A transfer learning based deep neural network adaptive controller for the Furuta pendulum subject to uncertain disturbance signals
In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for the underactuated mechanical system referred to as the Futura Pendulum. The study has a hybrid learning structure that combines offline super...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 24012 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for the underactuated mechanical system referred to as the Futura Pendulum. The study has a hybrid learning structure that combines offline supervised pretraining of the DNN’s inner layers with an online adaptation law that updates the output-layer weights in real time. The adaptive mechanism is supported by a Lyapunov-based stability analysis, which guarantees the convergence of the tracking error and the boundedness of all closed-loop signals. The impact of DNN layer size on performance was investigated using standard indices (ISE, IAE, ITSE, and ITAE). The results show that the controller achieves stable tracking with minimal chattering, even under random disturbances. Numerical simulations validate the robustness, adaptability, and improved efficiency of the proposed control method, demonstrating its potential for real-time implementation in uncertain and dynamic environments. |
---|---|
AbstractList | In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for the underactuated mechanical system referred to as the Futura Pendulum. The study has a hybrid learning structure that combines offline supervised pretraining of the DNN’s inner layers with an online adaptation law that updates the output-layer weights in real time. The adaptive mechanism is supported by a Lyapunov-based stability analysis, which guarantees the convergence of the tracking error and the boundedness of all closed-loop signals. The impact of DNN layer size on performance was investigated using standard indices (ISE, IAE, ITSE, and ITAE). The results show that the controller achieves stable tracking with minimal chattering, even under random disturbances. Numerical simulations validate the robustness, adaptability, and improved efficiency of the proposed control method, demonstrating its potential for real-time implementation in uncertain and dynamic environments. Abstract In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for the underactuated mechanical system referred to as the Futura Pendulum. The study has a hybrid learning structure that combines offline supervised pretraining of the DNN’s inner layers with an online adaptation law that updates the output-layer weights in real time. The adaptive mechanism is supported by a Lyapunov-based stability analysis, which guarantees the convergence of the tracking error and the boundedness of all closed-loop signals. The impact of DNN layer size on performance was investigated using standard indices (ISE, IAE, ITSE, and ITAE). The results show that the controller achieves stable tracking with minimal chattering, even under random disturbances. Numerical simulations validate the robustness, adaptability, and improved efficiency of the proposed control method, demonstrating its potential for real-time implementation in uncertain and dynamic environments. In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for the underactuated mechanical system referred to as the Futura Pendulum. The study has a hybrid learning structure that combines offline