Different N-Glycosylation Sites Reduce the Activity of Recombinant DSPAα2
Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N...
Saved in:
Published in | Current Issues in Molecular Biology Vol. 44; no. 9; pp. 3930 - 3947 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
31.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris. When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2. |
---|---|
AbstractList | Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris. When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2.Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris. When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2. Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris. When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2. Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris . When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2. |
Audience | Academic |
Author | Wang, Mengqi Peng, Huakang Wang, Nan Liu, Dehu Wei, Di Yang, Caifeng Li, Gangqiang Huang, Sumei Guo, Wenfang |
AuthorAffiliation | 2 Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
AuthorAffiliation_xml | – name: 2 Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China – name: 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
Author_xml | – sequence: 1 givenname: Huakang orcidid: 0000-0003-3991-9375 surname: Peng fullname: Peng, Huakang – sequence: 2 givenname: Mengqi surname: Wang fullname: Wang, Mengqi – sequence: 3 givenname: Nan surname: Wang fullname: Wang, Nan – sequence: 4 givenname: Caifeng surname: Yang fullname: Yang, Caifeng – sequence: 5 givenname: Wenfang surname: Guo fullname: Guo, Wenfang – sequence: 6 givenname: Gangqiang surname: Li fullname: Li, Gangqiang – sequence: 7 givenname: Sumei surname: Huang fullname: Huang, Sumei – sequence: 8 givenname: Di surname: Wei fullname: Wei, Di – sequence: 9 givenname: Dehu surname: Liu fullname: Liu, Dehu |
BookMark | eNptkt1OFDEUxycGEwG98wEm8cYLBzptpx83JhtAwBA1otdNP06Xkpkptl2SfSxfxGeyyxLDGtKLNuf8_v-e9pyDZm-OMzTN2x4dESLRsQ2ToRRJhDl60ez3lPGOIDrsPTm_ag5yvkVo4IL3-83n0-A9JJhL-6U7H9c25vWoS4hzex0K5PY7uJWFttxAu7Al3IeybqOvYRsnE2ZdhafX3xZ_fuPXzUuvxwxvHvfD5uensx8nF93V1_PLk8VVZzelddRp5zgSrseScaO5ZYCBMCcpMcYNGoHpNed2QNSZnnGMGR5qwgDTDhFy2FxufV3Ut-ouhUmntYo6qIdATEulUwl2BCUtZoOjWkhPKLdCGAoSBqEdIeCNqF4ft153KzOBs_Ufkh53THczc7hRy3ivJJVciI3B-0eDFH-tIBc1hWxhHPUMcZUV5j2rD2N8qOi7LbrUtbQw-1gd7QZXC17bg6VAvFJHz1B1OZiCrf32ocZ3BB-2Aptizgn8v-p7pDZjoZ6ORcXxf7gN5aHh9Z4wPi_6C1A6vXY |
CitedBy_id | crossref_primary_10_3390_life13040985 crossref_primary_10_1016_j_biotechadv_2023_108174 |
Cites_doi | 10.1073/pnas.72.7.2577 10.1126/science.291.5512.2364 10.3390/ijms22020516 10.1016/S0268-9499(08)80020-3 10.1016/j.enzmictec.2013.09.014 10.1038/nature13083 10.1186/1477-9560-4-14 10.1006/prep.1996.0713 10.1016/0014-5793(87)80429-5 10.1073/pnas.1406244111 10.3389/fnmol.2017.00007 10.1016/S0021-9258(18)32614-0 10.1038/s41418-018-0115-6 10.1146/annurev.biochem.73.011303.074043 10.1021/bi971129x 10.1093/glycob/7.1.67 10.1002/9780470515457.ch4 10.1002/(SICI)1097-0061(199605)12:6<541::AID-YEA935>3.0.CO;2-A 10.1038/nature13288 10.1073/pnas.0801340105 10.1016/j.chom.2012.04.015 10.1038/s41586-021-03819-2 10.1016/0003-2697(76)90527-3 10.1016/0014-5793(84)80473-1 10.1111/j.1470-8744.1999.tb00770.x 10.1016/S1097-2765(02)00821-3 10.1016/j.bcp.2009.11.020 10.1021/bi00362a001 10.1186/s12934-015-0225-5 10.1016/j.pharmthera.2019.107400 10.1016/j.pep.2019.105503 10.1111/j.2042-7158.2012.01457.x 10.1002/jps.20319 10.1385/MB:16:1:23 10.1016/j.tibtech.2003.09.005 10.1038/s41467-019-10980-w 10.1016/0378-1119(91)90155-5 10.1093/nar/gkab1061 10.1002/9780470515457.ch1 10.1016/0168-1656(94)00146-4 10.1006/abbi.1999.1115 10.1016/j.copbio.2007.09.001 10.1074/jbc.270.43.25596 10.1016/S0021-9258(17)39169-X 10.1016/j.pep.2007.09.001 10.1007/s00284-013-0460-0 10.1021/jo050278f |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3390/cimb44090270 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1467-3045 |
