Design and fabrication of drug‐delivery systems toward adjustable release profiles for personalized treatment
Advanced polymeric controlled delivery systems are designed to effectively treat chronic diseases by adjusting the temporal profile of drug release. Most conventional controlled‐release carriers provide a constant and sustained‐release profile of therapeutics for an extended time. Although these sys...
Saved in:
Published in | View (Beijing, China) Vol. 2; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Beijing
John Wiley & Sons, Inc
01.10.2021
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2688-3988 2688-268X 2688-268X |
DOI | 10.1002/VIW.20200126 |
Cover
Loading…
Abstract | Advanced polymeric controlled delivery systems are designed to effectively treat chronic diseases by adjusting the temporal profile of drug release. Most conventional controlled‐release carriers provide a constant and sustained‐release profile of therapeutics for an extended time. Although these systems have improved the patients’ compliance and adherence and have reduced the administration frequency, they cannot be used for optimal treatment of diseases that require variable patterns of drug release in the treatment regimen. These patterns and the specific rhythms of medical conditions determined by both the body's internal biological clock cycles (i.e., circadian rhythm) and each patient's characteristics call for patient‐specific controlled drug‐delivery systems that can provide adjustable drug release profiles. The importance of individualized therapy and the variety of biodegradable polymers with tunable physicochemical properties promote the design and manufacturing of polymeric delivery systems that release therapeutics at controllable rates. In the past two decades, novel biomaterials and fabrication methods have been utilized to improve the traditional drug‐delivery design and manufacturing technologies. This review article provides a critical discussion of emerging polymeric controlled‐release systems and the mechanisms through which they release their therapeutic agents. Advances and challenges in the design and the fabrication processes of polymeric drug‐delivery systems, particularly solid oral dosage forms and implantable microchips, with controllable release profiles of drugs, are reviewed, focusing on the application of microtechnology and 3D printing techniques in their manufacturing.
The specific rhythms of medical conditions determined by the body's internal biological clock cycles (i.e., circadian rhythm) and each patient's characteristics call for patient‐specific drug‐delivery systems that can provide adjustable drug release profiles. The importance of individualized therapy and the variety of biodegradable polymers with tunable physicochemical properties promote the design and manufacturing of polymeric delivery systems that release therapeutics at controllable rates. This review article provides a critical discussion of emerging controlled‐release systems and the mechanisms through which they release their therapeutic agents. Advances and challenges in the design and the fabrication processes of drug‐delivery systems, particularly solid oral dosage forms and implantable microchips, with controllable release profiles of drugs, are reviewed, focusing on the application of microtechnology and 3D printing techniques in their manufacturing. |
---|---|
AbstractList | Abstract Advanced polymeric controlled delivery systems are designed to effectively treat chronic diseases by adjusting the temporal profile of drug release. Most conventional controlled‐release carriers provide a constant and sustained‐release profile of therapeutics for an extended time. Although these systems have improved the patients’ compliance and adherence and have reduced the administration frequency, they cannot be used for optimal treatment of diseases that require variable patterns of drug release in the treatment regimen. These patterns and the specific rhythms of medical conditions determined by both the body's internal biological clock cycles (i.e., circadian rhythm) and each patient's characteristics call for patient‐specific controlled drug‐delivery systems that can provide adjustable drug release profiles. The importance of individualized therapy and the variety of biodegradable polymers with tunable physicochemical properties promote the design and manufacturing of polymeric delivery systems that release therapeutics at controllable rates. In the past two decades, novel biomaterials and fabrication methods have been utilized to improve the traditional drug‐delivery design and manufacturing technologies. This review article provides a critical discussion of emerging polymeric controlled‐release systems and the mechanisms through which they release their therapeutic agents. Advances and challenges in the design and the fabrication processes of polymeric drug‐delivery systems, particularly solid oral dosage forms and implantable microchips, with controllable release profiles of drugs, are reviewed, focusing on the application of microtechnology and 3D printing techniques in their