Advanced mass spectrometric and spectroscopic methods coupled with machine learning for in vitro diagnosis
In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio‐fluids. Recently, mass spectrometry and spectroscopy have been increasingly employed in the field of IVD, due to their high accuracy, facile sample preparation, and rapid detection. Not...
Saved in:
Published in | View (Beijing, China) Vol. 4; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
John Wiley & Sons, Inc
01.02.2023
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio‐fluids. Recently, mass spectrometry and spectroscopy have been increasingly employed in the field of IVD, due to their high accuracy, facile sample preparation, and rapid detection. Notably, the large datasets generated by these two technology methods provide a wealth of information but subsequently involve complex and time‐consuming processing works. Machine learning (ML), an important branch of artificial intelligence (AI), has emerged as a promising solution for the decoding of big data. ML imitates the human brain to process data, significantly improving accuracy and efficiency compared with traditional processing methods. In this review, we first introduce the commonly used ML algorithms and advanced mass spectrometry and spectroscopy techniques in the field of IVD, respectively. The ML algorithms are summarized as four aspects according to different learning tasks. Then, the combinations of ML with mass spectrometry, spectroscopy, and multi‐modal analysis for IVD are presented, and the roles of ML in these combinations are elucidated by some representative examples. This review aims to provide a systematic and comprehensive summary of the literature on ML‐assisted mass spectrometry or spectroscopy. We believe that it will facilitate researchers to select suitable ML algorithms for supplementing existing detection techniques or to develop the potential of coupling more detection techniques with ML, thus promoting the development of mass spectrometry and spectroscopy in IVD.
Recently, mass spectrometric and spectroscopic methods coupled with machine learning have been increasingly employed in the field of in vitro diagnoses, such as pathogen identification, cancer diagnosis, and cell classification. In this review, the authors focus on the combinations of machine learning with mass spectrometry, spectroscopy, and multi‐modal analysis for in vitro diagnoses, and they highlight the roles of machine learning in these combinations through some representative examples. The authors furthermore discuss the challenges and perspectives of mass spectrometry, spectroscopy, multi‐modal analysis, and machine learning. |
---|---|
AbstractList | In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio-fluids. Recently, mass spectrometry and spectroscopy have been increasingly employed in the field of IVD, due to their high accuracy, facile sample preparation, and rapid detection. Notably, the large datasets generated by these two technology methods provide a wealth of information but subsequently involve complex and time-consuming processing works. Machine learning (ML), an important branch of artificial intelligence (AI), has emerged as a promising solution for the decoding of big data. ML imitates the human brain to process data, significantly improving accuracy and efficiency compared with traditional processing methods. In this review, we first introduce the commonly used ML algorithms and advanced mass spectrometry and spectroscopy techniques in the field of IVD, respectively. The ML algorithms are summarized as four aspects according to different learning tasks. Then, the combinations of ML with mass spectrometry, spectroscopy, and multi-modal analysis for IVD are presented, and the roles of ML in these combinations are elucidated by some representative examples. This review aims to provide a systematic and comprehensive summary of the literature on ML-assisted mass spectrometry or spectroscopy. We believe that it will facilitate researchers to select suitable ML algorithms for supplementing existing detection techniques or to develop the potential of coupling more detection techniques with ML, thus promoting the development of mass spectrometry and spectroscopy in IVD. In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio‐fluids. Recently, mass spectrometry and spectroscopy have been increasingly employed in the field of IVD, due to their high accuracy, facile sample preparation, and rapid detection. Notably, the large datasets generated by these two technology methods provide a wealth of information but subsequently involve complex and time‐consuming processing works. Machine learning (ML), an important branch of artificial intelligence (AI), has emerged as a promising solution for the decoding of big data. ML imitates the human brain to process data, significantly improving accuracy and efficiency compared with traditional processing methods. In this review, we first introduce the commonly used ML algorithms and advanced mass spectrometry and spectroscopy techniques in the field of IVD, respectively. The ML algorithms are summarized as four aspects according to different