A CAE model-based secure deduplication method

Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes a significant storage burden and increases the risk of privacy breaches. Random Message Locked Encryption (R-MLE) is an effective tool for s...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 24605 - 11
Main Authors Wang, Chunbo, Zhang, Guoying, Qi, Hui, Chen, Bin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.07.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes a significant storage burden and increases the risk of privacy breaches. Random Message Locked Encryption (R-MLE) is an effective tool for secure deduplication of cloud data. However, since it is based on bilinear mapping, the comparison of fingerprint tags during deduplication results in substantial computational overhead. To address this issue, we propose a secure deduplication method based on an Autoencoder model. The summary tags generated by the model are used to reduce the number of fingerprint tag comparisons, thereby improving deduplication efficiency. Building on this, this paper further introduces a secure deduplication method based on a Convolutional Autoencoder (CAE) model, which utilizes convolution and pooling operations to reduce the number of parameters in the Convolutional Autoencoder model, thereby decreasing computational and storage overhead. Additionally, it effectively mitigates the problem of overfitting. Experiments conducted on the source code dataset indicate that the proposed approach yields superior deduplication efficiency, reduced model storage requirements, and a more uniform distribution.
AbstractList Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes a significant storage burden and increases the risk of privacy breaches. Random Message Locked Encryption (R-MLE) is an effective tool for secure deduplication of cloud data. However, since it is based on bilinear mapping, the comparison of fingerprint tags during deduplication results in substantial computational overhead. To address this issue, we propose a secure deduplication method based on an Autoencoder model. The summary tags generated by the model are used to reduce the number of fingerprint tag comparisons, thereby improving deduplication efficiency. Building on this, this paper further introduces a secure deduplication method based on a Convolutional Autoencoder (CAE) model, which utilizes convolution and pooling operations to reduce the number of parameters in the Convolutional Autoencoder model, thereby decreasing computational and storage overhead. Additionally, it effectively mitigates the problem of overfitting. Experiments conducted on the source code dataset indicate that the proposed approach yields superior deduplication efficiency, reduced model storage requirements, and a more uniform distribution.
Abstract Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes a significant storage burden and increases the risk of privacy breaches. Random Message Locked Encryption (R-MLE) is an effective tool for secure deduplication of cloud data. However, since it is based on bilinear mapping, the comparison of fingerprint tags during deduplication results in substantial computational overhead. To address this issue, we propose a secure deduplication method based on an Autoencoder model. The summary tags generated by the model are used to reduce the number of fingerprint tag comparisons, thereby improving deduplication efficiency. Building on this, this paper further introduces a secure deduplication method based on a Convolutional Autoencoder (CAE) model, which utilizes convolution and pooling operations to reduce the number of parameters in the Convolutional Autoencoder model, thereby decreasing computational and storage overhead. Additionally, it effectively mitigates the problem of overfitting. Experiments conducted on the source code dataset indicate that the proposed approach yields superior deduplication efficiency, reduced model storage requirements, and a more uniform distribution.
Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes a significant storage burden and increases the risk of privacy breaches. Random Message Locked Encryption (R-MLE) is an effective tool for secure deduplication of cloud data. However, since it is based on bilinear mapping, the comparison of fingerprint tags during deduplication results in substantial computational overhead. To address this issue, we propose a secure deduplication method based on an Autoencoder model. The summary tags generated by the model are used to reduce the number of fingerprint tag comparisons, thereby improving deduplication efficiency. Building on this, this paper further introduces a secure deduplication method based on a Convolutional Autoencoder (CAE) model, which utilizes convolution and pooling operations to reduce the number of parameters in the Convolutional Autoencoder model, thereby decreasing computational and storage overhead. Additionally, it effectively mitigates the problem of overfitting. Experiments conducted on the source code dataset indicate that the proposed approach yields superior deduplication efficiency, reduced model storage requirements, and a more uniform distribution.Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes a significant storage burden and increases the risk of privacy breaches. Random Message Locked Encryption (R-MLE) is an effective tool for secure deduplication of cloud data. However, since it is based on bilinear mapping, the comparison of fingerprint tags during deduplication results in substantial computational overhead. To address this issue, we propose a secure deduplication method based on an Autoencoder model. The summary tags generated by the model are used to reduce the number of fingerprint tag comparisons, thereby improving deduplication efficiency. Building on this, this paper further introduces a secure deduplication method based on a Convolutional Autoencoder (CAE) model, which utilizes convolution and pooling operations to reduce the number of parameters in the Convolutional Autoencoder model, thereby decreasing computational and storage overhead. Additionally, it effectively mitigates the problem of overfitting. Experiments conducted on the source code dataset indicate that the proposed approach yields superior deduplication efficiency, reduced model storage requirements, and a more uniform distribution.