supervised pretraining of the DNN's inner layers with an online adaptation law that updates the output-layer weights in real time. The adaptive mechanism is supported by a Lyapunov-based stability analysis, which guarantees the convergence of the tracking error and the boundedness of all closed-loop signals. The impact of DNN layer size on performance was investigated using standard indices (ISE, IAE, ITSE, and ITAE). The results show that the controller achieves stable tracking with minimal chattering, even under random disturbances. Numerical simulations validate the robustness, adaptability, and improved efficiency of the proposed control method, demonstrating its potential for real-time implementation in uncertain and dynamic environments.In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for the underactuated mechanical system referred to as the Futura Pendulum. The study has a hybrid learning structure that combines offline supervised pretraining of the DNN's inner layers with an online adaptation law that updates the output-layer weights in real time. The adaptive mechanism is supported by a Lyapunov-based stability analysis, which guarantees the convergence of the tracking error and the boundedness of all closed-loop signals. The impact of DNN layer size on performance was investigated using standard indices (ISE, IAE, ITSE, and ITAE). The results show that the controller achieves stable tracking with minimal chattering, even under random disturbances. Numerical simulations validate the robustness, adaptability, and improved efficiency of the proposed control method, demonstrating its potential for real-time implementation in uncertain and dynamic environments. |
ArticleNumber | 24012 |
Author | Yilmaz, Firat Can Zergeroglu, Erkan Tatlicioglu, Enver Onler, Recep |
Author_xml | – sequence: 1 givenname: Firat Can surname: Yilmaz fullname: Yilmaz, Firat Can email: fcyilmaz@gtu.edu.tr organization: Department of Mechanical Engineering, Gebze Technical University – sequence: 2 givenname: Recep surname: Onler fullname: Onler, Recep organization: Department of Mechanical Engineering, Gebze Technical University – sequence: 3 givenname: Enver surname: Tatlicioglu fullname: Tatlicioglu, Enver organization: Department of Electrical and Electronics Engineering, Ege University – sequence: 4 givenname: Erkan surname: Zergeroglu fullname: Zergeroglu, Erkan organization: Department of Computer Science Engineering, Gebze Technical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40617924$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhiNURC_0BVggS2zYBHxN4hWqKloqVWIDa8uxJ2kOPvbBlyK2PDnuSSktC7wZa_zN79HMf9wc-OChaV4R_I5gNrxPnAg5tJiKlmBMSUueNUcUc9FSRunBo_thc5rSBtcjqOREvmgOOe5ILyk_an6doRy1TxNE5EBHv_gZjTqBRRZghzyUqF0N-UeI35C2epeXW0Am-ByDc7VsChHlG0AXJZas0Q68La5sUSrjBkxGOaDiDcSsF4_sknKJo64JlJbZa5deNs-nGuD0Pp40Xy8-fjn_1F5_vrw6P7tuDceStFJOehR6lAILPoi-tx3umJWSA0jS82niU8d4DxIsN6MhA4Oxm0CKDoaeG3bSXK26NuiN2sVlq-NPFfSi9okQZ6VjXowDRcVoRqkFloZxOmEJjBkqeDdYjCWFqvVh1dqVcQvWQJ2Gdk9En7745UbN4VYRSunQE1EV3t4rxPC9QMpquyQDzmkPoSRVF9dz0lMqK_rmH3QTSrwb3Z5iHAvRVer145Yeevmz6wrQFTAxpBRhekAIVneeUqunVPWU2ntKkVrE1qJUYT9D_Pv3f6p-A302z8c |
Cites_doi | 10.1109/ICCCYB.2007.4402019 10.1109/ISMA.2018.8330131 10.1109/ISCO.2013.6481130 10.1201/9781315272610 10.1109/ACC.2014.6859493 10.1016/j.isatra.2013.09.023 10.1109/ACCESS.2023.3310405 10.1109/ICECCT.2019.8869257 10.1007/s00521-020-04821-x 10.1007/978-1-4471-0177-2 10.1016/j.conengprac.2013.04.001 10.1016/j.simpat.2018.05.002 10.1016/j.ifacol.2021.11.146 10.1016/S0959-1524(01)00041-5 10.1109/TCYB.2015.2509863 10.1007/s11071-013-1112-4 10.1007/s00170-024-13991-0 10.1016/j.ifacol.2021.11.140 10.1109/SSD61670.2024.10549758 10.3390/act10070162 10.1137/1.9781611970777 10.1016/S0167-6911(03)00159-2 10.1109/CDC.2012.6426722 10.1016/S1474-6670(17)31126-6 10.1504/IJMIC.2008.021476 10.1016/j.isatra.2023.05.007 10.1016/0893-6080(89)90020-8 10.1115/1.3662552 10.1016/j.mechatronics.2009.07.005 10.1109/TMECH.2015.2485942 10.3182/20020721-6-ES-1901.00087 10.1109/ICSGRC53186.2021.9515308 10.1016/j.engappai.2017.04.007 10.1109/CoDIT58514.2023.10284465 10.1007/978-3-319-11173-5_1 10.1109/ARGENCON49523.2020.9505507 10.1007/978-1-4020-8915-2_35 10.1016/j.robot.2014.10.009 10.1109/COASE.2017.8256254 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-10021-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_25bcb9a509c342f09e33c25468d0092e PMC12228715 40617924 10_1038_s41598_025_10021_1 |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AARCD AAYXX CITATION PJZUB PPXIY PQGLB NPM 3V. 7XB 88A 8FK K9. M48 PKEHL PQEST PQUKI PRINS PUEGO Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c4091-99fab5ab950548577d6063d994ee9174ff4f6347e9ed4cbc183eb6fe956e874c3 |
IEDL.DBID | C6C |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:23:50 EDT 2025 Thu Aug 21 18:22:35 EDT 2025 Fri Jul 11 16:58:19 EDT 2025 Sat Aug 23 14:11:34 EDT 2025 Mon Jul 21 06:02:35 EDT 2025 Tue Aug 05 12:02:22 EDT 2025 Sun Jul 06 01:15:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Robust disturbance rejection Deep neural networks Lyapunov stability analysis Adaptive control Underactuated mechanical system |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4091-99fab5ab950548577d6063d994ee9174ff4f6347e9ed4cbc183eb6fe956e874c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-025-10021-1 |
PMID | 40617924 |
PQID | 3227340556 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_25bcb9a509c342f09e33c25468d0092e pubmedcentral_primary_oai_pubmedcentral_nih_gov_12228715 proquest_miscellaneous_3227417229 proquest_journals_3227340556 pubmed_primary_40617924 crossref_primary_10_1038_s41598_025_10021_1 springer_journals_10_1038_s41598_025_10021_1 |
PublicationCentury | 2000 |
PublicationDate | 20250705 |
PublicationDateYYYYMMDD | 2025-07-05 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250705 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | 10021_CR16 10021_CR38 10021_CR15 R Binz (10021_CR20) 2021; 54 M Guan (10021_CR48) 2024; 133 10021_CR35 10021_CR19 10021_CR17 10021_CR40 K Ling (10021_CR18) 2002; 35 J Moreno-Valenzuela (10021_CR37) 2016; 46 MR Hong (10021_CR41) 2023; 11 Y Yang (10021_CR28) 2003; 50 C Aguilar-Avelar (10021_CR13) 2015; 21 LA Jeni (10021_CR34) 2008; 18 JA Rossiter (10021_CR4) 2017 JJE Slotine (10021_CR47) 1991 J Aracil (10021_CR10) 2013; 21 I Fantoni (10021_CR44) 2002 S Boyd (10021_CR1) 1994 MB Vizi (10021_CR22) 2021; 54 K Furuta (10021_CR5) 1992; 206 FL Lewis (10021_CR43) 2004 PX La Hera (10021_CR9) 2009; 19 M Ramírez-Neria (10021_CR14) 2014; 53 J-J Wang (10021_CR26) 2018; 86 K Hornik (10021_CR46) 1989; 2 Y-F Chen (10021_CR24) 2014; 76 10021_CR25 T Kobayashi (10021_CR23) 2004; 37 10021_CR29 M Antonio-Cruz (10021_CR39) 2023; 139 I Goodfellow (10021_CR45) 2016 W-D Chang (10021_CR27) 2002; 12 10021_CR30 MF Hamza (10021_CR21) 2017; 62 SH Zabihifar (10021_CR36) 2020; 32 Y Liu (10021_CR11) 2008; 4 10021_CR7 10021_CR6 10021_CR33 10021_CR32 10021_CR8 10021_CR31 10021_CR3 10021_CR2 K-D Nguyen (10021_CR12) 2015; 64 MW Spong (10021_CR42) 1989 |
References_xml | – ident: 10021_CR25 doi: 10.1109/ICCCYB.2007.4402019 – ident: 10021_CR16 doi: 10.1109/ISMA.2018.8330131 – ident: 10021_CR17 doi: 10.1109/ISCO.2013.6481130 – volume-title: Model-Based Predictive Control: A Practical Approach year: 2017 ident: 10021_CR4 doi: 10.1201/9781315272610 – ident: 10021_CR15 doi: 10.1109/ACC.2014.6859493 – volume: 53 start-page: 920 issue: 4 year: 2014 ident: 10021_CR14 publication-title: ISA Trans. doi: 10.1016/j.isatra.2013.09.023 – volume: 11 start-page: 95195 year: 2023 ident: 10021_CR41 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3310405 – ident: 10021_CR32 doi: 10.1109/ICECCT.2019.8869257 – volume-title: Robot Dyn. Control year: 1989 ident: 10021_CR42 – volume: 32 start-page: 14667 issue: 18 year: 2020 ident: 10021_CR36 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04821-x – volume-title: Non-linear Control for Underactuated Mechanical Systems year: 2002 ident: 10021_CR44 doi: 10.1007/978-1-4471-0177-2 – volume: 21 start-page: 989 issue: 8 year: 2013 ident: 10021_CR10 publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2013.04.001 – volume: 86 start-page: 25 year: 2018 ident: 10021_CR26 publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2018.05.002 – volume: 206 start-page: 263 issue: 4 year: 1992 ident: 10021_CR5 publication-title: Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. – volume: 18 start-page: 637 issue: 4 year: 2008 ident: 10021_CR34 publication-title: Acta Cybern. – volume: 54 start-page: 14 issue: 20 year: 2021 ident: 10021_CR20 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.11.146 – volume: 12 start-page: 233 issue: 2 year: 2002 ident: 10021_CR27 publication-title: J. Process Control doi: 10.1016/S0959-1524(01)00041-5 – volume: 46 start-page: 3439 issue: 12 year: 2016 ident: 10021_CR37 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2509863 – ident: 10021_CR6 – volume-title: Applied Nonlinear Control year: 1991 ident: 10021_CR47 – volume: 76 start-page: 95 issue: 1 year: 2014 ident: 10021_CR24 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-1112-4 – volume: 133 start-page: 4907 issue: 9 year: 2024 ident: 10021_CR48 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-024-13991-0 – volume: 54 start-page: 204 issue: 18 year: 2021 ident: 10021_CR22 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.11.140 – ident: 10021_CR2 – ident: 10021_CR33 doi: 10.1109/SSD61670.2024.10549758 – ident: 10021_CR31 doi: 10.3390/act10070162 – volume-title: Linear Matrix Inequalities in System and Control Theory year: 1994 ident: 10021_CR1 doi: 10.1137/1.9781611970777 – volume: 50 start-page: 263 issue: 4 year: 2003 ident: 10021_CR28 publication-title: Syst. Control Lett. doi: 10.1016/S0167-6911(03)00159-2 – ident: 10021_CR8 doi: 10.1109/CDC.2012.6426722 – volume: 37 start-page: 337 issue: 14 year: 2004 ident: 10021_CR23 publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)31126-6 – volume: 4 start-page: 357 issue: 4 year: 2008 ident: 10021_CR11 publication-title: Int. J. Model. Identif. Control doi: 10.1504/IJMIC.2008.021476 – volume: 139 start-page: 713 year: 2023 ident: 10021_CR39 publication-title: ISA Trans. doi: 10.1016/j.isatra.2023.05.007 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10021_CR46 publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – ident: 10021_CR3 doi: 10.1115/1.3662552 – volume: 19 start-page: 1240 issue: 8 year: 2009 ident: 10021_CR9 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2009.07.005 – volume: 21 start-page: 638 issue: 2 year: 2015 ident: 10021_CR13 publication-title: IEEE/ASME Trans. Mech. doi: 10.1109/TMECH.2015.2485942 – volume: 35 start-page: 37 issue: 1 year: 2002 ident: 10021_CR18 publication-title: IFAC Proc. Vol. doi: 10.3182/20020721-6-ES-1901.00087 – ident: 10021_CR30 doi: 10.1109/ICSGRC53186.2021.9515308 – volume: 62 start-page: 134 year: 2017 ident: 10021_CR21 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.04.007 – ident: 10021_CR40 doi: 10.1109/CoDIT58514.2023.10284465 – volume-title: Deep Learning year: 2016 ident: 10021_CR45 – ident: 10021_CR7 doi: 10.1007/978-3-319-11173-5_1 – ident: 10021_CR19 – ident: 10021_CR29 doi: 10.1109/ARGENCON49523.2020.9505507 – ident: 10021_CR35 doi: 10.1007/978-1-4020-8915-2_35 – volume-title: Robot Manipulator Control: Theory and Practice year: 2004 ident: 10021_CR43 – volume: 64 start-page: 84 year: 2015 ident: 10021_CR12 publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2014.10.009 – ident: 10021_CR38 doi: 10.1109/COASE.2017.8256254 |
SSID | ssj0000529419 |
Score | 2.4510212 |
Snippet | In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection mechanism for... Abstract In this study, a control algorithm that integrates a Deep Neural Network (DNN) adaptive control architecture with a robust disturbance rejection... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 24012 |
SubjectTerms | 639/166 639/166/987 639/166/988 Accuracy Adaptive control Closed loop systems Control algorithms Controllers Deep neural networks Humanities and Social Sciences Lyapunov stability analysis Mathematical models Methods multidisciplinary Neural networks Performance evaluation Robust control Robust disturbance rejection Science Science (multidisciplinary) Stability analysis Transfer learning Underactuated mechanical system |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kQfAiur563ZUI3rTZ7iQ96RxXcVgEPbmwt9BJKipIzzDTffDqL7eq0zPu-MCL1-4EQuqrV1L5CuCFbH0TpK9LjFGW2uhUWsWEl7aTnU6tqpBfI7__sLi80u-um-sbrb64JizTA-eNO5eND9525NeC0jJVFpUKTOLeRuYLQra-5PNuJFOZ1VtaXdv5lUyl2vMteSp-TSaZeJPrEuoDTzQR9v8pyvy9WPKXG9PJES3vwd05ghQXeeX34Rb2x3A795T89gC-X4hhCkZxI-aWEJ8E-6ooIuJaMIElTe9z-bfoYrdmiyfmmvWvNI3iWEFxoViOm3HoBHfJ5TNCsR09n9qIYSXIG-ZaAhEJJ-PGM3gEF4MQnB_C1fLtxzeX5dxooQyU3tWltanzTecthUO6bYyJlNaoaK1GpHROp6TTQmmDFqMOPpAZQL9ISLkVtkYH9QiO-lWPT0Ak0mnKiMjlBUrsjPdV4iYyDY3Si8qEAl7uNt2tM5-Gm-7BVeuyiByJyE0icnUBr1ku-5HMhT19IIS4GSHuXwgp4HQnVTcr6NaRHTNKM5NQAc_3v0m1-L6k63E15jGaAjxpC3icQbBfCcdBhnLXAtoDeBws9fBP_-XzRN9d86GbqZsCXu2Q9HNdf9-Lk_-xF0_hjmQV4PPp5hSOhs2IZxRVDf7ZpEA_AAS2Hb4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERKXqrzTFmQkbhA1iZ11fEIFsaqQ4ESlvVnxqyChZMkmB6795Z1xvFstr-vGkbyZGc83D38D8LpqTG0rU-beuSoXUoRccSK8VG3VitDwwtNt5M9fFheX4tOqXqWE2ya1VW7PxHhQu95SjvwMFU9yQdQv79Y_c5oaRdXVNELjLtwj6jJq6ZIrucuxUBVLlCrdlSl4c7ZBf0V3yiqi36TuhHLPH0Xa_r9hzT9bJn-rm0Z3tDyCw4Qj2fks-Idwx3eP4P48WfLXY7g-Z2OEpH5gaTDEFSOP5Zjzfs2IxhJf7-YmcNa6dk3nHkud6z_wNUSzDNEhW07DNLaMZuVSppBtJkO5Gzb2DH3i3FHAHGrLNBhSIUYtIajUT-By-fHrh4s8jVvILQZ5Za5UaE3dGoWgSDS1lA6DG-6UEt5jUCdCEGHBhfTKO2GNxcPAm0XwGGH5RgrLn8JB13f-ObCAlo1xETo-i-GdNKYINEqmxlViUUibwZvtR9frmVVDx2o4b_QsIo0i0lFEuszgPcllt5IYseMP_XClk4HpqjbWqBbxj-WiCoXynFsi-28c8Ur5DE63UtXJTDf6VqkyeLV7jAZGVZO28_00rxEI8yqVwbNZCXY7ITQkMYLNoNlTj72t7j_pvn-LJN4lpd5kWWfwdqtJt_v697c4_v_fOIEHFSk35Z_rUzgYh8m_QNQ0mpfRNG4AGGsV6w priority: 102 providerName: ProQuest |
Title | A transfer learning based deep neural network adaptive controller for the Furuta pendulum subject to uncertain disturbance signals |
URI | https://link.springer.com/article/10.1038/s41598-025-10021-1 https://www.ncbi.nlm.nih.gov/pubmed/40617924 https://www.proquest.com/docview/3227340556 https://www.proquest.com/docview/3227417229 https://pubmed.ncbi.nlm.nih.gov/PMC12228715 https://doaj.org/article/25bcb9a509c342f09e33c25468d0092e |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB7OOwRfxN_2PJcIvmmxTdKmedxbbjkWPEQ92LfSNMkpSHfptg---pffTNqurJ4PPhWaBEJmkvlmMvkG4C0vTFZzk8bOWh5LJX2sBRFe6opX0hcicfQa-eNVfnktV-tsfQR8egsTkvYDpWU4pqfssA87NDT0GIwTbyalFaDHc0LU7aTVi3yxj6vQzZVM9fg-JhHFHUMPbFCg6r8LX_6dJvnHXWkwQctH8HDEjmw-zPYxHLnmCdwfqkn-fAq_5qwLMNS1bCwGccPISllmndsyoq7E4c2Q-M0qW23prGNjtvoPHIYIliEiZMu-7buKUX1cig6yXW8oXsO6DUM7OGQRMIsa0reG1IZRGggq8jO4Xl58XVzGY4mFuEbHLo219pXJKqMRCMkiU8qiQyOs1tI5dOSk99LnQiqnnZW1qfEAcCb3Dr0qh6tfi-dw3Gwa9xKYx92MvhAauxpdOmVM4ql8TIa9ZJ6oOoJ306KX24FJoww34KIoBxGVKKIyiKhMIzgnuex7Egt2-LFpb8pRK0qemdroCjFPLST3iXZC1ETwX1jiknIRnE1SLcetuSvxBFNCEodQBG_2zbip6KakatymH_pIhHZcR_BiUIL9TAgBKfRaIygO1ONgqoctzfdvgbg7pXCbSrMI3k-a9Hte_16L0__r_goecFJ2ikFnZ3Dctb17jcipMzO4p9ZqBifz-erLCr_nF1efPs_CBpqFaMQt1rQYpQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4ia2M4mPiDUQldb2q4QaqXeTPxIQULJspsI9coP4jcyk8dWy-vWa-JETuab93gG4DnPTGK5iUPvHA9lKotQCWp4qXKeyyITkafTyEez8fREvj9NTjfg53AWhsoqB5nYCmpXWYqRbyPwUiGp9cub-beQpkZRdnUYodHB4sCff0eXbfl6_x3S9wXnk73jt9OwnyoQWvRl4lCpIjdJbhTqfpklaerQhhdOKek9-i6yKGQxFjL1yjtpjUXMezMuPDoSPkulFfjeK7ApBboyI9jc3Zt9-LiK6lDeTMaqP50TiWx7iRqSTrFxavhJ9RDxmgZsBwX8zbr9s0jzt0xtqwAnN-FGb7mynQ5qt2DDl7fhajfL8vwO_NhhdWsE-wXrR1GcMdKRjjnv54waZ-LjZVd2znKXz0nSsr5W_is-hvYzQ3uUTZpFU-eMpvNSbJItG0PRIlZXDLVwV8PAHOKzWRgCLaMiFGSju3ByKaS4B6OyKv0DYAXKEvTEUNVadChTY6KChtckuEqOo9QG8HL46Xre9fHQbf5dZLojkUYS6ZZEOg5gl-iyWkk9uNsL1eJM9yyteWKsUTlaXFZIXkTKC2FpvEDmqJOVD2BroKruBcNSX8A4gGer28jSlKfJS1813RqJhiVXAdzvQLDaCdlfKfrMAWRr8Fjb6vqd8svntm14TMG-NE4CeDUg6WJf__4XD___GU_h2vT46FAf7s8OHsF1TkCn6HeyBaN60fjHaLPV5knPKAw-XTZv_gLSp1Pk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaJNbGcdHxAqlFVLoeJApb2Z-FWQUHbZ3Qj1ys_i1zGTx1bL69Zr4kRO5hvPN-PxDMATXtrCcZunwXueSiVjqgUVvNQVr2QsRRboNPL7o_H-sXw7LaZb8HM4C0NplcOa2C7UfuYoRj5C4CkhqfTLKPZpER_2Ji_n31LqIEU7rUM7jQ4ih-H0O7pvyxcHeyjrp5xP3nx8vZ_2HQZSh35NnmodK1tUViMPkGWhlEc-L7zWMgT0Y2SMMo6FVEEHL511iP9gxzGgUxFKJZ3A916Ai0oUOemYmqp1fId20GSu-3M6mShHS7SVdJ6NU-lPyozIN2xh2zLgbzz3z3TN3_ZsW1M4uQZXew7LdjvQXYetUN-AS11Xy9Ob8GOXrVo6HBasb0pxwshaeuZDmDMqoYmP110COqt8Nac1l_VZ81_xMWTSDJkpmzSLZlUx6tNLUUq2bCzFjdhqxtAed9kMzCNSm4Ul-DJKR0GFugXH5yKI27Bdz-pwF1jEVQV9MjS6Dl1LZW0WqY1NgaPkOFMugWfDTzfzrqKHaXfiRWk6ERkUkWlFZPIEXpFc1iOpGnd7YbY4Mb1yG15YZ3WF3MsJyWOmgxCOGg2UnmpahQR2BqmafolYmjNAJ_B4fRuVm3ZsqjrMmm6MRIrJdQJ3OhCsZ0JMTKH3nEC5AY-NqW7eqb98bguI5xT2U3mRwPMBSWfz-ve_uPf_z3gEl1EjzbuDo8P7cIUTzikMXuzA9mrRhAdI3lb2YaslDD6dt1r-At4uVrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transfer+learning+based+deep+neural+network+adaptive+controller+for+the+Furuta+pendulum+subject+to+uncertain+disturbance+signals&rft.jtitle=Scientific+reports&rft.au=Yilmaz%2C+Firat+Can&rft.au=Onler%2C+Recep&rft.au=Tatlicioglu%2C+Enver&rft.au=Zergeroglu%2C+Erkan&rft.date=2025-07-05&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=24012&rft_id=info:doi/10.1038%2Fs41598-025-10021-1&rft_id=info%3Apmid%2F40617924&rft.externalDocID=40617924 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |