A transfer learning based deep neural network adaptive controller for the Furuta pendulum subject to uncertain disturbance signals

In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for the underactuated mechanical system referred to as the Futura Pendulum. The study has a hybrid learning structure that combines offline super...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 24012 - 12
Main Authors Yilmaz, Firat Can, Onler, Recep, Tatlicioglu, Enver, Zergeroglu, Erkan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for the underactuated mechanical system referred to as the Futura Pendulum. The study has a hybrid learning structure that combines offline supervised pretraining of the DNN’s inner layers with an online adaptation law that updates the output-layer weights in real time. The adaptive mechanism is supported by a Lyapunov-based stability analysis, which guarantees the convergence of the tracking error and the boundedness of all closed-loop signals. The impact of DNN layer size on performance was investigated using standard indices (ISE, IAE, ITSE, and ITAE). The results show that the controller achieves stable tracking with minimal chattering, even under random disturbances. Numerical simulations validate the robustness, adaptability, and improved efficiency of the proposed control method, demonstrating its potential for real-time implementation in uncertain and dynamic environments.
AbstractList In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for the underactuated mechanical system referred to as the Futura Pendulum. The study has a hybrid learning structure that combines offline supervised pretraining of the DNN’s inner layers with an online adaptation law that updates the output-layer weights in real time. The adaptive mechanism is supported by a Lyapunov-based stability analysis, which guarantees the convergence of the tracking error and the boundedness of all closed-loop signals. The impact of DNN layer size on performance was investigated using standard indices (ISE, IAE, ITSE, and ITAE). The results show that the controller achieves stable tracking with minimal chattering, even under random disturbances. Numerical simulations validate the robustness, adaptability, and improved efficiency of the proposed control method, demonstrating its potential for real-time implementation in uncertain and dynamic environments.
Abstract In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for the underactuated mechanical system referred to as the Futura Pendulum. The study has a hybrid learning structure that combines offline supervised pretraining of the DNN’s inner layers with an online adaptation law that updates the output-layer weights in real time. The adaptive mechanism is supported by a Lyapunov-based stability analysis, which guarantees the convergence of the tracking error and the boundedness of all closed-loop signals. The impact of DNN layer size on performance was investigated using standard indices (ISE, IAE, ITSE, and ITAE). The results show that the controller achieves stable tracking with minimal chattering, even under random disturbances. Numerical simulations validate the robustness, adaptability, and improved efficiency of the proposed control method, demonstrating its potential for real-time implementation in uncertain and dynamic environments.
In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for the underactuated mechanical system referred to as the Futura Pendulum. The study has a hybrid learning structure that combines offline supervised pretraining of the DNN's inner layers with an online adaptation law that updates the output-layer weights in real time. The adaptive mechanism is supported by a Lyapunov-based stability analysis, which guarantees the convergence of the tracking error and the boundedness of all closed-loop signals. The impact of DNN layer size on performance was investigated using standard indices (ISE, IAE, ITSE, and ITAE). The results show that the controller achieves stable tracking with minimal chattering, even under random disturbances. Numerical simulations validate the robustness, adaptability, and improved efficiency of the proposed control method, demonstrating its potential for real-time implementation in uncertain and dynamic environments.In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for the underactuated mechanical system referred to as the Futura Pendulum. The study has a hybrid learning structure that combines offline supervised pretraining of the DNN's inner layers with an online adaptation law that updates the output-layer weights in real time. The adaptive mechanism is supported by a Lyapunov-based stability analysis, which guarantees the convergence of the tracking error and the boundedness of all closed-loop signals. The impact of DNN layer size on performance was investigated using standard indices (ISE, IAE, ITSE, and ITAE). The results show that the controller achieves stable tracking with minimal chattering, even under random disturbances. Numerical simulations validate the robustness, adaptability, and improved efficiency of the proposed control method, demonstrating its potential for real-time implementation in uncertain and dynamic environments.
ArticleNumber 24012
Author Yilmaz, Firat Can
Zergeroglu, Erkan
Tatlicioglu, Enver
Onler, Recep
Author_xml – sequence: 1
  givenname: Firat Can
  surname: Yilmaz
  fullname: Yilmaz, Firat Can
  email: fcyilmaz@gtu.edu.tr
  organization: Department of Mechanical Engineering, Gebze Technical University
– sequence: 2
  givenname: Recep
  surname: Onler
  fullname: Onler, Recep
  organization: Department of Mechanical Engineering, Gebze Technical University
– sequence: 3
  givenname: Enver
  surname: Tatlicioglu
  fullname: Tatlicioglu, Enver
  organization: Department of Electrical and Electronics Engineering, Ege University
– sequence: 4
  givenname: Erkan
  surname: Zergeroglu
  fullname: Zergeroglu, Erkan
  organization: Department of Computer Science Engineering, Gebze Technical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40617924$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhiNURC_0BVggS2zYBHxN4hWqKloqVWIDa8uxJ2kOPvbBlyK2PDnuSSktC7wZa_zN79HMf9wc-OChaV4R_I5gNrxPnAg5tJiKlmBMSUueNUcUc9FSRunBo_thc5rSBtcjqOREvmgOOe5ILyk_an6doRy1TxNE5EBHv_gZjTqBRRZghzyUqF0N-UeI35C2epeXW0Am-ByDc7VsChHlG0AXJZas0Q68La5sUSrjBkxGOaDiDcSsF4_sknKJo64JlJbZa5deNs-nGuD0Pp40Xy8-fjn_1F5_vrw6P7tuDceStFJOehR6lAILPoi-tx3umJWSA0jS82niU8d4DxIsN6MhA4Oxm0CKDoaeG3bSXK26NuiN2sVlq-NPFfSi9okQZ6VjXowDRcVoRqkFloZxOmEJjBkqeDdYjCWFqvVh1dqVcQvWQJ2Gdk9En7745UbN4VYRSunQE1EV3t4rxPC9QMpquyQDzmkPoSRVF9dz0lMqK_rmH3QTSrwb3Z5iHAvRVer145Yeevmz6wrQFTAxpBRhekAIVneeUqunVPWU2ntKkVrE1qJUYT9D_Pv3f6p-A302z8c
Cites_doi 10.1109/ICCCYB.2007.4402019
10.1109/ISMA.2018.8330131
10.1109/ISCO.2013.6481130
10.1201/9781315272610
10.1109/ACC.2014.6859493
10.1016/j.isatra.2013.09.023
10.1109/ACCESS.2023.3310405
10.1109/ICECCT.2019.8869257
10.1007/s00521-020-04821-x
10.1007/978-1-4471-0177-2
10.1016/j.conengprac.2013.04.001
10.1016/j.simpat.2018.05.002
10.1016/j.ifacol.2021.11.146
10.1016/S0959-1524(01)00041-5
10.1109/TCYB.2015.2509863
10.1007/s11071-013-1112-4
10.1007/s00170-024-13991-0
10.1016/j.ifacol.2021.11.140
10.1109/SSD61670.2024.10549758
10.3390/act10070162
10.1137/1.9781611970777
10.1016/S0167-6911(03)00159-2
10.1109/CDC.2012.6426722
10.1016/S1474-6670(17)31126-6
10.1504/IJMIC.2008.021476
10.1016/j.isatra.2023.05.007
10.1016/0893-6080(89)90020-8
10.1115/1.3662552
10.1016/j.mechatronics.2009.07.005
10.1109/TMECH.2015.2485942
10.3182/20020721-6-ES-1901.00087
10.1109/ICSGRC53186.2021.9515308
10.1016/j.engappai.2017.04.007
10.1109/CoDIT58514.2023.10284465
10.1007/978-3-319-11173-5_1
10.1109/ARGENCON49523.2020.9505507
10.1007/978-1-4020-8915-2_35
10.1016/j.robot.2014.10.009
10.1109/COASE.2017.8256254
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-10021-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_25bcb9a509c342f09e33c25468d0092e
PMC12228715
40617924
10_1038_s41598_025_10021_1
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AARCD
AAYXX
CITATION
PJZUB
PPXIY
PQGLB
NPM
3V.
7XB
88A
8FK
K9.
M48
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
7X8
5PM
ID FETCH-LOGICAL-c4091-99fab5ab950548577d6063d994ee9174ff4f6347e9ed4cbc183eb6fe956e874c3
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Wed Aug 27 01:23:50 EDT 2025
Thu Aug 21 18:22:35 EDT 2025
Fri Jul 11 16:58:19 EDT 2025
Sat Aug 23 14:11:34 EDT 2025
Mon Jul 21 06:02:35 EDT 2025
Tue Aug 05 12:02:22 EDT 2025
Sun Jul 06 01:15:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Robust disturbance rejection
Deep neural networks
Lyapunov stability analysis
Adaptive control
Underactuated mechanical system
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4091-99fab5ab950548577d6063d994ee9174ff4f6347e9ed4cbc183eb6fe956e874c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-025-10021-1
PMID 40617924
PQID 3227340556
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_25bcb9a509c342f09e33c25468d0092e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12228715
proquest_miscellaneous_3227417229
proquest_journals_3227340556
pubmed_primary_40617924
crossref_primary_10_1038_s41598_025_10021_1
springer_journals_10_1038_s41598_025_10021_1
PublicationCentury 2000
PublicationDate 20250705
PublicationDateYYYYMMDD 2025-07-05
PublicationDate_xml – month: 7
  year: 2025
  text: 20250705
  day: 5
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 10021_CR16
10021_CR38
10021_CR15
R Binz (10021_CR20) 2021; 54
M Guan (10021_CR48) 2024; 133
10021_CR35
10021_CR19
10021_CR17
10021_CR40
K Ling (10021_CR18) 2002; 35
J Moreno-Valenzuela (10021_CR37) 2016; 46
MR Hong (10021_CR41) 2023; 11
Y Yang (10021_CR28) 2003; 50
C Aguilar-Avelar (10021_CR13) 2015; 21
LA Jeni (10021_CR34) 2008; 18
JA Rossiter (10021_CR4) 2017
JJE Slotine (10021_CR47) 1991
J Aracil (10021_CR10) 2013; 21
I Fantoni (10021_CR44) 2002
S Boyd (10021_CR1) 1994
MB Vizi (10021_CR22) 2021; 54
K Furuta (10021_CR5) 1992; 206
FL Lewis (10021_CR43) 2004
PX La Hera (10021_CR9) 2009; 19
M Ramírez-Neria (10021_CR14) 2014; 53
J-J Wang (10021_CR26) 2018; 86
K Hornik (10021_CR46) 1989; 2
Y-F Chen (10021_CR24) 2014; 76
10021_CR25
T Kobayashi (10021_CR23) 2004; 37
10021_CR29
M Antonio-Cruz (10021_CR39) 2023; 139
I Goodfellow (10021_CR45) 2016
W-D Chang (10021_CR27) 2002; 12
10021_CR30
MF Hamza (10021_CR21) 2017; 62
SH Zabihifar (10021_CR36) 2020; 32
Y Liu (10021_CR11) 2008; 4
10021_CR7
10021_CR6
10021_CR33
10021_CR32
10021_CR8
10021_CR31
10021_CR3
10021_CR2
K-D Nguyen (10021_CR12) 2015; 64
MW Spong (10021_CR42) 1989
References_xml – ident: 10021_CR25
  doi: 10.1109/ICCCYB.2007.4402019
– ident: 10021_CR16
  doi: 10.1109/ISMA.2018.8330131
– ident: 10021_CR17
  doi: 10.1109/ISCO.2013.6481130
– volume-title: Model-Based Predictive Control: A Practical Approach
  year: 2017
  ident: 10021_CR4
  doi: 10.1201/9781315272610
– ident: 10021_CR15
  doi: 10.1109/ACC.2014.6859493
– volume: 53
  start-page: 920
  issue: 4
  year: 2014
  ident: 10021_CR14
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2013.09.023
– volume: 11
  start-page: 95195
  year: 2023
  ident: 10021_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3310405
– ident: 10021_CR32
  doi: 10.1109/ICECCT.2019.8869257
– volume-title: Robot Dyn. Control
  year: 1989
  ident: 10021_CR42
– volume: 32
  start-page: 14667
  issue: 18
  year: 2020
  ident: 10021_CR36
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04821-x
– volume-title: Non-linear Control for Underactuated Mechanical Systems
  year: 2002
  ident: 10021_CR44
  doi: 10.1007/978-1-4471-0177-2
– volume: 21
  start-page: 989
  issue: 8
  year: 2013
  ident: 10021_CR10
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2013.04.001
– volume: 86
  start-page: 25
  year: 2018
  ident: 10021_CR26
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2018.05.002
– volume: 206
  start-page: 263
  issue: 4
  year: 1992
  ident: 10021_CR5
  publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
– volume: 18
  start-page: 637
  issue: 4
  year: 2008
  ident: 10021_CR34
  publication-title: Acta Cybern.
– volume: 54
  start-page: 14
  issue: 20
  year: 2021
  ident: 10021_CR20
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.11.146
– volume: 12
  start-page: 233
  issue: 2
  year: 2002
  ident: 10021_CR27
  publication-title: J. Process Control
  doi: 10.1016/S0959-1524(01)00041-5
– volume: 46
  start-page: 3439
  issue: 12
  year: 2016
  ident: 10021_CR37
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2509863
– ident: 10021_CR6
– volume-title: Applied Nonlinear Control
  year: 1991
  ident: 10021_CR47
– volume: 76
  start-page: 95
  issue: 1
  year: 2014
  ident: 10021_CR24
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-1112-4
– volume: 133
  start-page: 4907
  issue: 9
  year: 2024
  ident: 10021_CR48
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-024-13991-0
– volume: 54
  start-page: 204
  issue: 18
  year: 2021
  ident: 10021_CR22
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.11.140
– ident: 10021_CR2
– ident: 10021_CR33
  doi: 10.1109/SSD61670.2024.10549758
– ident: 10021_CR31
  doi: 10.3390/act10070162
– volume-title: Linear Matrix Inequalities in System and Control Theory
  year: 1994
  ident: 10021_CR1
  doi: 10.1137/1.9781611970777
– volume: 50
  start-page: 263
  issue: 4
  year: 2003
  ident: 10021_CR28
  publication-title: Syst. Control Lett.
  doi: 10.1016/S0167-6911(03)00159-2
– ident: 10021_CR8
  doi: 10.1109/CDC.2012.6426722
– volume: 37
  start-page: 337
  issue: 14
  year: 2004
  ident: 10021_CR23
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)31126-6
– volume: 4
  start-page: 357
  issue: 4
  year: 2008
  ident: 10021_CR11
  publication-title: Int. J. Model. Identif. Control
  doi: 10.1504/IJMIC.2008.021476
– volume: 139
  start-page: 713
  year: 2023
  ident: 10021_CR39
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2023.05.007
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10021_CR46
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– ident: 10021_CR3
  doi: 10.1115/1.3662552
– volume: 19
  start-page: 1240
  issue: 8
  year: 2009
  ident: 10021_CR9
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2009.07.005
– volume: 21
  start-page: 638
  issue: 2
  year: 2015
  ident: 10021_CR13
  publication-title: IEEE/ASME Trans. Mech.
  doi: 10.1109/TMECH.2015.2485942
– volume: 35
  start-page: 37
  issue: 1
  year: 2002
  ident: 10021_CR18
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20020721-6-ES-1901.00087
– ident: 10021_CR30
  doi: 10.1109/ICSGRC53186.2021.9515308
– volume: 62
  start-page: 134
  year: 2017
  ident: 10021_CR21
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.04.007
– ident: 10021_CR40
  doi: 10.1109/CoDIT58514.2023.10284465
– volume-title: Deep Learning
  year: 2016
  ident: 10021_CR45
– ident: 10021_CR7
  doi: 10.1007/978-3-319-11173-5_1
– ident: 10021_CR19
– ident: 10021_CR29
  doi: 10.1109/ARGENCON49523.2020.9505507
– ident: 10021_CR35
  doi: 10.1007/978-1-4020-8915-2_35
– volume-title: Robot Manipulator Control: Theory and Practice
  year: 2004
  ident: 10021_CR43
– volume: 64
  start-page: 84
  year: 2015
  ident: 10021_CR12
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2014.10.009
– ident: 10021_CR38
  doi: 10.1109/COASE.2017.8256254
SSID ssj0000529419
Score 2.4510212
Snippet In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for...
Abstract In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 24012
SubjectTerms 639/166
639/166/987
639/166/988
Accuracy
Adaptive control
Closed loop systems
Control algorithms
Controllers
Deep neural networks
Humanities and Social Sciences
Lyapunov stability analysis
Mathematical models
Methods
multidisciplinary
Neural networks
Performance evaluation
Robust control
Robust disturbance rejection
Science
Science (multidisciplinary)
Stability analysis
Transfer learning
Underactuated mechanical system
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kQfAiur563ZUI3rTZ7iQ96RxXcVgEPbmwt9BJKipIzzDTffDqL7eq0zPu-MCL1-4EQuqrV1L5CuCFbH0TpK9LjFGW2uhUWsWEl7aTnU6tqpBfI7__sLi80u-um-sbrb64JizTA-eNO5eND9525NeC0jJVFpUKTOLeRuYLQra-5PNuJFOZ1VtaXdv5lUyl2vMteSp-TSaZeJPrEuoDTzQR9v8pyvy9WPKXG9PJES3vwd05ghQXeeX34Rb2x3A795T89gC-X4hhCkZxI-aWEJ8E-6ooIuJaMIElTe9z-bfoYrdmiyfmmvWvNI3iWEFxoViOm3HoBHfJ5TNCsR09n9qIYSXIG-ZaAhEJJ-PGM3gEF4MQnB_C1fLtxzeX5dxooQyU3tWltanzTecthUO6bYyJlNaoaK1GpHROp6TTQmmDFqMOPpAZQL9ISLkVtkYH9QiO-lWPT0Ak0mnKiMjlBUrsjPdV4iYyDY3Si8qEAl7uNt2tM5-Gm-7BVeuyiByJyE0icnUBr1ku-5HMhT19IIS4GSHuXwgp4HQnVTcr6NaRHTNKM5NQAc_3v0m1-L6k63E15jGaAjxpC3icQbBfCcdBhnLXAtoDeBws9fBP_-XzRN9d86GbqZsCXu2Q9HNdf9-Lk_-xF0_hjmQV4PPp5hSOhs2IZxRVDf7ZpEA_AAS2Hb4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERKXqrzTFmQkbhA1iZ11fEIFsaqQ4ESlvVnxqyChZMkmB6795Z1xvFstr-vGkbyZGc83D38D8LpqTG0rU-beuSoXUoRccSK8VG3VitDwwtNt5M9fFheX4tOqXqWE2ya1VW7PxHhQu95SjvwMFU9yQdQv79Y_c5oaRdXVNELjLtwj6jJq6ZIrucuxUBVLlCrdlSl4c7ZBf0V3yiqi36TuhHLPH0Xa_r9hzT9bJn-rm0Z3tDyCw4Qj2fks-Idwx3eP4P48WfLXY7g-Z2OEpH5gaTDEFSOP5Zjzfs2IxhJf7-YmcNa6dk3nHkud6z_wNUSzDNEhW07DNLaMZuVSppBtJkO5Gzb2DH3i3FHAHGrLNBhSIUYtIajUT-By-fHrh4s8jVvILQZ5Za5UaE3dGoWgSDS1lA6DG-6UEt5jUCdCEGHBhfTKO2GNxcPAm0XwGGH5RgrLn8JB13f-ObCAlo1xETo-i-GdNKYINEqmxlViUUibwZvtR9frmVVDx2o4b_QsIo0i0lFEuszgPcllt5IYseMP_XClk4HpqjbWqBbxj-WiCoXynFsi-28c8Ur5DE63UtXJTDf6VqkyeLV7jAZGVZO28_00rxEI8yqVwbNZCXY7ITQkMYLNoNlTj72t7j_pvn-LJN4lpd5kWWfwdqtJt_v697c4_v_fOIEHFSk35Z_rUzgYh8m_QNQ0mpfRNG4AGGsV6w
  priority: 102
  providerName: ProQuest
Title A transfer learning based deep neural network adaptive controller for the Furuta pendulum subject to uncertain disturbance signals
URI https://link.springer.com/article/10.1038/s41598-025-10021-1
https://www.ncbi.nlm.nih.gov/pubmed/40617924
https://www.proquest.com/docview/3227340556
https://www.proquest.com/docview/3227417229
https://pubmed.ncbi.nlm.nih.gov/PMC12228715
https://doaj.org/article/25bcb9a509c342f09e33c25468d0092e
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB7OOwRfxN_2PJcIvmmxTdKmedxbbjkWPEQ92LfSNMkpSHfptg---pffTNqurJ4PPhWaBEJmkvlmMvkG4C0vTFZzk8bOWh5LJX2sBRFe6opX0hcicfQa-eNVfnktV-tsfQR8egsTkvYDpWU4pqfssA87NDT0GIwTbyalFaDHc0LU7aTVi3yxj6vQzZVM9fg-JhHFHUMPbFCg6r8LX_6dJvnHXWkwQctH8HDEjmw-zPYxHLnmCdwfqkn-fAq_5qwLMNS1bCwGccPISllmndsyoq7E4c2Q-M0qW23prGNjtvoPHIYIliEiZMu-7buKUX1cig6yXW8oXsO6DUM7OGQRMIsa0reG1IZRGggq8jO4Xl58XVzGY4mFuEbHLo219pXJKqMRCMkiU8qiQyOs1tI5dOSk99LnQiqnnZW1qfEAcCb3Dr0qh6tfi-dw3Gwa9xKYx92MvhAauxpdOmVM4ql8TIa9ZJ6oOoJ306KX24FJoww34KIoBxGVKKIyiKhMIzgnuex7Egt2-LFpb8pRK0qemdroCjFPLST3iXZC1ETwX1jiknIRnE1SLcetuSvxBFNCEodQBG_2zbip6KakatymH_pIhHZcR_BiUIL9TAgBKfRaIygO1ONgqoctzfdvgbg7pXCbSrMI3k-a9Hte_16L0__r_goecFJ2ikFnZ3Dctb17jcipMzO4p9ZqBifz-erLCr_nF1efPs_CBpqFaMQt1rQYpQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4ia2M4mPiDUQldb2q4QaqXeTPxIQULJspsI9coP4jcyk8dWy-vWa-JETuab93gG4DnPTGK5iUPvHA9lKotQCWp4qXKeyyITkafTyEez8fREvj9NTjfg53AWhsoqB5nYCmpXWYqRbyPwUiGp9cub-beQpkZRdnUYodHB4sCff0eXbfl6_x3S9wXnk73jt9OwnyoQWvRl4lCpIjdJbhTqfpklaerQhhdOKek9-i6yKGQxFjL1yjtpjUXMezMuPDoSPkulFfjeK7ApBboyI9jc3Zt9-LiK6lDeTMaqP50TiWx7iRqSTrFxavhJ9RDxmgZsBwX8zbr9s0jzt0xtqwAnN-FGb7mynQ5qt2DDl7fhajfL8vwO_NhhdWsE-wXrR1GcMdKRjjnv54waZ-LjZVd2znKXz0nSsr5W_is-hvYzQ3uUTZpFU-eMpvNSbJItG0PRIlZXDLVwV8PAHOKzWRgCLaMiFGSju3ByKaS4B6OyKv0DYAXKEvTEUNVadChTY6KChtckuEqOo9QG8HL46Xre9fHQbf5dZLojkUYS6ZZEOg5gl-iyWkk9uNsL1eJM9yyteWKsUTlaXFZIXkTKC2FpvEDmqJOVD2BroKruBcNSX8A4gGer28jSlKfJS1813RqJhiVXAdzvQLDaCdlfKfrMAWRr8Fjb6vqd8svntm14TMG-NE4CeDUg6WJf__4XD___GU_h2vT46FAf7s8OHsF1TkCn6HeyBaN60fjHaLPV5knPKAw-XTZv_gLSp1Pk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaJNbGcdHxAqlFVLoeJApb2Z-FWQUHbZ3Qj1ys_i1zGTx1bL69Zr4kRO5hvPN-PxDMATXtrCcZunwXueSiVjqgUVvNQVr2QsRRboNPL7o_H-sXw7LaZb8HM4C0NplcOa2C7UfuYoRj5C4CkhqfTLKPZpER_2Ji_n31LqIEU7rUM7jQ4ih-H0O7pvyxcHeyjrp5xP3nx8vZ_2HQZSh35NnmodK1tUViMPkGWhlEc-L7zWMgT0Y2SMMo6FVEEHL511iP9gxzGgUxFKJZ3A916Ai0oUOemYmqp1fId20GSu-3M6mShHS7SVdJ6NU-lPyozIN2xh2zLgbzz3z3TN3_ZsW1M4uQZXew7LdjvQXYetUN-AS11Xy9Ob8GOXrVo6HBasb0pxwshaeuZDmDMqoYmP110COqt8Nac1l_VZ81_xMWTSDJkpmzSLZlUx6tNLUUq2bCzFjdhqxtAed9kMzCNSm4Ul-DJKR0GFugXH5yKI27Bdz-pwF1jEVQV9MjS6Dl1LZW0WqY1NgaPkOFMugWfDTzfzrqKHaXfiRWk6ERkUkWlFZPIEXpFc1iOpGnd7YbY4Mb1yG15YZ3WF3MsJyWOmgxCOGg2UnmpahQR2BqmafolYmjNAJ_B4fRuVm3ZsqjrMmm6MRIrJdQJ3OhCsZ0JMTKH3nEC5AY-NqW7eqb98bguI5xT2U3mRwPMBSWfz-ve_uPf_z3gEl1EjzbuDo8P7cIUTzikMXuzA9mrRhAdI3lb2YaslDD6dt1r-At4uVrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transfer+learning+based+deep+neural+network+adaptive+controller+for+the+Furuta+pendulum+subject+to+uncertain+disturbance+signals&rft.jtitle=Scientific+reports&rft.au=Yilmaz%2C+Firat+Can&rft.au=Onler%2C+Recep&rft.au=Tatlicioglu%2C+Enver&rft.au=Zergeroglu%2C+Erkan&rft.date=2025-07-05&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=24012&rft_id=info:doi/10.1038%2Fs41598-025-10021-1&rft_id=info%3Apmid%2F40617924&rft.externalDocID=40617924
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon