Quantifying terrestrial carbon in the context of climate change: a review of common and novel technologies and methods

Background Understanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conduc...

Full description

Saved in:
Bibliographic Details
Published inCarbon balance and management Vol. 20; no. 1; pp. 25 - 19
Main Authors Gameiro, Samuel, Ferreira, Manuel Eduardo, Ruiz, Luis Fernando Chimelo, Galford, Gillian L., Zeraatpisheh, Mojtaba, Nascimento, Victor Fernandez, Collevatti, Rosane Garcia
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 07.08.2025
Springer Nature B.V
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Understanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies. Results Among the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models. Conclusions These results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process.
AbstractList BackgroundUnderstanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies.ResultsAmong the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models.ConclusionsThese results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process.
Background Understanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies. Results Among the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models. Conclusions These results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process.
Understanding carbon dynamics in Earth's ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies.BACKGROUNDUnderstanding carbon dynamics in Earth's ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies.Among the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models.RESULTSAmong the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models.These results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process.CONCLUSIONSThese results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process.
Understanding carbon dynamics in Earth's ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies. Among the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models. These results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process.
Abstract Background Understanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to understand both how carbon quantification in soil and vegetation is measured and how it can be improved. Therefore, this study conducted a bibliometric and bibliographic review of the most common carbon quantification methodologies. Results Among the most widely used techniques, the Walkley-Black method and Elemental Analysis stand out for measuring below-ground carbon, while forest inventories are prominent for assessing above-ground carbon. Additionally, we found that the United States and China have the largest number of publications on this topic, with forest and agricultural areas being the most studied, followed by grasslands and mangroves. However, it should be noted that despite being indirect techniques, remote sensing, regression analysis, and machine learning have increasingly been used to generate geo-environmental carbon models for various areas. Landsat satellite images are the most widely used in remote sensing, followed by LiDAR digital models. Conclusions These results demonstrate that while new technologies do yet not replace analytical techniques, they are valuable allies working in conjunction with the current carbon quantification process.
ArticleNumber 25
Author Collevatti, Rosane Garcia
Galford, Gillian L.
Zeraatpisheh, Mojtaba
Ferreira, Manuel Eduardo
Gameiro, Samuel
Ruiz, Luis Fernando Chimelo
Nascimento, Victor Fernandez
Author_xml – sequence: 1
  givenname: Samuel
  orcidid: 0000-0002-4339-6725
  surname: Gameiro
  fullname: Gameiro, Samuel
  email: samuel_gameiro@outlook.com
  organization: Remote Sensing and GIS Lab (LAPIG), Environmental Science Graduate Program, Federal University of Goiás, Rubenstein School of Environment and Natural Resources, University of Vermont, Gund Institute for Environment, University of Vermont
– sequence: 2
  givenname: Manuel Eduardo
  surname: Ferreira
  fullname: Ferreira, Manuel Eduardo
  organization: Remote Sensing and GIS Lab (LAPIG), Environmental Science Graduate Program, Federal University of Goiás
– sequence: 3
  givenname: Luis Fernando Chimelo
  surname: Ruiz
  fullname: Ruiz, Luis Fernando Chimelo
  organization: Research and Development (R&D) at Santos Lab Digital
– sequence: 4
  givenname: Gillian L.
  surname: Galford
  fullname: Galford, Gillian L.
  organization: Rubenstein School of Environment and Natural Resources, University of Vermont, Gund Institute for Environment, University of Vermont
– sequence: 5
  givenname: Mojtaba
  surname: Zeraatpisheh
  fullname: Zeraatpisheh, Mojtaba
  organization: Rubenstein School of Environment and Natural Resources, University of Vermont, Gund Institute for Environment, University of Vermont
– sequence: 6
  givenname: Victor Fernandez
  surname: Nascimento
  fullname: Nascimento, Victor Fernandez
  organization: Engineering, Modelling, and Applied Social Sciences Center, Federal University of ABC
– sequence: 7
  givenname: Rosane Garcia
  surname: Collevatti
  fullname: Collevatti, Rosane Garcia
  organization: Remote Sensing and GIS Lab (LAPIG), Environmental Science Graduate Program, Federal University of Goiás, Genetics & Biodiversity Laboratory, Institute of Biological Sciences, Federal University of Goiás
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40773067$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVAR_YA_wAFF4sIlMP5I7HBBqCpQqRJCgrM1cSa7XiV2sbML_ff1ZktpOXCyNfPem-fxOy2OfPBUFC8ZvGVMN-8SE8BZBbyuAARrKvakOGGqhgoaDUcP7sfFaUobAKky8FlxLEEpAY06KXbftuhnN9w4vypnipHSHB2OpcXYBV86X85rKm3wM_2eyzCUdnQTzrm0Rr-i9yWWkXaOfi29ME2ZhL4vfdjRmBXt2ocxrBylpTzRvA59el48HXBM9OLuPCt-fLr4fv6luvr6-fL841VlJbSskkrxXigGSivJcOgt6k5DT2iho5opLhBr6GRLdZvfQ9QOupWtRSEapXtxVlwedPuAG3Mds_V4YwI6sxRCXBmMs7MjmYEU160SA-9QNqrFjqv9oLpGVdcMstaHg9b1tpuot-TniOMj0ccd79ZmFXaGcSGASZkV3twpxPBzmzdtJpcsjSN6CttkBBdKNqC5ztDX_0A3YRt93tWCqhUTem_p1UNL917-_G8G8APAxpBSpOEewsDsQ2QOITI5RGYJkWGZJA6klMH5j-Pf2f9h3QIjmsnR
Cites_doi 10.3389/fpls.2022.947279
10.1016/j.rse.2019.111383
10.1016/j.ejrs.2015.12.003
10.1038/ngeo671
10.1080/22797254.2022.2045226
10.1007/s00442-005-0100-x
10.18520/cs/v110/i10/2005-2011
10.1007/s11192-009-0146-3
10.1016/j.geoderma.2021.115118
10.3390/min13040553
10.2136/sssabookser5.3.c34
10.3390/f5071635
10.1590/S0100-67622013000600009
10.1016/j.geoderma.2020.114401
10.1038/ngeo1123
10.1016/j.geoderma.2017.10.052
10.1007/978-94-007-2232-3
10.1088/1748-9326/2/4/045023
10.1590/0103-9016-2013-0306
10.1016/j.envsci.2011.11.001
10.1007/s10342-010-0381-4
10.1016/j.rse.2017.06.031
10.1097/00010694-193401000-00003
10.1080/01431160010006926
10.5194/soil-4-101-2018
10.2134/agronmonogr9.2.2ed.c29
10.1371/journal.pone.0225331
10.3390/jmse10030364
10.1007/s11027-018-9793-0
10.1016/j.rse.2013.06.019
10.1016/j.foreco.2017.11.014
10.1109/JSTARS.2020.3025117
10.3390/rs12111754
10.1080/01431161.2017.1356488
10.3390/land12010060
10.1093/forestscience/43.3.424
10.1136/bmj.b2535
10.1016/j.jag.2016.09.002
10.1016/j.uclim.2017.08.007
10.1016/j.geoderma.2018.10.015
10.1016/j.foreco.2016.04.009
10.1186/2047-2382-1-6
10.1016/j.geoderma.2007.12.009
10.1111/gcb.14815
10.1016/j.geoderma.2013.04.007
10.1016/j.geodrs.2020.e00333
10.1007/s11368-023-03583-y
10.1016/j.scitotenv.2019.02.125
10.1016/j.earscirev.2019.05.014
10.1016/j.catena.2025.108776
10.1371/journal.pone.0241637
10.3390/rs15235571
10.1109/JSTARS.2018.2817344
10.1016/S0003-2670(00)88254-9
10.1007/s11629-019-5789-9
10.5935/0103-5053.20160031
10.1590/S0100-40422008000100020
10.1371/journal.pone.0215238
10.1016/j.rsase.2019.100275
10.2136/sssaj2017.04.0135
10.1007/s11676-019-00891-3
10.1007/978-3-319-71065-5_23-1
10.1007/s11368-024-03913-8
10.3390/rs10060898
10.1098/rsta.2002.1026
10.1016/j.geoderma.2019.05.043
10.1016/j.rse.2020.111669
10.3390/rs6065452
10.5194/bg-9-4477-2012
10.1016/j.aca.2016.07.039
10.1046/j.1466-822X.2003.00010.x
10.1080/17583004.2019.1633231
10.1590/S0100-06832012000400015
10.1016/j.rse.2008.03.004
10.1007/978-94-007-2232-3_14
10.1371/journal.pone.0138450
10.1080/00103624.2018.1510948
10.1017/CBO9781107415324.015
10.1080/1747423X.2018.1542463
10.1038/nature17174a
10.1016/j.biosystemseng.2017.01.007
10.1080/24749508.2018.1481656
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7SN
7TG
7X7
7XB
8FE
8FG
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KL.
M0S
P5Z
P62
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
7X8
5PM
DOA
DOI 10.1186/s13021-025-00316-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Health & Medical Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
Environmental Sciences
EISSN 1750-0680
EndPage 19
ExternalDocumentID oai_doaj_org_article_fe728973f2ba4679ab27deac55a75510
PMC12330144
40773067
10_1186_s13021_025_00316_1
Genre Journal Article
Review
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 140673/2021; 315699/2020-5; 404767/2021-4
  funderid: http://dx.doi.org/10.13039/501100003593
– fundername: University of Vermont
  grantid: 80NSSC23K0537; 80NSSC23K0537
  funderid: http://dx.doi.org/10.13039/100010941
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: 88881.846255/2023-01
  funderid: http://dx.doi.org/10.13039/501100002322
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 140673/2021
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 404767/2021-4
– fundername: University of Vermont
  grantid: 80NSSC23K0537
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 315699/2020-5
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: 88881.846255/2023-01
GroupedDBID 0R~
29B
2WC
2XV
4P2
5GY
5VS
6J9
7X7
7XC
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AAKKN
AASML
ABDBF
ABEEZ
ABUWG
ACACY
ACGFS
ACPRK
ACUHS
ACULB
ADBBV
ADRAZ
AEUYN
AFGXO
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
ATCPS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BPHCQ
BVXVI
C24
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IGS
IHR
KQ8
ML.
M~E
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PYCSY
RNS
RPM
SEV
SOJ
TR2
TUS
UKHRP
WOQ
~02
~8M
AAYXX
CITATION
NPM
3V.
7SN
7TG
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
K9.
KL.
PKEHL
PQEST
PQUKI
PUEGO
7X8
5PM
ADUKV
BMC
ID FETCH-LOGICAL-c4091-4772d371078741afdca8b80deac0be51723aa50b49e59067ee9f8949ca33678d3
IEDL.DBID C24
ISSN 1750-0680
IngestDate Wed Aug 27 01:24:25 EDT 2025
Thu Aug 21 18:22:15 EDT 2025
Thu Aug 07 17:41:59 EDT 2025
Sat Aug 23 12:33:02 EDT 2025
Mon Aug 11 01:32:51 EDT 2025
Thu Aug 14 00:05:12 EDT 2025
Fri Aug 08 01:11:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Analytical techniques
Carbon stock
PRISMA
Remote sensing
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4091-4772d371078741afdca8b80deac0be51723aa50b49e59067ee9f8949ca33678d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4339-6725
OpenAccessLink https://link.springer.com/10.1186/s13021-025-00316-1
PMID 40773067
PQID 3237571380
PQPubID 55243
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_fe728973f2ba4679ab27deac55a75510
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12330144
proquest_miscellaneous_3237460828
proquest_journals_3237571380
pubmed_primary_40773067
crossref_primary_10_1186_s13021_025_00316_1
springer_journals_10_1186_s13021_025_00316_1
PublicationCentury 2000
PublicationDate 20250807
PublicationDateYYYYMMDD 2025-08-07
PublicationDate_xml – month: 8
  year: 2025
  text: 20250807
  day: 7
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: London
PublicationTitle Carbon balance and management
PublicationTitleAbbrev Carbon Balance Manage
PublicationTitleAlternate Carbon Balance Manag
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
BMC
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: BMC
References T Li (316_CR34) 2022; 13
GR van der Werf (316_CR95) 2009; 2
A Walkley (316_CR37) 1934; 37
S Doetterl (316_CR39) 2013; 204–205
GP Asner (316_CR80) 2001; 22
MW Warren (316_CR96) 2012; 9
E Duarte (316_CR88) 2022; 55
NJ Van Eck (316_CR32) 2010; 84
316_CR43
JM Moura-Bueno (316_CR20) 2019; 337
316_CR44
316_CR41
DJRG Nóbrega (316_CR46) 2017; 81
A Qureshi (316_CR3) 2012; 16
316_CR40
316_CR6
316_CR7
316_CR8
316_CR9
A Stevens (316_CR51) 2008; 144
S Brown (316_CR91) 2002; 360
MHF Vital (316_CR67) 2018; 48
RKKV Giri (316_CR29) 2017; 8
JR England (316_CR52) 2018; 4
K Paustian (316_CR31) 2016; 532
316_CR36
316_CR38
MVN d’Oliveira (316_CR82) 2020; 12
316_CR33
A Hueni (316_CR73) 2020; 13
Q Zhang (316_CR1) 2020; 31
MP Helen, Jarzebski (316_CR71) 2019; 14
S Wang (316_CR26) 2018; 314
X Li (316_CR89) 2023; 23
T Kristensen (316_CR63) 2015; 10
Y Li (316_CR22) 2018; 10
316_CR25
C Briedis (316_CR70) 2020; 373
UJ Santos (316_CR75) 2020; 23
RG Enang (316_CR69) 2018
K Paustian (316_CR23) 2019; 10
R Aitali (316_CR59) 2022; 10
EA Dionizio (316_CR85) 2020; 15
P Schroeder (316_CR14) 1997; 43
316_CR16
316_CR10
M Van Leeuwen (316_CR83) 2010; 129
T Li (316_CR93) 2024; 24
316_CR11
GS Senesi (316_CR76) 2016; 938
LC Schneider (316_CR79) 2018; 13
AK Nayak (316_CR17) 2019; 665
L Suchenwirth (316_CR90) 2014; 5
N Gorelick (316_CR87) 2017; 202
RH Rizvi (316_CR57) 2016; 110
G Petrokofsky (316_CR5) 2012; 1
LJ Mebius (316_CR42) 1960; 22
M Knadel (316_CR78) 2017; 156
RO Corona-Núñez (316_CR15) 2018; 409
DC Donato (316_CR98) 2011; 4
PL Woomer (316_CR24) 1998; 77
AC Silva (316_CR48) 1999; 5
CO Santos (316_CR58) 2023; 12
SC Majumder (316_CR72) 2019; 3
JLC Huamán (316_CR77) 2023; 13
L Guo (316_CR27) 2021; 398
P Kumar (316_CR61) 2016; 19
AQ Pariva (316_CR28) 2012; 16
DL Carmo (316_CR49) 2012; 36
X Yang (316_CR64) 2016; 372
M Poorazimy (316_CR66) 2020; 240
N Asgari (316_CR21) 2020; 17
F Xiao (316_CR81) 2019; 233
KK Beltrame (316_CR45) 2016; 27
A Safari (316_CR55) 2017; 38
E Naesset (316_CR84) 2008; 112
C Grinand (316_CR65) 2017; 54
316_CR68
CA James (316_CR13) 2018; 25
L Goers (316_CR94) 2012
316_CR2
P Smith (316_CR30) 2020; 26
316_CR60
316_CR4
CSR Neigh (316_CR62) 2013; 137
J Chave (316_CR92) 2005; 145
JH Sato (316_CR19) 2014; 71
T Li (316_CR35) 2025; 250
MF Saragi-Sasmito (316_CR97) 2019; 24
B Minasny (316_CR47) 2019; 196
JB Drake (316_CR53) 2003; 12
316_CR54
316_CR56
P Vicharnakorn (316_CR86) 2014; 6
316_CR50
A Segnini (316_CR18) 2008; 31
JAM Demattê (316_CR74) 2019; 354
SA Mukul (316_CR12) 2019
References_xml – volume: 13
  start-page: 947279
  year: 2022
  ident: 316_CR34
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2022.947279
– volume: 233
  start-page: 111383
  year: 2019
  ident: 316_CR81
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2019.111383
– ident: 316_CR2
– volume: 19
  start-page: 109
  year: 2016
  ident: 316_CR61
  publication-title: Egypt J Remote Sens Space Sci
  doi: 10.1016/j.ejrs.2015.12.003
– volume: 2
  start-page: 737
  issue: 11
  year: 2009
  ident: 316_CR95
  publication-title: Nat Geosci
  doi: 10.1038/ngeo671
– volume: 55
  start-page: 213
  issue: 1
  year: 2022
  ident: 316_CR88
  publication-title: Eur J Remote Sens
  doi: 10.1080/22797254.2022.2045226
– ident: 316_CR43
– volume: 5
  start-page: 21
  year: 1999
  ident: 316_CR48
  publication-title: Rev Unifenas Alfenas
– volume: 145
  start-page: 87
  year: 2005
  ident: 316_CR92
  publication-title: Oecologia
  doi: 10.1007/s00442-005-0100-x
– volume: 110
  start-page: 10
  year: 2016
  ident: 316_CR57
  publication-title: Curr Sci
  doi: 10.18520/cs/v110/i10/2005-2011
– volume: 84
  start-page: 523
  issue: 2
  year: 2010
  ident: 316_CR32
  publication-title: Scientometrics
  doi: 10.1007/s11192-009-0146-3
– volume: 398
  start-page: 115118
  year: 2021
  ident: 316_CR27
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115118
– volume: 13
  start-page: 553
  year: 2023
  ident: 316_CR77
  publication-title: Minerals
  doi: 10.3390/min13040553
– ident: 316_CR38
  doi: 10.2136/sssabookser5.3.c34
– volume: 5
  start-page: 1635
  year: 2014
  ident: 316_CR90
  publication-title: Forests
  doi: 10.3390/f5071635
– ident: 316_CR56
  doi: 10.1590/S0100-67622013000600009
– ident: 316_CR8
– volume: 373
  start-page: 1144
  year: 2020
  ident: 316_CR70
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114401
– volume: 4
  start-page: 293
  issue: 5
  year: 2011
  ident: 316_CR98
  publication-title: Nat Geosci
  doi: 10.1038/ngeo1123
– ident: 316_CR11
– volume: 314
  start-page: 8
  year: 2018
  ident: 316_CR26
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.052
– ident: 316_CR9
  doi: 10.1007/978-94-007-2232-3
– ident: 316_CR60
  doi: 10.1088/1748-9326/2/4/045023
– volume: 71
  start-page: 302
  issue: 4
  year: 2014
  ident: 316_CR19
  publication-title: Sci Agric
  doi: 10.1590/0103-9016-2013-0306
– volume: 8
  start-page: 287
  issue: 4
  year: 2017
  ident: 316_CR29
  publication-title: Int J Civil Eng Technol (IJCIET)
– volume: 16
  start-page: 81
  year: 2012
  ident: 316_CR3
  publication-title: Environ Sci Policy
  doi: 10.1016/j.envsci.2011.11.001
– volume: 129
  start-page: 749
  year: 2010
  ident: 316_CR83
  publication-title: Eur J Res
  doi: 10.1007/s10342-010-0381-4
– volume: 202
  start-page: 18
  year: 2017
  ident: 316_CR87
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2017.06.031
– volume: 37
  start-page: 29
  issue: 1
  year: 1934
  ident: 316_CR37
  publication-title: Soil Sci
  doi: 10.1097/00010694-193401000-00003
– ident: 316_CR41
– volume: 22
  start-page: 3855
  year: 2001
  ident: 316_CR80
  publication-title: Int J Remote Sens
  doi: 10.1080/01431160010006926
– volume: 4
  start-page: 101
  year: 2018
  ident: 316_CR52
  publication-title: SOIL
  doi: 10.5194/soil-4-101-2018
– ident: 316_CR50
  doi: 10.2134/agronmonogr9.2.2ed.c29
– volume: 14
  start-page: e0225331
  issue: 11
  year: 2019
  ident: 316_CR71
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0225331
– volume: 10
  start-page: 364
  year: 2022
  ident: 316_CR59
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse10030364
– volume: 24
  start-page: 521
  year: 2019
  ident: 316_CR97
  publication-title: Mitig Adapt Strateg Glob Chang
  doi: 10.1007/s11027-018-9793-0
– volume: 137
  start-page: 274
  year: 2013
  ident: 316_CR62
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2013.06.019
– volume: 409
  start-page: 202
  year: 2018
  ident: 316_CR15
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2017.11.014
– volume: 48
  start-page: 167
  year: 2018
  ident: 316_CR67
  publication-title: BNDES Setorial
– volume: 13
  start-page: 5789
  year: 2020
  ident: 316_CR73
  publication-title: IEEE J Sel Top Appl Earth Observations Remote Sens
  doi: 10.1109/JSTARS.2020.3025117
– volume: 12
  start-page: 1754
  year: 2020
  ident: 316_CR82
  publication-title: Remote Sens
  doi: 10.3390/rs12111754
– volume: 38
  start-page: 6407
  issue: 22
  year: 2017
  ident: 316_CR55
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2017.1356488
– ident: 316_CR6
– volume: 12
  start-page: 60
  issue: 1
  year: 2023
  ident: 316_CR58
  publication-title: Land
  doi: 10.3390/land12010060
– volume: 43
  start-page: 424
  issue: 3
  year: 1997
  ident: 316_CR14
  publication-title: Sci
  doi: 10.1093/forestscience/43.3.424
– ident: 316_CR36
  doi: 10.1136/bmj.b2535
– volume: 54
  start-page: 1
  year: 2017
  ident: 316_CR65
  publication-title: Int J Appl Earth Obs Geoinf
  doi: 10.1016/j.jag.2016.09.002
– volume: 25
  start-page: 703
  year: 2018
  ident: 316_CR13
  publication-title: Urban Clim
  doi: 10.1016/j.uclim.2017.08.007
– volume: 337
  start-page: 565
  year: 2019
  ident: 316_CR20
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.10.015
– ident: 316_CR44
– volume: 372
  start-page: 149
  year: 2016
  ident: 316_CR64
  publication-title: Ecol Manag
  doi: 10.1016/j.foreco.2016.04.009
– volume: 1
  start-page: 6
  year: 2012
  ident: 316_CR5
  publication-title: Environ Evid
  doi: 10.1186/2047-2382-1-6
– volume: 144
  start-page: 395
  year: 2008
  ident: 316_CR51
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.12.009
– volume: 26
  start-page: 219
  issue: 1
  year: 2020
  ident: 316_CR30
  publication-title: Glob Chang Biol
  doi: 10.1111/gcb.14815
– volume: 204–205
  start-page: 31
  year: 2013
  ident: 316_CR39
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.04.007
– volume: 23
  start-page: e00333
  year: 2020
  ident: 316_CR75
  publication-title: Geoderma Reg
  doi: 10.1016/j.geodrs.2020.e00333
– volume: 23
  start-page: 2963
  year: 2023
  ident: 316_CR89
  publication-title: J Soils Sediments
  doi: 10.1007/s11368-023-03583-y
– volume: 665
  start-page: 890
  year: 2019
  ident: 316_CR17
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.02.125
– volume: 196
  start-page: 102870
  year: 2019
  ident: 316_CR47
  publication-title: Earth-Sci Rev
  doi: 10.1016/j.earscirev.2019.05.014
– volume: 250
  start-page: 108776
  year: 2025
  ident: 316_CR35
  publication-title: CATENA
  doi: 10.1016/j.catena.2025.108776
– volume: 15
  start-page: e0241637
  issue: 11
  year: 2020
  ident: 316_CR85
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0241637
– ident: 316_CR33
  doi: 10.3390/rs15235571
– ident: 316_CR25
  doi: 10.1109/JSTARS.2018.2817344
– volume: 22
  start-page: 120
  year: 1960
  ident: 316_CR42
  publication-title: Anal Chim Acta
  doi: 10.1016/S0003-2670(00)88254-9
– ident: 316_CR10
– volume: 17
  start-page: 1636
  issue: 7
  year: 2020
  ident: 316_CR21
  publication-title: J Mt Sci
  doi: 10.1007/s11629-019-5789-9
– volume: 27
  start-page: 1527
  issue: 9
  year: 2016
  ident: 316_CR45
  publication-title: J Braz Chem Soc
  doi: 10.5935/0103-5053.20160031
– volume: 31
  start-page: 94
  year: 2008
  ident: 316_CR18
  publication-title: Quim Nova
  doi: 10.1590/S0100-40422008000100020
– ident: 316_CR16
  doi: 10.1371/journal.pone.0215238
– ident: 316_CR54
  doi: 10.1016/j.rsase.2019.100275
– volume: 81
  start-page: 1661
  year: 2017
  ident: 316_CR46
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2017.04.0135
– volume: 31
  start-page: 1247
  issue: 4
  year: 2020
  ident: 316_CR1
  publication-title: J Res
  doi: 10.1007/s11676-019-00891-3
– volume-title: Life on land
  year: 2019
  ident: 316_CR12
  doi: 10.1007/978-3-319-71065-5_23-1
– volume: 24
  start-page: 3556
  year: 2024
  ident: 316_CR93
  publication-title: J Soils Sediments
  doi: 10.1007/s11368-024-03913-8
– volume: 10
  start-page: 898
  year: 2018
  ident: 316_CR22
  publication-title: Remote Sens
  doi: 10.3390/rs10060898
– volume: 360
  start-page: 1669
  year: 2002
  ident: 316_CR91
  publication-title: Philos Trans R Soc Lond
  doi: 10.1098/rsta.2002.1026
– volume: 77
  start-page: 181
  issue: 3
  year: 1998
  ident: 316_CR24
  publication-title: Commonw Rev
– volume: 354
  start-page: 113793
  year: 2019
  ident: 316_CR74
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.043
– volume: 240
  start-page: 111669
  year: 2020
  ident: 316_CR66
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2020.111669
– volume: 6
  start-page: 5452
  year: 2014
  ident: 316_CR86
  publication-title: Remote Sens
  doi: 10.3390/rs6065452
– volume: 9
  start-page: 4477
  year: 2012
  ident: 316_CR96
  publication-title: Biogeosciences
  doi: 10.5194/bg-9-4477-2012
– volume: 938
  start-page: 7
  year: 2016
  ident: 316_CR76
  publication-title: Anal Chim Acta
  doi: 10.1016/j.aca.2016.07.039
– volume: 12
  start-page: 147
  year: 2003
  ident: 316_CR53
  publication-title: Glob Ecol Biogeogr
  doi: 10.1046/j.1466-822X.2003.00010.x
– ident: 316_CR7
– volume: 10
  start-page: 567
  issue: 6
  year: 2019
  ident: 316_CR23
  publication-title: Carbon Manag
  doi: 10.1080/17583004.2019.1633231
– volume: 36
  start-page: 1211
  year: 2012
  ident: 316_CR49
  publication-title: Revista Brasileira De Ciência Do Solo
  doi: 10.1590/S0100-06832012000400015
– ident: 316_CR68
– volume: 112
  start-page: 3079
  year: 2008
  ident: 316_CR84
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2008.03.004
– volume: 16
  start-page: 81
  year: 2012
  ident: 316_CR28
  publication-title: Environ Sci Policy
  doi: 10.1016/j.envsci.2011.11.001
– volume-title: Managing forest carbon in a changing climate
  year: 2012
  ident: 316_CR94
  doi: 10.1007/978-94-007-2232-3_14
– volume: 10
  start-page: e0138450
  issue: 10
  year: 2015
  ident: 316_CR63
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0138450
– year: 2018
  ident: 316_CR69
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103624.2018.1510948
– ident: 316_CR4
  doi: 10.1017/CBO9781107415324.015
– ident: 316_CR40
– volume: 13
  start-page: 455
  issue: 5
  year: 2018
  ident: 316_CR79
  publication-title: J Land Use Sci
  doi: 10.1080/1747423X.2018.1542463
– volume: 532
  start-page: 49
  year: 2016
  ident: 316_CR31
  publication-title: Nature
  doi: 10.1038/nature17174a
– volume: 156
  start-page: 157
  year: 2017
  ident: 316_CR78
  publication-title: Biosyst Eng
  doi: 10.1016/j.biosystemseng.2017.01.007
– volume: 3
  start-page: 29
  issue: 1
  year: 2019
  ident: 316_CR72
  publication-title: Geol Ecol Landscapes
  doi: 10.1080/24749508.2018.1481656
SSID ssj0047003
Score 2.3513997
SecondaryResourceType review_article
Snippet Background Understanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is...
Understanding carbon dynamics in Earth's ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is important to...
BackgroundUnderstanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it is...
Abstract Background Understanding carbon dynamics in Earth’s ecosystem is necessary for mitigating climate change. With recent advancements in technologies, it...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 25
SubjectTerms Analytical techniques
Bibliometrics
Biomass
Carbon
Carbon cycle
Carbon dioxide
Carbon sequestration
Carbon stock
Climate change
Climate change mitigation
Earth and Environmental Science
Ecosystems
Emissions
Environment
Environmental Management
Forestry
Grasslands
Greenhouse gases
Keywords
Land use
Landsat
Lidar
Machine learning
Mangroves
Methods
PRISMA
Regression analysis
Remote sensing
Review
Satellite imagery
Satellites
Scientometrics
Spectrum analysis
Vegetation
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA7SlRvxVR1bJYI7HTozSSaJO5WWIigIFroLJzMZvFBmpPfe_n6_JDO3Xh-4cZuTRTiPnO9Lck4Ye1VZjzylVSm91KWMR1YGwLocBiV9HQj7YzzQ__S5Pb-QHy_V5U9ffcU3Ybk9cFbcyRA0OIEWQ-MJQW3JN7rHbqEUaWT7xNaR8xYylfdgqeGsS4mMaU_W8XoOtLlRZfTitqz30lDq1v8niPn7S8lfrktTFjq7z-7N8JG_y8t-wO6E8SE7PL2tVoNwDtf1I3bzZUvxMVAsZeJQYPyHIzoc7-jaTyNfjRz4j8fn6tij-TTw7moFCIuhVHTwlhPPtS1JNkWf5TT2fJxuwhXfLMfyYNtpOH9HvX7MLs5Ov344L-ePFsoO9A4cEhC7F8AaiF5Z09B3ZLypoporHxQwjiBSlZc2KIv0FoIdjJW2IyFgzF4csoNxGsNTxn0g0VMnLUkDJNaS74Lu6lZ7iyRpVcFeL3p333M_DZd4iGldtpKDlVLH0tbVBXsfTbObGXthpwF4iJs9xP3LQwp2vBjWzQG6dqIRWoGgG4hf7sQIrXhfQmOYtnmObGOPv4I9yX6wWwl4sI5sq2Bmz0P2lrovGVffUvtuYIXEYwv2ZnGm23X9XRfP_ocujtjdJkWBKSt9zA4219vwHKhq41-kAPoBf4Aeyg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BuXBBvAqhBRmJG1hNYju2uSBArSokkJCotLfIdhxYqUrazW5_f2ecZFfL62rn4Hhe3ze2ZwDe5NZjnNKKSy81l5SyMgisedsq6Yvo0D9SQv_rt-r8Qn5ZqMWUcBuma5WzT0yOuukD5chPRCm0QkZl8g9X15y6RtHp6tRC4y7co9JlpNV6sSVcUqPKzg9lTHUy0CEdkudScdLlihd7wSjV7P8b0PzzvuRvh6YpFp09hAcTiGQfR6k_gjuxewyHp7s3azg5Ge3wBG6-bxxdCaIHTQy3kbpxkNqx4Fa-79iyY4gCGV1aR0_N-paFyyUCWRxKTw_eM8fGFy5prqetYK5rWNffxEu2npPzyLnT8NiUengKF2enPz6f86ndAg9I8pBJItBuBCIOtGFZuLYJzniTN-iacx8VIh3hnMq9tFFZDHIx2tZYaYMTAkXaiEM46PouPgfmoxONC9I6aRCPVc6HqENRaW8xVFqVwdt53-ursapGndiIqepRSjVKKdUtreoig08kmu2XVBE7DfSrn_VkYHUbNXJHLdrSO3T-1vlS09KVchpRYZ7B8SzYejLTod4pVQavt9NoYHRq4rrYb8ZvZEWV_jJ4NurBdiXIhjVxrgzMnobsLXV_plv-SkW8ETEkNpvBu1mZduv69168-P9vHMH9Mum34bk-hoP1ahNfImpa-1fJNG4BC_oWIA
  priority: 102
  providerName: ProQuest
Title Quantifying terrestrial carbon in the context of climate change: a review of common and novel technologies and methods
URI https://link.springer.com/article/10.1186/s13021-025-00316-1
https://www.ncbi.nlm.nih.gov/pubmed/40773067
https://www.proquest.com/docview/3237571380
https://www.proquest.com/docview/3237460828
https://pubmed.ncbi.nlm.nih.gov/PMC12330144
https://doaj.org/article/fe728973f2ba4679ab27deac55a75510
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-2FsZextatm7cuaLC3zcyxJUvaW1qSlsDKvgp5M5Itd4Eijzjp37872U7J2j70xQadDML3od9P0p0APiba4jwlRcwtlzGnJSuFwDqua8Ht2BmMj7Sg_-08P7vg84VY9Elh7XDafdiSDJE6uLXKv7S0xYbUNxUxWWIeI-fZF8TdaYuWchy6-Msliof0mDu_25mCQqX-u-Dl7VOS_22Vhhlo9hye9dCRTTpdv4BHzh_A4fQmUw2Fvau2B_CELt2km9xewvWPjaEzQZTRxPA_hna0O1aalW08W3qGMJDRqXUM1aypWXm1RCSLTSH34CszrEtxCbKGTJcZXzHfXLsrth5W55F0h-buVur2FVzMpr9PzuL-voW4RJaHVBKRdpUh5EAn5mNTV6VRViUVxubEOoFQJzNGJJZrJzTOcs7pWmmuS5NlqNMqO4Q933j3Bph1JqtMybXhCgFZbmzpZDnOpdU4V2oRwadBBcXfrqxGEeiIyotOYQUqLBQuzYtxBMekpW1PKokdGprVZdF7WFE7ieRRZnVqDUZ_bWwqaehCGImwMIngaNBx0ftpW2RpJgXydIXiD1sxehhtmxjvmk3Xh-dU6i-C151JbEeCdFgS6YpA7RjLzlB3JX75J1TxRsgQ6GwEnwe7uhnX_f_i7cO6v4OnaTB9FSfyCPbWq417jzBqbUfwWC4kPtXsdAT7k8n81xzfx9Pz7z9HwaPomZ-MwjLFPzMGHPQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6V8gAviKuQUsBI8ARRc9ixg4QQR5ctPSSkVuqbaycOrFQl7Wa3iD_Fb2TGSXa1XG99taPVrOf8PJ4ZgOdRbtFPSRFyy2XI6cpKYWAdVpXgNnYG7SNd6B8cZuNj_vlEnKzBz6EWhp5VDjbRG-qyKeiOfDtNUikQUano7flFSFOjKLs6jNDoxGLP_fiOkK19s_sR-fsiSUY7Rx_GYT9VICwQyyBgwniyTNGxoqjy2FRlYZRVUYkWKLJOoENPjRGR5bkTOdpy5_JK5TwvTJoi5WWKv3sNrvMUPTlVpo8-DZafS1SRoTBHZdstJQURrCciJN3JwnjF-fkZAX8LbP98n_lbktb7vtFtuNUHrexdJ2V3YM3Vd2FjZ1kjh5u9kWjvweWXuaEnSFRAxZBtNP2DxJwVZmqbmk1qhlEno0fy6BlYU7HibIKBMy75UofXzLCuosbvNXT0zNQlq5tLd8ZmQzIAMb5f7oZgt_fh-EoYsQHrdVO7h8CsM2lpCp4brjD-y4wtnCziTNocXXMuAng5nLs-77p4aI9-VKY7Lmnkku-Tmuk4gPfEmsWX1IHbLzTTr7pXaF05iVhVplViDTqb3NhEEulCGIlRaBTA1sBY3ZuFVi-FOIBni21UaMrSmNo18-4bnlFnwQAedHKwoATRtySMF4BakZAVUld36sk33zQcIxSPngN4NQjTkq5_n8Xm___GU7gxPjrY1_u7h3uP4GbiZV2FkdyC9dl07h5jxDazT7yaMDi9ar38BZBQUgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IF6FlAJGghNEm4cdJ0gIUbqrlsKqICr15tqJAytVSbvZLeKv8euYcZJdLa9br3YU2Z7n55nxADwLMoN2SgqfGy59TldWKTrWflkKbkKrUT_Shf7HSbJ_zN-fiJMN-NnXwlBaZa8TnaIu6pzuyIdxFEuBiCoNhmWXFnG0N35zfuFTBymKtPbtNFoWObQ_viN8a14f7CGtn0fRePTl3b7fdRjwc8Q1CJ7QtyxiNLLItjzUZZHr1KRBgdooMFagcY-1FoHhmRUZ6nVrszLNeJbrOMZdFDH-9xpsSkJFA9jcHU2OPvd2gEsUmL5MJ02GDYUIEbpHwidJSvxwzRS6jgF_c3P_zNb8LWTrLOH4FtzsXFj2tuW527BhqzuwNVpVzOFkpzKau3D5aaEpIYnKqRgSkXqBENOzXM9MXbFpxdAHZZQyj4fN6pLlZ1N0o3HIFT68Ypq19TVurqbDZ7oqWFVf2jM270MDiPjdcNsSu7kHx1dCii0YVHVlHwAzVseFznmmeYreYKJNbmUeJtJkaKgz4cGL_tzVefumh3JYKE1USyWFVHKvpiYq9GCXSLP8kt7jdgP17KvqxFuVViJylXEZGY2mJ9MmkrR0IbREnzTwYKcnrOqURKNWLO3B0-U0ijfFbHRl60X7DU_onUEP7rd8sFwJcp0kxOdBusYha0tdn6mm39wT4uivOCztwcuemVbr-vdZbP9_G0_gOsqk-nAwOXwINyLH6qkfyB0YzGcL-wjdt7l53MkJg9OrFs1f9G1Xlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+terrestrial+carbon+in+the+context+of+climate+change%3A+a+review+of+common+and+novel+technologies+and+methods&rft.jtitle=Carbon+balance+and+management&rft.au=Gameiro%2C+Samuel&rft.au=Ferreira%2C+Manuel+Eduardo&rft.au=Ruiz%2C+Luis+Fernando+Chimelo&rft.au=Galford%2C+Gillian+L.&rft.date=2025-08-07&rft.pub=Springer+International+Publishing&rft.eissn=1750-0680&rft.volume=20&rft_id=info:doi/10.1186%2Fs13021-025-00316-1&rft.externalDocID=PMC12330144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-0680&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-0680&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-0680&client=summon