Quantifying terrestrial carbon in the context of climate change: a review of common and novel technologies and methods
Background Understanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conduc...
Saved in:
Published in | Carbon balance and management Vol. 20; no. 1; pp. 25 - 19 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
07.08.2025
Springer Nature B.V BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
Understanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies.
Results
Among the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models.
Conclusions
These results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process. |
---|---|
AbstractList | BackgroundUnderstanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies.ResultsAmong the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models.ConclusionsThese results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process. Background Understanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies. Results Among the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models. Conclusions These results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process. Understanding carbon dynamics in Earth's ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies.BACKGROUNDUnderstanding carbon dynamics in Earth's ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies.Among the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models.RESULTSAmong the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models.These results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process.CONCLUSIONSThese results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process. Understanding carbon dynamics in Earth's ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies. Among the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models. These results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process. Abstract Background Understanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies. Results Among the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models. Conclusions These results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process. |
ArticleNumber | 25 |
Author | Collevatti, Rosane Garcia Galford, Gillian L. Zeraatpisheh, Mojtaba Ferreira, Manuel Eduardo Gameiro, Samuel Ruiz, Luis Fernando Chimelo Nascimento, Victor Fernandez |
Author_xml | – sequence: 1 givenname: Samuel orcidid: 0000-0002-4339-6725 surname: Gameiro fullname: Gameiro, Samuel email: samuel_gameiro@outlook.com organization: Remote Sensing and GIS Lab (LAPIG), Environmental Science Graduate Program, Federal University of Goiás, Rubenstein School of Environment and Natural Resources, University of Vermont, Gund Institute for Environment, University of Vermont – sequence: 2 givenname: Manuel Eduardo surname: Ferreira fullname: Ferreira, Manuel Eduardo organization: Remote Sensing and GIS Lab (LAPIG), Environmental Science Graduate Program, Federal University of Goiás – sequence: 3 givenname: Luis Fernando Chimelo surname: Ruiz fullname: Ruiz, Luis Fernando Chimelo organization: Research and Development (R&D) at Santos Lab Digital – sequence: 4 givenname: Gillian L. surname: Galford fullname: Galford, Gillian L. organization: Rubenstein School of Environment and Natural Resources, University of Vermont, Gund Institute for Environment, University of Vermont – sequence: 5 givenname: Mojtaba surname: Zeraatpisheh fullname: Zeraatpisheh, Mojtaba organization: Rubenstein School of Environment and Natural Resources, University of Vermont, Gund Institute for Environment, University of Vermont – sequence: 6 givenname: Victor Fernandez surname: Nascimento fullname: Nascimento, Victor Fernandez organization: Engineering, Modelling, and Applied Social Sciences Center, Federal University of ABC – sequence: 7 givenname: Rosane Garcia surname: Collevatti fullname: Collevatti, Rosane Garcia organization: Remote Sensing and GIS Lab (LAPIG), Environmental Science Graduate Program, Federal University of Goiás, Genetics & Biodiversity Laboratory, Institute of Biological Sciences, Federal University of Goiás |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40773067$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVAR_YA_wAFF4sIlMP5I7HBBqCpQqRJCgrM1cSa7XiV2sbML_ff1ZktpOXCyNfPem-fxOy2OfPBUFC8ZvGVMN-8SE8BZBbyuAARrKvakOGGqhgoaDUcP7sfFaUobAKky8FlxLEEpAY06KXbftuhnN9w4vypnipHSHB2OpcXYBV86X85rKm3wM_2eyzCUdnQTzrm0Rr-i9yWWkXaOfi29ME2ZhL4vfdjRmBXt2ocxrBylpTzRvA59el48HXBM9OLuPCt-fLr4fv6luvr6-fL841VlJbSskkrxXigGSivJcOgt6k5DT2iho5opLhBr6GRLdZvfQ9QOupWtRSEapXtxVlwedPuAG3Mds_V4YwI6sxRCXBmMs7MjmYEU160SA-9QNqrFjqv9oLpGVdcMstaHg9b1tpuot-TniOMj0ccd79ZmFXaGcSGASZkV3twpxPBzmzdtJpcsjSN6CttkBBdKNqC5ztDX_0A3YRt93tWCqhUTem_p1UNL917-_G8G8APAxpBSpOEewsDsQ2QOITI5RGYJkWGZJA6klMH5j-Pf2f9h3QIjmsnR |
Cites_doi | 10.3389/fpls.2022.947279 10.1016/j.rse.2019.111383 10.1016/j.ejrs.2015.12.003 10.1038/ngeo671 10.1080/22797254.2022.2045226 10.1007/s00442-005-0100-x 10.18520/cs/v110/i10/2005-2011 10.1007/s11192-009-0146-3 10.1016/j.geoderma.2021.115118 10.3390/min13040553 10.2136/sssabookser5.3.c34 10.3390/f5071635 10.1590/S0100-67622013000600009 10.1016/j.geoderma.2020.114401 10.1038/ngeo1123 10.1016/j.geoderma.2017.10.052 10.1007/978-94-007-2232-3 10.1088/1748-9326/2/4/045023 10.1590/0103-9016-2013-0306 10.1016/j.envsci.2011.11.001 10.1007/s10342-010-0381-4 10.1016/j.rse.2017.06.031 10.1097/00010694-193401000-00003 10.1080/01431160010006926 10.5194/soil-4-101-2018 10.2134/agronmonogr9.2.2ed.c29 10.1371/journal.pone.0225331 10.3390/jmse10030364 10.1007/s11027-018-9793-0 10.1016/j.rse.2013.06.019 10.1016/j.foreco.2017.11.014 10.1109/JSTARS.2020.3025117 10.3390/rs12111754 10.1080/01431161.2017.1356488 10.3390/land12010060 10.1093/forestscience/43.3.424 10.1136/bmj.b2535 10.1016/j.jag.2016.09.002 10.1016/j.uclim.2017.08.007 10.1016/j.geoderma.2018.10.015 10.1016/j.foreco.2016.04.009 10.1186/2047-2382-1-6 10.1016/j.geoderma.2007.12.009 10.1111/gcb.14815 10.1016/j.geoderma.2013.04.007 10.1016/j.geodrs.2020.e00333 10.1007/s11368-023-03583-y 10.1016/j.scitotenv.2019.02.125 10.1016/j.earscirev.2019.05.014 10.1016/j.catena.2025.108776 10.1371/journal.pone.0241637 10.3390/rs15235571 10.1109/JSTARS.2018.2817344 10.1016/S0003-2670(00)88254-9 10.1007/s11629-019-5789-9 10.5935/0103-5053.20160031 10.1590/S0100-40422008000100020 10.1371/journal.pone.0215238 10.1016/j.rsase.2019.100275 10.2136/sssaj2017.04.0135 10.1007/s11676-019-00891-3 10.1007/978-3-319-71065-5_23-1 10.1007/s11368-024-03913-8 10.3390/rs10060898 10.1098/rsta.2002.1026 10.1016/j.geoderma.2019.05.043 10.1016/j.rse.2020.111669 10.3390/rs6065452 10.5194/bg-9-4477-2012 10.1016/j.aca.2016.07.039 10.1046/j.1466-822X.2003.00010.x 10.1080/17583004.2019.1633231 10.1590/S0100-06832012000400015 10.1016/j.rse.2008.03.004 10.1007/978-94-007-2232-3_14 10.1371/journal.pone.0138450 10.1080/00103624.2018.1510948 10.1017/CBO9781107415324.015 10.1080/1747423X.2018.1542463 10.1038/nature17174a 10.1016/j.biosystemseng.2017.01.007 10.1080/24749508.2018.1481656 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7SN 7TG 7X7 7XB 8FE 8FG 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KL. M0S P5Z P62 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY 7X8 5PM DOA |
