A CAE model-based secure deduplication method
Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes a significant storage burden and increases the risk of privacy breaches. Random Message Locked Encryption (R-MLE) is an effective tool for s...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 24605 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.07.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes a significant storage burden and increases the risk of privacy breaches. Random Message Locked Encryption (R-MLE) is an effective tool for secure deduplication of cloud data. However, since it is based on bilinear mapping, the comparison of fingerprint tags during deduplication results in substantial computational overhead. To address this issue, we propose a secure deduplication method based on an Autoencoder model. The summary tags generated by the model are used to reduce the number of fingerprint tag comparisons, thereby improving deduplication efficiency. Building on this, this paper further introduces a secure deduplication method based on a Convolutional Autoencoder (CAE) model, which utilizes convolution and pooling operations to reduce the number of parameters in the Convolutional Autoencoder model, thereby decreasing computational and storage overhead. Additionally, it effectively mitigates the problem of overfitting. Experiments conducted on the source code dataset indicate that the proposed approach yields superior deduplication efficiency, reduced model storage requirements, and a more uniform distribution. |
---|---|
AbstractList | Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes a significant storage burden and increases the risk of privacy breaches. Random Message Locked Encryption (R-MLE) is an effective tool for secure deduplication of cloud data. However, since it is based on bilinear mapping, the comparison of fingerprint tags during deduplication results in substantial computational overhead. To address this issue, we propose a secure deduplication method based on an Autoencoder model. The summary tags generated by the model are used to reduce the number of fingerprint tag comparisons, thereby improving deduplication efficiency. Building on this, this paper further introduces a secure deduplication method based on a Convolutional Autoencoder (CAE) model, which utilizes convolution and pooling operations to reduce the number of parameters in the Convolutional Autoencoder model, thereby decreasing computational and storage overhead. Additionally, it effectively mitigates the problem of overfitting. Experiments conducted on the source code dataset indicate that the proposed approach yields superior deduplication efficiency, reduced model storage requirements, and a more uniform distribution. Abstract Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes a significant storage burden and increases the risk of privacy breaches. Random Message Locked Encryption (R-MLE) is an effective tool for secure deduplication of cloud data. However, since it is based on bilinear mapping, the comparison of fingerprint tags during deduplication results in substantial computational overhead. To address this issue, we propose a secure deduplication method based on an Autoencoder model. The summary tags generated by the model are used to reduce the number of fingerprint tag comparisons, thereby improving deduplication efficiency. Building on this, this paper further introduces a secure deduplication method based on a Convolutional Autoencoder (CAE) model, which utilizes convolution and pooling operations to reduce the number of parameters in the Convolutional Autoencoder model, thereby decreasing computational and storage overhead. Additionally, it effectively mitigates the problem of overfitting. Experiments conducted on the source code dataset indicate that the proposed approach yields superior deduplication efficiency, reduced model storage requirements, and a more uniform distribution. Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes a significant storage burden and increases the risk of privacy breaches. Random Message Locked Encryption (R-MLE) is an effective tool for secure deduplication of cloud data. However, since it is based on bilinear mapping, the comparison of fingerprint tags during deduplication results in substantial computational overhead. To address this issue, we propose a secure deduplication method based on an Autoencoder model. The summary tags generated by the model are used to reduce the number of fingerprint tag comparisons, thereby improving deduplication efficiency. Building on this, this paper further introduces a secure deduplication method based on a Convolutional Autoencoder (CAE) model, which utilizes convolution and pooling operations to reduce the number of parameters in the Convolutional Autoencoder model, thereby decreasing computational and storage overhead. Additionally, it effectively mitigates the problem of overfitting. Experiments conducted on the source code dataset indicate that the proposed approach yields superior deduplication efficiency, reduced model storage requirements, and a more uniform distribution.Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes a significant storage burden and increases the risk of privacy breaches. Random Message Locked Encryption (R-MLE) is an effective tool for secure deduplication of cloud data. However, since it is based on bilinear mapping, the comparison of fingerprint tags during deduplication results in substantial computational overhead. To address this issue, we propose a secure deduplication method based on an Autoencoder model. The summary tags generated by the model are used to reduce the number of fingerprint tag comparisons, thereby improving deduplication efficiency. Building on this, this paper further introduces a secure deduplication method based on a Convolutional Autoencoder (CAE) model, which utilizes convolution and pooling operations to reduce the number of parameters in the Convolutional Autoencoder model, thereby decreasing computational and storage overhead. Additionally, it effectively mitigates the problem of overfitting. Experiments conducted on the source code dataset indicate that the proposed approach yields superior deduplication efficiency, reduced model storage requirements, and a more uniform distribution. |
ArticleNumber | 24605 |
Author | Qi, Hui Zhang, Guoying Wang, Chunbo Chen, Bin |
Author_xml | – sequence: 1 givenname: Chunbo surname: Wang fullname: Wang, Chunbo organization: School of Computer Science and Technology, Changchun University of Science and Technology – sequence: 2 givenname: Guoying surname: Zhang fullname: Zhang, Guoying organization: School of Computer Science and Technology, Changchun University of Science and Technology – sequence: 3 givenname: Hui surname: Qi fullname: Qi, Hui organization: School of Computer Science and Technology, Changchun University of Science and Technology – sequence: 4 givenname: Bin surname: Chen fullname: Chen, Bin email: 82426409@qq.com organization: School of Information Engineering, Changchun Technical University of Automobile |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40634369$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1v1DAQhq2qiJbSP9ADisSFS-j4I4l9QqtVKZUq9QJny7Fnt1kl8WInSP33DJu2tBzwxaOZZ94ZzfuOHY9xRMYuOHzmIPVlVrwyugRRlWAaTdEROxWgqlJIIY5fxCfsPOcd0KuEUdy8ZScKaqlkbU5ZuSrWq6tiiAH7snUZQ5HRzwmLgGHe9513UxfHYsDpPob37M3G9RnPH_8z9uPr1ff1t_L27vpmvbotvQIDJQYJDXfStSAbp7lygXMIDQbQJoAxirBNg0K2ovWaiq3RssZaVK7VUsszdrPohuh2dp-6waUHG11nD4mYttalqfM92qqhIVoDKXgVnGgNFzXN9gFV40JFWl8Wrf3cDhg8jlNy_SvR15Wxu7fb-MtyIRRXmpPCp0eFFH_OmCc7dNlj37sR45wt3VhroTQoQj_-g-7inEa61YGqOdA1iPrwcqXnXZ5sIUAsgE8x54SbZ4SD_WO_Xey3ZL892G-BmuTSlAket5j-zv5P12-uS65s |
Cites_doi | 10.1109/TFUZZ.2020.3043659 10.1016/j.jisa.2022.103265 10.1109/5.726791 10.1109/TC.2025.3540670 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00069 10.1109/TSC.2024.3350086 10.1007/s11432-015-1037-2 10.1109/JIOT.2024.1234567 10.1109/TDSC.2023.3334475 10.1109/TDSC.2019.2922403 10.1109/TDSC.2023.3302891 10.1109/JIOT.2024.3372518 10.1109/TDSC.2021.3074146 10.1109/TCYB.2021.3049583 10.1109/TMC.2024.1234567 10.1007/978-3-319-40253-6_22 10.23919/CISTI54924.2022.9820593 10.1007/s12083-024-01734-7 10.1109/TSC.2020.3006532 10.1016/j.jksuci.2020.10.021 10.1109/TII.2022.3169552 10.1109/ACCESS.2022.3208959 10.1109/TNSRE.2022.3201197 10.1109/JSYST.2023.3307883 10.1007/978-3-642-38348-9_18 10.1109/TGRS.2021.3077062 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-09788-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_57b03880b98c4da2b91261a3cde47ad5 PMC12241481 40634369 10_1038_s41598_025_09788_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: China University-Industry-Research Innovation Fund-Next Generation Information Technology Innovation Project grantid: 2023IT082 |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M7P M~E NAO OK1 PHGZM PHGZT PIMPY PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION NPM 3V. 7XB 88A 8FK K9. M48 PJZUB PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c4090-ed3071a3ab037a814ad110d7ed089d0994409f7e23b2bc8d11b9836e625ab8383 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:18 EDT 2025 Thu Aug 21 18:23:17 EDT 2025 Sat Jul 12 02:29:04 EDT 2025 Sat Aug 23 12:47:31 EDT 2025 Tue Jul 15 01:30:40 EDT 2025 Wed Jul 16 16:48:21 EDT 2025 Thu Jul 10 08:12:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4090-ed3071a3ab037a814ad110d7ed089d0994409f7e23b2bc8d11b9836e625ab8383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/57b03880b98c4da2b91261a3cde47ad5 |
PMID | 40634369 |
PQID | 3228610814 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_57b03880b98c4da2b91261a3cde47ad5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12241481 proquest_miscellaneous_3228824804 proquest_journals_3228610814 pubmed_primary_40634369 crossref_primary_10_1038_s41598_025_09788_0 springer_journals_10_1038_s41598_025_09788_0 |
PublicationCentury | 2000 |
PublicationDate | 20250709 |
PublicationDateYYYYMMDD | 2025-07-09 |
PublicationDate_xml | – month: 7 year: 2025 text: 20250709 day: 9 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | X Wu (9788_CR10) 2024; 83 R AI-Hmouz (9788_CR12) 2022; 30 YJ Zhao (9788_CR24) 2021; 18 Z Li (9788_CR31) 2023; 19 9788_CR21 Y Lecun (9788_CR33) 1998; 86 9788_CR26 S Nagar (9788_CR29) 2022; 30 9788_CR25 XQ Liu (9788_CR23) 2022; 15 H Wang (9788_CR27) 2017; 60 9788_CR8 9788_CR9 9788_CR2 9788_CR3 9788_CR30 9788_CR1 9788_CR32 9788_CR6 9788_CR7 SQ Wu (9788_CR20) 2022; 648 9788_CR4 S Cheng (9788_CR5) 2024; 40 9788_CR15 9788_CR16 9788_CR17 9788_CR11 C Vikas (9788_CR18) 2022; 69 9788_CR14 ZX Zhang (9788_CR28) 2023; 40 A Rasheed (9788_CR34) 2022; 10 Y Zhang (9788_CR22) 2022; 19 9788_CR19 H El-Fiqi (9788_CR13) 2022; 52 |
References_xml | – volume: 30 start-page: 869 year: 2022 ident: 9788_CR12 publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2020.3043659 – volume: 69 year: 2022 ident: 9788_CR18 publication-title: Journal of Information Security and Applications doi: 10.1016/j.jisa.2022.103265 – volume: 86 start-page: 2278 year: 1998 ident: 9788_CR33 publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – volume: 40 start-page: 8 year: 2023 ident: 9788_CR28 publication-title: Journal of Donghua University (English Edition) – ident: 9788_CR16 – ident: 9788_CR9 doi: 10.1109/TC.2025.3540670 – ident: 9788_CR14 doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00069 – ident: 9788_CR4 doi: 10.1109/TSC.2024.3350086 – volume: 60 start-page: 52101 year: 2017 ident: 9788_CR27 publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-015-1037-2 – ident: 9788_CR21 doi: 10.1109/JIOT.2024.1234567 – ident: 9788_CR8 doi: 10.1109/TDSC.2023.3334475 – volume: 648 start-page: 251 year: 2022 ident: 9788_CR20 publication-title: In IFIP International Conference on ICT Systems Security and Privacy Protection – ident: 9788_CR1 – volume: 18 start-page: 1620 year: 2021 ident: 9788_CR24 publication-title: IEEE Trans. Dependable Secure Comput. doi: 10.1109/TDSC.2019.2922403 – ident: 9788_CR3 – ident: 9788_CR17 doi: 10.1109/TDSC.2023.3302891 – ident: 9788_CR2 doi: 10.1109/JIOT.2024.3372518 – volume: 19 start-page: 2789 year: 2022 ident: 9788_CR22 publication-title: IEEE Trans. Dependable Secure Comput. doi: 10.1109/TDSC.2021.3074146 – volume: 52 start-page: 7242 year: 2022 ident: 9788_CR13 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3049583 – ident: 9788_CR30 – ident: 9788_CR25 doi: 10.1109/TMC.2024.1234567 – ident: 9788_CR26 doi: 10.1007/978-3-319-40253-6_22 – volume: 83 year: 2024 ident: 9788_CR10 publication-title: Journal of Information Security and Applications – ident: 9788_CR11 doi: 10.23919/CISTI54924.2022.9820593 – ident: 9788_CR6 doi: 10.1007/s12083-024-01734-7 – volume: 15 start-page: 1664 year: 2022 ident: 9788_CR23 publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2020.3006532 – ident: 9788_CR15 doi: 10.1016/j.jksuci.2020.10.021 – volume: 19 start-page: 1018 year: 2023 ident: 9788_CR31 publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2022.3169552 – volume: 10 start-page: 102629 year: 2022 ident: 9788_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3208959 – volume: 30 start-page: 2474 year: 2022 ident: 9788_CR29 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3201197 – volume: 40 year: 2024 ident: 9788_CR5 publication-title: J. Ind. Inf. Integr. – ident: 9788_CR7 doi: 10.1109/JSYST.2023.3307883 – ident: 9788_CR19 doi: 10.1007/978-3-642-38348-9_18 – ident: 9788_CR32 doi: 10.1109/TGRS.2021.3077062 |
SSID | ssj0000529419 |
Score | 2.4515016 |
Snippet | Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes... Abstract Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 24605 |
SubjectTerms | 639/705/117 639/705/258 Access control Algorithms Artificial intelligence Big Data Cloud computing Computer applications Efficiency Humanities and Social Sciences multidisciplinary Neural networks Science Science (multidisciplinary) Semantics Storage requirements |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCIkL4k1hoCJxg2hpkzbpCQ00hJDgxKTdoqTJgEsHDA78e5y06zRep1aNpaZ-9LPjxAY4pZqWUmBYMka4JlznY6K1LUmSG80KRgsX2gHd3ec3Q347ykbNgtu02VY5-yeGH7WdlH6NvIeKJxHqZcIvXl6J7xrls6tNC41lWPGly7xWi5Fo11h8FosnRXNWhjLZmyJe-TNlaUb8AQa8W8CjULb_N1_z55bJb3nTAEfXG7De-JFxvxb8Jiy5agtW686Sn9tA-vFVfxCHPjfEI5WNp35l3cUWsaXNWcd1A-kdGF4PHq5uSNMZgZQYj1HiLJpmopk2lAmNPNEWYdwKZ6ksLDp9HMnGwqXMpKaUOGgKyXKHwY42EoPSXehUk8rtQ4zoZHXqMDIpMo4XgybtslzkzldikzSCsxl_1EtdAEOFxDWTquamQm6qwE2F1JeehS2lL14dHkzeHlVjCyoTJtSgwTmVHF9uigTjOM1K67jQNougOxOAaixqqubyj-CkHUZb8AkOXbnJR00jUy4p0uzV8mpngo4L4ywvIpALklyY6uJI9fwU6m2H5COXSQTnM6HP5_U3Lw7-_4xDWEuDHgpUxS503t8-3BE6OO_mOGjxF-LS9H4 