learning tasks. Then, the combinations of ML with mass spectrometry, spectroscopy, and multi‐modal analysis for IVD are presented, and the roles of ML in these combinations are elucidated by some representative examples. This review aims to provide a systematic and comprehensive summary of the literature on ML‐assisted mass spectrometry or spectroscopy. We believe that it will facilitate researchers to select suitable ML algorithms for supplementing existing detection techniques or to develop the potential of coupling more detection techniques with ML, thus promoting the development of mass spectrometry and spectroscopy in IVD. Recently, mass spectrometric and spectroscopic methods coupled with machine learning have been increasingly employed in the field of in vitro diagnoses, such as pathogen identification, cancer diagnosis, and cell classification. In this review, the authors focus on the combinations of machine learning with mass spectrometry, spectroscopy, and multi‐modal analysis for in vitro diagnoses, and they highlight the roles of machine learning in these combinations through some representative examples. The authors furthermore discuss the challenges and perspectives of mass spectrometry, spectroscopy, multi‐modal analysis, and machine learning. Abstract In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio‐fluids. Recently, mass spectrometry and spectroscopy have been increasingly employed in the field of IVD, due to their high accuracy, facile sample preparation, and rapid detection. Notably, the large datasets generated by these two technology methods provide a wealth of information but subsequently involve complex and time‐consuming processing works. Machine learning (ML), an important branch of artificial intelligence (AI), has emerged as a promising solution for the decoding of big data. ML imitates the human brain to process data, significantly improving accuracy and efficiency compared with traditional processing methods. In this review, we first introduce the commonly used ML algorithms and advanced mass spectrometry and spectroscopy techniques in the field of IVD, respectively. The ML algorithms are summarized as four aspects according to different learning tasks. Then, the combinations of ML with mass spectrometry, spectroscopy, and multi‐modal analysis for IVD are presented, and the roles of ML in these combinations are elucidated by some representative examples. This review aims to provide a systematic and comprehensive summary of the literature on ML‐assisted mass spectrometry or spectroscopy. We believe that it will facilitate researchers to select suitable ML algorithms for supplementing existing detection techniques or to develop the potential of coupling more detection techniques with ML, thus promoting the development of mass spectrometry and spectroscopy in IVD. |
Author | Wan, Jingjing Chen, Xiaonan Shu, Weikang Zhao, Liang |
Author_xml | – sequence: 1 givenname: Xiaonan surname: Chen fullname: Chen, Xiaonan organization: East China Normal University – sequence: 2 givenname: Weikang surname: Shu fullname: Shu, Weikang organization: East China Normal University – sequence: 3 givenname: Liang surname: Zhao fullname: Zhao, Liang email: lzhao@chem.ecnu.edu.cn organization: East China Normal University – sequence: 4 givenname: Jingjing orcidid: 0000-0001-9324-2647 surname: Wan fullname: Wan, Jingjing email: jjwan@chem.ecnu.edu.cn organization: East China Normal University |
BookMark | eNp9kUtPWzEQha2KSgXKrj_AUrcNeOz7sJcIAY2ExKavnTXXj8TRjX1r34D49zWEbCrBxvYcf2c0mnNCjmKKjpAvwM6BMX7xa_n7nDPOGRPyAznmnZSLevw5en0LJeUnclbKhlW8BehVe0w2l_YBo3GWbrEUWiZn5py2bs7BUIz2oBSTpqrUj3WyhZq0m8ZqegzzujrNOkRHR4c5hriiPmUaIn0I1UhtwFVMJZTP5KPHsbiz1_uU_Ly5_nH1fXF3f7u8urxbmIYpWPhetHxwINnQSgBuOUP0tVJGSS8HYNKzgdtWddjYvhMee-FU02ILpvVKnJLlvq9NuNFTDlvMTzph0C9CyiuNeQ5mdJpzhRxsZ6Vqmm5ggwA0kktlHHaDaGqvr_teU05_d67MepN2OdbxNe97KaBhAJXie8rURZXsvDZhxjmkOGcMowamnyPSNSJ9iKiavv1nOoz6Bg57_DGM7uld9rngNWHxD00lovY |
CitedBy_id | crossref_primary_10_1002_smll_202404709 crossref_primary_10_1016_j_talanta_2024_126329 crossref_primary_10_1016_j_talanta_2024_126928 crossref_primary_10_1038_s44321_024_00169_0 crossref_primary_10_3390_molecules29092094 crossref_primary_10_1016_j_isci_2024_111022 crossref_primary_10_1021_acscentsci_3c01201 crossref_primary_10_1039_D4TB00700J crossref_primary_10_1016_j_electacta_2024_145063 crossref_primary_10_1002_advs_202404047 crossref_primary_10_1021_acsami_4c11409 crossref_primary_10_1002_smtd_202301192 crossref_primary_10_3389_fonc_2024_1331215 crossref_primary_10_1021_acsomega_4c07990 crossref_primary_10_1016_j_talanta_2024_126673 crossref_primary_10_1039_D4MO00192C crossref_primary_10_1007_s00253_025_13437_x crossref_primary_10_1021_acsnano_3c10717 crossref_primary_10_3390_molecules29214988 crossref_primary_10_1002_smll_202207381 crossref_primary_10_1016_j_isci_2024_110345 crossref_primary_10_3389_fimmu_2025_1467027 crossref_primary_10_1002_smll_202310331 crossref_primary_10_1002_smll_202312211 crossref_primary_10_1038_s41467_024_51433_3 crossref_primary_10_1021_acs_nanolett_4c05155 crossref_primary_10_1016_j_intimp_2024_112238 crossref_primary_10_3892_ol_2024_14509 crossref_primary_10_1016_j_talanta_2025_127626 crossref_primary_10_3390_mi15070902 crossref_primary_10_1016_j_talanta_2024_125949 crossref_primary_10_1002_cnr2_70042 crossref_primary_10_1016_j_cej_2024_151890 crossref_primary_10_1016_j_talanta_2025_127550 crossref_primary_10_1016_j_cej_2024_157466 crossref_primary_10_1002_adma_202311431 crossref_primary_10_1021_acsnano_4c18470 crossref_primary_10_1002_advs_202305701 crossref_primary_10_1016_j_talanta_2024_127399 crossref_primary_10_3390_app15010121 crossref_primary_10_3390_metabo14080438 crossref_primary_10_1016_j_foodchem_2024_140931 crossref_primary_10_1016_j_talanta_2024_126442 crossref_primary_10_2147_DMSO_S453458 crossref_primary_10_1038_s41467_024_52310_9 |