ArticleNumber 24605
Author Qi, Hui
Zhang, Guoying
Wang, Chunbo
Chen, Bin
Author_xml – sequence: 1
  givenname: Chunbo
  surname: Wang
  fullname: Wang, Chunbo
  organization: School of Computer Science and Technology, Changchun University of Science and Technology
– sequence: 2
  givenname: Guoying
  surname: Zhang
  fullname: Zhang, Guoying
  organization: School of Computer Science and Technology, Changchun University of Science and Technology
– sequence: 3
  givenname: Hui
  surname: Qi
  fullname: Qi, Hui
  organization: School of Computer Science and Technology, Changchun University of Science and Technology
– sequence: 4
  givenname: Bin
  surname: Chen
  fullname: Chen, Bin
  email: 82426409@qq.com
  organization: School of Information Engineering, Changchun Technical University of Automobile
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40634369$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhq2qiJbSP9ADisSFS-j4I4l9QqtVKZUq9QJny7Fnt1kl8WInSP33DJu2tBzwxaOZZ94ZzfuOHY9xRMYuOHzmIPVlVrwyugRRlWAaTdEROxWgqlJIIY5fxCfsPOcd0KuEUdy8ZScKaqlkbU5ZuSrWq6tiiAH7snUZQ5HRzwmLgGHe9513UxfHYsDpPob37M3G9RnPH_8z9uPr1ff1t_L27vpmvbotvQIDJQYJDXfStSAbp7lygXMIDQbQJoAxirBNg0K2ovWaiq3RssZaVK7VUsszdrPohuh2dp-6waUHG11nD4mYttalqfM92qqhIVoDKXgVnGgNFzXN9gFV40JFWl8Wrf3cDhg8jlNy_SvR15Wxu7fb-MtyIRRXmpPCp0eFFH_OmCc7dNlj37sR45wt3VhroTQoQj_-g-7inEa61YGqOdA1iPrwcqXnXZ5sIUAsgE8x54SbZ4SD_WO_Xey3ZL892G-BmuTSlAket5j-zv5P12-uS65s
Cites_doi 10.1109/TFUZZ.2020.3043659
10.1016/j.jisa.2022.103265
10.1109/5.726791
10.1109/TC.2025.3540670
10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00069
10.1109/TSC.2024.3350086
10.1007/s11432-015-1037-2
10.1109/JIOT.2024.1234567
10.1109/TDSC.2023.3334475
10.1109/TDSC.2019.2922403
10.1109/TDSC.2023.3302891
10.1109/JIOT.2024.3372518
10.1109/TDSC.2021.3074146
10.1109/TCYB.2021.3049583
10.1109/TMC.2024.1234567
10.1007/978-3-319-40253-6_22
10.23919/CISTI54924.2022.9820593
10.1007/s12083-024-01734-7
10.1109/TSC.2020.3006532
10.1016/j.jksuci.2020.10.021
10.1109/TII.2022.3169552
10.1109/ACCESS.2022.3208959
10.1109/TNSRE.2022.3201197
10.1109/JSYST.2023.3307883
10.1007/978-3-642-38348-9_18
10.1109/TGRS.2021.3077062
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-09788-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_57b03880b98c4da2b91261a3cde47ad5
PMC12241481
40634369
10_1038_s41598_025_09788_0
Genre Journal Article
GrantInformation_xml – fundername: China University-Industry-Research Innovation Fund-Next Generation Information Technology Innovation Project
  grantid: 2023IT082
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
NPM
3V.
7XB
88A
8FK
K9.