DOI | 10.1186/s13021-025-00316-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Ecology Abstracts Meteorological & Geoastrophysical Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Health & Medical Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Environmental Science Collection Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry Environmental Sciences |
EISSN | 1750-0680 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_fe728973f2ba4679ab27deac55a75510 PMC12330144 40773067 10_1186_s13021_025_00316_1 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 140673/2021; 315699/2020-5; 404767/2021-4 funderid: http://dx.doi.org/10.13039/501100003593 – fundername: University of Vermont grantid: 80NSSC23K0537; 80NSSC23K0537 funderid: http://dx.doi.org/10.13039/100010941 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 88881.846255/2023-01 funderid: http://dx.doi.org/10.13039/501100002322 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 140673/2021 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 404767/2021-4 – fundername: University of Vermont grantid: 80NSSC23K0537 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 315699/2020-5 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 88881.846255/2023-01 |
GroupedDBID | 0R~ 29B 2WC 2XV 4P2 5GY 5VS 6J9 7X7 7XC 8FE 8FG 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AAKKN AASML ABDBF ABEEZ ABUWG ACACY ACGFS ACPRK ACUHS ACULB ADBBV ADRAZ AEUYN AFGXO AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS ATCPS BAPOH BAWUL BCNDV BENPR BFQNJ BGLVJ BHPHI BPHCQ BVXVI C24 C6C CCPQU CS3 DIK DU5 E3Z EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IGS IHR KQ8 ML. M~E O5R O5S OK1 OVT P2P P62 PATMY PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PYCSY RNS RPM SEV SOJ TR2 TUS UKHRP WOQ ~02 ~8M AAYXX CITATION NPM 3V. 7SN 7TG 7XB 8FK AZQEC C1K DWQXO GNUQQ K9. KL. PKEHL PQEST PQUKI PUEGO 7X8 5PM ADUKV BMC |
ID | FETCH-LOGICAL-c4091-4772d371078741afdca8b80deac0be51723aa50b49e59067ee9f8949ca33678d3 |
IEDL.DBID | C24 |
ISSN | 1750-0680 |
IngestDate | Wed Aug 27 01:24:25 EDT 2025 Thu Aug 21 18:22:15 EDT 2025 Thu Aug 07 17:41:59 EDT 2025 Sat Aug 23 12:33:02 EDT 2025 Mon Aug 11 01:32:51 EDT 2025 Thu Aug 14 00:05:12 EDT 2025 Fri Aug 08 01:11:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Analytical techniques Carbon stock PRISMA Remote sensing |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4091-4772d371078741afdca8b80deac0be51723aa50b49e59067ee9f8949ca33678d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4339-6725 |
OpenAccessLink | https://link.springer.com/10.1186/s13021-025-00316-1 |
PMID | 40773067 |
PQID | 3237571380 |
PQPubID | 55243 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fe728973f2ba4679ab27deac55a75510 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12330144 proquest_miscellaneous_3237460828 proquest_journals_3237571380 pubmed_primary_40773067 crossref_primary_10_1186_s13021_025_00316_1 springer_journals_10_1186_s13021_025_00316_1 |
PublicationCentury | 2000 |
PublicationDate | 20250807 |
PublicationDateYYYYMMDD | 2025-08-07 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250807 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: England – name: London |
PublicationTitle | Carbon balance and management |
PublicationTitleAbbrev | Carbon Balance Manage |
PublicationTitleAlternate | Carbon Balance Manag |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V BMC |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: BMC |
References | T Li (316_CR34) 2022; 13 GR van der Werf (316_CR95) 2009; 2 A Walkley (316_CR37) 1934; 37 S Doetterl (316_CR39) 2013; 204–205 GP Asner (316_CR80) 2001; 22 MW Warren (316_CR96) 2012; 9 E Duarte (316_CR88) 2022; 55 NJ Van Eck (316_CR32) 2010; 84 316_CR43 JM Moura-Bueno (316_CR20) 2019; 337 316_CR44 316_CR41 DJRG Nóbrega (316_CR46) 2017; 81 A Qureshi (316_CR3) 2012; 16 316_CR40 316_CR6 316_CR7 316_CR8 316_CR9 A Stevens (316_CR51) 2008; 144 S Brown (316_CR91) 2002; 360 MHF Vital (316_CR67) 2018; 48 RKKV Giri (316_CR29) 2017; 8 JR England (316_CR52) 2018; 4 K Paustian (316_CR31) 2016; 532 316_CR36 316_CR38 MVN d’Oliveira (316_CR82) 2020; 12 316_CR33 A Hueni (316_CR73) 2020; 13 Q Zhang (316_CR1) 2020; 31 MP Helen, Jarzebski (316_CR71) 2019; 14 S Wang (316_CR26) 2018; 314 X Li (316_CR89) 2023; 23 T Kristensen (316_CR63) 2015; 10 Y Li (316_CR22) 2018; 10 316_CR25 C Briedis (316_CR70) 2020; 373 UJ Santos (316_CR75) 2020; 23 RG Enang (316_CR69) 2018 K Paustian (316_CR23) 2019; 10 R Aitali (316_CR59) 2022; 10 EA Dionizio (316_CR85) 2020; 15 P Schroeder (316_CR14) 1997; 43 316_CR16 316_CR10 M Van Leeuwen (316_CR83) 2010; 129 T Li (316_CR93) 2024; 24 316_CR11 GS Senesi (316_CR76) 2016; 938 LC Schneider (316_CR79) 2018; 13 AK Nayak (316_CR17) 2019; 665 L Suchenwirth (316_CR90) 2014; 5 N Gorelick (316_CR87) 2017; 202 RH Rizvi (316_CR57) 2016; 110 G Petrokofsky (316_CR5) 2012; 1 LJ Mebius (316_CR42) 1960; 22 M Knadel (316_CR78) 2017; 156 RO Corona-Núñez (316_CR15) 2018; 409 DC Donato (316_CR98) 2011; 4 PL Woomer (316_CR24) 1998; 77 AC Silva (316_CR48) 1999; 5 CO Santos (316_CR58) 2023; 12 SC Majumder (316_CR72) 2019; 3 JLC Huamán (316_CR77) 2023; 13 L Guo (316_CR27) 2021; 398 P Kumar (316_CR61) 2016; 19 AQ Pariva (316_CR28) 2012; 16 DL Carmo (316_CR49) 2012; 36 X Yang (316_CR64) 2016; 372 M Poorazimy (316_CR66) 2020; 240 N Asgari (316_CR21) 2020; 17 F Xiao (316_CR81) 2019; 233 KK Beltrame (316_CR45) 2016; 27 A Safari (316_CR55) 2017; 38 E Naesset (316_CR84) 2008; 112 C Grinand (316_CR65) 2017; 54 316_CR68 CA James (316_CR13) 2018; 25 L Goers (316_CR94) 2012 316_CR2 P Smith (316_CR30) 2020; 26 316_CR60 316_CR4 CSR Neigh (316_CR62) 2013; 137 J Chave (316_CR92) 2005; 145 JH Sato (316_CR19) 2014; 71 T Li (316_CR35) 2025; 250 MF Saragi-Sasmito (316_CR97) 2019; 24 B Minasny (316_CR47) 2019; 196 JB Drake (316_CR53) 2003; 12 316_CR54 316_CR56 P Vicharnakorn (316_CR86) 2014; 6 316_CR50 A Segnini (316_CR18) 2008; 31 JAM Demattê (316_CR74) 2019; 354 SA Mukul (316_CR12) 2019 |
References_xml | – volume: 13 start-page: 947279 year: 2022 ident: 316_CR34 publication-title: Front Plant Sci doi: 10.3389/fpls.2022.947279 – volume: 233 start-page: 111383 year: 2019 ident: 316_CR81 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2019.111383 – ident: 316_CR2 – volume: 19 start-page: 109 year: 2016 ident: 316_CR61 publication-title: Egypt J Remote Sens Space Sci doi: 10.1016/j.ejrs.2015.12.003 – volume: 2 start-page: 737 issue: 11 year: 2009 ident: 316_CR95 publication-title: Nat Geosci doi: 10.1038/ngeo671 – volume: 55 start-page: 213 issue: 1 year: 2022 ident: 316_CR88 publication-title: Eur J Remote Sens doi: 10.1080/22797254.2022.2045226 – ident: 316_CR43 – volume: 5 start-page: 21 year: 1999 ident: 316_CR48 publication-title: Rev Unifenas Alfenas – volume: 145 start-page: 87 year: 2005 ident: 316_CR92 publication-title: Oecologia doi: 10.1007/s00442-005-0100-x – volume: 110 start-page: 10 year: 2016 ident: 316_CR57 publication-title: Curr Sci doi: 10.18520/cs/v110/i10/2005-2011 – volume: 84 start-page: 523 issue: 2 year: 2010 ident: 316_CR32 publication-title: Scientometrics doi: 10.1007/s11192-009-0146-3 – volume: 398 start-page: 115118 year: 2021 ident: 316_CR27 publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115118 – volume: 13 start-page: 553 year: 2023 ident: 316_CR77 publication-title: Minerals doi: 10.3390/min13040553 – ident: 316_CR38 doi: 10.2136/sssabookser5.3.c34 – volume: 5 start-page: 1635 year: 2014 ident: 316_CR90 publication-title: Forests doi: 10.3390/f5071635 – ident: 316_CR56 doi: 10.1590/S0100-67622013000600009 – ident: 316_CR8 – volume: 373 start-page: 1144 year: 2020 ident: 316_CR70 publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114401 – volume: 4 start-page: 293 issue: 5 year: 2011 ident: 316_CR98 publication-title: Nat Geosci doi: 10.1038/ngeo1123 – ident: 316_CR11 – volume: 314 start-page: 8 year: 2018 ident: 316_CR26 publication-title: Geoderma doi: 10.1016/j.geoderma.2017.10.052 – ident: 316_CR9 doi: 10.1007/978-94-007-2232-3 – ident: 316_CR60 doi: 10.1088/1748-9326/2/4/045023 – volume: 71 start-page: 302 issue: 4 year: 2014 ident: 316_CR19 publication-title: Sci Agric doi: 10.1590/0103-9016-2013-0306 – volume: 8 start-page: 287 issue: 4 year: 2017 ident: 316_CR29 publication-title: Int J Civil Eng Technol (IJCIET) – volume: 16 start-page: 81 year: 2012 ident: 316_CR3 publication-title: Environ Sci Policy doi: 10.1016/j.envsci.2011.11.001 – volume: 129 start-page: 749 year: 2010 ident: 316_CR83 publication-title: Eur J Res doi: 10.1007/s10342-010-0381-4 – volume: 202 start-page: 18 year: 2017 ident: 316_CR87 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2017.06.031 – volume: 37 start-page: 29 issue: 1 year: 1934 ident: 316_CR37 publication-title: Soil Sci doi: 10.1097/00010694-193401000-00003 – ident: 316_CR41 – volume: 22 start-page: 3855 year: 2001 ident: 316_CR80 publication-title: Int J Remote Sens doi: 10.1080/01431160010006926 – volume: 4 start-page: 101 year: 2018 ident: 316_CR52 publication-title: SOIL doi: 10.5194/soil-4-101-2018 – ident: 316_CR50 doi: 10.2134/agronmonogr9.2.2ed.c29 – volume: 14 start-page: e0225331 issue: 11 year: 2019 ident: 316_CR71 publication-title: PLoS ONE doi: 10.1371/journal.pone.0225331 – volume: 10 start-page: 364 year: 2022 ident: 316_CR59 publication-title: J Mar Sci Eng doi: 10.3390/jmse10030364 – volume: 24 start-page: 521 year: 2019 ident: 316_CR97 publication-title: Mitig Adapt Strateg Glob Chang doi: 10.1007/s11027-018-9793-0 – volume: 137 start-page: 274 year: 2013 ident: 316_CR62 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2013.06.019 – volume: 409 start-page: 202 year: 2018 ident: 316_CR15 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2017.11.014 – volume: 48 start-page: 167 year: 2018 ident: 316_CR67 publication-title: BNDES Setorial – volume: 13 start-page: 5789 year: 2020 ident: 316_CR73 publication-title: IEEE J Sel Top Appl Earth Observations Remote Sens doi: 10.1109/JSTARS.2020.3025117 – volume: 12 start-page: 1754 year: 2020 ident: 316_CR82 publication-title: Remote Sens doi: 10.3390/rs12111754 – volume: 38 start-page: 6407 issue: 22 year: 2017 ident: 316_CR55 publication-title: Int J Remote Sens doi: 10.1080/01431161.2017.1356488 – ident: 316_CR6 – volume: 12 start-page: 60 issue: 1 year: 2023 ident: 316_CR58 publication-title: Land doi: 10.3390/land12010060 – volume: 43 start-page: 424 issue: 3 year: 1997 ident: 316_CR14 publication-title: Sci doi: 10.1093/forestscience/43.3.424 – ident: 316_CR36 doi: 10.1136/bmj.b2535 – volume: 54 start-page: 1 year: 2017 ident: 316_CR65 publication-title: Int J Appl Earth Obs Geoinf doi: 10.1016/j.jag.2016.09.002 – volume: 25 start-page: 703 year: 2018 ident: 316_CR13 publication-title: Urban Clim doi: 10.1016/j.uclim.2017.08.007 – volume: 337 start-page: 565 year: 2019 ident: 316_CR20 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.10.015 – ident: 316_CR44 – volume: 372 start-page: 149 year: 2016 ident: 316_CR64 publication-title: Ecol Manag doi: 10.1016/j.foreco.2016.04.009 – volume: 1 start-page: 6 year: 2012 ident: 316_CR5 publication-title: Environ Evid doi: 10.1186/2047-2382-1-6 – volume: 144 start-page: 395 year: 2008 ident: 316_CR51 publication-title: Geoderma doi: 10.1016/j.geoderma.2007.12.009 – volume: 26 start-page: 219 issue: 1 year: 2020 ident: 316_CR30 publication-title: Glob Chang Biol doi: 10.1111/gcb.14815 – volume: 204–205 start-page: 31 year: 2013 ident: 316_CR39 publication-title: Geoderma doi: 10.1016/j.geoderma.2013.04.007 – volume: 23 start-page: e00333 year: 2020 ident: 316_CR75 publication-title: Geoderma Reg doi: 10.1016/j.geodrs.2020.e00333 – volume: 23 start-page: 2963 year: 2023 ident: 316_CR89 publication-title: J Soils Sediments doi: 10.1007/s11368-023-03583-y – volume: 665 start-page: 890 year: 2019 ident: 316_CR17 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.02.125 – volume: 196 start-page: 102870 year: 2019 ident: 316_CR47 publication-title: Earth-Sci Rev doi: 10.1016/j.earscirev.2019.05.014 – volume: 250 start-page: 108776 year: 2025 ident: 316_CR35 publication-title: CATENA doi: 10.1016/j.catena.2025.108776 – volume: 15 start-page: e0241637 issue: 11 year: 2020 ident: 316_CR85 publication-title: PLoS ONE doi: 10.1371/journal.pone.0241637 – ident: 316_CR33 doi: 10.3390/rs15235571 – ident: 316_CR25 doi: 10.1109/JSTARS.2018.2817344 – volume: 22 start-page: 120 year: 1960 ident: 316_CR42 publication-title: Anal Chim Acta doi: 10.1016/S0003-2670(00)88254-9 – ident: 316_CR10 – volume: 17 start-page: 1636 issue: 7 year: 2020 ident: 316_CR21 publication-title: J Mt Sci doi: 10.1007/s11629-019-5789-9 – volume: 27 start-page: 1527 issue: 9 year: 2016 ident: 316_CR45 publication-title: J Braz Chem Soc doi: 10.5935/0103-5053.20160031 – volume: 31 start-page: 94 year: 2008 ident: 316_CR18 publication-title: Quim Nova doi: 10.1590/S0100-40422008000100020 – ident: 316_CR16 doi: 10.1371/journal.pone.0215238 – ident: 316_CR54 doi: 10.1016/j.rsase.2019.100275 – volume: 81 start-page: 1661 year: 2017 ident: 316_CR46 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2017.04.0135 – volume: 31 start-page: 1247 issue: 4 year: 2020 ident: 316_CR1 publication-title: J Res doi: 10.1007/s11676-019-00891-3 – volume-title: Life on land year: 2019 ident: 316_CR12 doi: 10.1007/978-3-319-71065-5_23-1 – volume: 24 start-page: 3556 year: 2024 ident: 316_CR93 publication-title: J Soils Sediments doi: 10.1007/s11368-024-03913-8 – volume: 10 start-page: 898 year: 2018 ident: 316_CR22 publication-title: Remote Sens doi: 10.3390/rs10060898 – volume: 360 start-page: 1669 year: 2002 ident: 316_CR91 publication-title: Philos Trans R Soc Lond doi: 10.1098/rsta.2002.1026 – volume: 77 start-page: 181 issue: 3 year: 1998 ident: 316_CR24 publication-title: Commonw Rev – volume: 354 start-page: 113793 year: 2019 ident: 316_CR74 publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.043 – volume: 240 start-page: 111669 year: 2020 ident: 316_CR66 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2020.111669 – volume: 6 start-page: 5452 year: 2014 ident: 316_CR86 publication-title: Remote Sens doi: 10.3390/rs6065452 – volume: 9 start-page: 4477 year: 2012 ident: 316_CR96 publication-title: Biogeosciences doi: 10.5194/bg-9-4477-2012 – volume: 938 start-page: 7 year: 2016 ident: 316_CR76 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2016.07.039 – volume: 12 start-page: 147 year: 2003 ident: 316_CR53 publication-title: Glob Ecol Biogeogr doi: 10.1046/j.1466-822X.2003.00010.x – ident: 316_CR7 – volume: 10 start-page: 567 issue: 6 year: 2019 ident: 316_CR23 publication-title: Carbon Manag doi: 10.1080/17583004.2019.1633231 – volume: 36 start-page: 1211 year: 2012 ident: 316_CR49 publication-title: Revista Brasileira De Ciência Do Solo doi: 10.1590/S0100-06832012000400015 – ident: 316_CR68 – volume: 112 start-page: 3079 year: 2008 ident: 316_CR84 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2008.03.004 – volume: 16 start-page: 81 year: 2012 ident: 316_CR28 publication-title: Environ Sci Policy doi: 10.1016/j.envsci.2011.11.001 – volume-title: Managing forest carbon in a changing climate year: 2012 ident: 316_CR94 doi: 10.1007/978-94-007-2232-3_14 – volume: 10 start-page: e0138450 issue: 10 year: 2015 ident: 316_CR63 publication-title: PLoS ONE doi: 10.1371/journal.pone.0138450 – year: 2018 ident: 316_CR69 publication-title: Commun Soil Sci Plant Anal doi: 10.1080/00103624.2018.1510948 – ident: 316_CR4 doi: 10.1017/CBO9781107415324.015 – ident: 316_CR40 – volume: 13 start-page: 455 issue: 5 year: 2018 ident: 316_CR79 publication-title: J Land Use Sci doi: 10.1080/1747423X.2018.1542463 – volume: 532 start-page: 49 year: 2016 ident: 316_CR31 publication-title: Nature doi: 10.1038/nature17174a – volume: 156 start-page: 157 year: 2017 ident: 316_CR78 publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2017.01.007 – volume: 3 start-page: 29 issue: 1 year: 2019 ident: 316_CR72 publication-title: Geol Ecol Landscapes doi: 10.1080/24749508.2018.1481656 |
SSID | ssj0047003 |
Score | 2.3513997 |
SecondaryResourceType | review_article |
Snippet | Background
Understanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is... Understanding carbon dynamics in Earth's ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to... BackgroundUnderstanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is... Abstract Background Understanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 25 |
SubjectTerms | Analytical techniques Bibliometrics Biomass Carbon Carbon cycle Carbon dioxide Carbon sequestration Carbon stock Climate change Climate change mitigation Earth and Environmental Science Ecosystems Emissions Environment Environmental Management Forestry Grasslands Greenhouse gases Keywords Land use Landsat Lidar Machine learning Mangroves Methods PRISMA Regression analysis Remote sensing Review Satellite imagery Satellites Scientometrics Spectrum analysis Vegetation |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA7SlRvxVR1bJYI7HTozSSaJO5WWIigIFroLJzMZvFBmpPfe_n6_JDO3Xh-4cZuTRTiPnO9Lck4Ye1VZjzylVSm91KWMR1YGwLocBiV9HQj7YzzQ__S5Pb-QHy_V5U9ffcU3Ybk9cFbcyRA0OIEWQ-MJQW3JN7rHbqEUaWT7xNaR8xYylfdgqeGsS4mMaU_W8XoOtLlRZfTitqz30lDq1v8niPn7S8lfrktTFjq7z-7N8JG_y8t-wO6E8SE7PL2tVoNwDtf1I3bzZUvxMVAsZeJQYPyHIzoc7-jaTyNfjRz4j8fn6tij-TTw7moFCIuhVHTwlhPPtS1JNkWf5TT2fJxuwhXfLMfyYNtpOH9HvX7MLs5Ov344L-ePFsoO9A4cEhC7F8AaiF5Z09B3ZLypoporHxQwjiBSlZc2KIv0FoIdjJW2IyFgzF4csoNxGsNTxn0g0VMnLUkDJNaS74Lu6lZ7iyRpVcFeL3p333M_DZd4iGldtpKDlVLH0tbVBXsfTbObGXthpwF4iJs9xP3LQwp2vBjWzQG6dqIRWoGgG4hf7sQIrXhfQmOYtnmObGOPv4I9yX6wWwl4sI5sq2Bmz0P2lrovGVffUvtuYIXEYwv2ZnGm23X9XRfP_ocujtjdJkWBKSt9zA4219vwHKhq41-kAPoBf4Aeyg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BuXBBvAqhBRmJG1hNYju2uSBArSokkJCotLfIdhxYqUrazW5_f2ecZFfL62rn4Hhe3ze2ZwDe5NZjnNKKSy81l5SyMgisedsq6Yvo0D9SQv_rt-r8Qn5ZqMWUcBuma5WzT0yOuukD5chPRCm0QkZl8g9X15y6RtHp6tRC4y7co9JlpNV6sSVcUqPKzg9lTHUy0CEdkudScdLlihd7wSjV7P8b0PzzvuRvh6YpFp09hAcTiGQfR6k_gjuxewyHp7s3azg5Ge3wBG6-bxxdCaIHTQy3kbpxkNqx4Fa-79iyY4gCGV1aR0_N-paFyyUCWRxKTw_eM8fGFy5prqetYK5rWNffxEu2npPzyLnT8NiUengKF2enPz6f86ndAg9I8pBJItBuBCIOtGFZuLYJzniTN-iacx8VIh3hnMq9tFFZDHIx2tZYaYMTAkXaiEM46PouPgfmoxONC9I6aRCPVc6HqENRaW8xVFqVwdt53-ursapGndiIqepRSjVKKdUtreoig08kmu2XVBE7DfSrn_VkYHUbNXJHLdrSO3T-1vlS09KVchpRYZ7B8SzYejLTod4pVQavt9NoYHRq4rrYb8ZvZEWV_jJ4NurBdiXIhjVxrgzMnobsLXV_plv-SkW8ETEkNpvBu1mZduv69168-P9vHMH9Mum34bk-hoP1ahNfImpa-1fJNG4BC_oWIA priority: 102 providerName: ProQuest |
Title | Quantifying terrestrial carbon in the context of climate change: a review of common and novel technologies and methods |
URI | https://link.springer.com/article/10.1186/s13021-025-00316-1 https://www.ncbi.nlm.nih.gov/pubmed/40773067 https://www.proquest.com/docview/3237571380 https://www.proquest.com/docview/3237460828 https://pubmed.ncbi.nlm.nih.gov/PMC12330144 https://doaj.org/article/fe728973f2ba4679ab27deac55a75510 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-2FsZextatm7cuaLC3zcyxJUvaW1qSlsDKvgp5M5Itd4Eijzjp37872U7J2j70xQadDML3od9P0p0APiba4jwlRcwtlzGnJSuFwDqua8Ht2BmMj7Sg_-08P7vg84VY9Elh7XDafdiSDJE6uLXKv7S0xYbUNxUxWWIeI-fZF8TdaYuWchy6-Msliof0mDu_25mCQqX-u-Dl7VOS_22Vhhlo9hye9dCRTTpdv4BHzh_A4fQmUw2Fvau2B_CELt2km9xewvWPjaEzQZTRxPA_hna0O1aalW08W3qGMJDRqXUM1aypWXm1RCSLTSH34CszrEtxCbKGTJcZXzHfXLsrth5W55F0h-buVur2FVzMpr9PzuL-voW4RJaHVBKRdpUh5EAn5mNTV6VRViUVxubEOoFQJzNGJJZrJzTOcs7pWmmuS5NlqNMqO4Q933j3Bph1JqtMybXhCgFZbmzpZDnOpdU4V2oRwadBBcXfrqxGEeiIyotOYQUqLBQuzYtxBMekpW1PKokdGprVZdF7WFE7ieRRZnVqDUZ_bWwqaehCGImwMIngaNBx0ftpW2RpJgXydIXiD1sxehhtmxjvmk3Xh-dU6i-C151JbEeCdFgS6YpA7RjLzlB3JX75J1TxRsgQ6GwEnwe7uhnX_f_i7cO6v4OnaTB9FSfyCPbWq417jzBqbUfwWC4kPtXsdAT7k8n81xzfx9Pz7z9HwaPomZ-MwjLFPzMGHPQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6V8gAviKuQUsBI8ARRc9ixg4QQR5ctPSSkVuqbaycOrFQl7Wa3iD_Fb2TGSXa1XG99taPVrOf8PJ4ZgOdRbtFPSRFyy2XI6cpKYWAdVpXgNnYG7SNd6B8cZuNj_vlEnKzBz6EWhp5VDjbRG-qyKeiOfDtNUikQUano7flFSFOjKLs6jNDoxGLP_fiOkK19s_sR-fsiSUY7Rx_GYT9VICwQyyBgwniyTNGxoqjy2FRlYZRVUYkWKLJOoENPjRGR5bkTOdpy5_JK5TwvTJoi5WWKv3sNrvMUPTlVpo8-DZafS1SRoTBHZdstJQURrCciJN3JwnjF-fkZAX8LbP98n_lbktb7vtFtuNUHrexdJ2V3YM3Vd2FjZ1kjh5u9kWjvweWXuaEnSFRAxZBtNP2DxJwVZmqbmk1qhlEno0fy6BlYU7HibIKBMy75UofXzLCuosbvNXT0zNQlq5tLd8ZmQzIAMb5f7oZgt_fh-EoYsQHrdVO7h8CsM2lpCp4brjD-y4wtnCziTNocXXMuAng5nLs-77p4aI9-VKY7Lmnkku-Tmuk4gPfEmsWX1IHbLzTTr7pXaF05iVhVplViDTqb3NhEEulCGIlRaBTA1sBY3ZuFVi-FOIBni21UaMrSmNo18-4bnlFnwQAedHKwoATRtySMF4BakZAVUld36sk33zQcIxSPngN4NQjTkq5_n8Xm___GU7gxPjrY1_u7h3uP4GbiZV2FkdyC9dl07h5jxDazT7yaMDi9ar38BZBQUgQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IF6FlAJGghNEm4cdJ0gIUbqrlsKqICr15tqJAytVSbvZLeKv8euYcZJdLa9br3YU2Z7n55nxADwLMoN2SgqfGy59TldWKTrWflkKbkKrUT_Shf7HSbJ_zN-fiJMN-NnXwlBaZa8TnaIu6pzuyIdxFEuBiCoNhmWXFnG0N35zfuFTBymKtPbtNFoWObQ_viN8a14f7CGtn0fRePTl3b7fdRjwc8Q1CJ7QtyxiNLLItjzUZZHr1KRBgdooMFagcY-1FoHhmRUZ6nVrszLNeJbrOMZdFDH-9xpsSkJFA9jcHU2OPvd2gEsUmL5MJ02GDYUIEbpHwidJSvxwzRS6jgF_c3P_zNb8LWTrLOH4FtzsXFj2tuW527BhqzuwNVpVzOFkpzKau3D5aaEpIYnKqRgSkXqBENOzXM9MXbFpxdAHZZQyj4fN6pLlZ1N0o3HIFT68Ypq19TVurqbDZ7oqWFVf2jM270MDiPjdcNsSu7kHx1dCii0YVHVlHwAzVseFznmmeYreYKJNbmUeJtJkaKgz4cGL_tzVefumh3JYKE1USyWFVHKvpiYq9GCXSLP8kt7jdgP17KvqxFuVViJylXEZGY2mJ9MmkrR0IbREnzTwYKcnrOqURKNWLO3B0-U0ijfFbHRl60X7DU_onUEP7rd8sFwJcp0kxOdBusYha0tdn6mm39wT4uivOCztwcuemVbr-vdZbP9_G0_gOsqk-nAwOXwINyLH6qkfyB0YzGcL-wjdt7l53MkJg9OrFs1f9G1Xlg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+terrestrial+carbon+in+the+context+of+climate+change%3A+a+review+of+common+and+novel+technologies+and+methods&rft.jtitle=Carbon+balance+and+management&rft.au=Gameiro%2C+Samuel&rft.au=Ferreira%2C+Manuel+Eduardo&rft.au=Ruiz%2C+Luis+Fernando+Chimelo&rft.au=Galford%2C+Gillian+L.&rft.date=2025-08-07&rft.pub=Springer+International+Publishing&rft.eissn=1750-0680&rft.volume=20&rft_id=info:doi/10.1186%2Fs13021-025-00316-1&rft.externalDocID=PMC12330144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-0680&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-0680&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-0680&client=summon |