EndPage | 3947 |
ExternalDocumentID | oai_doaj_org_article_9c265d4a89f347c88b4e9e58ad33efb8 PMC9497888 A746729807 10_3390_cimb44090270 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: Foundation of the Hainan Yazhou Bay Seed Lab grantid: B21HJ0212 – fundername: Collaborative Innovation Project of Science and Technology of the CAAS-GXSSA projects grantid: CAAS-GXAAS-XTCX2019026-1 – fundername: National Natural Science Foundation of China grantid: 31901661 |
GroupedDBID | --- 36B 53G 5GY AAYXX AENEX AFZYC ALMA_UNASSIGNED_HOLDINGS CITATION DIK E3Z EMB F5P FRP GROUPED_DOAJ GX1 IAO IGS IHR INH ITC MODMG OK1 PGMZT RNS RPM TR2 M~E 7X8 5PM |
ID | FETCH-LOGICAL-c4090-4dadd708d12967ba7c6e2e36d943bbd5a0eb1a77c504db16722625bd5be6ad033 |
IEDL.DBID | DOA |
ISSN | 1467-3045 1467-3037 |
IngestDate | Wed Aug 27 01:30:18 EDT 2025 Thu Aug 21 18:39:47 EDT 2025 Fri Jul 11 01:03:51 EDT 2025 Thu Feb 22 23:35:03 EST 2024 Wed Oct 25 09:01:42 EDT 2023 Thu Apr 24 23:06:09 EDT 2025 Tue Jul 01 01:56:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4090-4dadd708d12967ba7c6e2e36d943bbd5a0eb1a77c504db16722625bd5be6ad033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-3991-9375 |
OpenAccessLink | https://doaj.org/article/9c265d4a89f347c88b4e9e58ad33efb8 |
PQID | 2716943675 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9c265d4a89f347c88b4e9e58ad33efb8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9497888 proquest_miscellaneous_2716943675 gale_infotracmisc_A746729807 gale_infotracacademiconefile_A746729807 crossref_primary_10_3390_cimb44090270 crossref_citationtrail_10_3390_cimb44090270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220831 |
PublicationDateYYYYMMDD | 2022-08-31 |
PublicationDate_xml | – month: 8 year: 2022 text: 20220831 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Current Issues in Molecular Biology |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zajdel (ref_27) 1975; 72 Han (ref_12) 1999; 364 Daniels (ref_13) 2003; 11 Harlos (ref_25) 1987; 224 Jumper (ref_22) 2021; 596 Inanami (ref_32) 2014; 111 Han (ref_48) 2014; 54 Hamilton (ref_50) 2007; 18 Flemmig (ref_3) 2012; 64 Wei (ref_14) 2008; 57 Park (ref_26) 1986; 25 Lucas (ref_43) 1983; 258 Wang (ref_36) 2020; 166 Haendler (ref_6) 1991; 105 Bretthaner (ref_11) 1999; 30 Fisher (ref_16) 1985; 260 Petri (ref_44) 1995; 39 Patthy (ref_28) 1984; 171 Fang (ref_35) 2016; 44 Renatus (ref_30) 1997; 36 ref_24 Haltiwanger (ref_7) 2004; 73 Gulba (ref_5) 1995; 9 Yang (ref_37) 2015; 14 Heimo (ref_40) 1997; 10 Haddad (ref_19) 2017; 10 Tsujikawa (ref_18) 1996; 12 ref_29 Gan (ref_34) 2015; 43 Bringmann (ref_4) 1995; 270 Sinclair (ref_8) 2005; 94 Prasad (ref_17) 2006; 4 Bretthauer (ref_51) 2003; 21 Zhang (ref_1) 2014; 509 Wong (ref_9) 2005; 70 ref_38 Hoepfner (ref_21) 2012; 11 Bradford (ref_15) 1976; 72 Zhang (ref_2) 2014; 509 Konstantinou (ref_33) 2019; 10 Li (ref_39) 2010; 26 Isoherranen (ref_20) 2019; 204 Liu (ref_41) 2014; 68 Nakajima (ref_46) 2010; 79 Varadi (ref_23) 2022; 50 Cregg (ref_49) 2000; 16 Dingermann (ref_10) 2008; 3 Levy (ref_42) 2008; 105 Gohlke (ref_45) 1997; 7 Fang (ref_31) 2018; 25 Helenius (ref_47) 2001; 291 |
References_xml | – volume: 72 start-page: 2577 year: 1975 ident: ref_27 article-title: Amino-acid sequence of the activation cleavage site in plasminogen: Homology with “pro” part of prothrombin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.72.7.2577 – volume: 291 start-page: 2364 year: 2001 ident: ref_47 article-title: Intracellular functions of N-linked glycans publication-title: Science doi: 10.1126/science.291.5512.2364 – ident: ref_38 doi: 10.3390/ijms22020516 – volume: 9 start-page: 91 year: 1995 ident: ref_5 article-title: DSPA alpha—Properties of the plasminogen activators of the vampire bat Desmodus rotundus publication-title: Fibrinolysis doi: 10.1016/S0268-9499(08)80020-3 – volume: 54 start-page: 32 year: 2014 ident: ref_48 article-title: The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase ex-pressed by Pichia pastoris publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2013.09.014 – volume: 509 start-page: 115 year: 2014 ident: ref_1 article-title: Structure of the human P2Y12 receptor in complex with an antithrombotic drug publication-title: Nature doi: 10.1038/nature13083 – volume: 4 start-page: 14 year: 2006 ident: ref_17 article-title: Development of an in vitro model to study clot lysis activity of thrombolytic drugs publication-title: Thromb. J. doi: 10.1186/1477-9560-4-14 – volume: 10 start-page: 70 year: 1997 ident: ref_40 article-title: Expression in Pichia pastoris and purification of Aspergillus awamori glucoamylase catalytic domain publication-title: Protein Expr. Purif. doi: 10.1006/prep.1996.0713 – volume: 224 start-page: 97 year: 1987 ident: ref_25 article-title: Structure and order of the protein and carbohydrate domains of prothrombin fragment 1 publication-title: FEBS Lett. doi: 10.1016/0014-5793(87)80429-5 – volume: 111 start-page: 15969 year: 2014 ident: ref_32 article-title: Folding pathway of a multidomain protein depends on its topology of domain connectivity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1406244111 – volume: 44 start-page: 9131 year: 2016 ident: ref_35 article-title: Chromatin structure-dependent conformations of the H1 CTD publication-title: Nucleic Acids Res. – volume: 10 start-page: 7 year: 2017 ident: ref_19 article-title: Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2017.00007 – volume: 258 start-page: 4249 year: 1983 ident: ref_43 article-title: The binding of human plasminogen to fibrin and fibrinogen publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)32614-0 – volume: 25 start-page: 2195 year: 2018 ident: ref_31 article-title: Enhanced breast cancer progression by mutant p53 is inhibited by the circular RNA circ-Ccnb1 publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0115-6 – volume: 73 start-page: 491 year: 2004 ident: ref_7 article-title: Role of Glycosylation in Development publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.73.011303.074043 – volume: 36 start-page: 13483 year: 1997 ident: ref_30 article-title: Catalytic Domain Structure of Vampire Bat Plasminogen Activator: A Molecular Paradigm for Proteolysis without Activation Cleavage publication-title: Biochemistry doi: 10.1021/bi971129x – volume: 7 start-page: 67 year: 1997 ident: ref_45 article-title: Analysis of site-specific N-glycosylation of recombinant Desmodus rotundus salivary plasminogen activator rDSPAα1 expressed in Chinese hamster ovary cells publication-title: Glycobiology doi: 10.1093/glycob/7.1.67 – ident: ref_29 doi: 10.1002/9780470515457.ch4 – volume: 12 start-page: 541 year: 1996 ident: ref_18 article-title: Secretion of a variant of human single-chain urokinase-type plasminogen activator without an N-glycosylation site in the methylotrophic yeast, Pichia pastoris and characterization of the secreted product publication-title: Yeast doi: 10.1002/(SICI)1097-0061(199605)12:6<541::AID-YEA935>3.0.CO;2-A – volume: 509 start-page: 119 year: 2014 ident: ref_2 article-title: Agonist-bound structure of the human P2Y12 receptor publication-title: Nature doi: 10.1038/nature13288 – volume: 105 start-page: 8256 year: 2008 ident: ref_42 article-title: Effect of glycosylation on protein folding: A close look at thermodynamic stabilization publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0801340105 – volume: 11 start-page: 654 year: 2012 ident: ref_21 article-title: Selective and specific inhibition of the Plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.04.015 – volume: 596 start-page: 583 year: 2021 ident: ref_22 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 72 start-page: 248 year: 1976 ident: ref_15 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 – volume: 171 start-page: 131 year: 1984 ident: ref_28 article-title: Kringles: Modules specialized for protein binding: Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases publication-title: FEBS Lett. doi: 10.1016/0014-5793(84)80473-1 – volume: 30 start-page: 193 year: 1999 ident: ref_11 article-title: Glycosylation of Pichia pastoris-derived proteins publication-title: Biotechnol. Appl. Biochem. doi: 10.1111/j.1470-8744.1999.tb00770.x – volume: 3 start-page: 90 year: 2008 ident: ref_10 article-title: Recombinant therapeutic proteins: Production platforms and challenges publication-title: Biotechnol. J. Healthc. Nutr. Technol. – volume: 11 start-page: 79 year: 2003 ident: ref_13 article-title: N-linked glycans direct the contranslation folding pathway of influenza hemagglutinin publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00821-3 – volume: 79 start-page: 1165 year: 2010 ident: ref_46 article-title: N-Glycosylation plays a role in protein folding of human UGT1A9 publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2009.11.020 – volume: 25 start-page: 3977 year: 1986 ident: ref_26 article-title: Three-dimensional structure of the kringle sequence: Structure of prothrombin fragment 1 publication-title: Biochemistry doi: 10.1021/bi00362a001 – volume: 14 start-page: 40 year: 2015 ident: ref_37 article-title: Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris publication-title: Microb. Cell Factories doi: 10.1186/s12934-015-0225-5 – volume: 43 start-page: 9613 year: 2015 ident: ref_34 article-title: Assembly and analysis of eukaryotic Argonaute–RNA complexes in microRNA-target recognition publication-title: Nucleic Acids Res. – volume: 204 start-page: 107400 year: 2019 ident: ref_20 article-title: Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2019.107400 – volume: 166 start-page: 105503 year: 2020 ident: ref_36 article-title: The effect of N-glycosylation on the expression of the tetanus toxin fragment C in Pichia pastoris publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2019.105503 – volume: 64 start-page: 1025 year: 2012 ident: ref_3 article-title: Serine-proteases as plasminogen activators in terms of fibrinolysis publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.2012.01457.x – volume: 94 start-page: 1626 year: 2005 ident: ref_8 article-title: Glycoengineering: The effect of glycosylation on the properties of therapeutic proteins publication-title: J. Pharm. Sci. doi: 10.1002/jps.20319 – volume: 16 start-page: 23 year: 2000 ident: ref_49 article-title: Recombinant Protein Expression in Pichia pastoris publication-title: Mol. Biotechnol. doi: 10.1385/MB:16:1:23 – volume: 21 start-page: 459 year: 2003 ident: ref_51 article-title: Genetic engineering of Pichia pastoris to humanize N-glycosylation of proteins publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2003.09.005 – volume: 10 start-page: 3065 year: 2019 ident: ref_33 article-title: Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10980-w – volume: 105 start-page: 229 year: 1991 ident: ref_6 article-title: The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundas: Cloning and expression publication-title: Gene doi: 10.1016/0378-1119(91)90155-5 – volume: 50 start-page: D439 year: 2022 ident: ref_23 article-title: AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1061 – ident: ref_24 doi: 10.1002/9780470515457.ch1 – volume: 26 start-page: 1287 year: 2010 ident: ref_39 article-title: Effect of N-linked glycosylation on secretion and activity of recombinant DSPAalpha1 expressed in Pichia pastoris publication-title: Chin. J. Biotechnol. – volume: 39 start-page: 75 year: 1995 ident: ref_44 article-title: Production of vampire bat plasminogen activator DSPA α1 in CHO and insect cells publication-title: J. Biotechnol. doi: 10.1016/0168-1656(94)00146-4 – volume: 364 start-page: 83 year: 1999 ident: ref_12 article-title: Role of Glycosylation in the functional expression of an Aspergillus Niger phytase(phyA) in Pichia pastoris publication-title: Arch. Biochem. doi: 10.1006/abbi.1999.1115 – volume: 18 start-page: 387 year: 2007 ident: ref_50 article-title: Glycosylation engineering in yeast: The advent of fully humanized yeast publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2007.09.001 – volume: 270 start-page: 25596 year: 1995 ident: ref_4 article-title: Structural Features Mediating Fibrin Selectivity of Vampire Bat Plasminogen Activators publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.43.25596 – volume: 260 start-page: 11223 year: 1985 ident: ref_16 article-title: Isolation and characterization of the human tissue-type plasminogen activator structural gene including its 5′ flanking region publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)39169-X – volume: 57 start-page: 27 year: 2008 ident: ref_14 article-title: Optimized gene synthesis, expression, and purification of active salivary plasminogen activator α2 (DSPAα2) of Desmodus rotundus in Pichia pastoris publication-title: Protein Expr. Purif. doi: 10.1016/j.pep.2007.09.001 – volume: 68 start-page: 186 year: 2014 ident: ref_41 article-title: Enhanced Activity of Rhizomucor miehei Lipase by Deglycosylation of Its Propeptide in Pichia pastoris publication-title: Curr. Microbiol. doi: 10.1007/s00284-013-0460-0 – volume: 70 start-page: 4219 year: 2005 ident: ref_9 article-title: Protein Glycosylation: New Challenges and Opportunities publication-title: J. Org. Chem. doi: 10.1021/jo050278f |
SSID | ssj0057871 ssib044733985 |
Score | 2.3067648 |
Snippet | Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 3930 |
SubjectTerms | DSPAα2 Fibrin fibrin sensitivity Immune response N-glycosylation site Pichia pastoris plasminogen activator |
Title | Different N-Glycosylation Sites Reduce the Activity of Recombinant DSPAα2 |
URI | https://www.proquest.com/docview/2716943675 https://pubmed.ncbi.nlm.nih.gov/PMC9497888 https://doaj.org/article/9c265d4a89f347c88b4e9e58ad33efb8 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PaxUxEA9SELyIf3G1lgiKB1mat5lNssenbS2FFrEWegv5t1ho94nv9fAu_U79In4mZzbbuquIFy9v4WVYktmZZCbM_H6MvY4EGmU0lIbac0EDupRRqgyYPLumFiJEutA_PFL7J3BwWp-OqL6oJizDA2fFbTehUnUEZ5pWgg7GeEhNqo2LUqbW922-eOaNkim0JAAtZfMrECaznOU-I3QpIXUugUcZsR3OLjwAlScSYfHocOox_P_cqX-vnhwdR3sP2P0hjuTzPP-H7E7qHrG7mVly_Zgd7AzEJyt-VH48X4fFcp2r3vgxBplL_pkgWxPH8I_PQ2aQ4IuWUzZ64fvqGL5z_Gn-47p6wk72dr982C8H2oQy0DJKiLhnaWEiHuVKe6eDSlWSKjYgvY-1E7g_O61DLSD6mdIYgVU1DvikXBRSPmUb3aJLzxgHh6-s0MdbjDp0q3yNWsenmKXoQYSCvbvRlw0DpjhRW5xbzC1Iu3as3YK9uZX-lrE0_iL3nlR_K0MI2P0faBd2sAv7L7so2Fv6cJb8FKcU3NBugAsjxCs7J56VqjFCF2xzIon-FSbDr24-vaUhKkrr0uJyaStCGgKJKVfB9MQmJlOfjnRnX3sQ74ao_Yx5_j_W-oLdq6gro7_q3mQbq--X6SXGSiu_1bsF_h5e7W71V1k_AX-LEUI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+N-Glycosylation+Sites+Reduce+the+Activity+of+Recombinant+DSPA%CE%B12&rft.jtitle=Current+Issues+in+Molecular+Biology&rft.au=Peng%2C+Huakang&rft.au=Wang%2C+Mengqi&rft.au=Wang%2C+Nan&rft.au=Yang%2C+Caifeng&rft.date=2022-08-31&rft.pub=MDPI+AG&rft.issn=1467-3037&rft.volume=44&rft.issue=9&rft_id=info:doi/10.3390%2Fcimb44090270&rft.externalDocID=A746729807 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-3045&client=summon |