09.023
– ident: e_1_2_9_54_1
  doi: 10.1088/1748-9326/ab10ee
– ident: e_1_2_9_22_1
  doi: 10.1038/s41586-018-0158-3
– ident: e_1_2_9_56_1
  doi: 10.1175/JCLI-D-13-00780.1
– ident: e_1_2_9_51_1
  doi: 10.1175/BAMS-84-9-1205
– ident: e_1_2_9_18_1
  doi: 10.1038/s41893-019-0437-5
– ident: e_1_2_9_53_1
SSID ssj0000970357
Score 2.5546265
Snippet Precipitation extremes are increasing globally due to anthropogenic climate change. However, there remains uncertainty regarding impacts upon flood occurrence...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 21st century
Anthropogenic climate changes
Anthropogenic factors
Carbon dioxide
Climate change
Climate models
Emissions
Exposure
extreme events
Extreme weather
Flood hazards
flood risk
Floods
Greenhouse gases
Human influences
hydrodynamic modeling
large ensemble
Population growth
Precipitation
Regions
Simulation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyIX8PplBz0ohSzpE3Sk-hsHYJjyAbzVNIkxcFop-vAP9-kzT4u7tw0h7y83_u9l_cBwA1nkhlcxMYtUZnnZ742OJh2vYwjgjPm80DZAuf3Ae2P_bdJMHEBt4VLq1xhYgXUqpA2Rv6AfUoYxiHlj_Nvz06Nsq-rboTGPmgaCOa8AZrP0WD4sY6yoNDc6IC5jHeEQ-vsoyi24Gwnq23bog3B3KaplZ2Jj8ChI4jwqZboMdjT-QloRZt6NPPRKeTiFHwa_bZp5VrB2Kagw-h3XtigH3xZalgWsDebGk6qYV1FAEWu4HA9swu-Gie8_ILTHBoeCGv-CWv-eQbGcTTq9T03LcGT1kfzUqoJJoJnmipKDWwhIURIlB-knGuBBechFUjRbpf4hHFJJJaGcKTMmHGqNWmBRl7k-hxA3KXU9vXTSjKfasGRpIQqnqKUMRSgNrhfnVsiXStxO9FillRP2jhMtk-5DW7Xq-d1C41_1nVWIkicIi2Sjdjb4K4Sy849kige2YY9F7v3ugQH9q-6prADGuXPUl8ZclGm1-4G_QEV4cqA
  priority: 102
  providerName: ProQuest
Title Increased Flood Exposure Due to Climate Change and Population Growth in the United States
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020EF001778
https://www.proquest.com/docview/2463722968
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-6vfgifg2nc-RBX5RilmRJ-qizdQiOIRvMp5I2KQ5GN1wH_vle2u7DBwVfmyMPudzld9e73yF0rWQiwS9SCEtM6vGUW_CDccdLFWE0lVx1jWtwfh2I_pi_TLqTKuHmemFKfohNws1ZRuGvnYHreFmRDTiOTIjaSRA6LyvVPqq77lpX0kf5cJNjIT7c54LsE3CD8jiVsqp9hy3udzf4-SptoeYuYC1enPAIHVZQET-Uuj1GezY7QY1g25kGi5VpLk_RO1i6KzC3BoeuGB0HX4u5S__hp5XF-Rz3ZlNApxaX_QRYZwYPN9O78DOE4_kHnmYYECEukSgukegZGofBqNf3qrkJXuKiNS8WllGmVWqFEQIcGNFa-8zwbqyU1VQr5QtNjOh0GGdSJSyhCUCPWMKDLqxlDVTL5pk9R5h2hHAMf9YkkgurFUkEE0bFJJaSdEkT3a3PLUoqUnE322IWFT-3qR_tnnIT3WykFyWZxi9yrbUKosqklhHlgklKfQHLt4Va_twjCsKRo-65-I_wJTpwn8tewxaq5Z8rewWgI4_bxc1qo_pjMBi-tYvQ_RsxKs1n
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB6F5FAuqLSghld9IJeiVR3ba3sPFeKx24RHhKog0dPWa3sFEtqEJqjwp_iN2NndJJdy42xrDjPjmW_G8wDYl0ILZxeJC0tMHrCcWWcHs26QS0xJLpgMjW9wvhzw3jU7uwlvGvBS98L4ssraJs4MtRlpnyP_ThingpCIy8PxQ-C3Rvnf1XqFRqkW5_b5nwvZJj_6p06-HUKSeHjSC6qtAoH2sUyQcUsJVTK33HDunjdWSkXUsDCT0iqipIy4woZ3u5RRITXVRDvHnAnn7ri11NFdgRajHJMmtI7jwdWveVYHR-4FhaKqsMck8skFHCfeGfhNbsu-bwFol2HxzK8lH2GtAqToqNSgdWjY4hNsxov-N3dYGYDJZ_jt7IkvY7cGJb7kHcVP45FPMqLTR4umI3Ryf-cwsEVl1wJShUFX8x1h6KcL-qe36K5ADneiEu-iEu9uwPW78HETmsWosF8AkS7nfo6gNVowbpXEmlNuZIYzIXCI23BQ8y3V1ehyv0HjPp19oZMoXeZyGzrz2-NyZMd_7u3UIkirhztJF2rWhm8zsbxJI42ToR8QtPU2ra_woTe8vEgv-oPzbVj1FMp-xh1oTv8-2l0HbKbZXqVNCP68twK_Ao93BwA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRap6qQoUdSktPsAFFOG1E9s5VKhlE96rVQUSPaWO7QgklGzZRZS_1l9XzybZ3QvcONuaw8x45pvxPAC2lTTS20XmwxJbBGEROm8H815QKMpZIUMVWWxwvhiI46vw9Dq6XoJ_bS8MllW2NnFqqG1lMEe-z0LBJWOxUPtFUxYx7KcHoz8BbpDCn9Z2nUatImfu6dGHb-NvJ30v6x3G0uTy8DhoNgwEBuOaIBeOM65V4YQVwj91qrWOuQ2jXCmnmVYqFppa0evxkEtluGHGO-lcetcnnOOe7htYlhgVdWD5RzIY_pxleGjsX1Mkm2p7ymJMNNAkRceAW90W_eAc3C5C5KmPSz_A-wacku-1Nq3AkitXYT2Z98L5w8YYjNfgl7ctWNLuLEmx_J0kf0cVJhxJ_8GRSUUO7249Hnak7mAgurRkONsXRo7uq8fJDbkticegpMa-pMa-H-HqVfi4Dp2yKt0nIKwnBM4UdNbIUDitqBFcWJXTXEoa0S7stXzLTDPGHLdp3GXT73QWZ4tc7sLO7PaoHt_xzL3NVgRZ84jH2VzlurA7FcuLNLIkvcRhQRsv09qCt15xs_OTwdlneIcE6tbGTehM7h_cF49xJvnXRpkI_H5t_f0Px0cLNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+Flood+Exposure+Due+to+Climate+Change+and+Population+Growth+in+the+United+States&rft.jtitle=Earth%27s+future&rft.au=Swain%2C+D.+L.&rft.au=Wing%2C+O.+E.+J.&rft.au=Bates%2C+P.+D.&rft.au=Done%2C+J.+M.&rft.date=2020-11-01&rft.issn=2328-4277&rft.eissn=2328-4277&rft.volume=8&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020EF001778&rft.externalDBID=10.1029%252F2020EF001778&rft.externalDocID=EFT2734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2328-4277&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2328-4277&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2328-4277&client=summon