manufacturing. Advanced polymeric controlled delivery systems are designed to effectively treat chronic diseases by adjusting the temporal profile of drug release. Most conventional controlled‐release carriers provide a constant and sustained‐release profile of therapeutics for an extended time. Although these systems have improved the patients’ compliance and adherence and have reduced the administration frequency, they cannot be used for optimal treatment of diseases that require variable patterns of drug release in the treatment regimen. These patterns and the specific rhythms of medical conditions determined by both the body's internal biological clock cycles (i.e., circadian rhythm) and each patient's characteristics call for patient‐specific controlled drug‐delivery systems that can provide adjustable drug release profiles. The importance of individualized therapy and the variety of biodegradable polymers with tunable physicochemical properties promote the design and manufacturing of polymeric delivery systems that release therapeutics at controllable rates. In the past two decades, novel biomaterials and fabrication methods have been utilized to improve the traditional drug‐delivery design and manufacturing technologies. This review article provides a critical discussion of emerging polymeric controlled‐release systems and the mechanisms through which they release their therapeutic agents. Advances and challenges in the design and the fabrication processes of polymeric drug‐delivery systems, particularly solid oral dosage forms and implantable microchips, with controllable release profiles of drugs, are reviewed, focusing on the application of microtechnology and 3D printing techniques in their manufacturing. The specific rhythms of medical conditions determined by the body's internal biological clock cycles (i.e., circadian rhythm) and each patient's characteristics call for patient‐specific drug‐delivery systems that can provide adjustable drug release profiles. The importance of individualized therapy and the variety of biodegradable polymers with tunable physicochemical properties promote the design and manufacturing of polymeric delivery systems that release therapeutics at controllable rates. This review article provides a critical discussion of emerging controlled‐release systems and the mechanisms through which they release their therapeutic agents. Advances and challenges in the design and the fabrication processes of drug‐delivery systems, particularly solid oral dosage forms and implantable microchips, with controllable release profiles of drugs, are reviewed, focusing on the application of microtechnology and 3D printing techniques in their manufacturing. Advanced polymeric controlled delivery systems are designed to effectively treat chronic diseases by adjusting the temporal profile of drug release. Most conventional controlled‐release carriers provide a constant and sustained‐release profile of therapeutics for an extended time. Although these systems have improved the patients’ compliance and adherence and have reduced the administration frequency, they cannot be used for optimal treatment of diseases that require variable patterns of drug release in the treatment regimen. These patterns and the specific rhythms of medical conditions determined by both the body's internal biological clock cycles (i.e., circadian rhythm) and each patient's characteristics call for patient‐specific controlled drug‐delivery systems that can provide adjustable drug release profiles. The importance of individualized therapy and the variety of biodegradable polymers with tunable physicochemical properties promote the design and manufacturing of polymeric delivery systems that release therapeutics at controllable rates. In the past two decades, novel biomaterials and fabrication methods have been utilized to improve the traditional drug‐delivery design and manufacturing technologies. This review article provides a critical discussion of emerging polymeric controlled‐release systems and the mechanisms through which they release their therapeutic agents. Advances and challenges in the design and the fabrication processes of polymeric drug‐delivery systems, particularly solid oral dosage forms and implantable microchips, with controllable release profiles of drugs, are reviewed, focusing on the application of microtechnology and 3D printing techniques in their manufacturing. |
Author | Xing, Malcolm Geraili, Armin Mequanint, Kibret |
Author_xml | – sequence: 1 givenname: Armin surname: Geraili fullname: Geraili, Armin organization: University of Western Ontario – sequence: 2 givenname: Malcolm surname: Xing fullname: Xing, Malcolm organization: University of Manitoba and Children's Hospital Research Institute of Manitoba – sequence: 3 givenname: Kibret orcidid: 0000-0002-7888-418X surname: Mequanint fullname: Mequanint, Kibret email: kmequani@uwo.ca organization: University of Western Ontario |
BookMark | eNp9kU1uFDEQhVsokQhJdhzAElsm2GW7271EgcBIkdhAws6qbpdHHvW0B9tDNKw4AmfkJDiZwAIJNv4pffWeqt6z5miOMzXNc8EvBOfw6mZ5ewEcOBfQPmlOoDVmUY_PR49v2RvztDnPec0rroXoen3SxDeUw2pmODvmcUhhxBLizKJnLu1WP7__cDSFr5T2LO9zoU1mJd5hcgzdepcLDhOxRBNhJrZN0YeJMvMxsS2lHGecwjdyrCTCsqG5nDXHHqdM54_3afPp6u3Hy_eL6w_vlpevrxej4r1YGIUt954TCuMJBEnwUg-D8byWHXatcQol950QujfaazH0qmtl24LmJORpszzouohru01hg2lvIwb7UIhpZTGVME5kCQC7oQelYVTVA0ejuQKBenCdQl21Xhy06nxfdpSLXcddqqNlC9q0YIQCWamXB2pMMedE_o-r4PY-IVsTsr8Tqjj8hY-hPOy-JAzTv5rEoemurnn_X4P7Dwgp5C8Xu6YL |
CitedBy_id | crossref_primary_10_1208_s12249_024_02896_6 crossref_primary_10_1016_j_cpcardiol_2024_102568 crossref_primary_10_3390_pr12122916 crossref_primary_10_2174_0113816128326718240809091654 crossref_primary_10_1021_acs_biomac_4c01004 crossref_primary_10_1080_1061186X_2024_2393417 crossref_primary_10_1002_smtd_202301068 crossref_primary_10_1016_j_arabjc_2024_105763 crossref_primary_10_1186_s12951_024_02724_w crossref_primary_10_18311_jnr_2024_42036 crossref_primary_10_1002_advs_202306463 crossref_primary_10_1002_smll_202301113 crossref_primary_10_1016_j_jddst_2023_104877 crossref_primary_10_1016_j_matpr_2023_04_481 crossref_primary_10_3390_pharmaceutics14081618 crossref_primary_10_1177_15593258241264951 crossref_primary_10_1021_acsabm_3c00276 crossref_primary_10_3390_polym15081825 crossref_primary_10_1088_2752_5724_ad8898 crossref_primary_10_1021_acs_molpharmaceut_2c00834 crossref_primary_10_1007_s10853_022_07711_w crossref_primary_10_1016_j_ijbiomac_2025_141047 crossref_primary_10_1208_s12249_023_02682_w crossref_primary_10_1177_15280837241290169 crossref_primary_10_1080_00405000_2024_2332851 crossref_primary_10_16984_saufenbilder_1137591 crossref_primary_10_3390_app12168241 crossref_primary_10_1038_s41598_024_61278_x crossref_primary_10_2174_0115672018279628231221105210 crossref_primary_10_3390_coatings13071273 crossref_primary_10_3390_pharmaceutics14020297 crossref_primary_10_1016_j_carbpol_2023_121258 crossref_primary_10_3390_ma15134643 crossref_primary_10_3390_pharmaceutics15051401 crossref_primary_10_1016_j_ijbiomac_2024_131694 crossref_primary_10_1016_j_jconrel_2024_06_065 crossref_primary_10_3390_molecules28155931 crossref_primary_10_1002_smtd_202301121 crossref_primary_10_1080_17425247_2022_2141709 crossref_primary_10_1590_s2175_97902025e24249 crossref_primary_10_1016_j_mtcomm_2022_103784 crossref_primary_10_1002_adhm_202302969 crossref_primary_10_1002_smtd_202301127 crossref_primary_10_2174_0113894501281290231221053939 crossref_primary_10_1021_acsami_3c17621 crossref_primary_10_1016_j_ijbiomac_2025_142144 crossref_primary_10_1016_j_molliq_2023_123888 crossref_primary_10_1016_j_mtadv_2022_100236 crossref_primary_10_1002_pol_20240262 crossref_primary_10_1002_smtd_202300843 crossref_primary_10_1002_marc_202500033 crossref_primary_10_1039_D3NR04808J crossref_primary_10_1016_j_foodhyd_2024_110108 crossref_primary_10_3389_fphar_2023_1339057 crossref_primary_10_1590_1519_6984_275688 crossref_primary_10_33483_jfpau_1130916 crossref_primary_10_3390_pharmaceutics16050670 crossref_primary_10_1007_s12010_024_04895_6 crossref_primary_10_1088_1748_605X_acd6c9 crossref_primary_10_1002_adfm_202311857 crossref_primary_10_1134_S0003683822060059 crossref_primary_10_1002_smtd_202301134 crossref_primary_10_1002_smtd_202301178 crossref_primary_10_1016_j_ijpharm_2022_122113 crossref_primary_10_1002_smtd_202301455 crossref_primary_10_1016_j_biopha_2021_112492 crossref_primary_10_1016_j_jddst_2024_105839 crossref_primary_10_1016_j_mtadv_2024_100509 crossref_primary_10_3390_pharmaceutics13111900 crossref_primary_10_1007_s13204_022_02635_y crossref_primary_10_1016_j_mattod_2024_01_004 |
Cites_doi | 10.1088/0960-1317/17/5/015 10.1016/j.jconrel.2014.06.041 10.1016/j.ijpharm.2018.11.048 10.1016/j.jconrel.2017.10.008 10.1016/j.ijpharm.2015.04.069 10.3390/pharmaceutics11040193 10.3390/polym12051105 10.1038/s41467-017-02294-6 10.1039/C8LC00408K 10.1016/j.jconrel.2004.08.018 10.1088/1758-5090/ab97a0 10.1007/s10544-009-9303-y 10.1016/j.jddst.2017.08.008 10.1016/j.progpolymsci.2007.05.017 10.1016/j.addr.2006.07.029 10.3390/polym12081769 10.1177/1535370216647186 10.1016/j.ejps.2014.12.020 10.1126/scitranslmed.aag2374 10.1016/j.ijpharm.2010.07.026 10.1248/bpb.b16-00878 10.3390/pharmaceutics11060274 10.1021/cr980002q 10.1039/c1lc20134d 10.1039/c1lc20438f 10.3109/03639049609108355 10.1016/j.jconrel.2017.06.025 10.1016/j.trecan.2019.07.002 10.1080/17425247.2017.1371698 10.1002/adhm.201700426 10.1016/j.jddst.2015.07.016 10.1186/s40824-020-00190-7 10.1038/s41397-019-0135-8 10.1126/scitranslmed.3010564 10.3109/10717544.2014.903579 10.1021/acs.chemrev.5b00346 10.1021/cr940351u 10.1016/j.ajps.2016.04.007 10.1126/science.2218494 10.1016/S0168-3659(99)00224-2 10.1016/j.ijpharm.2016.03.016 10.1038/natrevmats.2016.71 10.1039/C5RA23172H 10.5863/1551-6776-23.4.277 10.1016/j.ijpharm.2015.02.051 10.1146/annurev-chembioeng-073009-100847 10.1016/j.addr.2011.11.013 10.1016/j.ijpharm.2018.03.057 10.1038/nrmicro1616 10.1023/A:1020412817716 10.1002/polb.22259 10.3390/polym10121379 10.1016/j.ejps.2019.05.008 10.1007/s11095-016-1933-1 10.1126/scitranslmed.aau6267 10.1021/ar010110q 10.1016/j.ijpharm.2020.119428 10.1016/j.ejps.2012.07.020 10.1126/scitranslmed.3003276 10.1177/0885328210384890 10.1016/j.ijpharm.2005.09.022 10.1016/j.msec.2020.111536 10.1103/PhysRevB.54.6327 10.1002/marc.201800917 10.1016/j.mce.2017.10.015 10.1208/s12249-018-1075-3 10.1016/j.jconrel.2005.09.035 10.1016/S0168-3659(02)00487-X 10.1073/pnas.1906931116 10.1016/0002-9610(72)90036-0 10.3389/fphar.2015.00071 10.1038/nmat998 10.1183/13993003.01068-2019 10.1002/art.27584 10.3390/mi7090162 10.1016/j.jconrel.2020.02.046 10.1016/j.addr.2007.07.001 10.1517/17460441.2.12.1653 10.1186/s41205-020-00060-x 10.1016/j.ijpharm.2017.09.003 10.1007/s00542-018-3807-4 10.1016/S0142-9612(02)00565-3 10.1007/s00542-017-3563-x 10.1016/S0169-409X(02)00227-2 10.1016/j.jconrel.2018.12.038 10.1016/j.jconrel.2019.03.022 10.1177/0748730406293854 10.1016/j.ijpharm.2020.119430 10.1016/S0169-409X(02)00051-0 10.1016/j.ijpharm.2008.12.008 10.1002/art.22368 10.1007/s40005-017-0320-1 10.1038/nbt1199 10.3390/polym9010008 10.1016/j.addr.2018.10.005 10.1016/S0168-3659(99)00225-4 10.1177/0091270003254575 10.1016/j.jconrel.2014.03.053 10.1016/j.addma.2020.101071 10.1016/j.ijpharm.2019.118790 10.1021/nl9018935 10.1016/j.ejps.2018.03.019 10.1186/s13054-018-2041-x 10.3390/mi9010028 10.3390/pharmaceutics11120645 |
ContentType | Journal Article |
Copyright | 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1002/VIW.20200126 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2688-268X |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_e22a7b92452c45bbac850421a5bd74a5 10_1002_VIW_20200126 VIW2131 |
Genre | reviewArticle |
GroupedDBID | 0R~ 1OC 24P 7X7 8FI 8FJ AAHHS ABUWG ACCFJ ACCMX ACXQS ADKYN ADPDF ADZMN AEEZP AEQDE AFKRA AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BENPR CCPQU EBS FYUFA GROUPED_DOAJ HMCUK IAO IGS IHR INH ITC M~E OVD PHGZM PHGZT PIMPY TEORI UKHRP AAYXX CITATION 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO K9. PKEHL PQEST PQQKQ PQUKI PRINS PUEGO WIN |
ID | FETCH-LOGICAL-c4091-84a60ff0ea18fe21e32f35bb8f00ffda768d4a30f7115985f51b9476366250e13 |
IEDL.DBID | 7X7 |
ISSN | 2688-3988 2688-268X |
IngestDate | Wed Aug 27 01:09:27 EDT 2025 Sat Aug 23 14:51:55 EDT 2025 Tue Jul 01 02:42:39 EDT 2025 Thu Apr 24 23:12:49 EDT 2025 Wed Jun 18 06:51:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4091-84a60ff0ea18fe21e32f35bb8f00ffda768d4a30f7115985f51b9476366250e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7888-418X |
OpenAccessLink | https://www.proquest.com/docview/2586281423?pq-origsite=%requestingapplication% |
PQID | 2586281423 |
PQPubID | 5068494 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e22a7b92452c45bbac850421a5bd74a5 proquest_journals_2586281423 crossref_primary_10_1002_VIW_20200126 crossref_citationtrail_10_1002_VIW_20200126 wiley_primary_10_1002_VIW_20200126_VIW2131 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 20211001 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | View (Beijing, China) |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2002; 19 2020; 20 2015; 70 2019; 11 1974 2020; 12 2020; 322 2003; 55 2016; 33 1990; 40 2018; 7 2009; 11 2018; 9 2010; 1 2010; 25 2006; 24 2006; 21 2015; 494 2019; 555 2005; 109 2007; 5 2007; 2 2008; 20 2003; 43 2007; 17 2018; 463 1990; 249 2010; 35 2019; 5 2000; 66 2015; 484 2002; 4 2020; 33 2018; 23 2018; 22 2017; 532 2018; 24 2016; 11 2018; 19 2018; 18 2016; 7 2016; 1 2019; 40 2018; 118 2003; 24 2020; 26 2020; 24 2017; 261 2019; 294 2012; 47 2018; 11 2018; 10 2017; 268 2016; 8 2018; 15 2016; 9 2016; 23 2019; 572 2017; 40 2017; 41 2017; 47 2019; 54 2016; 503 2015; 30 2002; 54 2011; 11 2007; 32 2010; 62 2020; 6 2001 2000 2010; 398 2017; 34 2003; 2 2005; 306 2019; 116 1999; 99 2016; 116 2012; 64 2003; 88 1996; 22 2004; 100 2015; 6 2015; 5 2012 2002; 35 1995; 12 2018; 543 2014; 190 2019; 303 2009; 370 2020; 584 2007; 56 2015; 7 1996; 54 2016; 241 2007; 59 2019; 138 2009; 9 2019; 135 2017 2020; 118 2016 2017; 460 2015 2014 1972; 124 2011; 49 2012; 4 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 Vogenberg F. R. (e_1_2_8_10_1) 2010; 35 e_1_2_8_117_1 Siegel R. A. (e_1_2_8_25_1) 2012 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Dhaliwal K. (e_1_2_8_8_1) 2018; 11 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 Huynh C. T. (e_1_2_8_24_1) 2015 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 Okwuosa T. C. (e_1_2_8_89_1) 2017; 34 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_72_1 e_1_2_8_48_1 Siepmann J. (e_1_2_8_17_1) 2015 e_1_2_8_2_1 e_1_2_8_110_1 Jantzen G. M. (e_1_2_8_28_1) 2002; 4 e_1_2_8_6_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_71_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 Burman D. (e_1_2_8_9_1) 2017; 460 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 Grass G. M. (e_1_2_8_29_1) 1990; 40 ju Kim C. (e_1_2_8_102_1) 1995; 12 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Bruschi M. L. (e_1_2_8_27_1) 2015 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 Sanopoulou M. (e_1_2_8_30_1) 2017 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Lu D. (e_1_2_8_21_1) 2008; 20 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – volume: 11 start-page: 2744 year: 2011 publication-title: Lab Chip – volume: 116 year: 2019 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 484 start-page: 103 year: 2015 publication-title: Int. J. Pharm. – volume: 25 start-page: 291 year: 2010 publication-title: J. Biomater. Appl. – volume: 5 start-page: 475 year: 2019 publication-title: Trends Cancer – volume: 35 start-page: 560 year: 2010 publication-title: Pharmacy Therapeut. – volume: 40 start-page: 357 year: 2017 publication-title: Biol. Pharm. Bull. – volume: 99 start-page: 1823 year: 1999 publication-title: Chem. Rev. – year: 2014 – volume: 18 start-page: 2348 year: 2018 publication-title: Lab Chip – volume: 9 start-page: 28 year: 2018 publication-title: Micromachines – volume: 70 start-page: 1 year: 2015 publication-title: Eur. J. Pharm. Sci. – volume: 9 start-page: 3651 year: 2009 publication-title: Nano Lett – volume: 584 year: 2020 publication-title: Int. J. Pharm. – volume: 4 year: 2012 publication-title: Sci. Transl. Med. – volume: 8 year: 2016 publication-title: Sci. Transl. Med. – volume: 109 start-page: 244 year: 2005 – volume: 118 start-page: 191 year: 2018 publication-title: Eur. J. Pharm. Sci. – volume: 12 start-page: 1105 year: 2020 publication-title: Polymers (Basel) – volume: 12 year: 2020 publication-title: Biofabrication – volume: 2 start-page: 767 year: 2003 publication-title: Nat. Mater. – volume: 138 start-page: 167 year: 2019 publication-title: Adv. Drug Deliv. Rev. – volume: 6 start-page: 8 year: 2020 publication-title: 3D Print. Med. – volume: 19 start-page: 1516 year: 2002 publication-title: Pharm. Res. – volume: 124 start-page: 331 year: 1972 publication-title: Am. J. Surg. – year: 2017 publication-title: Biomed. Membr. (Bio)Artificial Organs – volume: 56 start-page: 399 year: 2007 publication-title: Arthritis Rheum – volume: 503 start-page: 207 year: 2016 publication-title: Int. J. Pharm. – volume: 35 start-page: 491 year: 2002 publication-title: Acc. Chem. Res. – volume: 306 start-page: 15 year: 2005 publication-title: Int. J. Pharm. – volume: 190 start-page: 75 year: 2014 publication-title: J. Control. Release – volume: 24 start-page: 437 year: 2006 publication-title: Nat. Biotechnol. – volume: 54 start-page: 911 year: 2002 publication-title: Adv. Drug Deliv. Rev. – volume: 4 start-page: 501 year: 2002 publication-title: Modern Pharmaceut. – volume: 322 start-page: 42 year: 2020 publication-title: J. Control. Release – volume: 11 start-page: 274 year: 2019 publication-title: Pharmaceutics – volume: 20 start-page: 339 year: 2008 publication-title: Prog. Chem. – volume: 463 start-page: 131 year: 2018 publication-title: Mol. Cell. Endocrinol. – volume: 40 start-page: 635 year: 1990 publication-title: Drugs Pharmaceut Sci – volume: 11 start-page: 575 year: 2016 publication-title: Asian J. Pharm. Sci. – volume: 23 start-page: 277 year: 2018 publication-title: J. Pediatr. Pharmacol. Ther. – volume: 118 year: 2020 publication-title: Mater. Sci. Eng. C – volume: 59 start-page: 952 year: 2007 publication-title: Adv. Drug Deliv. Rev. – year: 2016 – volume: 59 start-page: 828 year: 2007 publication-title: Adv. Drug Deliv. Rev. – volume: 88 start-page: 117 year: 2003 publication-title: J. Control. Release – volume: 24 start-page: 1609 year: 2018 publication-title: Microsyst. Technol. – volume: 370 start-page: 160 year: 2009 publication-title: Int. J. Pharm. – volume: 26 start-page: 3153 year: 2020 publication-title: Microsyst. Technol. – volume: 261 start-page: 207 year: 2017 publication-title: J. Control. Release – volume: 47 start-page: 287 year: 2017 publication-title: J. Pharm. Investig. – volume: 7 year: 2015 publication-title: Sci. Transl. Med. – volume: 54 year: 2019 publication-title: Eur. Respir. J. – volume: 11 start-page: 645 year: 2019 publication-title: Pharmaceutics – volume: 24 start-page: 1 year: 2020 publication-title: Biomater. Res. – volume: 40 year: 2019 publication-title: Macromol. Rapid Commun. – volume: 47 start-page: 615 year: 2012 publication-title: Eur. J. Pharm. Sci. – volume: 135 start-page: 60 year: 2019 publication-title: Eur. J. Pharm. Sci. – volume: 241 start-page: 972 year: 2016 publication-title: Exp. Biol. Med. – volume: 15 start-page: 1 year: 2018 publication-title: Expert Opin. Drug Deliv. – volume: 66 start-page: 11 year: 2000 publication-title: J. Control. Release – volume: 24 start-page: 1959 year: 2003 publication-title: Biomaterials – volume: 10 start-page: 1379 year: 2018 publication-title: Polymers (Basel) – year: 2001 – volume: 55 start-page: 315 year: 2003 publication-title: Adv. Drug Deliv. Rev. – volume: 11 start-page: 3072 year: 2011 publication-title: Lab Chip – volume: 294 start-page: 355 year: 2019 publication-title: J. Control. Release – volume: 33 start-page: 1817 year: 2016 publication-title: Pharm. Res. – volume: 41 start-page: 359 year: 2017 publication-title: J. Drug Deliv. Sci. Technol. – volume: 249 start-page: 1527 year: 1990 publication-title: Science – volume: 54 start-page: 7128 year: 1996 publication-title: Phys. Rev. B – volume: 6 start-page: 71 year: 2015 publication-title: Front. Pharmacol. – volume: 11 start-page: 6267 year: 2019 publication-title: Sci. Transl. Med. – volume: 19 start-page: 3355 year: 2018 publication-title: AAPS PharmSciTech – volume: 2 start-page: 1653 year: 2007 publication-title: Expert Opin. Drug Discov. – volume: 17 start-page: 949 year: 2007 publication-title: J. Micromech. Microeng. – volume: 43 start-page: 711 year: 2003 publication-title: J. Clin. Pharmacol. – volume: 100 start-page: 211 year: 2004 publication-title: J. Control. Release – volume: 23 start-page: 1 year: 2016 publication-title: Drug Deliv – volume: 9 start-page: 8 year: 2016 publication-title: Polymers (Basel) – volume: 268 start-page: 10 year: 2017 publication-title: J. Control. Release – volume: 5 start-page: 209 year: 2007 publication-title: Nat. Rev. Microbiol. – volume: 99 start-page: 3181 year: 1999 publication-title: Chem. Rev.—Columbus – volume: 532 start-page: 313 year: 2017 publication-title: Int. J. Pharm. – year: 2015 – volume: 1 start-page: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 22 start-page: 531 year: 1996 publication-title: Drug Dev. Ind. Pharm. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 555 start-page: 198 year: 2019 publication-title: Int. J. Pharm. – volume: 12 start-page: 1769 year: 2020 publication-title: Polymers (Basel) – volume: 398 start-page: 1 year: 2010 publication-title: Int. J. Pharm. – volume: 33 year: 2020 publication-title: Addit. Manuf. – volume: 116 start-page: 2602 year: 2016 publication-title: Chem. Rev. – volume: 494 start-page: 657 year: 2015 publication-title: Int. J. Pharm. – volume: 11 start-page: 861 year: 2009 publication-title: Biomed. Microdevices – volume: 66 start-page: 1 year: 2000 publication-title: J. Control. Release – volume: 543 start-page: 361 year: 2018 publication-title: Int. J. Pharm. – volume: 22 start-page: 1 year: 2018 publication-title: Crit. Care – volume: 303 start-page: 34 year: 2019 publication-title: J. Control. Release – volume: 49 start-page: 832 year: 2011 publication-title: J. Polym. Sci. Part B Polym. Phys. – year: 2000 – volume: 12 start-page: 1045 year: 1995 publication-title: Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. – volume: 34 start-page: 427 year: 2017 publication-title: Springer – volume: 11 start-page: 193 year: 2019 publication-title: Pharmaceutics – volume: 11 start-page: 8315 year: 2018 publication-title: Biomed. J. Sci. Tech. Res. – year: 2012 – volume: 32 start-page: 762 year: 2007 publication-title: Prog. Polym. Sci. – volume: 7 year: 2018 publication-title: Adv. Healthc. Mater. – volume: 30 start-page: 360 year: 2015 publication-title: J. Drug Deliv. Sci. Technol. – volume: 460 start-page: 33 year: 2017 publication-title: FP Essent – volume: 20 start-page: 1 year: 2020 publication-title: Pharmacogenomics J – volume: 64 start-page: 496 year: 2012 publication-title: Adv. Drug Deliv. Rev. – volume: 1 start-page: 149 year: 2010 publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 7 start-page: 162 year: 2016 publication-title: Micromachines – year: 1974 – volume: 9 start-page: 2 year: 2018 publication-title: Nat. Commun. – volume: 21 start-page: 458 year: 2006 publication-title: J. Biol. Rhythms – volume: 190 start-page: 15 year: 2014 publication-title: J. Control. Release – volume: 62 start-page: 2569 year: 2010 publication-title: Arthritis Rheum – volume: 572 year: 2019 publication-title: Int. J. Pharm. – ident: e_1_2_8_60_1 doi: 10.1088/0960-1317/17/5/015 – ident: e_1_2_8_38_1 doi: 10.1016/j.jconrel.2014.06.041 – ident: e_1_2_8_81_1 doi: 10.1016/j.ijpharm.2018.11.048 – ident: e_1_2_8_95_1 doi: 10.1016/j.jconrel.2017.10.008 – ident: e_1_2_8_88_1 doi: 10.1016/j.ijpharm.2015.04.069 – ident: e_1_2_8_114_1 doi: 10.3390/pharmaceutics11040193 – ident: e_1_2_8_112_1 doi: 10.3390/polym12051105 – year: 2017 ident: e_1_2_8_30_1 publication-title: Biomed. Membr. (Bio)Artificial Organs – ident: e_1_2_8_123_1 doi: 10.1038/s41467-017-02294-6 – volume: 460 start-page: 33 year: 2017 ident: e_1_2_8_9_1 publication-title: FP Essent – volume: 35 start-page: 560 year: 2010 ident: e_1_2_8_10_1 publication-title: Pharmacy Therapeut. – ident: e_1_2_8_11_1 doi: 10.1039/C8LC00408K – ident: e_1_2_8_68_1 doi: 10.1016/j.jconrel.2004.08.018 – ident: e_1_2_8_111_1 doi: 10.1088/1758-5090/ab97a0 – ident: e_1_2_8_69_1 doi: 10.1007/s10544-009-9303-y – ident: e_1_2_8_71_1 doi: 10.1016/j.jddst.2017.08.008 – ident: e_1_2_8_40_1 doi: 10.1016/j.progpolymsci.2007.05.017 – ident: e_1_2_8_47_1 doi: 10.1016/j.addr.2006.07.029 – ident: e_1_2_8_90_1 doi: 10.3390/polym12081769 – ident: e_1_2_8_113_1 – ident: e_1_2_8_36_1 doi: 10.1177/1535370216647186 – ident: e_1_2_8_93_1 doi: 10.1016/j.ejps.2014.12.020 – ident: e_1_2_8_121_1 doi: 10.1126/scitranslmed.aag2374 – ident: e_1_2_8_96_1 doi: 10.1016/j.ijpharm.2010.07.026 – ident: e_1_2_8_92_1 doi: 10.1248/bpb.b16-00878 – ident: e_1_2_8_107_1 doi: 10.3390/pharmaceutics11060274 – ident: e_1_2_8_12_1 doi: 10.1021/cr980002q – ident: e_1_2_8_63_1 doi: 10.1039/c1lc20134d – ident: e_1_2_8_64_1 doi: 10.1039/c1lc20438f – ident: e_1_2_8_4_1 doi: 10.3109/03639049609108355 – ident: e_1_2_8_99_1 – ident: e_1_2_8_86_1 doi: 10.1016/j.jconrel.2017.06.025 – ident: e_1_2_8_51_1 doi: 10.1016/j.trecan.2019.07.002 – ident: e_1_2_8_16_1 doi: 10.1080/17425247.2017.1371698 – volume-title: Strategies to Modify Drug Release from Pharmaceutical Systems year: 2015 ident: e_1_2_8_27_1 – ident: e_1_2_8_55_1 doi: 10.1002/adhm.201700426 – ident: e_1_2_8_94_1 doi: 10.1016/j.jddst.2015.07.016 – ident: e_1_2_8_19_1 doi: 10.1186/s40824-020-00190-7 – ident: e_1_2_8_50_1 doi: 10.1038/s41397-019-0135-8 – ident: e_1_2_8_53_1 doi: 10.1126/scitranslmed.3010564 – ident: e_1_2_8_75_1 doi: 10.3109/10717544.2014.903579 – ident: e_1_2_8_7_1 doi: 10.1021/acs.chemrev.5b00346 – ident: e_1_2_8_6_1 doi: 10.1021/cr940351u – ident: e_1_2_8_115_1 doi: 10.1016/j.ajps.2016.04.007 – ident: e_1_2_8_26_1 doi: 10.1126/science.2218494 – ident: e_1_2_8_83_1 doi: 10.1016/S0168-3659(99)00224-2 – ident: e_1_2_8_101_1 doi: 10.1016/j.ijpharm.2016.03.016 – ident: e_1_2_8_22_1 doi: 10.1038/natrevmats.2016.71 – ident: e_1_2_8_65_1 doi: 10.1039/C5RA23172H – ident: e_1_2_8_5_1 doi: 10.5863/1551-6776-23.4.277 – volume: 11 start-page: 8315 year: 2018 ident: e_1_2_8_8_1 publication-title: Biomed. J. Sci. Tech. Res. – ident: e_1_2_8_103_1 doi: 10.1016/j.ijpharm.2015.02.051 – volume: 20 start-page: 339 year: 2008 ident: e_1_2_8_21_1 publication-title: Prog. Chem. – ident: e_1_2_8_18_1 doi: 10.1146/annurev-chembioeng-073009-100847 – ident: e_1_2_8_13_1 doi: 10.1016/j.addr.2011.11.013 – ident: e_1_2_8_91_1 doi: 10.1016/j.ijpharm.2018.03.057 – ident: e_1_2_8_54_1 doi: 10.1038/nrmicro1616 – volume: 40 start-page: 635 year: 1990 ident: e_1_2_8_29_1 publication-title: Drugs Pharmaceut Sci – ident: e_1_2_8_118_1 doi: 10.1023/A:1020412817716 – ident: e_1_2_8_23_1 doi: 10.1002/polb.22259 – ident: e_1_2_8_66_1 doi: 10.3390/polym10121379 – volume: 4 start-page: 501 year: 2002 ident: e_1_2_8_28_1 publication-title: Modern Pharmaceut. – ident: e_1_2_8_109_1 doi: 10.1016/j.ejps.2019.05.008 – ident: e_1_2_8_2_1 doi: 10.1007/s11095-016-1933-1 – ident: e_1_2_8_124_1 doi: 10.1126/scitranslmed.aau6267 – ident: e_1_2_8_57_1 doi: 10.1021/ar010110q – ident: e_1_2_8_106_1 doi: 10.1016/j.ijpharm.2020.119428 – ident: e_1_2_8_85_1 doi: 10.1016/j.ejps.2012.07.020 – ident: e_1_2_8_15_1 doi: 10.1126/scitranslmed.3003276 – ident: e_1_2_8_20_1 doi: 10.1177/0885328210384890 – ident: e_1_2_8_59_1 doi: 10.1016/j.ijpharm.2005.09.022 – ident: e_1_2_8_79_1 – ident: e_1_2_8_34_1 doi: 10.1016/j.msec.2020.111536 – ident: e_1_2_8_14_1 doi: 10.1103/PhysRevB.54.6327 – ident: e_1_2_8_117_1 – ident: e_1_2_8_35_1 doi: 10.1002/marc.201800917 – ident: e_1_2_8_43_1 doi: 10.1016/j.mce.2017.10.015 – ident: e_1_2_8_105_1 doi: 10.1208/s12249-018-1075-3 – ident: e_1_2_8_73_1 doi: 10.1016/j.jconrel.2005.09.035 – ident: e_1_2_8_119_1 doi: 10.1016/S0168-3659(02)00487-X – ident: e_1_2_8_72_1 doi: 10.1073/pnas.1906931116 – ident: e_1_2_8_116_1 doi: 10.1016/0002-9610(72)90036-0 – ident: e_1_2_8_44_1 doi: 10.3389/fphar.2015.00071 – ident: e_1_2_8_70_1 doi: 10.1038/nmat998 – ident: e_1_2_8_46_1 doi: 10.1183/13993003.01068-2019 – ident: e_1_2_8_45_1 doi: 10.1002/art.27584 – ident: e_1_2_8_56_1 doi: 10.3390/mi7090162 – ident: e_1_2_8_97_1 doi: 10.1016/j.jconrel.2020.02.046 – ident: e_1_2_8_49_1 doi: 10.1016/j.addr.2007.07.001 – ident: e_1_2_8_52_1 doi: 10.1517/17460441.2.12.1653 – ident: e_1_2_8_87_1 doi: 10.1186/s41205-020-00060-x – ident: e_1_2_8_104_1 doi: 10.1016/j.ijpharm.2017.09.003 – ident: e_1_2_8_61_1 doi: 10.1007/s00542-018-3807-4 – volume-title: Fundamentals and Applications of Controlled Release Drug Delivery year: 2012 ident: e_1_2_8_25_1 – ident: e_1_2_8_67_1 doi: 10.1016/S0142-9612(02)00565-3 – ident: e_1_2_8_62_1 doi: 10.1007/s00542-017-3563-x – volume-title: Encyclopedia of Polymeric Nanomaterials year: 2015 ident: e_1_2_8_24_1 – ident: e_1_2_8_58_1 doi: 10.1016/S0169-409X(02)00227-2 – ident: e_1_2_8_31_1 doi: 10.1016/j.jconrel.2018.12.038 – ident: e_1_2_8_122_1 doi: 10.1016/j.jconrel.2019.03.022 – volume: 12 start-page: 1045 year: 1995 ident: e_1_2_8_102_1 publication-title: Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. – ident: e_1_2_8_42_1 doi: 10.1177/0748730406293854 – ident: e_1_2_8_80_1 doi: 10.1016/j.ijpharm.2020.119430 – ident: e_1_2_8_39_1 doi: 10.1016/S0169-409X(02)00051-0 – ident: e_1_2_8_84_1 doi: 10.1016/j.ijpharm.2008.12.008 – ident: e_1_2_8_48_1 doi: 10.1002/art.22368 – ident: e_1_2_8_37_1 doi: 10.1007/s40005-017-0320-1 – volume: 34 start-page: 427 year: 2017 ident: e_1_2_8_89_1 publication-title: Springer – volume-title: Fundamentals and Applications of Controlled Release Drug Delivery year: 2015 ident: e_1_2_8_17_1 – ident: e_1_2_8_78_1 – ident: e_1_2_8_74_1 doi: 10.1038/nbt1199 – ident: e_1_2_8_33_1 doi: 10.3390/polym9010008 – ident: e_1_2_8_32_1 doi: 10.1016/j.addr.2018.10.005 – ident: e_1_2_8_82_1 doi: 10.1016/S0168-3659(99)00225-4 – ident: e_1_2_8_120_1 doi: 10.1177/0091270003254575 – ident: e_1_2_8_3_1 doi: 10.1016/j.jconrel.2014.03.053 – ident: e_1_2_8_108_1 doi: 10.1016/j.addma.2020.101071 – ident: e_1_2_8_110_1 doi: 10.1016/j.ijpharm.2019.118790 – ident: e_1_2_8_77_1 doi: 10.1021/nl9018935 – ident: e_1_2_8_98_1 doi: 10.1016/j.ejps.2018.03.019 – ident: e_1_2_8_41_1 doi: 10.1186/s13054-018-2041-x – ident: e_1_2_8_76_1 doi: 10.3390/mi9010028 – ident: e_1_2_8_100_1 doi: 10.3390/pharmaceutics11120645 |
SSID | ssj0002511795 |
Score | 2.467977 |
SecondaryResourceType | review_article |
Snippet | Advanced polymeric controlled delivery systems are designed to effectively treat chronic diseases by adjusting the temporal profile of drug release. Most... Abstract Advanced polymeric controlled delivery systems are designed to effectively treat chronic diseases by adjusting the temporal profile of drug release.... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 3-D printers 3D printing adjustable drug release advanced drug‐delivery systems Circadian rhythm Design Drug administration Drug delivery systems Drug dosages Manufacturing Mechanical properties microfabrication Patient compliance personalized treatment Pharmaceuticals Physicochemical properties Plasma polymeric controlled‐release systems Polymers Semiconductors Toxicity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUQFQ0CAWK55AIaUER8xUnJKUCCiquLfIyR0GoX7VFAxSfwjXwJYye7WgqgoYzjwpqZeN44z28I2XVSeGWFzcAGkclQucyA1xmCCee005hi4nnH9U1xcSevHtXjTKuvyAlr5IEbwx0C50bbKv4gdFJZa1ypMNCYUdZraZJ6Kea8mWIq7sEROOvUcoUXGAqiKsuW9Y7vDu8vH7AyjGyiqKkwk4-SbP83rDmLWFPKOV8iiy1WpEfNGpfJHPRWSP80cS6o6XkajB20Z260H6gfjJ8-3z88dCPZ4pU2Ks1DOkrUWGr8c7wtZbtAY6cUTF-07dg9pAhd6csEl7-Bp1MC-iq5Oz-7PbnI2q4JmcNajWWlNEUeQg6GlQE4A8GDQMOVIcdhb7C-8NKIPGgEg1WpgmK2krjNFFgK5cDEGpnv9XuwTqg2DBQwqwsHUuu88iALbpVFmJijXzvkYGK72rWS4rGzRbduxJB5jZauJ5bukL3p7JdGSuOHecfRDdM5UQA7DWBY1G1Y1H-FRYdsTZxYt1_lsOYK67eSIYLskP3k2F8XEh84E2zjPxa0SRZ4pMMkHuAWmR8NxrCNeGZkd1LofgH3XPBx priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwELU4GhoEAsRyyQU0oIj4ipOSU4AEomCBLvKJhNAu2l0KqPgEvpEvYex4w1KARBlnFCUej-fNZPwGoW3DmRWa6cxpzzLuK5MpZ2UGYMIYaSS4mJDvuLwqzrr84l7cp4RbOAvT8EO0CbdgGXG_Dgau9HD_mzT09vwOwrtQEkSLaTQbTtcG7nzKr9scS4DPMjZeoQUsCFaVZap9h3v7kw_44ZUief8PxDmJW6PjOV1A8wkx4oNGxYtoyvWWUP84Vl5g1bPYKz1ImTfc99gOXh4-3z8sfB4s01fccDUP8SgWyGJlH8OZKf3kcOiXAk4Mp77dQwwAFj-P0fmbs7gtQ19G3dOTm6OzLPVOyAxEbCQruSpy73OnSOkdJY5Rz4TWpc9h2CqIMixXLPcSIGFVCi-IrjhsNgUERLkjbAXN9Po9t4qwVMQJR7QsjONS5pV1vKBaaACLOWi3g_bGc1ebRCwe-ls81Q0lMq1hpuvxTHfQTiv93BBq_CJ3GNTQygQa7DjQHzzUyapqR6mSugp_jw2Hr1OmFLALESW0lVyJDtoYK7FOtjmsqYAoriSAIztoNyr2zxcJF5QwsvYf4XU0R0PxS6z620Azo8GL2wT0MtJbcYl-ARJ-6HA priority: 102 providerName: Wiley-Blackwell |
Title | Design and fabrication of drug‐delivery systems toward adjustable release profiles for personalized treatment |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2FVIW.20200126 https://www.proquest.com/docview/2586281423 https://doaj.org/article/e22a7b92452c45bbac850421a5bd74a5 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R9sIFgQCxUFY-wAUUNXbsODkhClsVpFYVorC3yJ-V0Gqz7G4P7QHxE_iN_BJmvM5SDvQSyZEVJR7b82b88gbghZOVV7ayRbCxKmRsXWGC1wWCCee00-hiKN9xclofn8uPUzXNCbdVplUOe2LaqH3vKEd-IBRi74aj93-z-F5Q1Sg6Xc0lNHZgj6TLiNKlp3qbYyH4rFuV-e7YPvjy4SvGhMQjIjWFG54oCfb_gzJvYtXkbI7uw72MEtnbjVkfwJ0wfwj9-8S2YBj7s2jsMmfbWB-ZX15e_P75y4cZ0Syu2EafecXWiRTLjP9G_0nZWWBUIwUdF8u1ulcMQStbDIj8Oni2pZ4_gvOjyed3x0Wul1A4jNJ40UhTlzGWwfAmBsFDJWKlrG1iibe9wcjCS1OVUSMMbBsVFbetxA2mxiCoDLx6DLvzfh6eANOGBxW41bULUuuy9UHWwiqLALFEi47g9TB2ncti4lTTYtZtZJBFhyPdDSM9gpfb3ouNiMZ_-h2SGbZ9SPo63eiXF11eSV0Qwmjb0omxk_h1xjUKdx5ulPVaGjWC_cGIXV6Pq-7v7BnBq2TYW1-EGoJX_Ontz3oGdwVRXBK3bx9218vL8BwxytqOYUfIs3GajmPYO5ycnn0ap3gfryc_Jn8APfPqqQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThRBEK7gctALkahxBbUPctFMmP6bnjkQIwLZFdgYA8pt7F8Ss9lZdpcYPPkIPokP5ZNYPT8LHuTGsTudzkx1dddX1V9XAbyygjtpuEm8CTwRobCJ9k4lCCasVVahiYnxjuNRNjgVH87k2Qr87t7CRFpldybWB7WrbIyRbzOJ2DunaP3fTi-SWDUq3q52JTQatTj0V9_RZZvvDPdwfbcYO9g_eT9I2qoCiUVfhia50FkaQuo1zYNn1HMWuDQmDyl2O4342wnN06AQLBW5DJKaQuA2zNBVSD3lOO89WBUcXZkerO7ujz5-WkZ1ImBXhWwZ9tje_jz8gl5oZC7F_A03bF9dIuAfXHsTHdfm7eAhrLW4lLxrFGkdVvzkEVR7Nb-D6IkjQZtZG98jVSBudnn-5-cv58eR2HFFmozQc7KoabhEu2_xZZYZexKrsqCpJG118DlBmEymnQ_wwzuyJLs_htM7keUT6E2qiX8KRGnqpadGZdYLpdLCeZExIw1C0hR1qA9vOtmVtk1fHqtojMsm8TIrUdJlJ-k-bC1HT5u0Hf8ZtxuXYTkmJtuuO6rZednu3dIzppUp4h21Ffh32uYSzzqqpXFKaNmHzW4Ry_YEmJfX-tqH1_XC3vohscEop89un-sl3B-cHB-VR8PR4QY8YJFgUzMLN6G3mF3654iQFuZFq5YEvt71TvgLQxAi5A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZKkRAXBAJESgEf6AW0yvpvvXuoEBCihkLFgUJuxr-VUJQNSaqqnHgEnofH4UkYe72hHOitR1uWtWuPZ74Zf55B6KnlzAnDTOFNYAUPjS20d7IAMGGttBJMTIx3vD-qDo7526mYbqFf_VuYSKvsdWJS1K61MUY-pAKwd03A-g9DpkV8GI1fLL4VsYJUvGnty2l0InLoz8_AfVvtT0aw13uUjt98fH1Q5AoDhQW_hhQ111UZQuk1qYOnxDMamDCmDiV0Ow1Y3HHNyiABODW1CIKYhsORrMBtKD1hMO81dF0yQeIZk1O5ie9E6C4bkbn20B5-mnwGfzRymGImhwtWMBUL-AfhXsTJydCNb6NbGaHil51I3UFbfn4XtaPE9MB67nDQZpkjfbgN2C1PT37_-On8LFI8znGXG3qF14mQi7X7Gt9omZnHsT4LGE2c64SvMABmvOi9ge_e4Q3t_R46vpKVvI-25-3cP0BYauKFJ0ZW1nMpy8Z5XlEjDIDTEqRpgJ73a6dsTmQe62nMVJeCmSpYadWv9ADtbUYvugQe_xn3Km7DZkxMu5062uWJyqdYeUq1NE28rbYc_k7bWoDWI1oYJ7kWA7Tbb6LKumCl_kruAD1LG3vph8QGJYzsXD7XE3QD5F-9mxwdPkQ3aWTaJIrhLtpeL0_9I4BKa_M4ySRGX676EPwBsgAltA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+fabrication+of+drug%E2%80%90delivery+systems+toward+adjustable+release+profiles+for+personalized+treatment&rft.jtitle=View+%28Beijing%2C+China%29&rft.au=Geraili%2C+Armin&rft.au=Xing%2C+Malcolm&rft.au=Mequanint%2C+Kibret&rft.date=2021-10-01&rft.issn=2688-268X&rft.eissn=2688-268X&rft.volume=2&rft.issue=5&rft_id=info:doi/10.1002%2FVIW.20200126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_VIW_20200126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-3988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-3988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-3988&client=summon |