Different N-Glycosylation Sites Reduce the Activity of Recombinant DSPAα2

Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N...

Full description

Saved in:
Bibliographic Details
Published inCurrent Issues in Molecular Biology Vol. 44; no. 9; pp. 3930 - 3947
Main Authors Peng, Huakang, Wang, Mengqi, Wang, Nan, Yang, Caifeng, Guo, Wenfang, Li, Gangqiang, Huang, Sumei, Wei, Di, Liu, Dehu
Format Journal Article
LanguageEnglish
Published MDPI AG 31.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris. When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2.
AbstractList Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris. When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2.Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris. When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2.
Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris. When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2.
Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris . When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2.
Audience Academic
Author Wang, Mengqi
Peng, Huakang
Wang, Nan
Liu, Dehu
Wei, Di
Yang, Caifeng
Li, Gangqiang
Huang, Sumei
Guo, Wenfang
AuthorAffiliation 2 Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
AuthorAffiliation_xml – name: 2 Biotechnology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
– name: 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Author_xml – sequence: 1
  givenname: Huakang
  orcidid: 0000-0003-3991-9375
  surname: Peng
  fullname: Peng, Huakang
– sequence: 2
  givenname: Mengqi
  surname: Wang
  fullname: Wang, Mengqi
– sequence: 3
  givenname: Nan
  surname: Wang
  fullname: Wang, Nan
– sequence: 4
  givenname: Caifeng
  surname: Yang
  fullname: Yang, Caifeng
– sequence: 5
  givenname: Wenfang
  surname: Guo
  fullname: Guo, Wenfang
– sequence: 6
  givenname: Gangqiang
  surname: Li
  fullname: Li, Gangqiang
– sequence: 7
  givenname: Sumei
  surname: Huang
  fullname: Huang, Sumei
– sequence: 8
  givenname: Di
  surname: Wei
  fullname: Wei, Di
– sequence: 9
  givenname: Dehu
  surname: Liu
  fullname: Liu, Dehu
BookMark eNptkt1OFDEUxycGEwG98wEm8cYLBzptpx83JhtAwBA1otdNP06Xkpkptl2SfSxfxGeyyxLDGtKLNuf8_v-e9pyDZm-OMzTN2x4dESLRsQ2ToRRJhDl60ez3lPGOIDrsPTm_ag5yvkVo4IL3-83n0-A9JJhL-6U7H9c25vWoS4hzex0K5PY7uJWFttxAu7Al3IeybqOvYRsnE2ZdhafX3xZ_fuPXzUuvxwxvHvfD5uensx8nF93V1_PLk8VVZzelddRp5zgSrseScaO5ZYCBMCcpMcYNGoHpNed2QNSZnnGMGR5qwgDTDhFy2FxufV3Ut-ouhUmntYo6qIdATEulUwl2BCUtZoOjWkhPKLdCGAoSBqEdIeCNqF4ft153KzOBs_Ufkh53THczc7hRy3ivJJVciI3B-0eDFH-tIBc1hWxhHPUMcZUV5j2rD2N8qOi7LbrUtbQw-1gd7QZXC17bg6VAvFJHz1B1OZiCrf32ocZ3BB-2Aptizgn8v-p7pDZjoZ6ORcXxf7gN5aHh9Z4wPi_6C1A6vXY
CitedBy_id crossref_primary_10_3390_life13040985
crossref_primary_10_1016_j_biotechadv_2023_108174
Cites_doi 10.1073/pnas.72.7.2577
10.1126/science.291.5512.2364
10.3390/ijms22020516
10.1016/S0268-9499(08)80020-3
10.1016/j.enzmictec.2013.09.014
10.1038/nature13083
10.1186/1477-9560-4-14
10.1006/prep.1996.0713
10.1016/0014-5793(87)80429-5
10.1073/pnas.1406244111
10.3389/fnmol.2017.00007
10.1016/S0021-9258(18)32614-0
10.1038/s41418-018-0115-6
10.1146/annurev.biochem.73.011303.074043
10.1021/bi971129x
10.1093/glycob/7.1.67
10.1002/9780470515457.ch4
10.1002/(SICI)1097-0061(199605)12:6<541::AID-YEA935>3.0.CO;2-A
10.1038/nature13288
10.1073/pnas.0801340105
10.1016/j.chom.2012.04.015
10.1038/s41586-021-03819-2
10.1016/0003-2697(76)90527-3
10.1016/0014-5793(84)80473-1
10.1111/j.1470-8744.1999.tb00770.x
10.1016/S1097-2765(02)00821-3
10.1016/j.bcp.2009.11.020
10.1021/bi00362a001
10.1186/s12934-015-0225-5
10.1016/j.pharmthera.2019.107400
10.1016/j.pep.2019.105503
10.1111/j.2042-7158.2012.01457.x
10.1002/jps.20319
10.1385/MB:16:1:23
10.1016/j.tibtech.2003.09.005
10.1038/s41467-019-10980-w
10.1016/0378-1119(91)90155-5
10.1093/nar/gkab1061
10.1002/9780470515457.ch1
10.1016/0168-1656(94)00146-4
10.1006/abbi.1999.1115
10.1016/j.copbio.2007.09.001
10.1074/jbc.270.43.25596
10.1016/S0021-9258(17)39169-X
10.1016/j.pep.2007.09.001
10.1007/s00284-013-0460-0
10.1021/jo050278f
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3390/cimb44090270
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1467-3045
EndPage 3947
ExternalDocumentID oai_doaj_org_article_9c265d4a89f347c88b4e9e58ad33efb8
PMC9497888
A746729807
10_3390_cimb44090270
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Foundation of the Hainan Yazhou Bay Seed Lab
  grantid: B21HJ0212
– fundername: Collaborative Innovation Project of Science and Technology of the CAAS-GXSSA projects
  grantid: CAAS-GXAAS-XTCX2019026-1
– fundername: National Natural Science Foundation of China
  grantid: 31901661
GroupedDBID ---
36B
53G
5GY
AAYXX
AENEX
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
DIK
E3Z
EMB
F5P
FRP
GROUPED_DOAJ
GX1
IAO
IGS
IHR
INH
ITC
MODMG
OK1
PGMZT
RNS
RPM
TR2
M~E
7X8
5PM
ID FETCH-LOGICAL-c4090-4dadd708d12967ba7c6e2e36d943bbd5a0eb1a77c504db16722625bd5be6ad033
IEDL.DBID DOA
ISSN 1467-3045
1467-3037
IngestDate Wed Aug 27 01:30:18 EDT 2025
Thu Aug 21 18:39:47 EDT 2025
Fri Jul 11 01:03:51 EDT 2025
Thu Feb 22 23:35:03 EST 2024
Wed Oct 25 09:01:42 EDT 2023
Thu Apr 24 23:06:09 EDT 2025
Tue Jul 01 01:56:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4090-4dadd708d12967ba7c6e2e36d943bbd5a0eb1a77c504db16722625bd5be6ad033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-3991-9375
OpenAccessLink https://doaj.org/article/9c265d4a89f347c88b4e9e58ad33efb8
PQID 2716943675
PQPubID 23479
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_9c265d4a89f347c88b4e9e58ad33efb8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9497888
proquest_miscellaneous_2716943675
gale_infotracmisc_A746729807
gale_infotracacademiconefile_A746729807
crossref_primary_10_3390_cimb44090270
crossref_citationtrail_10_3390_cimb44090270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220831
PublicationDateYYYYMMDD 2022-08-31
PublicationDate_xml – month: 8
  year: 2022
  text: 20220831
  day: 31
PublicationDecade 2020
PublicationTitle Current Issues in Molecular Biology
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zajdel (ref_27) 1975; 72
Han (ref_12) 1999; 364
Daniels (ref_13) 2003; 11
Harlos (ref_25) 1987; 224
Jumper (ref_22) 2021; 596
Inanami (ref_32) 2014; 111
Han (ref_48) 2014; 54
Hamilton (ref_50) 2007; 18
Flemmig (ref_3) 2012; 64
Wei (ref_14) 2008; 57
Park (ref_26) 1986; 25
Lucas (ref_43) 1983; 258
Wang (ref_36) 2020; 166
Haendler (ref_6) 1991; 105
Bretthaner (ref_11) 1999; 30
Fisher (ref_16) 1985; 260
Petri (ref_44) 1995; 39
Patthy (ref_28) 1984; 171
Fang (ref_35) 2016; 44
Renatus (ref_30) 1997; 36
ref_24
Haltiwanger (ref_7) 2004; 73
Gulba (ref_5) 1995; 9
Yang (ref_37) 2015; 14
Heimo (ref_40) 1997; 10
Haddad (ref_19) 2017; 10
Tsujikawa (ref_18) 1996; 12
ref_29
Gan (ref_34) 2015; 43
Bringmann (ref_4) 1995; 270
Sinclair (ref_8) 2005; 94
Prasad (ref_17) 2006; 4
Bretthauer (ref_51) 2003; 21
Zhang (ref_1) 2014; 509
Wong (ref_9) 2005; 70
ref_38
Hoepfner (ref_21) 2012; 11
Bradford (ref_15) 1976; 72
Zhang (ref_2) 2014; 509
Konstantinou (ref_33) 2019; 10
Li (ref_39) 2010; 26
Isoherranen (ref_20) 2019; 204
Liu (ref_41) 2014; 68
Nakajima (ref_46) 2010; 79
Varadi (ref_23) 2022; 50
Cregg (ref_49) 2000; 16
Dingermann (ref_10) 2008; 3
Levy (ref_42) 2008; 105
Gohlke (ref_45) 1997; 7
Fang (ref_31) 2018; 25
Helenius (ref_47) 2001; 291
References_xml – volume: 72
  start-page: 2577
  year: 1975
  ident: ref_27
  article-title: Amino-acid sequence of the activation cleavage site in plasminogen: Homology with “pro” part of prothrombin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.72.7.2577
– volume: 291
  start-page: 2364
  year: 2001
  ident: ref_47
  article-title: Intracellular functions of N-linked glycans
  publication-title: Science
  doi: 10.1126/science.291.5512.2364
– ident: ref_38
  doi: 10.3390/ijms22020516
– volume: 9
  start-page: 91
  year: 1995
  ident: ref_5
  article-title: DSPA alpha—Properties of the plasminogen activators of the vampire bat Desmodus rotundus
  publication-title: Fibrinolysis
  doi: 10.1016/S0268-9499(08)80020-3
– volume: 54
  start-page: 32
  year: 2014
  ident: ref_48
  article-title: The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase ex-pressed by Pichia pastoris
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2013.09.014
– volume: 509
  start-page: 115
  year: 2014
  ident: ref_1
  article-title: Structure of the human P2Y12 receptor in complex with an antithrombotic drug
  publication-title: Nature
  doi: 10.1038/nature13083
– volume: 4
  start-page: 14
  year: 2006
  ident: ref_17
  article-title: Development of an in vitro model to study clot lysis activity of thrombolytic drugs
  publication-title: Thromb. J.
  doi: 10.1186/1477-9560-4-14
– volume: 10
  start-page: 70
  year: 1997
  ident: ref_40
  article-title: Expression in Pichia pastoris and purification of Aspergillus awamori glucoamylase catalytic domain
  publication-title: Protein Expr. Purif.
  doi: 10.1006/prep.1996.0713
– volume: 224
  start-page: 97
  year: 1987
  ident: ref_25
  article-title: Structure and order of the protein and carbohydrate domains of prothrombin fragment 1
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(87)80429-5
– volume: 111
  start-page: 15969
  year: 2014
  ident: ref_32
  article-title: Folding pathway of a multidomain protein depends on its topology of domain connectivity
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1406244111
– volume: 44
  start-page: 9131
  year: 2016
  ident: ref_35
  article-title: Chromatin structure-dependent conformations of the H1 CTD
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 7
  year: 2017
  ident: ref_19
  article-title: Targeting Neuroblastoma Cell Surface Proteins: Recommendations for Homology Modeling of hNET, ALK, and TrkB
  publication-title: Front. Mol. Neurosci.
  doi: 10.3389/fnmol.2017.00007
– volume: 258
  start-page: 4249
  year: 1983
  ident: ref_43
  article-title: The binding of human plasminogen to fibrin and fibrinogen
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)32614-0
– volume: 25
  start-page: 2195
  year: 2018
  ident: ref_31
  article-title: Enhanced breast cancer progression by mutant p53 is inhibited by the circular RNA circ-Ccnb1
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-018-0115-6
– volume: 73
  start-page: 491
  year: 2004
  ident: ref_7
  article-title: Role of Glycosylation in Development
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.73.011303.074043
– volume: 36
  start-page: 13483
  year: 1997
  ident: ref_30
  article-title: Catalytic Domain Structure of Vampire Bat Plasminogen Activator: A Molecular Paradigm for Proteolysis without Activation Cleavage
  publication-title: Biochemistry
  doi: 10.1021/bi971129x
– volume: 7
  start-page: 67
  year: 1997
  ident: ref_45
  article-title: Analysis of site-specific N-glycosylation of recombinant Desmodus rotundus salivary plasminogen activator rDSPAα1 expressed in Chinese hamster ovary cells
  publication-title: Glycobiology
  doi: 10.1093/glycob/7.1.67
– ident: ref_29
  doi: 10.1002/9780470515457.ch4
– volume: 12
  start-page: 541
  year: 1996
  ident: ref_18
  article-title: Secretion of a variant of human single-chain urokinase-type plasminogen activator without an N-glycosylation site in the methylotrophic yeast, Pichia pastoris and characterization of the secreted product
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(199605)12:6<541::AID-YEA935>3.0.CO;2-A
– volume: 509
  start-page: 119
  year: 2014
  ident: ref_2
  article-title: Agonist-bound structure of the human P2Y12 receptor
  publication-title: Nature
  doi: 10.1038/nature13288
– volume: 105
  start-page: 8256
  year: 2008
  ident: ref_42
  article-title: Effect of glycosylation on protein folding: A close look at thermodynamic stabilization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0801340105
– volume: 11
  start-page: 654
  year: 2012
  ident: ref_21
  article-title: Selective and specific inhibition of the Plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.04.015
– volume: 596
  start-page: 583
  year: 2021
  ident: ref_22
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 72
  start-page: 248
  year: 1976
  ident: ref_15
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(76)90527-3
– volume: 171
  start-page: 131
  year: 1984
  ident: ref_28
  article-title: Kringles: Modules specialized for protein binding: Homology of the gelatin-binding region of fibronectin with the kringle structures of proteases
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(84)80473-1
– volume: 30
  start-page: 193
  year: 1999
  ident: ref_11
  article-title: Glycosylation of Pichia pastoris-derived proteins
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1111/j.1470-8744.1999.tb00770.x
– volume: 3
  start-page: 90
  year: 2008
  ident: ref_10
  article-title: Recombinant therapeutic proteins: Production platforms and challenges
  publication-title: Biotechnol. J. Healthc. Nutr. Technol.
– volume: 11
  start-page: 79
  year: 2003
  ident: ref_13
  article-title: N-linked glycans direct the contranslation folding pathway of influenza hemagglutinin
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00821-3
– volume: 79
  start-page: 1165
  year: 2010
  ident: ref_46
  article-title: N-Glycosylation plays a role in protein folding of human UGT1A9
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2009.11.020
– volume: 25
  start-page: 3977
  year: 1986
  ident: ref_26
  article-title: Three-dimensional structure of the kringle sequence: Structure of prothrombin fragment 1
  publication-title: Biochemistry
  doi: 10.1021/bi00362a001
– volume: 14
  start-page: 40
  year: 2015
  ident: ref_37
  article-title: Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-015-0225-5
– volume: 43
  start-page: 9613
  year: 2015
  ident: ref_34
  article-title: Assembly and analysis of eukaryotic Argonaute–RNA complexes in microRNA-target recognition
  publication-title: Nucleic Acids Res.
– volume: 204
  start-page: 107400
  year: 2019
  ident: ref_20
  article-title: Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2019.107400
– volume: 166
  start-page: 105503
  year: 2020
  ident: ref_36
  article-title: The effect of N-glycosylation on the expression of the tetanus toxin fragment C in Pichia pastoris
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2019.105503
– volume: 64
  start-page: 1025
  year: 2012
  ident: ref_3
  article-title: Serine-proteases as plasminogen activators in terms of fibrinolysis
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.2012.01457.x
– volume: 94
  start-page: 1626
  year: 2005
  ident: ref_8
  article-title: Glycoengineering: The effect of glycosylation on the properties of therapeutic proteins
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.20319
– volume: 16
  start-page: 23
  year: 2000
  ident: ref_49
  article-title: Recombinant Protein Expression in Pichia pastoris
  publication-title: Mol. Biotechnol.
  doi: 10.1385/MB:16:1:23
– volume: 21
  start-page: 459
  year: 2003
  ident: ref_51
  article-title: Genetic engineering of Pichia pastoris to humanize N-glycosylation of proteins
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2003.09.005
– volume: 10
  start-page: 3065
  year: 2019
  ident: ref_33
  article-title: Revealing the intrinsic nature of the mid-gap defects in amorphous Ge2Sb2Te5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10980-w
– volume: 105
  start-page: 229
  year: 1991
  ident: ref_6
  article-title: The plasminogen activator family from the salivary gland of the vampire bat Desmodus rotundas: Cloning and expression
  publication-title: Gene
  doi: 10.1016/0378-1119(91)90155-5
– volume: 50
  start-page: D439
  year: 2022
  ident: ref_23
  article-title: AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1061
– ident: ref_24
  doi: 10.1002/9780470515457.ch1
– volume: 26
  start-page: 1287
  year: 2010
  ident: ref_39
  article-title: Effect of N-linked glycosylation on secretion and activity of recombinant DSPAalpha1 expressed in Pichia pastoris
  publication-title: Chin. J. Biotechnol.
– volume: 39
  start-page: 75
  year: 1995
  ident: ref_44
  article-title: Production of vampire bat plasminogen activator DSPA α1 in CHO and insect cells
  publication-title: J. Biotechnol.
  doi: 10.1016/0168-1656(94)00146-4
– volume: 364
  start-page: 83
  year: 1999
  ident: ref_12
  article-title: Role of Glycosylation in the functional expression of an Aspergillus Niger phytase(phyA) in Pichia pastoris
  publication-title: Arch. Biochem.
  doi: 10.1006/abbi.1999.1115
– volume: 18
  start-page: 387
  year: 2007
  ident: ref_50
  article-title: Glycosylation engineering in yeast: The advent of fully humanized yeast
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2007.09.001
– volume: 270
  start-page: 25596
  year: 1995
  ident: ref_4
  article-title: Structural Features Mediating Fibrin Selectivity of Vampire Bat Plasminogen Activators
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.43.25596
– volume: 260
  start-page: 11223
  year: 1985
  ident: ref_16
  article-title: Isolation and characterization of the human tissue-type plasminogen activator structural gene including its 5′ flanking region
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)39169-X
– volume: 57
  start-page: 27
  year: 2008
  ident: ref_14
  article-title: Optimized gene synthesis, expression, and purification of active salivary plasminogen activator α2 (DSPAα2) of Desmodus rotundus in Pichia pastoris
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2007.09.001
– volume: 68
  start-page: 186
  year: 2014
  ident: ref_41
  article-title: Enhanced Activity of Rhizomucor miehei Lipase by Deglycosylation of Its Propeptide in Pichia pastoris
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-013-0460-0
– volume: 70
  start-page: 4219
  year: 2005
  ident: ref_9
  article-title: Protein Glycosylation: New Challenges and Opportunities
  publication-title: J. Org. Chem.
  doi: 10.1021/jo050278f
SSID ssj0057871
ssib044733985
Score 2.3067648
Snippet Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3930
SubjectTerms DSPAα2
Fibrin
fibrin sensitivity
Immune response
N-glycosylation site
Pichia pastoris
plasminogen activator
Title Different N-Glycosylation Sites Reduce the Activity of Recombinant DSPAα2
URI https://www.proquest.com/docview/2716943675
https://pubmed.ncbi.nlm.nih.gov/PMC9497888
https://doaj.org/article/9c265d4a89f347c88b4e9e58ad33efb8
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1PaxUxEA9SELyIf3G1lgiKB1mat5lNssenbS2FFrEWegv5t1ho94nv9fAu_U79In4mZzbbuquIFy9v4WVYktmZZCbM_H6MvY4EGmU0lIbac0EDupRRqgyYPLumFiJEutA_PFL7J3BwWp-OqL6oJizDA2fFbTehUnUEZ5pWgg7GeEhNqo2LUqbW922-eOaNkim0JAAtZfMrECaznOU-I3QpIXUugUcZsR3OLjwAlScSYfHocOox_P_cqX-vnhwdR3sP2P0hjuTzPP-H7E7qHrG7mVly_Zgd7AzEJyt-VH48X4fFcp2r3vgxBplL_pkgWxPH8I_PQ2aQ4IuWUzZ64fvqGL5z_Gn-47p6wk72dr982C8H2oQy0DJKiLhnaWEiHuVKe6eDSlWSKjYgvY-1E7g_O61DLSD6mdIYgVU1DvikXBRSPmUb3aJLzxgHh6-s0MdbjDp0q3yNWsenmKXoQYSCvbvRlw0DpjhRW5xbzC1Iu3as3YK9uZX-lrE0_iL3nlR_K0MI2P0faBd2sAv7L7so2Fv6cJb8FKcU3NBugAsjxCs7J56VqjFCF2xzIon-FSbDr24-vaUhKkrr0uJyaStCGgKJKVfB9MQmJlOfjnRnX3sQ74ao_Yx5_j_W-oLdq6gro7_q3mQbq--X6SXGSiu_1bsF_h5e7W71V1k_AX-LEUI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Different+N-Glycosylation+Sites+Reduce+the+Activity+of+Recombinant+DSPA%CE%B12&rft.jtitle=Current+Issues+in+Molecular+Biology&rft.au=Peng%2C+Huakang&rft.au=Wang%2C+Mengqi&rft.au=Wang%2C+Nan&rft.au=Yang%2C+Caifeng&rft.date=2022-08-31&rft.pub=MDPI+AG&rft.issn=1467-3037&rft.volume=44&rft.issue=9&rft_id=info:doi/10.3390%2Fcimb44090270&rft.externalDocID=A746729807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-3045&client=summon