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR27TsQwzIJDSCyIN-WlIrFBRNqkbToWdAidBAucdFuUNDlg6aF7DPw9TvpAx2NgatW4qms7sR3HNsAFVbQUGbolY1TXhKt0TJQyJYlSrVjOaG59O6CHx_R-yAejZLQCcZsL4w_t-5KWfpluT4ddz1DRuGSwOCEu8wDvVmHNlWpH2V4risHToNtZcbErHuVNhgxl4peXl7SQL9b_m4X586Dkt2ipV0J3W7DZWI9hUeO7DSu22oH1up_kxy6QIrwt-qHvbkOcfjLhzO2n29CgRuki1WHdNnoPhnf959t70vRDICV6YZRYgxMyUkxpyjIlIq4MKm-TWUNFbtDU4wg2zmzMdKxLgYM6Fyy16OIoLdAV3YdeNansIYSok4yKLfojecLxonEi2yTNUuvqrwkawGVLH_lel72QPlzNhKypKZGa0lNTIvSNI2EH6UpW-weT6YtsWCiTTPvKM4hTyfHjOo_Qe1OsNJZnyiQBnLQMkM08mklcbgQaePivAZx3wzgDXFhDVXayqGFEzAVFmIOaXx0maK4wztI8ALHEySVUl0eqt1dfZduHHLmIArhqmf6F19-0OPof-DFsxF4uMxTNE-jNpwt7imbOXJ81cv0Jp6bzyw priority: 102 providerName: Springer Nature |
Title | A CAE model-based secure deduplication method |
URI | https://link.springer.com/article/10.1038/s41598-025-09788-0 https://www.ncbi.nlm.nih.gov/pubmed/40634369 https://www.proquest.com/docview/3228610814 https://www.proquest.com/docview/3228824804 https://pubmed.ncbi.nlm.nih.gov/PMC12241481 https://doaj.org/article/57b03880b98c4da2b91261a3cde47ad5 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1RUKVeEKUfBOgqlXprrebDG9vHsFqEVgJVbZH2ZtmxV-0lVF048O95trMLS6l66SlRPIrsN5m8mUw8Q_ShMEUnBcKSBeiacdMsmDGuY2VjTa3qQvnYDuj8ojm75LP5eP6g1Vf4JyyVB07AIWC3sWCJVbLjzlRWlXD6Td05z4VxsXopOO9BMJWqeleKl2rYJYMbfF6CqcJusmrMwtYFnG0wUSzY_5SX-efPko8yppGITvdod_Ag8zbN_CVt-X6fnqeekreviLX5pJ3mscMNCxzl8mX4pu5zB1ZZZ6vz1Dr6NV2eTr9PztjQE4F1iMQK5h2MEss3QEUYWXLjQOBOeFdI5eDucYgthK9qW9lOYhDA1Y1HmGOsRDj6hrb7q94fUA5eAp4eMYkacxwsjNmPG9H4UINNFhl9XOGjf6XSFzqmrGupE5oaaOqIpob0SYBwLRnKVscLUKYelKn_pcyMjlcK0IMtLTVeORJOHtaa0fv1MKwgpDZM769ukoysuCwg8zbpaz0TuCw1rxuVkdzQ5MZUN0f6nz9ipe2YduSyzOjTSun38_o7Fof_A4sjelHFp1XggT2m7evfN_4dHKBrO6JnYi5GtNO2s28zHE-mF1--4uqkmYyiHdwBlasCDQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVhVcEH1BoLSpVE7UWid2YueA0NKHts9TK-3N2LEXuGRLd1eof4rfyNh5VNuW3npKFI8SZ2bsb8ZjzwDsUk1LKdAtGSFcE67zEdHaliTJjWYFo4UL5YDOL_LBFT8ZZsMF-NuehfHbKts5MUzUdlz6NfIeKp5EqJcJ_3r9m_iqUT662pbQqNXi1N3-QZdt8uX4AOX7KU2PDi_3B6SpKkBK9GUocRbVOtFMG8qExvdpixBohbNUFhYNJo5kI-FSZlJTSmw0hWS5Q0dBG4kOHb73BSwh8FLv7Imh6NZ0fNSMJ0VzNocy2ZsgPvozbGlG_IEJvJvDv1Am4DHb9uEWzXtx2gB_R2_gdWO3xv1a0VZgwVWrsFxXsrxdA9KP9_uHcairQzwy2njiV_JdbBHLuhh5XBesXoerZ-HZBixW48q9gxjR0OrUoSdUZBwvBqcQl-Uidz7zm6QRfG75o67rhBsqBMqZVDU3FXJTBW4qpP7mWdhR-mTZ4cH45odqxp7KhAk5b7BPJcePmyJBv1Gz0joutM0i2GwFoJoRPFF3-hbBTteMY88HVHTlxrOaRqZcUqR5W8ur6wkaSoyzvIhAzklyrqvzLdWvnyG_dwh2cplEsNcK_a5f_-fF-6d_YxteDi7Pz9TZ8cXpB3iVBp0UqJabsDi9mbmPaFxNzVbQ6Bi-P_cQ-geQ3S_M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RoFZcUN8s0HaR6Km14l17195DVQVIxKsRqorEzdhrp3DZAAEh_hq_rmPvA6WvG6dE8WjjnYe_GY89A7BJNS2lwLBkgnBNuM4nRGtbkiQ3mhWMFi60A_o2zneP-f5JdrIA9-1dGH-ssl0Tw0Jtp6XfI--j4kmEepnw_qQ5FnG0M_p6cUl8BymfaW3badQqcuDubjF8m33Z20FZf0zT0fDH9i5pOgyQEuMaSpxFFU8004YyofHZ2iIcWuEslYVF54kj2US4lJnUlBIHTSFZ7jBo0EZicIfPfQKLwkdFPVjcGo6Pvnc7PD6HxpOiualDmezPEC39jbY0I_76BH6bQ8PQNOBvnu6fBzZ_y9oGMBw9h-XGi40Htdq9gAVXvYSndV_Lu1dABvH2YBiHLjvE46SNZ35f38UWka3LmMd1--rXcPwoXHsDvWpauRWIERutTh3GRUXG8cPgguKyXOTO14GTNIJPLX_URV1-Q4W0OZOq5qZCbqrATYXUW56FHaUvnR1-mF79VI0lqkyYUAEH51Ry_HNTJBhFalZax4W2WQTrrQBUY88z9aB9EWx0w2iJPr2iKze9qWlkyiVFmre1vLqZoNvEOMuLCOScJOemOj9SnZ-Fat8h9cllEsHnVugP8_o3L1b__xof4BmajzrcGx-swVIaVFKgVq5D7_rqxr1DT-vavG9UOobTx7aiX0DMNWc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CAE+model-based+secure+deduplication+method&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Chunbo&rft.au=Zhang%2C+Guoying&rft.au=Qi%2C+Hui&rft.au=Chen%2C+Bin&rft.date=2025-07-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=24605&rft_id=info:doi/10.1038%2Fs41598-025-09788-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |