Advanced mass spectrometric and spectroscopic methods coupled with machine learning for in vitro diagnosis

In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio‐fluids. Recently, mass spectrometry and spectroscopy have been increasingly employed in the field of IVD, due to their high accuracy, facile sample preparation, and rapid detection. Not...

Full description

Saved in:
Bibliographic Details
Published inView (Beijing, China) Vol. 4; no. 1
Main Authors Chen, Xiaonan, Shu, Weikang, Zhao, Liang, Wan, Jingjing
Format Journal Article
LanguageEnglish
Published Beijing John Wiley & Sons, Inc 01.02.2023
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio‐fluids. Recently, mass spectrometry and spectroscopy have been increasingly employed in the field of IVD, due to their high accuracy, facile sample preparation, and rapid detection. Notably, the large datasets generated by these two technology methods provide a wealth of information but subsequently involve complex and time‐consuming processing works. Machine learning (ML), an important branch of artificial intelligence (AI), has emerged as a promising solution for the decoding of big data. ML imitates the human brain to process data, significantly improving accuracy and efficiency compared with traditional processing methods. In this review, we first introduce the commonly used ML algorithms and advanced mass spectrometry and spectroscopy techniques in the field of IVD, respectively. The ML algorithms are summarized as four aspects according to different learning tasks. Then, the combinations of ML with mass spectrometry, spectroscopy, and multi‐modal analysis for IVD are presented, and the roles of ML in these combinations are elucidated by some representative examples. This review aims to provide a systematic and comprehensive summary of the literature on ML‐assisted mass spectrometry or spectroscopy. We believe that it will facilitate researchers to select suitable ML algorithms for supplementing existing detection techniques or to develop the potential of coupling more detection techniques with ML, thus promoting the development of mass spectrometry and spectroscopy in IVD. Recently, mass spectrometric and spectroscopic methods coupled with machine learning have been increasingly employed in the field of in vitro diagnoses, such as pathogen identification, cancer diagnosis, and cell classification. In this review, the authors focus on the combinations of machine learning with mass spectrometry, spectroscopy, and multi‐modal analysis for in vitro diagnoses, and they highlight the roles of machine learning in these combinations through some representative examples. The authors furthermore discuss the challenges and perspectives of mass spectrometry, spectroscopy, multi‐modal analysis, and machine learning.
AbstractList In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio-fluids. Recently, mass spectrometry and spectroscopy have been increasingly employed in the field of IVD, due to their high accuracy, facile sample preparation, and rapid detection. Notably, the large datasets generated by these two technology methods provide a wealth of information but subsequently involve complex and time-consuming processing works. Machine learning (ML), an important branch of artificial intelligence (AI), has emerged as a promising solution for the decoding of big data. ML imitates the human brain to process data, significantly improving accuracy and efficiency compared with traditional processing methods. In this review, we first introduce the commonly used ML algorithms and advanced mass spectrometry and spectroscopy techniques in the field of IVD, respectively. The ML algorithms are summarized as four aspects according to different learning tasks. Then, the combinations of ML with mass spectrometry, spectroscopy, and multi-modal analysis for IVD are presented, and the roles of ML in these combinations are elucidated by some representative examples. This review aims to provide a systematic and comprehensive summary of the literature on ML-assisted mass spectrometry or spectroscopy. We believe that it will facilitate researchers to select suitable ML algorithms for supplementing existing detection techniques or to develop the potential of coupling more detection techniques with ML, thus promoting the development of mass spectrometry and spectroscopy in IVD.
In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio‐fluids. Recently, mass spectrometry and spectroscopy have been increasingly employed in the field of IVD, due to their high accuracy, facile sample preparation, and rapid detection. Notably, the large datasets generated by these two technology methods provide a wealth of information but subsequently involve complex and time‐consuming processing works. Machine learning (ML), an important branch of artificial intelligence (AI), has emerged as a promising solution for the decoding of big data. ML imitates the human brain to process data, significantly improving accuracy and efficiency compared with traditional processing methods. In this review, we first introduce the commonly used ML algorithms and advanced mass spectrometry and spectroscopy techniques in the field of IVD, respectively. The ML algorithms are summarized as four aspects according to different learning tasks. Then, the combinations of ML with mass spectrometry, spectroscopy, and multi‐modal analysis for IVD are presented, and the roles of ML in these combinations are elucidated by some representative examples. This review aims to provide a systematic and comprehensive summary of the literature on ML‐assisted mass spectrometry or spectroscopy. We believe that it will facilitate researchers to select suitable ML algorithms for supplementing existing detection techniques or to develop the potential of coupling more detection techniques with ML, thus promoting the development of mass spectrometry and spectroscopy in IVD. Recently, mass spectrometric and spectroscopic methods coupled with machine learning have been increasingly employed in the field of in vitro diagnoses, such as pathogen identification, cancer diagnosis, and cell classification. In this review, the authors focus on the combinations of machine learning with mass spectrometry, spectroscopy, and multi‐modal analysis for in vitro diagnoses, and they highlight the roles of machine learning in these combinations through some representative examples. The authors furthermore discuss the challenges and perspectives of mass spectrometry, spectroscopy, multi‐modal analysis, and machine learning.
Abstract In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio‐fluids. Recently, mass spectrometry and spectroscopy have been increasingly employed in the field of IVD, due to their high accuracy, facile sample preparation, and rapid detection. Notably, the large datasets generated by these two technology methods provide a wealth of information but subsequently involve complex and time‐consuming processing works. Machine learning (ML), an important branch of artificial intelligence (AI), has emerged as a promising solution for the decoding of big data. ML imitates the human brain to process data, significantly improving accuracy and efficiency compared with traditional processing methods. In this review, we first introduce the commonly used ML algorithms and advanced mass spectrometry and spectroscopy techniques in the field of IVD, respectively. The ML algorithms are summarized as four aspects according to different learning tasks. Then, the combinations of ML with mass spectrometry, spectroscopy, and multi‐modal analysis for IVD are presented, and the roles of ML in these combinations are elucidated by some representative examples. This review aims to provide a systematic and comprehensive summary of the literature on ML‐assisted mass spectrometry or spectroscopy. We believe that it will facilitate researchers to select suitable ML algorithms for supplementing existing detection techniques or to develop the potential of coupling more detection techniques with ML, thus promoting the development of mass spectrometry and spectroscopy in IVD.
Author Wan, Jingjing
Chen, Xiaonan
Shu, Weikang
Zhao, Liang
Author_xml – sequence: 1
  givenname: Xiaonan
  surname: Chen
  fullname: Chen, Xiaonan
  organization: East China Normal University
– sequence: 2
  givenname: Weikang
  surname: Shu
  fullname: Shu, Weikang
  organization: East China Normal University
– sequence: 3
  givenname: Liang
  surname: Zhao
  fullname: Zhao, Liang
  email: lzhao@chem.ecnu.edu.cn
  organization: East China Normal University
– sequence: 4
  givenname: Jingjing
  orcidid: 0000-0001-9324-2647
  surname: Wan
  fullname: Wan, Jingjing
  email: jjwan@chem.ecnu.edu.cn
  organization: East China Normal University
BookMark eNp9kUtPWzEQha2KSgXKrj_AUrcNeOz7sJcIAY2ExKavnTXXj8TRjX1r34D49zWEbCrBxvYcf2c0mnNCjmKKjpAvwM6BMX7xa_n7nDPOGRPyAznmnZSLevw5en0LJeUnclbKhlW8BehVe0w2l_YBo3GWbrEUWiZn5py2bs7BUIz2oBSTpqrUj3WyhZq0m8ZqegzzujrNOkRHR4c5hriiPmUaIn0I1UhtwFVMJZTP5KPHsbiz1_uU_Ly5_nH1fXF3f7u8urxbmIYpWPhetHxwINnQSgBuOUP0tVJGSS8HYNKzgdtWddjYvhMee-FU02ILpvVKnJLlvq9NuNFTDlvMTzph0C9CyiuNeQ5mdJpzhRxsZ6Vqmm5ggwA0kktlHHaDaGqvr_teU05_d67MepN2OdbxNe97KaBhAJXie8rURZXsvDZhxjmkOGcMowamnyPSNSJ9iKiavv1nOoz6Bg57_DGM7uld9rngNWHxD00lovY
CitedBy_id crossref_primary_10_1002_smll_202404709
crossref_primary_10_1016_j_talanta_2024_126329
crossref_primary_10_1016_j_talanta_2024_126928
crossref_primary_10_1038_s44321_024_00169_0
crossref_primary_10_3390_molecules29092094
crossref_primary_10_1016_j_isci_2024_111022
crossref_primary_10_1021_acscentsci_3c01201
crossref_primary_10_1039_D4TB00700J
crossref_primary_10_1016_j_electacta_2024_145063
crossref_primary_10_1002_advs_202404047
crossref_primary_10_1021_acsami_4c11409
crossref_primary_10_1002_smtd_202301192
crossref_primary_10_3389_fonc_2024_1331215
crossref_primary_10_1021_acsomega_4c07990
crossref_primary_10_1016_j_talanta_2024_126673
crossref_primary_10_1039_D4MO00192C
crossref_primary_10_1007_s00253_025_13437_x
crossref_primary_10_1021_acsnano_3c10717
crossref_primary_10_3390_molecules29214988
crossref_primary_10_1002_smll_202207381
crossref_primary_10_1016_j_isci_2024_110345
crossref_primary_10_3389_fimmu_2025_1467027
crossref_primary_10_1002_smll_202310331
crossref_primary_10_1002_smll_202312211
crossref_primary_10_1038_s41467_024_51433_3
crossref_primary_10_1021_acs_nanolett_4c05155
crossref_primary_10_1016_j_intimp_2024_112238
crossref_primary_10_3892_ol_2024_14509
crossref_primary_10_1016_j_talanta_2025_127626
crossref_primary_10_3390_mi15070902
crossref_primary_10_1016_j_talanta_2024_125949
crossref_primary_10_1002_cnr2_70042
crossref_primary_10_1016_j_cej_2024_151890
crossref_primary_10_1016_j_talanta_2025_127550
crossref_primary_10_1016_j_cej_2024_157466
crossref_primary_10_1002_adma_202311431
crossref_primary_10_1021_acsnano_4c18470
crossref_primary_10_1002_advs_202305701
crossref_primary_10_1016_j_talanta_2024_127399
crossref_primary_10_3390_app15010121
crossref_primary_10_3390_metabo14080438
crossref_primary_10_1016_j_foodchem_2024_140931
crossref_primary_10_1016_j_talanta_2024_126442
crossref_primary_10_2147_DMSO_S453458
crossref_primary_10_1038_s41467_024_52310_9
Cites_doi 10.1007/s00180-017-0731-5
10.1021/acs.analchem.5b04520
10.1039/D1AN02297K
10.1016/j.snb.2020.128496
10.1016/j.jchromb.2021.122725
10.1016/j.snb.2018.10.105
10.1172/JCI131838
10.1016/j.cell.2018.05.015
10.1002/advs.202105231
10.1021/acs.analchem.2c00557
10.1021/acsnano.9b09493
10.1039/D1AN00726B
10.1021/jacs.6b08787
10.1002/adma.202000906
10.1021/acs.analchem.0c01660
10.3390/cancers13215388
10.1016/j.microc.2022.107821
10.1039/D1NR00102G
10.1016/j.bios.2014.06.058
10.1038/s41467-019-13056-x
10.1039/D1AN01163D
10.3390/e24050572
10.1038/s41591-021-01619-9
10.1021/acs.analchem.9b01159
10.1038/nbt1206-1565
10.1039/D0CC02329A
10.1002/mas.21602
10.1016/j.trac.2019.115801
10.1021/acs.analchem.9b03966
10.1016/j.jmsacl.2022.07.005
10.1039/D0CS00855A
10.1002/advs.202003893
10.1016/j.snb.2020.128563
10.1021/acssensors.0c02346
10.1039/C8AN00599K
10.1021/acs.analchem.1c02149
10.1021/acssensors.8b00230
10.1111/cup.13931
10.1016/j.snb.2021.130970
10.1016/j.patcog.2016.08.025
10.1016/j.aca.2013.01.022
10.1007/s11128-021-03361-0
10.1021/acs.analchem.1c00734
10.1002/anie.202103272
10.1016/j.bios.2022.114046
10.1016/j.trac.2022.116745
10.1021/acs.chemrev.7b00668
10.3390/toxins14110727
10.1016/j.trac.2019.04.015
10.1016/j.snb.2019.126956
10.1016/j.engappai.2017.06.004
10.1038/s41592-021-01198-0
10.1021/acs.analchem.1c04118
10.3390/ijerph17249515
10.1002/smtd.201700196
10.1002/smtd.202101220
10.1021/acs.analchem.1c03650
10.1002/advs.202203786
10.1039/D1NR00480H
10.1016/j.trac.2009.07.002
10.1021/acs.analchem.7b02265
10.1016/j.cell.2020.03.022
10.1021/acs.analchem.5b01139
10.1021/acsnano.0c05693
10.1016/j.talanta.2020.121722
10.1021/acssensors.7b00450
10.1002/anie.202001135
10.1038/s41467-020-17643-1
10.1126/sciadv.abh2724
10.1002/anie.202208138
10.1039/C4SC01329H
10.1016/j.aca.2019.11.014
10.1002/cem.1162
10.1002/adfm.202210267
10.1016/j.inffus.2020.01.005
10.1016/j.tranon.2020.100907
10.1021/acs.analchem.1c00943
10.3390/rs13081486
10.1039/C6NR06079J
10.3390/molecules24040743
10.1016/j.bios.2021.113269
10.1021/acsomega.9b03764
10.1021/acs.analchem.8b02913
10.1021/acs.analchem.8b00795
10.1002/jcla.24301
10.1016/j.snb.2022.132484
10.1021/acs.analchem.1c03369
10.1021/acsnano.8b04016
10.1039/D1SC02311J
10.1016/j.biomaterials.2016.05.026
10.1016/j.trac.2022.116605
10.1007/s11277-017-5224-x
10.1021/acs.chemrev.5b00100
10.1038/s41467-019-12527-5
10.1002/smll.201901190
10.1021/acs.analchem.6b02353
10.1021/jacs.0c10810
10.1021/acsnano.1c09864
10.1021/acs.analchem.0c02519
10.1016/j.bios.2022.114556
10.1007/s10462-020-09928-0
10.1038/nature23474
10.1016/j.trac.2020.116064
10.1002/smtd.202200264
10.1021/ac402175c
10.1002/cem.2609
10.1002/smtd.201900469
10.1002/smll.201902086
10.1002/anie.202101007
10.1146/annurev-anchem-071015-041620
10.1038/s41467-020-18684-2
10.1002/smtd.201900025
10.1021/acs.analchem.1c03508
10.1021/acssensors.1c01527
10.1080/00401706.2020.1791254
10.1039/C4AN02039A
10.1016/j.snb.2019.03.102
10.1039/D1AN02332B
10.1021/acssensors.0c00329
10.1021/acs.analchem.2c01069
10.1016/j.jelechem.2021.115730
10.1016/j.trac.2019.115796
10.1021/acs.nanolett.8b01526
10.1021/acs.analchem.7b04005
10.1007/s13042-016-0500-8
10.1109/TKDE.2018.2861858
10.1021/acsnano.9b04224
10.3390/ijms19051420
10.1016/j.bios.2020.112039
10.1016/j.snb.2018.05.081
10.1039/C9AN01140D
10.1186/s12874-016-0254-8
10.1021/acssensors.0c01935
10.1039/C6NR07979B
10.1007/s40820-022-00803-x
10.1021/acs.est.7b02963
10.1016/j.biotechadv.2016.01.006
10.1126/science.abh1623
10.1016/j.snb.2022.131590
10.1021/acssensors.9b01703
10.1016/j.aca.2011.09.042
10.1038/s41467-021-26633-w
10.1021/acs.nanolett.1c04722
10.1002/anie.201913970
10.1039/D1AY00357G
10.1016/j.drudis.2008.11.002
ContentType Journal Article
Copyright 2022 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/VIW.20220038
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2688-268X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_229a21d6d89446b0b31ac8289cea6b34
10_1002_VIW_20220038
VIW2251
Genre reviewArticle
GrantInformation_xml – fundername: State Key Laboratory of Oncogenes and Related Genes
  funderid: KF2105
– fundername: National Natural Science Foundation of China (NSFC)
  funderid: 22074044; 22122404
GroupedDBID 0R~
1OC
24P
7X7
8FI
8FJ
AAHHS
ABUWG
ACCFJ
ACCMX
ACXQS
ADKYN
ADPDF
ADZMN
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BENPR
CCPQU
EBS
FYUFA
GROUPED_DOAJ
HMCUK
IAO
IHR
INH
ITC
M~E
OVD
PIMPY
TEORI
UKHRP
WIN
AAYXX
CITATION
IGS
PHGZM
PHGZT
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
COVID
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c4091-f7352be180b58112d20aaf80b9c98f8b108f0b2d596a4d763fa73e945a51c5f93
IEDL.DBID 24P
ISSN 2688-3988
2688-268X
IngestDate Wed Aug 27 01:30:06 EDT 2025
Sat Aug 23 12:56:22 EDT 2025
Tue Jul 01 02:42:40 EDT 2025
Thu Apr 24 23:11:46 EDT 2025
Wed Jan 22 16:23:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4091-f7352be180b58112d20aaf80b9c98f8b108f0b2d596a4d763fa73e945a51c5f93
Notes X. N. Chen and W. K. Shu contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9324-2647
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20220038
PQID 2778314011
PQPubID 5068494
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_229a21d6d89446b0b31ac8289cea6b34
proquest_journals_2778314011
crossref_citationtrail_10_1002_VIW_20220038
crossref_primary_10_1002_VIW_20220038
wiley_primary_10_1002_VIW_20220038_VIW2251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle View (Beijing, China)
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2015; 140
2019; 91
2019; 290
2013; 769
2019; 10
2019; 13
2019; 15
2017; 89
2020; 17
2022; 24
2022; 26
2020; 14
2020; 321
2020; 11
2014; 28
2022; 22
2020; 322
2019; 281
2022; 215
2022; 28
2016; 34
2009; 14
2018; 3
2018; 173
2006; 24
2019; 24
2020; 92
2015; 87
2022; 36
2008; 22
2020; 1100
2022; 203
2017; 61
2022; 351
2017; 64
2021; 48
2019; 4
2019; 3
2019; 31
2021; 146
2022; 94
2013; 85
2020; 39
2020; 145
2021; 143
2020; 32
2021; 50
2016; 16
2022; 359
2017; 51
2015; 67
2017; 549
2018; 19
2018; 18
2021; 54
2015; 115
2022; 181
2020; 154
2022; 6
2018; 118
2022; 9
2022; 14
2018; 90
2018; 12
2021; 60
2016; 8
2022; 16
2019; 299
2016; 9
2022; 376
2017; 1
2021; 21
2022; 371
2017; 2
2020; 63
2020; 59
2016; 100
2020; 56
2020; 124
2017; 9
2020; 5
2014; 5
2020; 4
2020; 130
2020; 132
2017; 32
2019; 115
2016; 88
2021; 8
2021; 7
2021; 6
2018; 143
2021; 1179
2022; 152
2021; 223
2020; 181
2021; 900
2021; 185
2021; 93
2022; 157
2009; 28
2021; 14
2021; 13
2021; 12
2018; 271
2022
2022; 61
2021; 18
2016; 138
2017; 102
2012; 711
2022; 147
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_126_1
e_1_2_9_107_1
e_1_2_9_122_1
e_1_2_9_145_1
e_1_2_9_14_1
e_1_2_9_141_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_119_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_138_1
e_1_2_9_111_1
e_1_2_9_134_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_130_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_148_1
e_1_2_9_129_1
e_1_2_9_144_1
e_1_2_9_106_1
e_1_2_9_125_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_140_1
e_1_2_9_121_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_137_1
e_1_2_9_118_1
e_1_2_9_133_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_128_1
e_1_2_9_105_1
e_1_2_9_124_1
e_1_2_9_147_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_143_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_117_1
e_1_2_9_136_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_132_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_127_1
e_1_2_9_100_1
e_1_2_9_123_1
e_1_2_9_104_1
e_1_2_9_146_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_142_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
Lussier F. (e_1_2_9_120_1) 2019; 13
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_139_1
e_1_2_9_116_1
e_1_2_9_135_1
e_1_2_9_25_1
e_1_2_9_131_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 290
  start-page: 118
  year: 2019
  publication-title: Sens. Actuators B
– volume: 124
  year: 2020
  publication-title: TrAC Trends Anal. Chem.
– volume: 21
  start-page: 18
  year: 2021
  publication-title: Quantum Inf. Process
– volume: 94
  year: 2022
  publication-title: Anal. Chem.
– volume: 147
  start-page: 1394
  year: 2022
  publication-title: Analyst.
– volume: 115
  start-page: 162
  year: 2019
  publication-title: TrAC Trends Anal. Chem.
– volume: 6
  start-page: 1067
  year: 2021
  publication-title: ACS Sens.
– volume: 14
  start-page: 28
  year: 2020
  publication-title: ACS Nano.
– volume: 9
  start-page: 2640
  year: 2017
  publication-title: Nanoscale
– volume: 92
  start-page: 1653
  year: 2020
  publication-title: Anal. Chem.
– volume: 14
  start-page: 75
  year: 2022
  publication-title: Nanomicro. Lett.
– volume: 90
  start-page: 6348
  year: 2018
  publication-title: Anal. Chem.
– volume: 24
  start-page: 572
  year: 2022
  publication-title: Entropy
– volume: 67
  start-page: 73
  year: 2015
  publication-title: Biosens. Bioelectron.
– volume: 64
  start-page: 67
  year: 2017
  publication-title: Eng. Appl. Artif. Intell.
– volume: 13
  start-page: 1919
  year: 2021
  publication-title: Anal. Methods
– volume: 60
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 181
  year: 2022
  publication-title: Microchem
– volume: 34
  start-page: 234
  year: 2016
  publication-title: Biotechnol. Adv.
– volume: 10
  start-page: 4501
  year: 2019
  publication-title: Nat. Commun.
– volume: 130
  start-page: 1363
  year: 2020
  publication-title: J. Clin. Invest.
– volume: 13
  start-page: 1486
  year: 2021
  publication-title: Remote Sens.
– volume: 115
  year: 2015
  publication-title: Chem. Rev.
– volume: 54
  start-page: 3473
  year: 2021
  publication-title: Artif. Intell. Rev.
– volume: 87
  start-page: 7698
  year: 2015
  publication-title: Anal. Chem.
– volume: 9
  start-page: 335
  year: 2016
  publication-title: Int. J. Mach. Learn Cyber.
– volume: 322
  year: 2020
  publication-title: Sens. Actuators B
– volume: 13
  start-page: 7348
  year: 2021
  publication-title: Nanoscale
– volume: 145
  start-page: 157
  year: 2020
  publication-title: The Analyst
– volume: 223
  year: 2021
  publication-title: Talanta
– volume: 5
  start-page: 2041
  year: 2020
  publication-title: ACS Omega
– volume: 6
  start-page: 4067
  year: 2021
  publication-title: ACS Sens.
– volume: 14
  year: 2021
  publication-title: Transl. Oncol.
– volume: 50
  start-page: 556
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 48
  start-page: 739
  year: 2021
  publication-title: J. Cutan. Pathol.
– volume: 16
  start-page: 154
  year: 2016
  publication-title: BMC Med. Res. Methodol.
– volume: 59
  start-page: 5972
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 88
  start-page: 5710
  year: 2016
  publication-title: Anal. Chem.
– volume: 5
  start-page: 3789
  year: 2014
  publication-title: Chem. Sci.
– volume: 28
  start-page: 164
  year: 2022
  publication-title: Nat. Med.
– volume: 18
  start-page: 4447
  year: 2018
  publication-title: Nano. Lett.
– volume: 203
  year: 2022
  publication-title: Biosens. Bioelectron.
– volume: 93
  start-page: 7774
  year: 2021
  publication-title: Anal. Chem.
– volume: 8
  year: 2016
  publication-title: Nanoscale
– volume: 4
  start-page: 3227
  year: 2019
  publication-title: ACS Sens.
– volume: 61
  start-page: 524
  year: 2017
  publication-title: Pattern Recognit.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 13
  start-page: 7574
  year: 2021
  publication-title: Nanoscale
– volume: 140
  start-page: 1090
  year: 2015
  publication-title: Analyst
– volume: 22
  start-page: 565
  year: 2008
  publication-title: J. Chemom.
– volume: 5
  start-page: 1689
  year: 2020
  publication-title: ACS Sens.
– volume: 14
  year: 2020
  publication-title: ACS Nano.
– volume: 10
  start-page: 5416
  year: 2019
  publication-title: Nat. Commun.
– volume: 39
  start-page: 245
  year: 2020
  publication-title: Mass Spectrom. Rev.
– volume: 92
  start-page: 9338
  year: 2020
  publication-title: Anal. Chem.
– volume: 94
  start-page: 2785
  year: 2022
  publication-title: Anal. Chem.
– volume: 143
  start-page: 3526
  year: 2018
  publication-title: Analyst
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 154
  year: 2020
  publication-title: Biosens. Bioelectron.
– volume: 91
  start-page: 8979
  year: 2019
  publication-title: Anal. Chem.
– volume: 24
  start-page: 1565
  year: 2006
  publication-title: Nat. Biotechnol.
– volume: 13
  start-page: 5388
  year: 2021
  publication-title: Cancers
– volume: 16
  start-page: 2852
  year: 2022
  publication-title: ACS Nano.
– volume: 12
  start-page: 6339
  year: 2021
  publication-title: Nat. Commun.
– volume: 900
  year: 2021
  publication-title: J. Electroanal. Chem.
– volume: 94
  start-page: 829
  year: 2022
  publication-title: Anal. Chem.
– volume: 90
  year: 2018
  publication-title: Anal. Chem.
– volume: 6
  year: 2022
  publication-title: Small Methods
– volume: 711
  start-page: 7
  year: 2012
  publication-title: Anal. Chim. Acta.
– volume: 32
  start-page: 909
  year: 2017
  publication-title: Comput. Stat.
– volume: 281
  start-page: 221
  year: 2019
  publication-title: Sens. Actuators B
– volume: 14
  start-page: 120
  year: 2009
  publication-title: Drug Discov Today
– volume: 59
  start-page: 44
  year: 2020
  publication-title: Inf. Fusion
– volume: 146
  start-page: 6496
  year: 2021
  publication-title: Analyst
– volume: 102
  start-page: 1645
  year: 2017
  publication-title: Wireless Pers. Commun.
– volume: 92
  year: 2020
  publication-title: Anal. Chem.
– volume: 18
  start-page: 799
  year: 2021
  publication-title: Nat. Methods
– volume: 3
  start-page: 1471
  year: 2018
  publication-title: ACS Sens.
– volume: 146
  start-page: 4495
  year: 2021
  publication-title: Analyst
– volume: 549
  start-page: 195
  year: 2017
  publication-title: Nature
– volume: 2
  start-page: 1345
  year: 2017
  publication-title: ACS Sens.
– volume: 100
  start-page: 17
  year: 2016
  publication-title: Biomaterials
– volume: 118
  start-page: 4946
  year: 2018
  publication-title: Chem. Rev.
– volume: 28
  start-page: 1127
  year: 2009
  publication-title: Trends Analyt. Chem.
– volume: 1179
  year: 2021
  publication-title: J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.
– volume: 132
  year: 2020
  publication-title: Trends Analyt. Chem.
– volume: 271
  start-page: 15
  year: 2018
  publication-title: Sens. Actuators B
– volume: 185
  year: 2021
  publication-title: Biosens. Bioelectron.
– volume: 143
  start-page: 1722
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 215
  year: 2022
  publication-title: Biosens. Bioelectron.
– volume: 5
  start-page: 3617
  year: 2020
  publication-title: ACS Sens.
– volume: 157
  year: 2022
  publication-title: TrAC Trends Anal. Chem.
– volume: 94
  start-page: 1990
  year: 2022
  publication-title: Anal. Chem.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 89
  start-page: 9438
  year: 2017
  publication-title: Anal. Chem.
– volume: 24
  start-page: 743
  year: 2019
  publication-title: Molecules
– volume: 147
  start-page: 1663
  year: 2022
  publication-title: Analyst
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 19
  start-page: 1420
  year: 2018
  publication-title: Int. J. Mol. Sci.
– volume: 51
  start-page: 8805
  year: 2017
  publication-title: Environ. Sci. Technol.
– year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 36
  year: 2022
  publication-title: J. Clin. Lab. Anal.
– volume: 9
  start-page: 411
  year: 2016
  publication-title: Annu. Rev. Anal. Chem.
– volume: 88
  start-page: 9614
  year: 2016
  publication-title: Anal. Chem.
– volume: 93
  year: 2021
  publication-title: Anal. Chem.
– volume: 59
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 31
  start-page: 1520
  year: 2019
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 769
  start-page: 30
  year: 2013
  publication-title: Anal. Chim. Acta.
– volume: 359
  year: 2022
  publication-title: Sens. Actuators B
– volume: 15
  year: 2019
  publication-title: Small
– volume: 299
  year: 2019
  publication-title: Sens. Actuators B
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 12
  year: 2021
  publication-title: Chem. Sci.
– volume: 13
  start-page: 1403
  year: 2019
  publication-title: ACS Nano.
– volume: 14
  start-page: 4244
  year: 2020
  publication-title: ACS Nano.
– volume: 1100
  start-page: 75
  year: 2020
  publication-title: Anal. Chim. Acta.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 11
  start-page: 5033
  year: 2020
  publication-title: Nat. Commun.
– volume: 26
  start-page: 1
  year: 2022
  publication-title: J. Mass. Spectrom. Adv. Clin. Lab.
– volume: 85
  year: 2013
  publication-title: Anal. Chem.
– volume: 152
  year: 2022
  publication-title: TrAC Trends Anal. Chem.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 90
  start-page: 952
  year: 2018
  publication-title: Anal. Chem.
– volume: 63
  start-page: 263
  year: 2020
  publication-title: Technometrics
– volume: 94
  start-page: 7286
  year: 2022
  publication-title: Anal. Chem.
– volume: 17
  start-page: 9515
  year: 2020
  publication-title: Int. J. Environ. Res. Public Health
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 56
  start-page: 6656
  year: 2020
  publication-title: Chem. Commun.
– volume: 173
  start-page: 1581
  year: 2018
  publication-title: Cell
– volume: 181
  start-page: 92
  year: 2020
  publication-title: Cell
– volume: 376
  year: 2022
  publication-title: Science
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 9958
  year: 2018
  publication-title: ACS Nano.
– volume: 321
  year: 2020
  publication-title: Sens. Actuators B Chem.
– volume: 124
  year: 2020
  publication-title: TrAC Trends Analyt. Chem.
– volume: 22
  start-page: 3620
  year: 2022
  publication-title: Nano. Lett.
– volume: 371
  year: 2022
  publication-title: Sens. Actuators B
– volume: 351
  year: 2022
  publication-title: Sens. Actuators B
– volume: 28
  start-page: 213
  year: 2014
  publication-title: J. Chemom.
– volume: 14
  start-page: 727
  year: 2022
  publication-title: Toxins
– volume: 11
  start-page: 3903
  year: 2020
  publication-title: Nat. Commun.
– ident: e_1_2_9_62_1
  doi: 10.1007/s00180-017-0731-5
– ident: e_1_2_9_105_1
  doi: 10.1021/acs.analchem.5b04520
– ident: e_1_2_9_14_1
  doi: 10.1039/D1AN02297K
– ident: e_1_2_9_47_1
  doi: 10.1016/j.snb.2020.128496
– ident: e_1_2_9_92_1
  doi: 10.1016/j.jchromb.2021.122725
– ident: e_1_2_9_27_1
  doi: 10.1016/j.snb.2018.10.105
– ident: e_1_2_9_88_1
  doi: 10.1172/JCI131838
– ident: e_1_2_9_40_1
  doi: 10.1016/j.cell.2018.05.015
– ident: e_1_2_9_69_1
  doi: 10.1002/advs.202105231
– ident: e_1_2_9_111_1
  doi: 10.1021/acs.analchem.2c00557
– ident: e_1_2_9_130_1
  doi: 10.1021/acsnano.9b09493
– ident: e_1_2_9_80_1
  doi: 10.1039/D1AN00726B
– ident: e_1_2_9_138_1
  doi: 10.1021/jacs.6b08787
– ident: e_1_2_9_94_1
  doi: 10.1002/adma.202000906
– ident: e_1_2_9_98_1
  doi: 10.1021/acs.analchem.0c01660
– ident: e_1_2_9_108_1
  doi: 10.3390/cancers13215388
– ident: e_1_2_9_77_1
  doi: 10.1016/j.microc.2022.107821
– ident: e_1_2_9_79_1
  doi: 10.1039/D1NR00102G
– ident: e_1_2_9_34_1
  doi: 10.1016/j.bios.2014.06.058
– ident: e_1_2_9_148_1
  doi: 10.1038/s41467-019-13056-x
– ident: e_1_2_9_140_1
  doi: 10.1039/D1AN01163D
– ident: e_1_2_9_65_1
  doi: 10.3390/e24050572
– ident: e_1_2_9_97_1
  doi: 10.1038/s41591-021-01619-9
– ident: e_1_2_9_110_1
  doi: 10.1021/acs.analchem.9b01159
– ident: e_1_2_9_63_1
  doi: 10.1038/nbt1206-1565
– ident: e_1_2_9_90_1
  doi: 10.1039/D0CC02329A
– ident: e_1_2_9_107_1
  doi: 10.1002/mas.21602
– ident: e_1_2_9_146_1
  doi: 10.1016/j.trac.2019.115801
– ident: e_1_2_9_101_1
  doi: 10.1021/acs.analchem.9b03966
– ident: e_1_2_9_76_1
  doi: 10.1016/j.jmsacl.2022.07.005
– ident: e_1_2_9_117_1
  doi: 10.1039/D0CS00855A
– ident: e_1_2_9_87_1
  doi: 10.1002/advs.202003893
– ident: e_1_2_9_124_1
  doi: 10.1016/j.snb.2020.128563
– ident: e_1_2_9_2_1
  doi: 10.1021/acssensors.0c02346
– ident: e_1_2_9_55_1
  doi: 10.1039/C8AN00599K
– ident: e_1_2_9_84_1
  doi: 10.1021/acs.analchem.1c02149
– ident: e_1_2_9_30_1
  doi: 10.1021/acssensors.8b00230
– ident: e_1_2_9_58_1
  doi: 10.1111/cup.13931
– ident: e_1_2_9_21_1
  doi: 10.1016/j.snb.2021.130970
– ident: e_1_2_9_49_1
  doi: 10.1016/j.patcog.2016.08.025
– ident: e_1_2_9_60_1
  doi: 10.1016/j.aca.2013.01.022
– ident: e_1_2_9_64_1
  doi: 10.1007/s11128-021-03361-0
– ident: e_1_2_9_135_1
  doi: 10.1021/acs.analchem.1c00734
– ident: e_1_2_9_132_1
  doi: 10.1002/anie.202103272
– ident: e_1_2_9_9_1
  doi: 10.1016/j.bios.2022.114046
– ident: e_1_2_9_115_1
  doi: 10.1016/j.trac.2022.116745
– ident: e_1_2_9_125_1
  doi: 10.1021/acs.chemrev.7b00668
– ident: e_1_2_9_15_1
  doi: 10.3390/toxins14110727
– ident: e_1_2_9_104_1
  doi: 10.1016/j.trac.2019.04.015
– ident: e_1_2_9_29_1
  doi: 10.1016/j.snb.2019.126956
– ident: e_1_2_9_45_1
  doi: 10.1016/j.engappai.2017.06.004
– ident: e_1_2_9_143_1
  doi: 10.1038/s41592-021-01198-0
– ident: e_1_2_9_144_1
  doi: 10.1021/acs.analchem.1c04118
– ident: e_1_2_9_43_1
  doi: 10.3390/ijerph17249515
– ident: e_1_2_9_6_1
  doi: 10.1002/smtd.201700196
– ident: e_1_2_9_95_1
  doi: 10.1002/smtd.202101220
– ident: e_1_2_9_126_1
  doi: 10.1021/acs.analchem.1c03650
– ident: e_1_2_9_137_1
  doi: 10.1002/advs.202203786
– ident: e_1_2_9_35_1
  doi: 10.1039/D1NR00480H
– ident: e_1_2_9_53_1
  doi: 10.1016/j.trac.2009.07.002
– ident: e_1_2_9_109_1
  doi: 10.1021/acs.analchem.7b02265
– ident: e_1_2_9_41_1
  doi: 10.1016/j.cell.2020.03.022
– ident: e_1_2_9_86_1
  doi: 10.1021/acs.analchem.5b01139
– ident: e_1_2_9_121_1
  doi: 10.1021/acsnano.0c05693
– ident: e_1_2_9_12_1
  doi: 10.1016/j.talanta.2020.121722
– ident: e_1_2_9_70_1
  doi: 10.1021/acssensors.7b00450
– ident: e_1_2_9_3_1
  doi: 10.1002/anie.202001135
– ident: e_1_2_9_74_1
  doi: 10.1038/s41467-020-17643-1
– ident: e_1_2_9_85_1
  doi: 10.1126/sciadv.abh2724
– ident: e_1_2_9_78_1
  doi: 10.1002/anie.202208138
– ident: e_1_2_9_8_1
  doi: 10.1039/C4SC01329H
– ident: e_1_2_9_142_1
  doi: 10.1016/j.aca.2019.11.014
– ident: e_1_2_9_59_1
  doi: 10.1002/cem.1162
– ident: e_1_2_9_139_1
  doi: 10.1002/adfm.202210267
– ident: e_1_2_9_51_1
  doi: 10.1016/j.inffus.2020.01.005
– ident: e_1_2_9_89_1
  doi: 10.1016/j.tranon.2020.100907
– ident: e_1_2_9_102_1
  doi: 10.1021/acs.analchem.1c00943
– ident: e_1_2_9_50_1
  doi: 10.3390/rs13081486
– ident: e_1_2_9_13_1
  doi: 10.1039/C6NR06079J
– ident: e_1_2_9_134_1
  doi: 10.3390/molecules24040743
– ident: e_1_2_9_71_1
  doi: 10.1016/j.bios.2021.113269
– ident: e_1_2_9_42_1
  doi: 10.1021/acsomega.9b03764
– ident: e_1_2_9_141_1
  doi: 10.1021/acs.analchem.8b02913
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.analchem.8b00795
– ident: e_1_2_9_114_1
  doi: 10.1002/jcla.24301
– ident: e_1_2_9_131_1
  doi: 10.1016/j.snb.2022.132484
– ident: e_1_2_9_5_1
  doi: 10.1021/acs.analchem.1c03369
– ident: e_1_2_9_31_1
  doi: 10.1021/acsnano.8b04016
– ident: e_1_2_9_99_1
  doi: 10.1039/D1SC02311J
– ident: e_1_2_9_11_1
  doi: 10.1016/j.biomaterials.2016.05.026
– ident: e_1_2_9_16_1
  doi: 10.1016/j.trac.2022.116605
– ident: e_1_2_9_66_1
  doi: 10.1007/s11277-017-5224-x
– ident: e_1_2_9_10_1
  doi: 10.1021/acs.chemrev.5b00100
– ident: e_1_2_9_133_1
  doi: 10.1038/s41467-019-12527-5
– ident: e_1_2_9_26_1
  doi: 10.1002/smll.201901190
– volume: 13
  start-page: 1403
  year: 2019
  ident: e_1_2_9_120_1
  publication-title: ACS Nano.
– ident: e_1_2_9_17_1
  doi: 10.1021/acs.analchem.6b02353
– ident: e_1_2_9_23_1
  doi: 10.1021/jacs.0c10810
– ident: e_1_2_9_36_1
  doi: 10.1021/acsnano.1c09864
– ident: e_1_2_9_112_1
  doi: 10.1021/acs.analchem.0c02519
– ident: e_1_2_9_19_1
  doi: 10.1016/j.bios.2022.114556
– ident: e_1_2_9_48_1
  doi: 10.1007/s10462-020-09928-0
– ident: e_1_2_9_38_1
  doi: 10.1038/nature23474
– ident: e_1_2_9_145_1
  doi: 10.1016/j.trac.2020.116064
– ident: e_1_2_9_75_1
  doi: 10.1002/smtd.202200264
– ident: e_1_2_9_136_1
  doi: 10.1021/ac402175c
– ident: e_1_2_9_56_1
  doi: 10.1002/cem.2609
– ident: e_1_2_9_96_1
  doi: 10.1002/smtd.201900469
– ident: e_1_2_9_82_1
  doi: 10.1002/smll.201902086
– ident: e_1_2_9_4_1
  doi: 10.1002/anie.202101007
– ident: e_1_2_9_106_1
  doi: 10.1146/annurev-anchem-071015-041620
– ident: e_1_2_9_68_1
  doi: 10.1038/s41467-020-18684-2
– ident: e_1_2_9_39_1
  doi: 10.1002/smtd.201900025
– ident: e_1_2_9_127_1
  doi: 10.1021/acs.analchem.1c03508
– ident: e_1_2_9_20_1
  doi: 10.1021/acssensors.1c01527
– ident: e_1_2_9_61_1
  doi: 10.1080/00401706.2020.1791254
– ident: e_1_2_9_100_1
  doi: 10.1039/C4AN02039A
– ident: e_1_2_9_129_1
  doi: 10.1016/j.snb.2019.03.102
– ident: e_1_2_9_33_1
  doi: 10.1039/D1AN02332B
– ident: e_1_2_9_67_1
  doi: 10.1021/acssensors.0c00329
– ident: e_1_2_9_116_1
  doi: 10.1021/acs.analchem.2c01069
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jelechem.2021.115730
– ident: e_1_2_9_37_1
  doi: 10.1016/j.trac.2019.115796
– ident: e_1_2_9_46_1
  doi: 10.1021/acs.nanolett.8b01526
– ident: e_1_2_9_103_1
  doi: 10.1021/acs.analchem.7b04005
– ident: e_1_2_9_54_1
  doi: 10.1007/s13042-016-0500-8
– ident: e_1_2_9_52_1
  doi: 10.1109/TKDE.2018.2861858
– ident: e_1_2_9_118_1
  doi: 10.1021/acsnano.9b04224
– ident: e_1_2_9_147_1
  doi: 10.3390/ijms19051420
– ident: e_1_2_9_73_1
  doi: 10.1016/j.bios.2020.112039
– ident: e_1_2_9_25_1
  doi: 10.1016/j.snb.2018.05.081
– ident: e_1_2_9_18_1
  doi: 10.1039/C9AN01140D
– ident: e_1_2_9_57_1
  doi: 10.1186/s12874-016-0254-8
– ident: e_1_2_9_72_1
  doi: 10.1021/acssensors.0c01935
– ident: e_1_2_9_81_1
  doi: 10.1039/C6NR07979B
– ident: e_1_2_9_119_1
  doi: 10.1007/s40820-022-00803-x
– ident: e_1_2_9_7_1
  doi: 10.1021/acs.est.7b02963
– ident: e_1_2_9_28_1
  doi: 10.1016/j.biotechadv.2016.01.006
– ident: e_1_2_9_93_1
  doi: 10.1126/science.abh1623
– ident: e_1_2_9_128_1
  doi: 10.1016/j.snb.2022.131590
– ident: e_1_2_9_24_1
  doi: 10.1021/acssensors.9b01703
– ident: e_1_2_9_83_1
  doi: 10.1016/j.aca.2011.09.042
– ident: e_1_2_9_113_1
  doi: 10.1038/s41467-021-26633-w
– ident: e_1_2_9_123_1
  doi: 10.1021/acs.nanolett.1c04722
– ident: e_1_2_9_122_1
  doi: 10.1002/anie.201913970
– ident: e_1_2_9_32_1
  doi: 10.1039/D1AY00357G
– ident: e_1_2_9_91_1
  doi: 10.1016/j.drudis.2008.11.002
SSID ssj0002511795
Score 2.4474385
SecondaryResourceType review_article
Snippet In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio‐fluids. Recently, mass spectrometry and...
In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio-fluids. Recently, mass spectrometry and...
Abstract In vitro diagnosis (IVD) is one vital component of medical tests that detects biological samples of tissues or bio‐fluids. Recently, mass spectrometry...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Clustering
Datasets
Discriminant analysis
Enzymes
in vitro diagnosis
Ions
Machine learning
Mass spectrometry
Medical research
Metabolism
multi‐modal analysis
Scientific imaging
spectroscopy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJy-iqFhf5KAXpdgkfSRHFRcV9ORjbyVPWdGuuOrvdyZtl92DevGYNIEwM02-r518Q8hBlWlXWp6nAAcCEJQspIpbnQrnhWPOMR0lhW5uy8v7_HpUjOZKfWFOWCsP3BruhHOlOXOlkwqYi8mMYNoiTbBel0ZEJVA48-bIFO7BCJyrWHKFlxAKQknZZb3Ds5OHq0dghhzzsuTCeRRl-xew5jxijUfOcJWsdFiRnrZrXCNLvlknz6fdX3v6CriXxpuSKDmASvtUN67vwesm0NNWiJ5SO_l8e4FJ-N0VZmIGpaddyYgnCsiVjhv6NYaJ1LXZd-PpBrkfXtydX6ZdwYTUAk1jaagAThnPZGYKCUDK8UzrAC1llQzSsEyGzHBXqFLnDnaWoCvhVV7ogtkiKLFJBs2k8VuEBlOhtLwvrTO515n2YH9TuuBtJfJCJeS4N1ttOzVxLGrxUrc6yLwGI9e9kRNyOBv91qpo_DDuDD0wG4Pa17EDIqLuIqL-KyISstv7r-5eyGnNq0oKJJMsIUfRp78uBBuw07Ht_1jQDlnGIvVtrvcuGXy8f_o9gDIfZj9G7TdBxO1w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (Proquest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8QgECa6XrwYjRrXVzjoRdNYKC3lZFajURM9-dhbw9Os0e7qqr_fmZauetAjBAhhYPhmGL4hZE-m2hWWiwTgQAADJQ2J4lYnmfOZY84x3VAKXd8UF3fiapgPo8NtGsMqO53YKGo3tugjP-JSlhlaA-x48ppg1ih8XY0pNObJAlKXYUiXHMqZjwXhs1R5jHeH8tH95QPYhBwjsspfN1FD2P8LZf7Eqs1lc75MliJKpINWrCtkzter5GkQ3-vpCyBe2vyRRLIB5NinunZdDX40gZo2N_SU2vHH5Bk6occVemLspKcxWcQjBcxKRzX9HEFH6tq4u9F0jdydn92eXiQxVUJiwUBjSZAApIxnZWryEiCU46nWAUrKqjKUhqVlSA13uSq0cKBTgpaZVyLXObN5UNk66dXj2m8QGoxEUnlfWGeE16n2pRKmcMFbmYlc9clht2yVjTzimM7iuWoZkHkFi1x1i9wn-7PWk5Y_4492JyiBWRtkvW4qxm-PVTxEFedKc-YKBzMShUlNxrRFk9F6XZhM9Ml2J78qHsVp9b1x-uSgkem_E8EC6Di2-f9YW2QRE8-38dvbpPf-9uF3AJ68m91mD34BqW7jRQ
  priority: 102
  providerName: ProQuest
Title Advanced mass spectrometric and spectroscopic methods coupled with machine learning for in vitro diagnosis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20220038
https://www.proquest.com/docview/2778314011
https://doaj.org/article/229a21d6d89446b0b31ac8289cea6b34
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagvXBBIEAstCsf4AKKGj_ix7FFWxWkVhWisLfIz2pRm626LUd-e2cc79IeQOISyc44smyP_c1k_A0h73TrogpcNgAHMhgobW4sD64RMYnIYmSuUAodn6ijM_ll3s2rww3vwoz8EBuHG2pG2a9RwZ1f7f0hDf3--QeYdxyDq8xjso23a5E7n8vTjY8F4bMuiVe4ggUhrDE19h3e7d3_wINTqZD3P0Cc93FrOXgOn5GnFTHS_XGKn5NHaXhBfu7Xf_f0EtAvLfclkXgA-fapG-K6Bi-dQM2YJ3pFw_L26gIaofcVWmIcZaI1ccQ5BfxKFwP9tYCGNI4xeIvVS3J2OPv26aipaROaAMYaa7IGUOUTM63vDMCpyFvnMpRssCYbz1qTW89jZ5WTEfaX7LRIVnauY6HLVrwiW8NySK8JzV4jwXxSIXqZXOuSsdKrmFPQQnZ2Qj6uh60PlVMcU1tc9CMbMu9hkPv1IE_I-4301cil8Re5A5yBjQwyYJeK5fV5XxWq59w6zqKK0COpfOsFcwHNx5Cc8kJOyM56_vqqlquea20EmpRsQj6UOf1nR7AA-x178z_Cb8kTTEk_RnbvkK2b69u0C8Dlxk_L6oSnnusp2T6YnZx-nRYnADyPf8_uAJg86mM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTxQxFH8hy0EvRoPGVdQe4KKZMO10PnowBhSyK7AxBpTb2E-yBmdXFjT-U_6NvjfTWeAgN45t2knT99Hf67z-HsBGmWpXWCEThAMBA5Q0JEpYnWTOZ447x3VLKXQ4KUbH8uNJfrICf_u3MJRW2fvE1lG7maU78i1RllVG0QB_N_-ZUNUo-rval9Do1GLf__mNIdvi7fgDyndTiL3do_ejJFYVSCzGMjwJJWIO43mVmrxCtOFEqnXAlrKqCpXhaRVSI1yuCi0dml_QZeaVzHXObR6IfAld_qrMMJQZwOrO7uTT5-WtDgH2UuUxwx7bW1_GXzEKFZQDVt04-9oSATdw7XV03B5vew_hQcSlbLtTpEew4ps1-L4dMwTYD8TYrH2VSfQGxOrPdOP6Hnragj1dNeoFs7PL-RlOojtenEnZmp7F8hSnDFEymzbs1xQnMtdl-k0Xj-H4TrbxCQyaWeOfAgumJBp7X1hnpNep9pWSpnDB2zKTuRrCm37bahuZy6mAxlndcS6LGje57jd5CJvL0fOOseM_43ZIAssxxLPddszOT-totrUQSgvuCocrkoVJTca1pSDVel2YTA5hvZdfHY1_UV-p6hBetzK9dSHUQK_Kn93-rVdwb3R0eFAfjCf7z-E-lb3vssfXYXBxfulfIDi6MC-jRjL4dtdG8A-cIiB9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PTxQxFG4IJMaL0YhxFbQHuWgmO-10ptMDISBuWFHiQXRvtT_JGpxdWMD4r_HX-d5MZ5UD3Di26Wsmfa-v3-u8fo-QNzI3vnJcZAAHIgQoecwUdyYrfCg8856ZllLo81F1cCw-TsrJCrnu38JgWmXvE1tH7WcO78iHXMq6wGiADWNKi_iyP9qZn2VYQQr_tPblNDoTOQx_fkP4ttge74Outzgfffj6_iBLFQYyB3ENy6IE_GEDq3Nb1oA8PM-NidBSTtWxtiyvY265L1VlhIetGI0sghKlKZkrIxIxgftfg1kY7jE5kcv7HYTuUpUp1x7aw2_j7xCPcswGq2-cgm2xgBsI93-c3B50o8fkUUKodLczqSdkJTRPyc_dlCtAfwHapu37TCQ6QH5_ahrf9-AjF-jp6lIvqJtdzk9BCG97QRLzNgNNhSpOKOBlOm3o1RQEqe9y_qaLdXJ8L4v4jKw2syY8JzRaiYT2oXLeimByE2olbOVjcLIQpRqQd_2yaZc4zLGUxqnu2Je5hkXW_SIPyNZy9Lzj7rhl3B5qYDkGGbfbjtn5iU4bWHOuDGe-8vBForK5LZhxGK66YCpbiAHZ6PWnkxtY6H9GOyBvW53e-SHYAP_KXtw912vyAExffxofHb4kD0G46NLIN8jqxfll2ASUdGFfteZIyY_7tv-_-kAjTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+mass+spectrometric+and+spectroscopic+methods+coupled+with+machine+learning+for+in+vitro+diagnosis&rft.jtitle=View+%28Beijing%2C+China%29&rft.au=Chen%2C+Xiaonan&rft.au=Shu%2C+Weikang&rft.au=Zhao%2C+Liang&rft.au=Wan%2C+Jingjing&rft.date=2023-02-01&rft.issn=2688-268X&rft.eissn=2688-268X&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1002%2FVIW.20220038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_VIW_20220038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-3988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-3988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-3988&client=summon