M48
PJZUB
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c4090-ed3071a3ab037a814ad110d7ed089d0994409f7e23b2bc8d11b9836e625ab8383
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:18 EDT 2025
Thu Aug 21 18:23:17 EDT 2025
Sat Jul 12 02:29:04 EDT 2025
Sat Aug 23 12:47:31 EDT 2025
Tue Jul 15 01:30:40 EDT 2025
Wed Jul 16 16:48:21 EDT 2025
Thu Jul 10 08:12:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4090-ed3071a3ab037a814ad110d7ed089d0994409f7e23b2bc8d11b9836e625ab8383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/57b03880b98c4da2b91261a3cde47ad5
PMID 40634369
PQID 3228610814
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_57b03880b98c4da2b91261a3cde47ad5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12241481
proquest_miscellaneous_3228824804
proquest_journals_3228610814
pubmed_primary_40634369
crossref_primary_10_1038_s41598_025_09788_0
springer_journals_10_1038_s41598_025_09788_0
PublicationCentury 2000
PublicationDate 20250709
PublicationDateYYYYMMDD 2025-07-09
PublicationDate_xml – month: 7
  year: 2025
  text: 20250709
  day: 9
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References X Wu (9788_CR10) 2024; 83
R AI-Hmouz (9788_CR12) 2022; 30
YJ Zhao (9788_CR24) 2021; 18
Z Li (9788_CR31) 2023; 19
9788_CR21
Y Lecun (9788_CR33) 1998; 86
9788_CR26
S Nagar (9788_CR29) 2022; 30
9788_CR25
XQ Liu (9788_CR23) 2022; 15
H Wang (9788_CR27) 2017; 60
9788_CR8
9788_CR9
9788_CR2
9788_CR3
9788_CR30
9788_CR1
9788_CR32
9788_CR6
9788_CR7
SQ Wu (9788_CR20) 2022; 648
9788_CR4
S Cheng (9788_CR5) 2024; 40
9788_CR15
9788_CR16
9788_CR17
9788_CR11
C Vikas (9788_CR18) 2022; 69
9788_CR14
ZX Zhang (9788_CR28) 2023; 40
A Rasheed (9788_CR34) 2022; 10
Y Zhang (9788_CR22) 2022; 19
9788_CR19
H El-Fiqi (9788_CR13) 2022; 52
References_xml – volume: 30
  start-page: 869
  year: 2022
  ident: 9788_CR12
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2020.3043659
– volume: 69
  year: 2022
  ident: 9788_CR18
  publication-title: Journal of Information Security and Applications
  doi: 10.1016/j.jisa.2022.103265
– volume: 86
  start-page: 2278
  year: 1998
  ident: 9788_CR33
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– volume: 40
  start-page: 8
  year: 2023
  ident: 9788_CR28
  publication-title: Journal of Donghua University (English Edition)
– ident: 9788_CR16
– ident: 9788_CR9
  doi: 10.1109/TC.2025.3540670
– ident: 9788_CR14
  doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00069
– ident: 9788_CR4
  doi: 10.1109/TSC.2024.3350086
– volume: 60
  start-page: 52101
  year: 2017
  ident: 9788_CR27
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-015-1037-2
– ident: 9788_CR21
  doi: 10.1109/JIOT.2024.1234567
– ident: 9788_CR8
  doi: 10.1109/TDSC.2023.3334475
– volume: 648
  start-page: 251
  year: 2022
  ident: 9788_CR20
  publication-title: In IFIP International Conference on ICT Systems Security and Privacy Protection
– ident: 9788_CR1
– volume: 18
  start-page: 1620
  year: 2021
  ident: 9788_CR24
  publication-title: IEEE Trans. Dependable Secure Comput.
  doi: 10.1109/TDSC.2019.2922403
– ident: 9788_CR3
– ident: 9788_CR17
  doi: 10.1109/TDSC.2023.3302891
– ident: 9788_CR2
  doi: 10.1109/JIOT.2024.3372518
– volume: 19
  start-page: 2789
  year: 2022
  ident: 9788_CR22
  publication-title: IEEE Trans. Dependable Secure Comput.
  doi: 10.1109/TDSC.2021.3074146
– volume: 52
  start-page: 7242
  year: 2022
  ident: 9788_CR13
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3049583
– ident: 9788_CR30
– ident: 9788_CR25
  doi: 10.1109/TMC.2024.1234567
– ident: 9788_CR26
  doi: 10.1007/978-3-319-40253-6_22
– volume: 83
  year: 2024
  ident: 9788_CR10
  publication-title: Journal of Information Security and Applications
– ident: 9788_CR11
  doi: 10.23919/CISTI54924.2022.9820593
– ident: 9788_CR6
  doi: 10.1007/s12083-024-01734-7
– volume: 15
  start-page: 1664
  year: 2022
  ident: 9788_CR23
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2020.3006532
– ident: 9788_CR15
  doi: 10.1016/j.jksuci.2020.10.021
– volume: 19
  start-page: 1018
  year: 2023
  ident: 9788_CR31
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2022.3169552
– volume: 10
  start-page: 102629
  year: 2022
  ident: 9788_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3208959
– volume: 30
  start-page: 2474
  year: 2022
  ident: 9788_CR29
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3201197
– volume: 40
  year: 2024
  ident: 9788_CR5
  publication-title: J. Ind. Inf. Integr.
– ident: 9788_CR7
  doi: 10.1109/JSYST.2023.3307883
– ident: 9788_CR19
  doi: 10.1007/978-3-642-38348-9_18
– ident: 9788_CR32
  doi: 10.1109/TGRS.2021.3077062
SSID ssj0000529419
Score 2.4515016
Snippet Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the cloud imposes...
Abstract Cloud storage services are widely used due to their convenience and flexibility. However, the presence of a large amount of duplicate data in the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 24605
SubjectTerms 639/705/117
639/705/258
Access control
Algorithms
Artificial intelligence
Big Data
Cloud computing
Computer applications
Efficiency
Humanities and Social Sciences
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Semantics
Storage requirements
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDLZgCIkL4k1hoCJxg2hpkzbpCQ00hJDgxKTdoqTJgEsHDA78e5y06zRep1aNpaZ-9LPjxAY4pZqWUmBYMka4JlznY6K1LUmSG80KRgsX2gHd3ec3Q347ykbNgtu02VY5-yeGH7WdlH6NvIeKJxHqZcIvXl6J7xrls6tNC41lWPGly7xWi5Fo11h8FosnRXNWhjLZmyJe-TNlaUb8AQa8W8CjULb_N1_z55bJb3nTAEfXG7De-JFxvxb8Jiy5agtW686Sn9tA-vFVfxCHPjfEI5WNp35l3cUWsaXNWcd1A-kdGF4PHq5uSNMZgZQYj1HiLJpmopk2lAmNPNEWYdwKZ6ksLDp9HMnGwqXMpKaUOGgKyXKHwY42EoPSXehUk8rtQ4zoZHXqMDIpMo4XgybtslzkzldikzSCsxl_1EtdAEOFxDWTquamQm6qwE2F1JeehS2lL14dHkzeHlVjCyoTJtSgwTmVHF9uigTjOM1K67jQNougOxOAaixqqubyj-CkHUZb8AkOXbnJR00jUy4p0uzV8mpngo4L4ywvIpALklyY6uJI9fwU6m2H5COXSQTnM6HP5_U3Lw7-_4xDWEuDHgpUxS503t8-3BE6OO_mOGjxF-LS9H4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR27TsQwzIJDSCyIN-WlIrFBRNqkbToWdAidBAucdFuUNDlg6aF7DPw9TvpAx2NgatW4qms7sR3HNsAFVbQUGbolY1TXhKt0TJQyJYlSrVjOaG59O6CHx_R-yAejZLQCcZsL4w_t-5KWfpluT4ddz1DRuGSwOCEu8wDvVmHNlWpH2V4risHToNtZcbErHuVNhgxl4peXl7SQL9b_m4X586Dkt2ipV0J3W7DZWI9hUeO7DSu22oH1up_kxy6QIrwt-qHvbkOcfjLhzO2n29CgRuki1WHdNnoPhnf959t70vRDICV6YZRYgxMyUkxpyjIlIq4MKm-TWUNFbtDU4wg2zmzMdKxLgYM6Fyy16OIoLdAV3YdeNansIYSok4yKLfojecLxonEi2yTNUuvqrwkawGVLH_lel72QPlzNhKypKZGa0lNTIvSNI2EH6UpW-weT6YtsWCiTTPvKM4hTyfHjOo_Qe1OsNJZnyiQBnLQMkM08mklcbgQaePivAZx3wzgDXFhDVXayqGFEzAVFmIOaXx0maK4wztI8ALHEySVUl0eqt1dfZduHHLmIArhqmf6F19-0OPof-DFsxF4uMxTNE-jNpwt7imbOXJ81cv0Jp6bzyw
  priority: 102
  providerName: Springer Nature
Title A CAE model-based secure deduplication method
URI https://link.springer.com/article/10.1038/s41598-025-09788-0
https://www.ncbi.nlm.nih.gov/pubmed/40634369
https://www.proquest.com/docview/3228610814
https://www.proquest.com/docview/3228824804
https://pubmed.ncbi.nlm.nih.gov/PMC12241481
https://doaj.org/article/57b03880b98c4da2b91261a3cde47ad5