Cites_doi | 10.1007/s00180-017-0731-5 10.1021/acs.analchem.5b04520 10.1039/D1AN02297K 10.1016/j.snb.2020.128496 10.1016/j.jchromb.2021.122725 10.1016/j.snb.2018.10.105 10.1172/JCI131838 10.1016/j.cell.2018.05.015 10.1002/advs.202105231 10.1021/acs.analchem.2c00557 10.1021/acsnano.9b09493 10.1039/D1AN00726B 10.1021/jacs.6b08787 10.1002/adma.202000906 10.1021/acs.analchem.0c01660 10.3390/cancers13215388 10.1016/j.microc.2022.107821 10.1039/D1NR00102G 10.1016/j.bios.2014.06.058 10.1038/s41467-019-13056-x 10.1039/D1AN01163D 10.3390/e24050572 10.1038/s41591-021-01619-9 10.1021/acs.analchem.9b01159 10.1038/nbt1206-1565 10.1039/D0CC02329A 10.1002/mas.21602 10.1016/j.trac.2019.115801 10.1021/acs.analchem.9b03966 10.1016/j.jmsacl.2022.07.005 10.1039/D0CS00855A 10.1002/advs.202003893 10.1016/j.snb.2020.128563 10.1021/acssensors.0c02346 10.1039/C8AN00599K 10.1021/acs.analchem.1c02149 10.1021/acssensors.8b00230 10.1111/cup.13931 10.1016/j.snb.2021.130970 10.1016/j.patcog.2016.08.025 10.1016/j.aca.2013.01.022 10.1007/s11128-021-03361-0 10.1021/acs.analchem.1c00734 10.1002/anie.202103272 10.1016/j.bios.2022.114046 10.1016/j.trac.2022.116745 10.1021/acs.chemrev.7b00668 10.3390/toxins14110727 10.1016/j.trac.2019.04.015 10.1016/j.snb.2019.126956 10.1016/j.engappai.2017.06.004 10.1038/s41592-021-01198-0 10.1021/acs.analchem.1c04118 10.3390/ijerph17249515 10.1002/smtd.201700196 10.1002/smtd.202101220 10.1021/acs.analchem.1c03650 10.1002/advs.202203786 10.1039/D1NR00480H 10.1016/j.trac.2009.07.002 10.1021/acs.analchem.7b02265 10.1016/j.cell.2020.03.022 10.1021/acs.analchem.5b01139 10.1021/acsnano.0c05693 10.1016/j.talanta.2020.121722 10.1021/acssensors.7b00450 10.1002/anie.202001135 10.1038/s41467-020-17643-1 10.1126/sciadv.abh2724 10.1002/anie.202208138 10.1039/C4SC01329H 10.1016/j.aca.2019.11.014 10.1002/cem.1162 10.1002/adfm.202210267 10.1016/j.inffus.2020.01.005 10.1016/j.tranon.2020.100907 10.1021/acs.analchem.1c00943 10.3390/rs13081486 10.1039/C6NR06079J 10.3390/molecules24040743 10.1016/j.bios.2021.113269 10.1021/acsomega.9b03764 10.1021/acs.analchem.8b02913 10.1021/acs.analchem.8b00795 10.1002/jcla.24301 10.1016/j.snb.2022.132484 10.1021/acs.analchem.1c03369 10.1021/acsnano.8b04016 10.1039/D1SC02311J 10.1016/j.biomaterials.2016.05.026 10.1016/j.trac.2022.116605 10.1007/s11277-017-5224-x 10.1021/acs.chemrev.5b00100 10.1038/s41467-019-12527-5 10.1002/smll.201901190 10.1021/acs.analchem.6b02353 10.1021/jacs.0c10810 10.1021/acsnano.1c09864 10.1021/acs.analchem.0c02519 10.1016/j.bios.2022.114556 10.1007/s10462-020-09928-0 10.1038/nature23474 10.1016/j.trac.2020.116064 10.1002/smtd.202200264 10.1021/ac402175c 10.1002/cem.2609 10.1002/smtd.201900469 10.1002/smll.201902086 10.1002/anie.202101007 10.1146/annurev-anchem-071015-041620 10.1038/s41467-020-18684-2 10.1002/smtd.201900025 10.1021/acs.analchem.1c03508 10.1021/acssensors.1c01527 10.1080/00401706.2020.1791254 10.1039/C4AN02039A 10.1016/j.snb.2019.03.102 10.1039/D1AN02332B 10.1021/acssensors.0c00329 10.1021/acs.analchem.2c01069 10.1016/j.jelechem.2021.115730 10.1016/j.trac.2019.115796 10.1021/acs.nanolett.8b01526 10.1021/acs.analchem.7b04005 10.1007/s13042-016-0500-8 10.1109/TKDE.2018.2861858 10.1021/acsnano.9b04224 10.3390/ijms19051420 10.1016/j.bios.2020.112039 10.1016/j.snb.2018.05.081 10.1039/C9AN01140D 10.1186/s12874-016-0254-8 10.1021/acssensors.0c01935 10.1039/C6NR07979B 10.1007/s40820-022-00803-x 10.1021/acs.est.7b02963 10.1016/j.biotechadv.2016.01.006 10.1126/science.abh1623 10.1016/j.snb.2022.131590 10.1021/acssensors.9b01703 10.1016/j.aca.2011.09.042 10.1038/s41467-021-26633-w 10.1021/acs.nanolett.1c04722 10.1002/anie.201913970 10.1039/D1AY00357G 10.1016/j.drudis.2008.11.002 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd. 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/VIW.20220038 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2688-268X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_229a21d6d89446b0b31ac8289cea6b34 10_1002_VIW_20220038 VIW2251 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: State Key Laboratory of Oncogenes and Related Genes funderid: KF2105 – fundername: National Natural Science Foundation of China (NSFC) funderid: 22074044; 22122404 |
GroupedDBID | 0R~ 1OC 24P 7X7 8FI 8FJ AAHHS ABUWG ACCFJ ACCMX ACXQS ADKYN ADPDF ADZMN AEEZP AEQDE AFKRA AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BENPR CCPQU EBS FYUFA GROUPED_DOAJ HMCUK IAO IHR INH ITC M~E OVD PIMPY TEORI UKHRP WIN AAYXX CITATION IGS PHGZM PHGZT 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC COVID DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c4091-f7352be180b58112d20aaf80b9c98f8b108f0b2d596a4d763fa73e945a51c5f93 |
IEDL.DBID | 24P |
ISSN | 2688-3988 2688-268X |
IngestDate | Wed Aug 27 01:30:06 EDT 2025 Sat Aug 23 12:56:22 EDT 2025 Tue Jul 01 02:42:40 EDT 2025 Thu Apr 24 23:11:46 EDT 2025 Wed Jan 22 16:23:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4091-f7352be180b58112d20aaf80b9c98f8b108f0b2d596a4d763fa73e945a51c5f93 |
Notes | X. N. Chen and W. K. Shu contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9324-2647 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20220038 |
PQID | 2778314011 |
PQPubID | 5068494 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_229a21d6d89446b0b31ac8289cea6b34 proquest_journals_2778314011 crossref_citationtrail_10_1002_VIW_20220038 crossref_primary_10_1002_VIW_20220038 wiley_primary_10_1002_VIW_20220038_VIW2251 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 20230201 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | View (Beijing, China) |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2015; 140 2019; 91 2019; 290 2013; 769 2019; 10 2019; 13 2019; 15 2017; 89 2020; 17 2022; 24 2022; 26 2020; 14 2020; 321 2020; 11 2014; 28 2022; 22 2020; 322 2019; 281 2022; 215 2022; 28 2016; 34 2009; 14 2018; 3 2018; 173 2006; 24 2019; 24 2020; 92 2015; 87 2022; 36 2008; 22 2020; 1100 2022; 203 2017; 61 2022; 351 2017; 64 2021; 48 2019; 4 2019; 3 2019; 31 2021; 146 2022; 94 2013; 85 2020; 39 2020; 145 2021; 143 2020; 32 2021; 50 2016; 16 2022; 359 2017; 51 2015; 67 2017; 549 2018; 19 2018; 18 2021; 54 2015; 115 2022; 181 2020; 154 2022; 6 2018; 118 2022; 9 2022; 14 2018; 90 2018; 12 2021; 60 2016; 8 2022; 16 2019; 299 2016; 9 2022; 376 2017; 1 2021; 21 2022; 371 2017; 2 2020; 63 2020; 59 2016; 100 2020; 56 2020; 124 2017; 9 2020; 5 2014; 5 2020; 4 2020; 130 2020; 132 2017; 32 2019; 115 2016; 88 2021; 8 2021; 7 2021; 6 2018; 143 2021; 1179 2022; 152 2021; 223 2020; 181 2021; 900 2021; 185 2021; 93 2022; 157 2009; 28 2021; 14 2021; 13 2021; 12 2018; 271 2022 2022; 61 2021; 18 2016; 138 2017; 102 2012; 711 2022; 147 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_126_1 e_1_2_9_107_1 e_1_2_9_122_1 e_1_2_9_145_1 e_1_2_9_14_1 e_1_2_9_141_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_119_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_138_1 e_1_2_9_111_1 e_1_2_9_134_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_130_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_148_1 e_1_2_9_129_1 e_1_2_9_144_1 e_1_2_9_106_1 e_1_2_9_125_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_140_1 e_1_2_9_121_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_137_1 e_1_2_9_118_1 e_1_2_9_133_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_128_1 e_1_2_9_105_1 e_1_2_9_124_1 e_1_2_9_147_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_143_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_117_1 e_1_2_9_136_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_132_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_127_1 e_1_2_9_100_1 e_1_2_9_123_1 e_1_2_9_104_1 e_1_2_9_146_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_142_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 Lussier F. (e_1_2_9_120_1) 2019; 13 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_139_1 e_1_2_9_116_1 e_1_2_9_135_1 e_1_2_9_25_1 e_1_2_9_131_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 290 start-page: 118 year: 2019 publication-title: Sens. Actuators B – volume: 124 year: 2020 publication-title: TrAC Trends Anal. Chem. – volume: 21 start-page: 18 year: 2021 publication-title: Quantum Inf. Process – volume: 94 year: 2022 publication-title: Anal. Chem. – volume: 147 start-page: 1394 year: 2022 publication-title: Analyst. – volume: 115 start-page: 162 year: 2019 publication-title: TrAC Trends Anal. Chem. – volume: 6 start-page: 1067 year: 2021 publication-title: ACS Sens. – volume: 14 start-page: 28 year: 2020 publication-title: ACS Nano. – volume: 9 start-page: 2640 year: 2017 publication-title: Nanoscale – volume: 92 start-page: 1653 year: 2020 publication-title: Anal. Chem. – volume: 14 start-page: 75 year: 2022 publication-title: Nanomicro. Lett. – volume: 90 start-page: 6348 year: 2018 publication-title: Anal. Chem. – volume: 24 start-page: 572 year: 2022 publication-title: Entropy – volume: 67 start-page: 73 year: 2015 publication-title: Biosens. Bioelectron. – volume: 64 start-page: 67 year: 2017 publication-title: Eng. Appl. Artif. Intell. – volume: 13 start-page: 1919 year: 2021 publication-title: Anal. Methods – volume: 60 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 181 year: 2022 publication-title: Microchem – volume: 34 start-page: 234 year: 2016 publication-title: Biotechnol. Adv. – volume: 10 start-page: 4501 year: 2019 publication-title: Nat. Commun. – volume: 130 start-page: 1363 year: 2020 publication-title: J. Clin. Invest. – volume: 13 start-page: 1486 year: 2021 publication-title: Remote Sens. – volume: 115 year: 2015 publication-title: Chem. Rev. – volume: 54 start-page: 3473 year: 2021 publication-title: Artif. Intell. Rev. – volume: 87 start-page: 7698 year: 2015 publication-title: Anal. Chem. – volume: 9 start-page: 335 year: 2016 publication-title: Int. J. Mach. Learn Cyber. – volume: 322 year: 2020 publication-title: Sens. Actuators B – volume: 13 start-page: 7348 year: 2021 publication-title: Nanoscale – volume: 145 start-page: 157 year: 2020 publication-title: The Analyst – volume: 223 year: 2021 publication-title: Talanta – volume: 5 start-page: 2041 year: 2020 publication-title: ACS Omega – volume: 6 start-page: 4067 year: 2021 publication-title: ACS Sens. – volume: 14 year: 2021 publication-title: Transl. Oncol. – volume: 50 start-page: 556 year: 2021 publication-title: Chem. Soc. Rev. – volume: 48 start-page: 739 year: 2021 publication-title: J. Cutan. Pathol. – volume: 16 start-page: 154 year: 2016 publication-title: BMC Med. Res. Methodol. – volume: 59 start-page: 5972 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 88 start-page: 5710 year: 2016 publication-title: Anal. Chem. – volume: 5 start-page: 3789 year: 2014 publication-title: Chem. Sci. – volume: 28 start-page: 164 year: 2022 publication-title: Nat. Med. – volume: 18 start-page: 4447 year: 2018 publication-title: Nano. Lett. – volume: 203 year: 2022 publication-title: Biosens. Bioelectron. – volume: 93 start-page: 7774 year: 2021 publication-title: Anal. Chem. – volume: 8 year: 2016 publication-title: Nanoscale – volume: 4 start-page: 3227 year: 2019 publication-title: ACS Sens. – volume: 61 start-page: 524 year: 2017 publication-title: Pattern Recognit. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 13 start-page: 7574 year: 2021 publication-title: Nanoscale – volume: 140 start-page: 1090 year: 2015 publication-title: Analyst – volume: 22 start-page: 565 year: 2008 publication-title: J. Chemom. – volume: 5 start-page: 1689 year: 2020 publication-title: ACS Sens. – volume: 14 year: 2020 publication-title: ACS Nano. – volume: 10 start-page: 5416 year: 2019 publication-title: Nat. Commun. – volume: 39 start-page: 245 year: 2020 publication-title: Mass Spectrom. Rev. – volume: 92 start-page: 9338 year: 2020 publication-title: Anal. Chem. – volume: 94 start-page: 2785 year: 2022 publication-title: Anal. Chem. – volume: 143 start-page: 3526 year: 2018 publication-title: Analyst – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 154 year: 2020 publication-title: Biosens. Bioelectron. – volume: 91 start-page: 8979 year: 2019 publication-title: Anal. Chem. – volume: 24 start-page: 1565 year: 2006 publication-title: Nat. Biotechnol. – volume: 13 start-page: 5388 year: 2021 publication-title: Cancers – volume: 16 start-page: 2852 year: 2022 publication-title: ACS Nano. – volume: 12 start-page: 6339 year: 2021 publication-title: Nat. Commun. – volume: 900 year: 2021 publication-title: J. Electroanal. Chem. – volume: 94 start-page: 829 year: 2022 publication-title: Anal. Chem. – volume: 90 year: 2018 publication-title: Anal. Chem. – volume: 6 year: 2022 publication-title: Small Methods – volume: 711 start-page: 7 year: 2012 publication-title: Anal. Chim. Acta. – volume: 32 start-page: 909 year: 2017 publication-title: Comput. Stat. – volume: 281 start-page: 221 year: 2019 publication-title: Sens. Actuators B – volume: 14 start-page: 120 year: 2009 publication-title: Drug Discov Today – volume: 59 start-page: 44 year: 2020 publication-title: Inf. Fusion – volume: 146 start-page: 6496 year: 2021 publication-title: Analyst – volume: 102 start-page: 1645 year: 2017 publication-title: Wireless Pers. Commun. – volume: 92 year: 2020 publication-title: Anal. Chem. – volume: 18 start-page: 799 year: 2021 publication-title: Nat. Methods – volume: 3 start-page: 1471 year: 2018 publication-title: ACS Sens. – volume: 146 start-page: 4495 year: 2021 publication-title: Analyst – volume: 549 start-page: 195 year: 2017 publication-title: Nature – volume: 2 start-page: 1345 year: 2017 publication-title: ACS Sens. – volume: 100 start-page: 17 year: 2016 publication-title: Biomaterials – volume: 118 start-page: 4946 year: 2018 publication-title: Chem. Rev. – volume: 28 start-page: 1127 year: 2009 publication-title: Trends Analyt. Chem. – volume: 1179 year: 2021 publication-title: J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. – volume: 132 year: 2020 publication-title: Trends Analyt. Chem. – volume: 271 start-page: 15 year: 2018 publication-title: Sens. Actuators B – volume: 185 year: 2021 publication-title: Biosens. Bioelectron. – volume: 143 start-page: 1722 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 215 year: 2022 publication-title: Biosens. Bioelectron. – volume: 5 start-page: 3617 year: 2020 publication-title: ACS Sens. – volume: 157 year: 2022 publication-title: TrAC Trends Anal. Chem. – volume: 94 start-page: 1990 year: 2022 publication-title: Anal. Chem. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 89 start-page: 9438 year: 2017 publication-title: Anal. Chem. – volume: 24 start-page: 743 year: 2019 publication-title: Molecules – volume: 147 start-page: 1663 year: 2022 publication-title: Analyst – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 1420 year: 2018 publication-title: Int. J. Mol. Sci. – volume: 51 start-page: 8805 year: 2017 publication-title: Environ. Sci. Technol. – year: 2022 publication-title: Adv. Funct. Mater. – volume: 36 year: 2022 publication-title: J. Clin. Lab. Anal. – volume: 9 start-page: 411 year: 2016 publication-title: Annu. Rev. Anal. Chem. – volume: 88 start-page: 9614 year: 2016 publication-title: Anal. Chem. – volume: 93 year: 2021 publication-title: Anal. Chem. – volume: 59 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 31 start-page: 1520 year: 2019 publication-title: IEEE Trans. Knowl. Data Eng. – volume: 769 start-page: 30 year: 2013 publication-title: Anal. Chim. Acta. – volume: 359 year: 2022 publication-title: Sens. Actuators B – volume: 15 year: 2019 publication-title: Small – volume: 299 year: 2019 publication-title: Sens. Actuators B – volume: 1 year: 2017 publication-title: Small Methods – volume: 12 year: 2021 publication-title: Chem. Sci. – volume: 13 start-page: 1403 year: 2019 publication-title: ACS Nano. – volume: 14 start-page: 4244 year: 2020 publication-title: ACS Nano. – volume: 1100 start-page: 75 year: 2020 publication-title: Anal. Chim. Acta. – volume: 3 year: 2019 publication-title: Small Methods – volume: 11 start-page: 5033 year: 2020 publication-title: Nat. Commun. – volume: 26 start-page: 1 year: 2022 publication-title: J. Mass. Spectrom. Adv. Clin. Lab. – volume: 85 year: 2013 publication-title: Anal. Chem. – volume: 152 year: 2022 publication-title: TrAC Trends Anal. Chem. – volume: 4 year: 2020 publication-title: Small Methods – volume: 90 start-page: 952 year: 2018 publication-title: Anal. Chem. – volume: 63 start-page: 263 year: 2020 publication-title: Technometrics – volume: 94 start-page: 7286 year: 2022 publication-title: Anal. Chem. – volume: 17 start-page: 9515 year: 2020 publication-title: Int. J. Environ. Res. Public Health – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 56 start-page: 6656 year: 2020 publication-title: Chem. Commun. – volume: 173 start-page: 1581 year: 2018 publication-title: Cell – volume: 181 start-page: 92 year: 2020 publication-title: Cell – volume: 376 year: 2022 publication-title: Science – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 9958 year: 2018 publication-title: ACS Nano. – volume: 321 year: 2020 publication-title: Sens. Actuators B Chem. – volume: 124 year: 2020 publication-title: TrAC Trends Analyt. Chem. – volume: 22 start-page: 3620 year: 2022 publication-title: Nano. Lett. – volume: 371 year: 2022 publication-title: Sens. Actuators B – volume: 351 year: 2022 publication-title: Sens. Actuators B – volume: 28 start-page: 213 year: 2014 publication-title: J. Chemom. – volume: 14 start-page: 727 year: 2022 publication-title: Toxins – volume: 11 start-page: 3903 year: 2020 publication-title: Nat. Commun. – ident: e_1_2_9_62_1 doi: 10.1007/s00180-017-0731-5 – ident: e_1_2_9_105_1 doi: 10.1021/acs.analchem.5b04520 – ident: e_1_2_9_14_1 doi: 10.1039/D1AN02297K – ident: e_1_2_9_47_1 doi: 10.1016/j.snb.2020.128496 – ident: e_1_2_9_92_1 doi: 10.1016/j.jchromb.2021.122725 – ident: e_1_2_9_27_1 doi: 10.1016/j.snb.2018.10.105 – ident: e_1_2_9_88_1 doi: 10.1172/JCI131838 – ident: e_1_2_9_40_1 doi: 10.1016/j.cell.2018.05.015 – ident: e_1_2_9_69_1 doi: 10.1002/advs.202105231 – ident: e_1_2_9_111_1 doi: 10.1021/acs.analchem.2c00557 – ident: e_1_2_9_130_1 doi: 10.1021/acsnano.9b09493 – ident: e_1_2_9_80_1 doi: 10.1039/D1AN00726B – ident: e_1_2_9_138_1 doi: 10.1021/jacs.6b08787 – ident: e_1_2_9_94_1 doi: 10.1002/adma.202000906 – ident: e_1_2_9_98_1 doi: 10.1021/acs.analchem.0c01660 – ident: e_1_2_9_108_1 doi: 10.3390/cancers13215388 – ident: e_1_2_9_77_1 doi: 10.1016/j.microc.2022.107821 – ident: e_1_2_9_79_1 doi: 10.1039/D1NR00102G – ident: e_1_2_9_34_1 doi: 10.1016/j.bios.2014.06.058 – ident: e_1_2_9_148_1 doi: 10.1038/s41467-019-13056-x – ident: e_1_2_9_140_1 doi: 10.1039/D1AN01163D – ident: e_1_2_9_65_1 doi: 10.3390/e24050572 – ident: e_1_2_9_97_1 doi: 10.1038/s41591-021-01619-9 – ident: e_1_2_9_110_1 doi: 10.1021/acs.analchem.9b01159 – ident: e_1_2_9_63_1 doi: 10.1038/nbt1206-1565 – ident: e_1_2_9_90_1 doi: 10.1039/D0CC02329A – ident: e_1_2_9_107_1 doi: 10.1002/mas.21602 – ident: e_1_2_9_146_1 doi: 10.1016/j.trac.2019.115801 – ident: e_1_2_9_101_1 doi: 10.1021/acs.analchem.9b03966 – ident: e_1_2_9_76_1 doi: 10.1016/j.jmsacl.2022.07.005 – ident: e_1_2_9_117_1 doi: 10.1039/D0CS00855A – ident: e_1_2_9_87_1 doi: 10.1002/advs.202003893 – ident: e_1_2_9_124_1 doi: 10.1016/j.snb.2020.128563 – ident: e_1_2_9_2_1 doi: 10.1021/acssensors.0c02346 – ident: e_1_2_9_55_1 doi: 10.1039/C8AN00599K – ident: e_1_2_9_84_1 doi: 10.1021/acs.analchem.1c02149 – ident: e_1_2_9_30_1 doi: 10.1021/acssensors.8b00230 – ident: e_1_2_9_58_1 doi: 10.1111/cup.13931 – ident: e_1_2_9_21_1 doi: 10.1016/j.snb.2021.130970 – ident: e_1_2_9_49_1 doi: 10.1016/j.patcog.2016.08.025 – ident: e_1_2_9_60_1 doi: 10.1016/j.aca.2013.01.022 – ident: e_1_2_9_64_1 doi: 10.1007/s11128-021-03361-0 – ident: e_1_2_9_135_1 doi: 10.1021/acs.analchem.1c00734 – ident: e_1_2_9_132_1 doi: 10.1002/anie.202103272 – ident: e_1_2_9_9_1 doi: 10.1016/j.bios.2022.114046 – ident: e_1_2_9_115_1 doi: 10.1016/j.trac.2022.116745 – ident: e_1_2_9_125_1 doi: 10.1021/acs.chemrev.7b00668 – ident: e_1_2_9_15_1 doi: 10.3390/toxins14110727 – ident: e_1_2_9_104_1 doi: 10.1016/j.trac.2019.04.015 – ident: e_1_2_9_29_1 doi: 10.1016/j.snb.2019.126956 – ident: e_1_2_9_45_1 doi: 10.1016/j.engappai.2017.06.004 – ident: e_1_2_9_143_1 doi: 10.1038/s41592-021-01198-0 – ident: e_1_2_9_144_1 doi: 10.1021/acs.analchem.1c04118 – ident: e_1_2_9_43_1 doi: 10.3390/ijerph17249515 – ident: e_1_2_9_6_1 doi: 10.1002/smtd.201700196 – ident: e_1_2_9_95_1 doi: 10.1002/smtd.202101220 – ident: e_1_2_9_126_1 doi: 10.1021/acs.analchem.1c03650 – ident: e_1_2_9_137_1 doi: 10.1002/advs.202203786 – ident: e_1_2_9_35_1 doi: 10.1039/D1NR00480H – ident: e_1_2_9_53_1 doi: 10.1016/j.trac.2009.07.002 – ident: e_1_2_9_109_1 doi: 10.1021/acs.analchem.7b02265 – ident: e_1_2_9_41_1 doi: 10.1016/j.cell.2020.03.022 – ident: e_1_2_9_86_1 doi: 10.1021/acs.analchem.5b01139 – ident: e_1_2_9_121_1 doi: 10.1021/acsnano.0c05693 – ident: e_1_2_9_12_1 doi: 10.1016/j.talanta.2020.121722 – ident: e_1_2_9_70_1 doi: 10.1021/acssensors.7b00450 – ident: e_1_2_9_3_1 doi: 10.1002/anie.202001135 – ident: e_1_2_9_74_1 doi: 10.1038/s41467-020-17643-1 – ident: e_1_2_9_85_1 doi: 10.1126/sciadv.abh2724 – ident: e_1_2_9_78_1 doi: 10.1002/anie.202208138 – ident: e_1_2_9_8_1 doi: 10.1039/C4SC01329H – ident: e_1_2_9_142_1 doi: 10.1016/j.aca.2019.11.014 – ident: e_1_2_9_59_1 doi: 10.1002/cem.1162 – ident: e_1_2_9_139_1 doi: 10.1002/adfm.202210267 – ident: e_1_2_9_51_1 doi: 10.1016/j.inffus.2020.01.005 – ident: e_1_2_9_89_1 doi: 10.1016/j.tranon.2020.100907 – ident: e_1_2_9_102_1 doi: 10.1021/acs.analchem.1c00943 – ident: e_1_2_9_50_1 doi: 10.3390/rs13081486 – ident: e_1_2_9_13_1 doi: 10.1039/C6NR06079J – ident: e_1_2_9_134_1 doi: 10.3390/molecules24040743 – ident: e_1_2_9_71_1 doi: 10.1016/j.bios.2021.113269 – ident: e_1_2_9_42_1 doi: 10.1021/acsomega.9b03764 – ident: e_1_2_9_141_1 doi: 10.1021/acs.analchem.8b02913 – ident: e_1_2_9_44_1 doi: 10.1021/acs.analchem.8b00795 – ident: e_1_2_9_114_1 doi: 10.1002/jcla.24301 – ident: e_1_2_9_131_1 doi: 10.1016/j.snb.2022.132484 – ident: e_1_2_9_5_1 doi: 10.1021/acs.analchem.1c03369 – ident: e_1_2_9_31_1 doi: 10.1021/acsnano.8b04016 – ident: e_1_2_9_99_1 doi: 10.1039/D1SC02311J – ident: e_1_2_9_11_1 doi: 10.1016/j.biomaterials.2016.05.026 – ident: e_1_2_9_16_1 doi: 10.1016/j.trac.2022.116605 – ident: e_1_2_9_66_1 doi: 10.1007/s11277-017-5224-x – ident: e_1_2_9_10_1 doi: 10.1021/acs.chemrev.5b00100 – ident: e_1_2_9_133_1 doi: 10.1038/s41467-019-12527-5 – ident: e_1_2_9_26_1 doi: 10.1002/smll.201901190 – volume: 13 start-page: 1403 year: 2019 ident: e_1_2_9_120_1 publication-title: ACS Nano. – ident: e_1_2_9_17_1 doi: 10.1021/acs.analchem.6b02353 – ident: e_1_2_9_23_1 doi: 10.1021/jacs.0c10810 – ident: e_1_2_9_36_1 doi: 10.1021/acsnano.1c09864 – ident: e_1_2_9_112_1 doi: 10.1021/acs.analchem.0c02519 – ident: e_1_2_9_19_1 doi: 10.1016/j.bios.2022.114556 – ident: e_1_2_9_48_1 doi: 10.1007/s10462-020-09928-0 – ident: e_1_2_9_38_1 doi: 10.1038/nature23474 – ident: e_1_2_9_145_1 doi: 10.1016/j.trac.2020.116064 – ident: e_1_2_9_75_1 doi: 10.1002/smtd.202200264 – ident: e_1_2_9_136_1 doi: 10.1021/ac402175c – ident: e_1_2_9_56_1 doi: 10.1002/cem.2609 – ident: e_1_2_9_96_1 doi: 10.1002/smtd.201900469 – ident: e_1_2_9_82_1 doi: 10.1002/smll.201902086 – ident: e_1_2_9_4_1 doi: 10.1002/anie.202101007 – ident: e_1_2_9_106_1 doi: 10.1146/annurev-anchem-071015-041620 – ident: e_1_2_9_68_1 doi: 10.1038/s41467-020-18684-2 – ident: e_1_2_9_39_1 doi: 10.1002/smtd.201900025 – ident: e_1_2_9_127_1 doi: 10.1021/acs.analchem.1c03508 – ident: e_1_2_9_20_1 doi: 10.1021/acssensors.1c01527 – ident: e_1_2_9_61_1 doi: 10.1080/00401706.2020.1791254 – ident: e_1_2_9_100_1 doi: 10.1039/C4AN02039A – ident: e_1_2_9_129_1 doi: 10.1016/j.snb.2019.03.102 – ident: e_1_2_9_33_1 doi: 10.1039/D1AN02332B – ident: e_1_2_9_67_1 doi: 10.1021/acssensors.0c00329 – ident: e_1_2_9_116_1 doi: 10.1021/acs.analchem.2c01069 – ident: e_1_2_9_22_1 doi: 10.1016/j.jelechem.2021.115730 – ident: e_1_2_9_37_1 doi: 10.1016/j.trac.2019.115796 – ident: e_1_2_9_46_1 doi: 10.1021/acs.nanolett.8b01526 – ident: e_1_2_9_103_1 doi: 10.1021/acs.analchem.7b04005 – ident: e_1_2_9_54_1 doi: 10.1007/s13042-016-0500-8 – ident: e_1_2_9_52_1 doi: 10.1109/TKDE.2018.2861858 – ident: e_1_2_9_118_1 doi: 10.1021/acsnano.9b04224 – ident: e_1_2_9_147_1 doi: 10.3390/ijms19051420 – ident: e_1_2_9_73_1 doi: 10.1016/j.bios.2020.112039 – ident: e_1_2_9_25_1 doi: 10.1016/j.snb.2018.05.081 – ident: e_1_2_9_18_1 doi: 10.1039/C9AN01140D – ident: e_1_2_9_57_1 doi: 10.1186/s12874-016-0254-8 – ident: e_1_2_9_72_1 doi: 10.1021/acssensors.0c01935 – ident: e_1_2_9_81_1 doi: 10.1039/C6NR07979B – ident: e_1_2_9_119_1 doi: 10.1007/s40820-022-00803-x – ident: e_1_2_9_7_1 doi: 10.1021/acs.est.7b02963 – ident: e_1_2_9_28_1 doi: 10.1016/j.biotechadv.2016.01.006 – ident: e_1_2_9_93_1 doi: 10.1126/science.abh1623 – ident: e_1_2_9_128_1 doi: 10.1016/j.snb.2022.131590 – ident: e_1_2_9_24_1 doi: 10.1021/acssensors.9b01703 – ident: e_1_2_9_83_1 doi: 10.1016/j.aca.2011.09.042 – ident: e_1_2_9_113_1 doi: 10.1038/s41467-021-26633-w – ident: e_1_2_9_123_1 doi: 10.1021/acs.nanolett.1c04722 – ident: e_1_2_9_122_1 doi: 10.1002/anie.201913970 – ident: e_1_2_9_32_1 doi: 10.1039/D1AY00357G – ident: e_1_2_9_91_1 doi: 10.1016/j.drudis.2008.11.002 |
SSID | ssj0002511795 |
Score | 2.4474385 |
SecondaryResourceType | review_article |
Snippet | In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio‐fluids. Recently, mass spectrometry and... In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio-fluids. Recently, mass spectrometry and... Abstract In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio‐fluids. Recently, mass spectrometry... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accuracy Algorithms Artificial intelligence Clustering Datasets Discriminant analysis Enzymes in vitro diagnosis Ions Machine learning Mass spectrometry Medical research Metabolism multi‐modal analysis Scientific imaging spectroscopy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy-iqFhf5KAXpdgkfSRHFRcV9ORjbyVPWdGuuOrvdyZtl92DevGYNIEwM02-r518Q8hBlWlXWp6nAAcCEJQspIpbnQrnhWPOMR0lhW5uy8v7_HpUjOZKfWFOWCsP3BruhHOlOXOlkwqYi8mMYNoiTbBel0ZEJVA48-bIFO7BCJyrWHKFlxAKQknZZb3Ds5OHq0dghhzzsuTCeRRl-xew5jxijUfOcJWsdFiRnrZrXCNLvlknz6fdX3v6CriXxpuSKDmASvtUN67vwesm0NNWiJ5SO_l8e4FJ-N0VZmIGpaddyYgnCsiVjhv6NYaJ1LXZd-PpBrkfXtydX6ZdwYTUAk1jaagAThnPZGYKCUDK8UzrAC1llQzSsEyGzHBXqFLnDnaWoCvhVV7ogtkiKLFJBs2k8VuEBlOhtLwvrTO515n2YH9TuuBtJfJCJeS4N1ttOzVxLGrxUrc6yLwGI9e9kRNyOBv91qpo_DDuDD0wG4Pa17EDIqLuIqL-KyISstv7r-5eyGnNq0oKJJMsIUfRp78uBBuw07Ht_1jQDlnGIvVtrvcuGXy8f_o9gDIfZj9G7TdBxO1w priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (Proquest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8QgECa6XrwYjRrXVzjoRdNYKC3lZFajURM9-dhbw9Os0e7qqr_fmZauetAjBAhhYPhmGL4hZE-m2hWWiwTgQAADJQ2J4lYnmfOZY84x3VAKXd8UF3fiapgPo8NtGsMqO53YKGo3tugjP-JSlhlaA-x48ppg1ih8XY0pNObJAlKXYUiXHMqZjwXhs1R5jHeH8tH95QPYhBwjsspfN1FD2P8LZf7Eqs1lc75MliJKpINWrCtkzter5GkQ3-vpCyBe2vyRRLIB5NinunZdDX40gZo2N_SU2vHH5Bk6occVemLspKcxWcQjBcxKRzX9HEFH6tq4u9F0jdydn92eXiQxVUJiwUBjSZAApIxnZWryEiCU46nWAUrKqjKUhqVlSA13uSq0cKBTgpaZVyLXObN5UNk66dXj2m8QGoxEUnlfWGeE16n2pRKmcMFbmYlc9clht2yVjTzimM7iuWoZkHkFi1x1i9wn-7PWk5Y_4492JyiBWRtkvW4qxm-PVTxEFedKc-YKBzMShUlNxrRFk9F6XZhM9Ml2J78qHsVp9b1x-uSgkem_E8EC6Di2-f9YW2QRE8-38dvbpPf-9uF3AJ68m91mD34BqW7jRQ priority: 102 providerName: ProQuest |
Title | Advanced mass spectrometric and spectroscopic methods coupled with machine learning for in vitro diagnosis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20220038 https://www.proquest.com/docview/2778314011 https://doaj.org/article/229a21d6d89446b0b31ac8289cea6b34 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvXBBIEAstCsf4AKKGj_ix7FFWxWkVhWisLfIz2pRm626LUd-e2cc79IeQOISyc44smyP_c1k_A0h73TrogpcNgAHMhgobW4sD64RMYnIYmSuUAodn6ijM_ll3s2rww3vwoz8EBuHG2pG2a9RwZ1f7f0hDf3--QeYdxyDq8xjso23a5E7n8vTjY8F4bMuiVe4ggUhrDE19h3e7d3_wINTqZD3P0Cc93FrOXgOn5GnFTHS_XGKn5NHaXhBfu7Xf_f0EtAvLfclkXgA-fapG-K6Bi-dQM2YJ3pFw_L26gIaofcVWmIcZaI1ccQ5BfxKFwP9tYCGNI4xeIvVS3J2OPv26aipaROaAMYaa7IGUOUTM63vDMCpyFvnMpRssCYbz1qTW89jZ5WTEfaX7LRIVnauY6HLVrwiW8NySK8JzV4jwXxSIXqZXOuSsdKrmFPQQnZ2Qj6uh60PlVMcU1tc9CMbMu9hkPv1IE_I-4301cil8Re5A5yBjQwyYJeK5fV5XxWq59w6zqKK0COpfOsFcwHNx5Cc8kJOyM56_vqqlquea20EmpRsQj6UOf1nR7AA-x178z_Cb8kTTEk_RnbvkK2b69u0C8Dlxk_L6oSnnusp2T6YnZx-nRYnADyPf8_uAJg86mM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFH8hy0EvRoPGVdQe4KKZMO10PnowBhSyK7AxBpTb2E-yBmdXFjT-U_6NvjfTWeAgN45t2knT99Hf67z-HsBGmWpXWCEThAMBA5Q0JEpYnWTOZ447x3VLKXQ4KUbH8uNJfrICf_u3MJRW2fvE1lG7maU78i1RllVG0QB_N_-ZUNUo-rval9Do1GLf__mNIdvi7fgDyndTiL3do_ejJFYVSCzGMjwJJWIO43mVmrxCtOFEqnXAlrKqCpXhaRVSI1yuCi0dml_QZeaVzHXObR6IfAld_qrMMJQZwOrO7uTT5-WtDgH2UuUxwx7bW1_GXzEKFZQDVt04-9oSATdw7XV03B5vew_hQcSlbLtTpEew4ps1-L4dMwTYD8TYrH2VSfQGxOrPdOP6Hnragj1dNeoFs7PL-RlOojtenEnZmp7F8hSnDFEymzbs1xQnMtdl-k0Xj-H4TrbxCQyaWeOfAgumJBp7X1hnpNep9pWSpnDB2zKTuRrCm37bahuZy6mAxlndcS6LGje57jd5CJvL0fOOseM_43ZIAssxxLPddszOT-totrUQSgvuCocrkoVJTca1pSDVel2YTA5hvZdfHY1_UV-p6hBetzK9dSHUQK_Kn93-rVdwb3R0eFAfjCf7z-E-lb3vssfXYXBxfulfIDi6MC-jRjL4dtdG8A-cIiB9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFG4IJMaL0YhxFbQHuWgmO-10ptMDISBuWFHiQXRvtT_JGpxdWMD4r_HX-d5MZ5UD3Di26Wsmfa-v3-u8fo-QNzI3vnJcZAAHIgQoecwUdyYrfCg8856ZllLo81F1cCw-TsrJCrnu38JgWmXvE1tH7WcO78iHXMq6wGiADWNKi_iyP9qZn2VYQQr_tPblNDoTOQx_fkP4ttge74Outzgfffj6_iBLFQYyB3ENy6IE_GEDq3Nb1oA8PM-NidBSTtWxtiyvY265L1VlhIetGI0sghKlKZkrIxIxgftfg1kY7jE5kcv7HYTuUpUp1x7aw2_j7xCPcswGq2-cgm2xgBsI93-c3B50o8fkUUKodLczqSdkJTRPyc_dlCtAfwHapu37TCQ6QH5_ahrf9-AjF-jp6lIvqJtdzk9BCG97QRLzNgNNhSpOKOBlOm3o1RQEqe9y_qaLdXJ8L4v4jKw2syY8JzRaiYT2oXLeimByE2olbOVjcLIQpRqQd_2yaZc4zLGUxqnu2Je5hkXW_SIPyNZy9Lzj7rhl3B5qYDkGGbfbjtn5iU4bWHOuDGe-8vBForK5LZhxGK66YCpbiAHZ6PWnkxtY6H9GOyBvW53e-SHYAP_KXtw912vyAExffxofHb4kD0G46NLIN8jqxfll2ASUdGFfteZIyY_7tv-_-kAjTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+mass+spectrometric+and+spectroscopic+methods+coupled+with+machine+learning+for+in+vitro+diagnosis&rft.jtitle=View+%28Beijing%2C+China%29&rft.au=Chen%2C+Xiaonan&rft.au=Shu%2C+Weikang&rft.au=Zhao%2C+Liang&rft.au=Wan%2C+Jingjing&rft.date=2023-02-01&rft.issn=2688-268X&rft.eissn=2688-268X&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1002%2FVIW.20220038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_VIW_20220038 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-3988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-3988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-3988&client=summon |