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1RUKVeEKUfBOgqlXprrebDG9vHsFqEVgJVbZH2ZtmxV-0lVF048O95trMLS6l66SlRPIrsN5m8mUw8Q_ShMEUnBcKSBeiacdMsmDGuY2VjTa3qQvnYDuj8ojm75LP5eP6g1Vf4JyyVB07AIWC3sWCJVbLjzlRWlXD6Td05z4VxsXopOO9BMJWqeleKl2rYJYMbfF6CqcJusmrMwtYFnG0wUSzY_5SX-efPko8yppGITvdod_Ag8zbN_CVt-X6fnqeekreviLX5pJ3mscMNCxzl8mX4pu5zB1ZZZ6vz1Dr6NV2eTr9PztjQE4F1iMQK5h2MEss3QEUYWXLjQOBOeFdI5eDucYgthK9qW9lOYhDA1Y1HmGOsRDj6hrb7q94fUA5eAp4eMYkacxwsjNmPG9H4UINNFhl9XOGjf6XSFzqmrGupE5oaaOqIpob0SYBwLRnKVscLUKYelKn_pcyMjlcK0IMtLTVeORJOHtaa0fv1MKwgpDZM769ukoysuCwg8zbpaz0TuCw1rxuVkdzQ5MZUN0f6nz9ipe2YduSyzOjTSun38_o7Fof_A4sjelHFp1XggT2m7evfN_4dHKBrO6JnYi5GtNO2s28zHE-mF1--4uqkmYyiHdwBlasCDQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVhVcEH1BoLSpVE7UWid2YueA0NKHts9TK-3N2LEXuGRLd1eof4rfyNh5VNuW3npKFI8SZ2bsb8ZjzwDsUk1LKdAtGSFcE67zEdHaliTJjWYFo4UL5YDOL_LBFT8ZZsMF-NuehfHbKts5MUzUdlz6NfIeKp5EqJcJ_3r9m_iqUT662pbQqNXi1N3-QZdt8uX4AOX7KU2PDi_3B6SpKkBK9GUocRbVOtFMG8qExvdpixBohbNUFhYNJo5kI-FSZlJTSmw0hWS5Q0dBG4kOHb73BSwh8FLv7Imh6NZ0fNSMJ0VzNocy2ZsgPvozbGlG_IEJvJvDv1Am4DHb9uEWzXtx2gB_R2_gdWO3xv1a0VZgwVWrsFxXsrxdA9KP9_uHcairQzwy2njiV_JdbBHLuhh5XBesXoerZ-HZBixW48q9gxjR0OrUoSdUZBwvBqcQl-Uidz7zm6QRfG75o67rhBsqBMqZVDU3FXJTBW4qpP7mWdhR-mTZ4cH45odqxp7KhAk5b7BPJcePmyJBv1Gz0joutM0i2GwFoJoRPFF3-hbBTteMY88HVHTlxrOaRqZcUqR5W8ur6wkaSoyzvIhAzklyrqvzLdWvnyG_dwh2cplEsNcK_a5f_-fF-6d_YxteDi7Pz9TZ8cXpB3iVBp0UqJabsDi9mbmPaFxNzVbQ6Bi-P_cQ-geQ3S_M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7RoFZcUN8s0HaR6Km14l17195DVQVIxKsRqorEzdhrp3DZAAEh_hq_rmPvA6WvG6dE8WjjnYe_GY89A7BJNS2lwLBkgnBNuM4nRGtbkiQ3mhWMFi60A_o2zneP-f5JdrIA9-1dGH-ssl0Tw0Jtp6XfI--j4kmEepnw_qQ5FnG0M_p6cUl8BymfaW3badQqcuDubjF8m33Z20FZf0zT0fDH9i5pOgyQEuMaSpxFFU8004YyofHZ2iIcWuEslYVF54kj2US4lJnUlBIHTSFZ7jBo0EZicIfPfQKLwkdFPVjcGo6Pvnc7PD6HxpOiualDmezPEC39jbY0I_76BH6bQ8PQNOBvnu6fBzZ_y9oGMBw9h-XGi40Htdq9gAVXvYSndV_Lu1dABvH2YBiHLjvE46SNZ35f38UWka3LmMd1--rXcPwoXHsDvWpauRWIERutTh3GRUXG8cPgguKyXOTO14GTNIJPLX_URV1-Q4W0OZOq5qZCbqrATYXUW56FHaUvnR1-mF79VI0lqkyYUAEH51Ry_HNTJBhFalZax4W2WQTrrQBUY88z9aB9EWx0w2iJPr2iKze9qWlkyiVFmre1vLqZoNvEOMuLCOScJOemOj9SnZ-Fat8h9cllEsHnVugP8_o3L1b__xof4BmajzrcGx-swVIaVFKgVq5D7_rqxr1DT-vavG9UOobTx7aiX0DMNWc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CAE+model-based+secure+deduplication+method&rft.jtitle=Scientific+reports&rft.au=Wang%2C+Chunbo&rft.au=Zhang%2C+Guoying&rft.au=Qi%2C+Hui&rft.au=Chen%2C+Bin&rft.date=2025-07-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=24605&rft_id=info:doi/10.1038%2Fs41598-025-09788-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon