Big Data Deep Learning: Challenges and Perspectives
Deep learning is currently an extremely active research area in machine learning and pattern recognition society. It has gained huge successes in a broad area of applications such as speech recognition, computer vision, and natural language processing. With the sheer size of data available today, bi...
Saved in:
Published in | IEEE access Vol. 2; pp. 514 - 525 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning is currently an extremely active research area in machine learning and pattern recognition society. It has gained huge successes in a broad area of applications such as speech recognition, computer vision, and natural language processing. With the sheer size of data available today, big data brings big opportunities and transformative potential for various sectors; on the other hand, it also presents unprecedented challenges to harnessing data and information. As the data keeps getting bigger, deep learning is coming to play a key role in providing big data predictive analytics solutions. In this paper, we provide a brief overview of deep learning, and highlight current research efforts and the challenges to big data, as well as the future trends. |
---|---|
AbstractList | Deep learning is currently an extremely active research area in machine learning and pattern recognition society. It has gained huge successes in a broad area of applications such as speech recognition, computer vision, and natural language processing. With the sheer size of data available today, big data brings big opportunities and transformative potential for various sectors; on the other hand, it also presents unprecedented challenges to harnessing data and information. As the data keeps getting bigger, deep learning is coming to play a key role in providing big data predictive analytics solutions. In this paper, we provide a brief overview of deep learning, and highlight current research efforts and the challenges to big data, as well as the future trends. |
Author | Chen, Xue-Wen Lin, Xiaotong |
Author_xml | – sequence: 1 givenname: Xue-Wen surname: Chen fullname: Chen, Xue-Wen email: xwen.chen@gmail.com organization: Department of Computer Science, Wayne State University, Detroit, MI, USA – sequence: 2 givenname: Xiaotong surname: Lin fullname: Lin, Xiaotong organization: Department of Computer Science and Engineering, Oakland University, Rochester, MI, USA |
BookMark | eNp9kM1LxDAQxYMo-PkXeCl43jUfTZp40-6qCwsK6jlM08mapbZrUgX_e6tVEQ_OZYbH_B6Pt0-2265FQo4ZnTJGzel5Wc7v7qacsnzKBZeUmy2yx5kyEyGF2v5175KjlNZ0GD1Istgj4iKsshn0kM0QN9kSIbahXZ1l5SM0DbYrTBm0dXaLMW3Q9eEV0yHZ8dAkPPraB-Thcn5fXk-WN1eL8nw5cTnV_cQj89Q7w3LPUVdGSU5rJVVVVw4q5yuncnDUQO6FV1rkyjgNhjtXca_rShyQxehbd7C2mxieIL7ZDoL9FLq4shD74Bq0BuoC0Mm6KGSuEbXSwAZRK6UoK4rB62T02sTu-QVTb9fdS2yH-JbnUgnNmGbDlxm_XOxSiuitCz30oWv7CKGxjNqPyu1Yuf2o3H5VPrDiD_ud-H_qeKQCIv4QSrNCMi7eAd8BjYk |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1039_D0NA00388C crossref_primary_10_3233_IDT_190160 crossref_primary_10_1177_21582440221096445 crossref_primary_10_1109_TMC_2024_3470328 crossref_primary_10_1109_TNSE_2018_2827997 crossref_primary_10_1016_j_cosrev_2022_100488 crossref_primary_10_1016_j_mineng_2022_107971 crossref_primary_10_1109_ACCESS_2025_3535085 crossref_primary_10_1109_JIOT_2024_3462724 crossref_primary_10_1080_17517575_2019_1600041 crossref_primary_10_2139_ssrn_4571303 crossref_primary_10_1016_j_drudis_2017_08_010 crossref_primary_10_1016_j_isprsjprs_2023_11_011 crossref_primary_10_3389_fnins_2022_757125 crossref_primary_10_1007_s10207_023_00682_2 crossref_primary_10_1016_j_ijmedinf_2019_06_017 crossref_primary_10_3390_s21165446 crossref_primary_10_59400_cai_v1i1_419 crossref_primary_10_1016_j_jss_2022_111359 crossref_primary_10_1016_j_nanoen_2024_110629 crossref_primary_10_1016_j_jocs_2016_11_002 crossref_primary_10_1109_TMECH_2020_3027912 crossref_primary_10_3390_s20113243 crossref_primary_10_3233_JIFS_202503 crossref_primary_10_2139_ssrn_4808378 crossref_primary_10_1109_ACCESS_2023_3294981 crossref_primary_10_1093_bib_bbaa032 crossref_primary_10_1080_20964471_2022_2140868 crossref_primary_10_1109_ACCESS_2019_2927491 crossref_primary_10_1186_s41044_016_0007_z crossref_primary_10_35377_saucis_03_03_776573 crossref_primary_10_1186_s12909_019_1891_5 crossref_primary_10_1109_ACCESS_2017_2746095 crossref_primary_10_1016_j_future_2018_11_050 crossref_primary_10_1190_tle40070524_1 crossref_primary_10_1016_j_eswa_2021_114839 crossref_primary_10_1007_s11277_021_08223_7 crossref_primary_10_3390_agriculture13020357 crossref_primary_10_1002_adpr_202300253 crossref_primary_10_1016_j_eswa_2022_117392 crossref_primary_10_1016_j_jclepro_2024_144589 crossref_primary_10_1109_JSTARS_2024_3435575 crossref_primary_10_1016_j_neucom_2019_06_040 crossref_primary_10_1111_exsy_13432 crossref_primary_10_1088_1742_6596_2062_1_012016 crossref_primary_10_3390_app14125103 crossref_primary_10_69733_clad_ryd_n74_a181 crossref_primary_10_1016_j_jmsy_2018_05_011 crossref_primary_10_1016_j_neucom_2015_04_111 crossref_primary_10_1049_esi2_12034 crossref_primary_10_1109_ACCESS_2019_2911704 crossref_primary_10_1109_ACCESS_2018_2810267 crossref_primary_10_3390_electronics9071177 crossref_primary_10_1109_ACCESS_2016_2611649 crossref_primary_10_3390_s21093283 crossref_primary_10_3390_app132413255 crossref_primary_10_1007_s11831_019_09344_w crossref_primary_10_1007_s10706_021_01921_w crossref_primary_10_1016_j_cageo_2018_10_008 crossref_primary_10_1155_2022_1367366 crossref_primary_10_1002_bse_4035 crossref_primary_10_1016_j_neucom_2023_01_067 crossref_primary_10_1109_JBHI_2017_2679486 crossref_primary_10_1149_1945_7111_ad69c5 crossref_primary_10_1007_s00500_023_08069_0 crossref_primary_10_3390_rs13122276 crossref_primary_10_1007_s11276_023_03495_2 crossref_primary_10_1109_ACCESS_2016_2634557 crossref_primary_10_1007_s42044_019_00030_5 crossref_primary_10_1111_exsy_12403 crossref_primary_10_1002_adma_202003014 crossref_primary_10_1109_ACCESS_2018_2872769 crossref_primary_10_1016_j_bdr_2017_10_002 crossref_primary_10_1016_j_ins_2022_07_066 crossref_primary_10_2139_ssrn_3355272 crossref_primary_10_1016_j_nanoen_2021_105887 crossref_primary_10_1002_acm2_12494 crossref_primary_10_1016_j_imu_2020_100377 crossref_primary_10_1007_s11356_022_21597_w crossref_primary_10_1016_j_iot_2022_100610 crossref_primary_10_1016_j_petsci_2023_08_032 crossref_primary_10_26634_jse_11_2_13447 crossref_primary_10_1007_s11831_024_10079_6 crossref_primary_10_1007_s10462_019_09719_2 crossref_primary_10_1109_JIOT_2017_2732735 crossref_primary_10_1016_j_apacoust_2023_109217 crossref_primary_10_1007_s13198_024_02408_6 crossref_primary_10_1109_TIFS_2024_3477325 crossref_primary_10_1016_j_chb_2024_108422 crossref_primary_10_1186_s40537_020_00380_z crossref_primary_10_1093_bioinformatics_bty752 crossref_primary_10_1007_s10115_018_1156_3 crossref_primary_10_1190_geo2021_0294_1 crossref_primary_10_1109_ACCESS_2020_2991844 crossref_primary_10_1016_j_artmed_2023_102569 crossref_primary_10_1007_s44227_024_00039_8 crossref_primary_10_1109_ACCESS_2020_2995087 crossref_primary_10_1109_COMST_2020_2986024 crossref_primary_10_1002_kin_21759 crossref_primary_10_1021_acs_analchem_8b01128 crossref_primary_10_1016_j_future_2018_11_011 crossref_primary_10_1016_j_iot_2024_101272 crossref_primary_10_1016_j_knosys_2020_105924 crossref_primary_10_1093_comjnl_bxab050 crossref_primary_10_3390_mti2030047 crossref_primary_10_1109_TII_2019_2941868 crossref_primary_10_32604_cmc_2023_029834 crossref_primary_10_1145_3063593 crossref_primary_10_3390_rs16173168 crossref_primary_10_1016_j_energy_2024_134290 crossref_primary_10_1145_2886779 crossref_primary_10_1016_j_asoc_2022_109520 crossref_primary_10_1007_s10921_024_01090_9 crossref_primary_10_1016_j_gltp_2021_01_004 crossref_primary_10_3390_electronics10050552 crossref_primary_10_1109_TCOMM_2020_2968314 crossref_primary_10_1103_PhysRevApplied_15_034092 crossref_primary_10_1109_COMST_2016_2540004 crossref_primary_10_1109_TIM_2021_3122184 crossref_primary_10_1007_s00024_024_03586_x crossref_primary_10_1093_bib_bby072 crossref_primary_10_1093_bib_bbaa257 crossref_primary_10_3390_molecules25061375 crossref_primary_10_1109_ACCESS_2022_3177539 crossref_primary_10_1038_s41598_024_56522_3 crossref_primary_10_1002_cpt_2266 crossref_primary_10_3390_bdcc2030021 crossref_primary_10_1093_bioinformatics_btz505 crossref_primary_10_1186_s40537_017_0108_1 crossref_primary_10_2478_amns_2024_1839 crossref_primary_10_3390_bdcc2030023 crossref_primary_10_1088_1742_6596_1767_1_012031 crossref_primary_10_1117_1_JRS_11_042609 crossref_primary_10_4995_riai_2020_12579 crossref_primary_10_1007_s41019_016_0022_0 crossref_primary_10_3390_agronomy13030934 crossref_primary_10_1016_j_aei_2020_101054 crossref_primary_10_1038_s41524_020_00363_x crossref_primary_10_3390_nano14020165 crossref_primary_10_1080_00268976_2024_2331620 crossref_primary_10_1007_s12193_018_0270_6 crossref_primary_10_1016_j_procs_2023_10_113 crossref_primary_10_1016_j_future_2022_12_003 crossref_primary_10_1109_ACCESS_2022_3144076 crossref_primary_10_3390_su13020800 crossref_primary_10_1007_s10462_019_09782_9 crossref_primary_10_1016_j_scs_2021_103239 crossref_primary_10_11648_j_aas_20240902_11 crossref_primary_10_1002_adma_201905522 crossref_primary_10_3390_applbiosci2020020 crossref_primary_10_3390_rs11161881 crossref_primary_10_1016_j_knosys_2023_110414 crossref_primary_10_1109_ACCESS_2017_2764919 crossref_primary_10_4018_IJSI_2018100108 crossref_primary_10_14801_jkiit_2022_20_6_117 crossref_primary_10_1016_j_compind_2021_103421 crossref_primary_10_1145_2932707 crossref_primary_10_3390_clinpract14040112 crossref_primary_10_1016_j_isprsjprs_2018_05_005 crossref_primary_10_1108_MBE_07_2021_0094 crossref_primary_10_3390_s21196346 crossref_primary_10_1109_TEM_2021_3113502 crossref_primary_10_1615_AnnualRevHeatTransfer_2022042131 crossref_primary_10_1016_j_knosys_2022_108292 crossref_primary_10_1093_bib_bbaa312 crossref_primary_10_1007_s10994_021_06064_w crossref_primary_10_1007_s11277_021_08523_y crossref_primary_10_1109_ACCESS_2022_3192019 crossref_primary_10_3390_s19132941 crossref_primary_10_1007_s11042_017_5176_x crossref_primary_10_1007_s12350_018_1284_x crossref_primary_10_32604_iasc_2022_020662 crossref_primary_10_1016_j_ijleo_2018_10_142 crossref_primary_10_1109_ACCESS_2019_2947160 crossref_primary_10_1109_ACCESS_2018_2801813 crossref_primary_10_35683_jcm18096_0014 crossref_primary_10_1109_ACCESS_2017_2768385 crossref_primary_10_31590_ejosat_822219 crossref_primary_10_1016_j_eswa_2023_122538 crossref_primary_10_1109_JBHI_2022_3204776 crossref_primary_10_1186_s40537_024_00914_9 crossref_primary_10_3390_app12052646 crossref_primary_10_1109_TKDE_2020_3015777 crossref_primary_10_1016_j_compeleceng_2017_12_009 crossref_primary_10_1016_j_is_2023_102318 crossref_primary_10_1109_ACCESS_2016_2570021 crossref_primary_10_1007_s10033_017_0189_y crossref_primary_10_1109_JSAC_2019_2927088 crossref_primary_10_1016_j_compenvurbsys_2019_101350 crossref_primary_10_1016_j_jclepro_2024_143652 crossref_primary_10_1016_j_biosystemseng_2018_03_014 crossref_primary_10_1109_ACCESS_2025_3528248 crossref_primary_10_1186_s40064_016_3108_2 crossref_primary_10_1088_1757_899X_1022_1_012005 crossref_primary_10_1109_ACCESS_2020_2991074 crossref_primary_10_1109_TIFS_2019_2928256 crossref_primary_10_1109_JIOT_2024_3417295 crossref_primary_10_1007_s41870_022_01141_2 crossref_primary_10_1109_JSTARS_2023_3280905 crossref_primary_10_3390_robotics12040100 crossref_primary_10_3390_s19163549 crossref_primary_10_1016_j_bspc_2023_104929 crossref_primary_10_1002_spe_2876 crossref_primary_10_1016_j_ijinfomgt_2016_05_013 crossref_primary_10_1016_j_compfluid_2020_104497 crossref_primary_10_1080_02684527_2019_1579410 crossref_primary_10_1109_JLT_2022_3183694 crossref_primary_10_1080_15481603_2022_2027120 crossref_primary_10_1109_ACCESS_2018_2889110 crossref_primary_10_1016_j_compag_2022_107561 crossref_primary_10_1016_j_rineng_2024_103565 crossref_primary_10_1109_TVLSI_2017_2734819 crossref_primary_10_1364_PRJ_498963 crossref_primary_10_1080_17445302_2019_1605959 crossref_primary_10_1016_j_cmpb_2020_105651 crossref_primary_10_1007_s00521_020_04749_2 crossref_primary_10_1007_s40747_020_00174_z crossref_primary_10_1109_ACCESS_2021_3131702 crossref_primary_10_1088_1742_6596_1916_1_012029 crossref_primary_10_1007_s00500_017_2536_4 crossref_primary_10_1109_ACCESS_2019_2918728 crossref_primary_10_3390_s20123429 crossref_primary_10_1016_j_humov_2017_04_011 crossref_primary_10_1016_j_ijinfomgt_2016_05_020 crossref_primary_10_1007_s11227_024_06214_6 crossref_primary_10_1162_neco_a_01273 crossref_primary_10_3390_en15072546 crossref_primary_10_1016_j_esr_2024_101582 crossref_primary_10_1016_j_asoc_2020_106898 crossref_primary_10_1109_ACCESS_2024_3456113 crossref_primary_10_1109_ACCESS_2019_2891588 crossref_primary_10_1109_ACCESS_2019_2892795 crossref_primary_10_1007_s00034_021_01731_8 crossref_primary_10_1016_j_aei_2024_102714 crossref_primary_10_1109_TIE_2017_2767540 crossref_primary_10_1057_s41599_020_0494_4 crossref_primary_10_1109_MCSE_2018_2875322 crossref_primary_10_1007_s11071_021_06416_0 crossref_primary_10_1109_ACCESS_2019_2924075 crossref_primary_10_4018_IJAET_338318 crossref_primary_10_3390_app13074430 crossref_primary_10_1016_j_bosn_2024_03_001 crossref_primary_10_1109_TCAD_2018_2857019 crossref_primary_10_1007_s00366_023_01852_5 crossref_primary_10_1109_JIOT_2021_3126811 crossref_primary_10_1109_TGRS_2017_2692281 crossref_primary_10_1007_s00170_021_07490_9 crossref_primary_10_1061_JTEPBS_0000290 crossref_primary_10_3389_fphy_2024_1477382 crossref_primary_10_3390_ijgi12050194 crossref_primary_10_1111_exsy_13467 crossref_primary_10_3390_vehicles5030051 crossref_primary_10_1109_COMST_2018_2844341 crossref_primary_10_3390_s21248406 crossref_primary_10_3390_atmos12050539 crossref_primary_10_3390_app13179983 crossref_primary_10_3390_healthcare9121652 crossref_primary_10_1016_j_est_2023_107037 crossref_primary_10_1287_msom_2022_0304 crossref_primary_10_1016_j_cmpb_2018_04_005 crossref_primary_10_3390_plants11010016 crossref_primary_10_1007_s00521_022_07107_6 crossref_primary_10_1051_bioconf_202413603002 crossref_primary_10_3390_app13179505 crossref_primary_10_1016_j_promfg_2019_06_005 crossref_primary_10_3390_bdcc5020021 crossref_primary_10_1109_ACCESS_2021_3068867 crossref_primary_10_1145_3427476 crossref_primary_10_3390_c7040080 crossref_primary_10_1002_btm2_70002 crossref_primary_10_1016_j_cosrev_2021_100389 crossref_primary_10_1364_OPTICA_434918 crossref_primary_10_1016_j_jrras_2024_101003 crossref_primary_10_1145_3427472 crossref_primary_10_1016_j_conbuildmat_2024_135894 crossref_primary_10_1007_s11042_022_12484_0 crossref_primary_10_1109_TITS_2021_3076844 crossref_primary_10_1007_s11517_021_02474_z crossref_primary_10_1016_j_csda_2018_08_015 crossref_primary_10_1109_JSTARS_2020_3038456 crossref_primary_10_1111_adj_12812 crossref_primary_10_36548_jiip_2022_1_003 crossref_primary_10_1007_s11628_023_00535_x crossref_primary_10_1002_VIW_20220026 crossref_primary_10_3390_jmse11020384 crossref_primary_10_1017_S0269964819000317 crossref_primary_10_1016_j_compchemeng_2017_08_005 crossref_primary_10_1016_j_procs_2024_04_034 crossref_primary_10_1016_j_ijepes_2021_106987 crossref_primary_10_3390_rs15143498 crossref_primary_10_3390_s21051880 crossref_primary_10_1016_j_jafr_2020_100033 crossref_primary_10_3846_transport_2023_20932 crossref_primary_10_1557_jmr_2020_120 crossref_primary_10_1109_JSTQE_2023_3271818 crossref_primary_10_1109_ACCESS_2019_2905101 crossref_primary_10_1109_ACCESS_2022_3184453 crossref_primary_10_1016_j_hcc_2023_100124 crossref_primary_10_1109_ACCESS_2018_2859809 crossref_primary_10_1002_cpe_3914 crossref_primary_10_4018_IJAMC_2018100102 crossref_primary_10_1515_itit_2018_0017 crossref_primary_10_1109_ACCESS_2021_3138160 crossref_primary_10_1016_j_ipm_2018_01_010 crossref_primary_10_3390_e20060401 crossref_primary_10_48084_etasr_2455 crossref_primary_10_31686_ijier_vol10_iss9_3894 crossref_primary_10_1007_s11524_020_00482_2 crossref_primary_10_1109_ACCESS_2021_3071389 crossref_primary_10_1016_j_aiig_2023_09_002 crossref_primary_10_1109_ACCESS_2024_3359533 crossref_primary_10_1109_TETCI_2018_2876568 crossref_primary_10_1109_ACCESS_2018_2805680 crossref_primary_10_3390_insects12121134 crossref_primary_10_1111_tgis_12330 crossref_primary_10_3390_electronics10121459 crossref_primary_10_1109_ACCESS_2020_3038933 crossref_primary_10_31590_ejosat_719048 crossref_primary_10_1007_s00259_021_05202_9 crossref_primary_10_1109_ACCESS_2019_2924425 crossref_primary_10_2174_1573405618666220407112825 crossref_primary_10_1109_ACCESS_2021_3118207 crossref_primary_10_1109_JBHI_2020_2977009 crossref_primary_10_1007_s00704_022_04341_9 crossref_primary_10_31854_1813_324X_2023_9_5_66_78 crossref_primary_10_1109_TC_2015_2470255 crossref_primary_10_1007_s11517_020_02215_8 crossref_primary_10_1007_s12652_021_02967_7 crossref_primary_10_1049_iet_rpg_2019_0941 crossref_primary_10_1109_ACCESS_2019_2912200 crossref_primary_10_1016_j_rsase_2024_101384 crossref_primary_10_2139_ssrn_4140105 crossref_primary_10_1016_j_eswa_2021_116256 crossref_primary_10_1109_MNET_2016_7389830 crossref_primary_10_1109_TSC_2015_2497705 crossref_primary_10_3390_electronics13214253 crossref_primary_10_1109_ACCESS_2018_2830661 crossref_primary_10_1016_j_jmapro_2023_10_081 crossref_primary_10_1007_s11280_019_00705_w crossref_primary_10_1016_j_procs_2017_09_066 crossref_primary_10_3390_app15010204 crossref_primary_10_3390_s21134284 crossref_primary_10_1155_2022_6234169 crossref_primary_10_1109_ACCESS_2019_2926518 crossref_primary_10_1109_ACCESS_2021_3086530 crossref_primary_10_2139_ssrn_3866259 crossref_primary_10_1016_j_bdr_2017_06_002 crossref_primary_10_1109_ACCESS_2018_2817215 crossref_primary_10_1016_j_rinp_2025_108197 crossref_primary_10_1007_s11063_018_09976_2 crossref_primary_10_4018_IJSWIS_302895 crossref_primary_10_1007_s11042_023_14940_x crossref_primary_10_3390_app10196936 crossref_primary_10_3390_ijms20184331 crossref_primary_10_1016_j_dcan_2020_12_002 crossref_primary_10_3390_s18082521 crossref_primary_10_3390_en15134602 crossref_primary_10_3390_biomedinformatics1030010 crossref_primary_10_3390_bdcc4020004 crossref_primary_10_1051_itmconf_20182002012 crossref_primary_10_1111_are_14653 crossref_primary_10_1016_j_comnet_2017_06_013 crossref_primary_10_55213_kmujens_1418280 crossref_primary_10_1063_5_0249920 crossref_primary_10_1007_s40544_024_0879_2 crossref_primary_10_3390_s20185097 crossref_primary_10_1016_j_engappai_2018_08_012 crossref_primary_10_1109_ACCESS_2020_2989028 crossref_primary_10_1016_j_procs_2019_12_120 crossref_primary_10_3390_su10124779 crossref_primary_10_55529_jpps_36_13_33 crossref_primary_10_3389_fonc_2021_734407 crossref_primary_10_1109_JSAC_2015_2393471 crossref_primary_10_1007_s43032_019_00082_9 crossref_primary_10_1016_j_engappai_2024_109376 crossref_primary_10_1016_j_knosys_2024_112950 crossref_primary_10_1021_acsomega_4c03747 crossref_primary_10_1016_j_jii_2021_100224 crossref_primary_10_1088_1361_6595_ab45e5 crossref_primary_10_1007_s11242_019_01352_5 crossref_primary_10_1016_j_drudis_2019_07_006 crossref_primary_10_1016_j_future_2019_01_024 crossref_primary_10_3390_s19183929 crossref_primary_10_1016_j_jksuci_2024_102164 crossref_primary_10_3389_fneur_2022_791816 crossref_primary_10_1016_j_neucom_2020_05_078 crossref_primary_10_1007_s10462_021_09982_2 crossref_primary_10_1109_RBME_2020_3013489 crossref_primary_10_1007_s40808_024_02070_8 crossref_primary_10_1093_bioinformatics_btae118 crossref_primary_10_1016_j_jksuci_2021_06_008 crossref_primary_10_1371_journal_pone_0209649 crossref_primary_10_1016_j_cogsys_2018_08_023 crossref_primary_10_1109_ACCESS_2019_2960451 crossref_primary_10_1109_JIOT_2017_2773600 crossref_primary_10_1080_23270012_2015_1082449 crossref_primary_10_1109_ACCESS_2019_2924597 crossref_primary_10_1007_s41635_024_00153_7 crossref_primary_10_1186_s13174_020_00127_2 crossref_primary_10_1109_ACCESS_2023_3266644 crossref_primary_10_1109_MIE_2018_2824843 crossref_primary_10_3390_e26040311 crossref_primary_10_1109_ACCESS_2020_2981361 crossref_primary_10_1109_ACCESS_2022_3147807 crossref_primary_10_1007_s11042_024_19638_2 crossref_primary_10_1109_ACCESS_2020_3041178 crossref_primary_10_3390_app12105159 crossref_primary_10_1016_j_neucom_2015_02_099 crossref_primary_10_1021_acs_est_1c05020 crossref_primary_10_1021_acs_jcim_2c01617 crossref_primary_10_1109_ACCESS_2020_3009467 crossref_primary_10_1016_j_optlastec_2024_111766 crossref_primary_10_3390_make3010004 crossref_primary_10_1007_s00521_023_08258_w crossref_primary_10_3390_app11083414 crossref_primary_10_1007_s00170_023_11035_7 crossref_primary_10_1016_j_neuroimage_2017_07_059 crossref_primary_10_1587_transinf_2018EDP7257 crossref_primary_10_1109_ACCESS_2021_3055826 crossref_primary_10_1016_j_neucom_2015_12_076 crossref_primary_10_1016_j_procs_2017_10_038 crossref_primary_10_3390_math7111041 crossref_primary_10_1109_ACCESS_2019_2926642 crossref_primary_10_1007_s10346_018_01128_w crossref_primary_10_1038_s41598_023_36940_5 crossref_primary_10_1109_TIE_2016_2519325 crossref_primary_10_18657_yonveek_1208807 crossref_primary_10_1016_j_knosys_2021_106899 crossref_primary_10_2196_11966 crossref_primary_10_3390_rs15061540 crossref_primary_10_1108_JOSM_06_2019_0163 crossref_primary_10_3390_math10060934 crossref_primary_10_1109_TIM_2017_2759418 crossref_primary_10_17714_gumusfenbil_1120895 crossref_primary_10_1002_widm_1194 crossref_primary_10_1364_PRJ_457506 crossref_primary_10_1038_s41598_024_72125_4 crossref_primary_10_1016_j_scs_2020_102655 crossref_primary_10_1109_TBDATA_2020_3036813 crossref_primary_10_1109_JPROC_2021_3119950 crossref_primary_10_1109_TMSCS_2018_2845886 crossref_primary_10_1109_ACCESS_2017_2759509 crossref_primary_10_1109_ACCESS_2017_2696365 crossref_primary_10_1016_j_jag_2023_103611 crossref_primary_10_2478_stcb_2020_0002 crossref_primary_10_1016_j_eswa_2024_124752 crossref_primary_10_1109_TAI_2021_3067574 crossref_primary_10_1109_ACCESS_2020_3043256 crossref_primary_10_1109_TVT_2017_2717949 crossref_primary_10_1142_S1469026820500133 crossref_primary_10_1007_s11277_022_09640_y crossref_primary_10_1002_mp_15827 crossref_primary_10_1109_ACCESS_2019_2898238 crossref_primary_10_1109_ACCESS_2019_2923270 crossref_primary_10_3390_electronics13081585 crossref_primary_10_1016_j_bspc_2018_02_019 crossref_primary_10_1109_JIOT_2016_2564428 crossref_primary_10_1016_j_inffus_2019_02_010 crossref_primary_10_1177_14604582221137537 crossref_primary_10_1016_j_ijepes_2020_106162 crossref_primary_10_4103_jpi_jpi_53_18 crossref_primary_10_1016_j_inffus_2017_10_006 crossref_primary_10_1016_j_micpro_2022_104748 crossref_primary_10_15446_ing_investig_v42n1_90289 crossref_primary_10_1049_iet_net_2018_5179 crossref_primary_10_1145_3421276 crossref_primary_10_1007_s00500_023_08743_3 crossref_primary_10_1111_ffe_13893 crossref_primary_10_1007_s12652_022_03694_3 crossref_primary_10_1007_s11356_022_24065_7 crossref_primary_10_1016_j_comcom_2021_01_021 crossref_primary_10_1016_j_future_2017_10_021 crossref_primary_10_1088_1742_6596_1979_1_012059 crossref_primary_10_1002_widm_1405 crossref_primary_10_3390_min13010128 crossref_primary_10_1016_j_trc_2019_08_011 crossref_primary_10_1108_DPRG_08_2018_0048 crossref_primary_10_1007_s00500_017_2585_8 crossref_primary_10_1016_j_cageo_2020_104484 crossref_primary_10_1049_cit2_12114 crossref_primary_10_1109_ACCESS_2018_2862885 crossref_primary_10_3390_s21217024 crossref_primary_10_3390_electronics10172081 crossref_primary_10_1371_journal_pone_0255906 crossref_primary_10_1016_j_clet_2024_100754 crossref_primary_10_1016_j_cose_2021_102402 crossref_primary_10_1016_j_eswa_2018_04_004 crossref_primary_10_1007_s00521_018_3583_1 crossref_primary_10_2308_jeta_10511 crossref_primary_10_1007_s13042_019_00960_3 crossref_primary_10_1016_j_techfore_2018_03_024 crossref_primary_10_1002_sres_2865 crossref_primary_10_1007_s00521_019_04282_x crossref_primary_10_1002_cpe_7619 crossref_primary_10_3390_s20143949 crossref_primary_10_1007_s11053_023_10268_3 crossref_primary_10_1016_j_inffus_2020_02_002 crossref_primary_10_3390_en11113221 crossref_primary_10_1016_j_isprsjprs_2021_05_004 crossref_primary_10_1016_j_neucom_2015_11_021 crossref_primary_10_1080_09537325_2020_1732912 crossref_primary_10_1016_j_engstruct_2024_117958 crossref_primary_10_3390_mi12060665 crossref_primary_10_3390_electronics8030292 crossref_primary_10_1080_03772063_2023_2205857 crossref_primary_10_3390_s21092921 crossref_primary_10_1108_SASBE_04_2019_0040 crossref_primary_10_1109_ACCESS_2021_3129061 crossref_primary_10_1007_s12652_024_04804_z crossref_primary_10_1109_TITS_2021_3109625 crossref_primary_10_1002_ett_3302 crossref_primary_10_1080_22797254_2019_1581582 crossref_primary_10_1002_minf_202000086 crossref_primary_10_1177_03611981241297662 crossref_primary_10_1186_s13634_016_0355_x crossref_primary_10_1007_s00170_019_03793_0 crossref_primary_10_1109_COMST_2019_2904897 crossref_primary_10_3390_info11110502 crossref_primary_10_1007_s10067_020_05196_z crossref_primary_10_1016_j_bbe_2021_11_004 crossref_primary_10_1038_s43588_021_00086_z crossref_primary_10_1140_epjs_s11734_021_00207_9 crossref_primary_10_1109_ACCESS_2021_3071552 crossref_primary_10_1002_cpe_6429 crossref_primary_10_1016_j_media_2019_03_011 crossref_primary_10_1109_JIOT_2018_2861831 crossref_primary_10_1080_23270012_2019_1570365 crossref_primary_10_1007_s11042_018_6923_3 crossref_primary_10_1016_j_aiig_2023_01_005 crossref_primary_10_1016_j_asoc_2021_108318 crossref_primary_10_1186_s40537_022_00606_2 crossref_primary_10_1016_j_asoc_2017_11_034 crossref_primary_10_1111_mice_12798 crossref_primary_10_1109_TNNLS_2019_2920964 crossref_primary_10_32547_artvision_1454216 crossref_primary_10_1007_s11831_024_10169_5 crossref_primary_10_3748_wjg_v24_i45_5057 crossref_primary_10_2308_jeta_52086 crossref_primary_10_1109_ACCESS_2019_2908386 crossref_primary_10_1007_s41666_020_00088_y crossref_primary_10_1016_j_sciaf_2020_e00600 crossref_primary_10_1109_ACCESS_2019_2907050 crossref_primary_10_1109_TII_2020_2978114 crossref_primary_10_3390_jmse7120463 crossref_primary_10_9728_dcs_2019_20_2_387 crossref_primary_10_1364_OE_448051 crossref_primary_10_1007_s12161_019_01645_x crossref_primary_10_1088_2632_2153_ac4f3f crossref_primary_10_3390_app10175894 crossref_primary_10_1109_TII_2018_2791423 crossref_primary_10_1007_s11042_021_11617_1 crossref_primary_10_1145_3363554 crossref_primary_10_1111_risa_14018 crossref_primary_10_1063_5_0251325 crossref_primary_10_1016_j_bdr_2015_04_001 crossref_primary_10_1029_2018JB015911 crossref_primary_10_1126_sciadv_adi1480 crossref_primary_10_1109_COMST_2020_2988293 crossref_primary_10_4018_IJGHPC_2018070101 crossref_primary_10_1109_JSYST_2023_3235879 crossref_primary_10_1109_TR_2019_2907402 crossref_primary_10_1109_ACCESS_2015_2389854 crossref_primary_10_1177_18479790221141537 crossref_primary_10_1007_s40747_016_0024_6 crossref_primary_10_1016_j_cose_2022_102857 crossref_primary_10_1016_j_neucom_2017_01_026 crossref_primary_10_1049_iet_stg_2018_0261 crossref_primary_10_1016_j_bbe_2022_11_003 crossref_primary_10_1016_j_acags_2023_100119 crossref_primary_10_3390_electronics8070766 crossref_primary_10_1093_ecco_jcc_jjab169 crossref_primary_10_1080_01616412_2019_1609159 crossref_primary_10_3233_JIFS_190658 crossref_primary_10_3390_a15040108 crossref_primary_10_1109_TCYB_2017_2712188 crossref_primary_10_1109_ACCESS_2020_3010185 crossref_primary_10_1515_revce_2020_0054 crossref_primary_10_1109_TIM_2018_2890329 crossref_primary_10_2139_ssrn_5051528 crossref_primary_10_1080_10941665_2022_2119421 crossref_primary_10_1111_mice_12533 crossref_primary_10_1038_s42005_021_00549_9 crossref_primary_10_53941_ijndi_2024_100020 crossref_primary_10_1016_j_cosrev_2020_100303 crossref_primary_10_3233_JIFS_17592 crossref_primary_10_1002_aisy_202000063 crossref_primary_10_1109_JSTARS_2022_3210143 crossref_primary_10_1111_coin_12594 crossref_primary_10_1109_TSMC_2017_2701797 crossref_primary_10_3390_s21217169 crossref_primary_10_3390_data7090126 crossref_primary_10_1109_JIOT_2020_2985694 crossref_primary_10_1016_j_ress_2018_11_027 crossref_primary_10_1016_j_apr_2024_102054 crossref_primary_10_1109_ACCESS_2020_2994933 crossref_primary_10_1016_j_jappgeo_2018_09_022 crossref_primary_10_1109_ACCESS_2022_3157651 crossref_primary_10_1007_s10462_024_10859_3 crossref_primary_10_1007_s41111_024_00255_1 crossref_primary_10_1016_j_procs_2022_12_291 crossref_primary_10_1093_mnras_stad989 crossref_primary_10_1016_j_jobe_2025_112349 crossref_primary_10_1007_s11042_020_10174_3 crossref_primary_10_1016_j_ress_2019_106706 crossref_primary_10_1109_ACCESS_2018_2806881 crossref_primary_10_1093_jcde_qwac086 crossref_primary_10_1109_ACCESS_2019_2923796 |
Cites_doi | 10.1109/TPAMI.2008.128 10.1145/1390156.1390294 10.1103/PhysRevE.56.3426 10.1109/TASL.2011.2134090 10.1109/ICASSP.2012.6288333 10.1109/TNN.2010.2091281 10.1142/S0218213008004059 10.1162/neco.2006.18.7.1527 10.1109/ACCESS.2014.2319813 10.1145/279943.279962 10.1109/TNNLS.2013.2242090 10.1103/PhysRevLett.74.4337 10.1145/1390156.1390303 10.1016/S0924-6509(08)70038-2 10.1162/NECO_a_00052 10.1109/IJCNN.2009.5178779 10.1109/TPAMI.1984.4767596 10.1109/TKDE.2009.191 10.2307/2685208 10.1017/CBO9781139042918.020 10.1126/science.1127647 10.1109/72.750549 10.1561/2200000018 10.1088/0305-4470/28/20/002 10.1109/MSP.2012.2205597 10.1561/2200000006 10.1145/1553374.1553486 10.1109/TNN.2004.828757 10.1038/505146a 10.1109/CVPR.2009.5206545 10.1109/5.726791 10.1109/TNN.2008.2003998 10.1113/jphysiol.1968.sp008455 10.1145/267460.267475 10.1109/ICCV.2011.6126474 10.1145/1273496.1273592 10.1145/1273496.1273596 10.1109/TNN.2011.2160459 10.1007/3-540-49430-8_2 10.1162/089976602760128018 10.1088/0305-4470/30/22/005 10.14778/1920841.1920931 10.1109/TNN.2006.880583 10.1038/323533a0 10.1109/ICASSP.2013.6639343 10.1109/TNN.2006.889943 10.1109/TNN.2006.879766 10.1145/103418.103467 10.1145/2213836.2213958 10.1109/TSMCC.2003.813150 10.1145/1273496.1273598 10.1016/S0305-0548(03)00104-7 10.1109/ICDAR.2003.1227801 10.1002/9781119992691.ch5 10.7551/mitpress/9780262017091.001.0001 10.1109/TNN.2008.2000082 10.1017/CBO9781139042918.003 10.1007/BF00115301 10.1109/TNN.2006.881710 10.1145/1390156.1390256 10.1109/TPAMI.2012.268 10.1007/978-3-642-16108-7_6 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2014.2325029 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 525 |
ExternalDocumentID | oai_doaj_org_article_9ad7aec5d77548ee868a19ad86660177 10_1109_ACCESS_2014_2325029 6817512 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-fe1f0fc914f2e8b96520d656bdbcabcfbc64ac09a4f3f683469c8a92ccb2f8db3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:20:05 EDT 2025 Mon Jun 30 03:43:17 EDT 2025 Tue Jul 01 04:10:40 EDT 2025 Thu Apr 24 23:02:59 EDT 2025 Wed Aug 27 01:57:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-fe1f0fc914f2e8b96520d656bdbcabcfbc64ac09a4f3f683469c8a92ccb2f8db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/6817512 |
PQID | 2456381181 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9ad7aec5d77548ee868a19ad86660177 proquest_journals_2456381181 crossref_citationtrail_10_1109_ACCESS_2014_2325029 crossref_primary_10_1109_ACCESS_2014_2325029 ieee_primary_6817512 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20140000 2014-00-00 20140101 2014-01-01 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 20140000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref53 lecun (ref38) 1998 ref52 ref54 freund (ref74) 0 dean (ref56) 0 (ref49) 2013 ref51 ref50 ref45 ref48 ref41 nair (ref23) 2009; 22 ref44 ref43 marc'aurelio ranzato (ref11) 0; 20 hinton (ref28) 2010 collobert (ref25) 2011; 12 duchi (ref57) 2011; 12 ref8 ref6 gantz (ref3) 2010 ref5 ref40 cire?an (ref36) 0 ref31 ref32 (ref60) 2012 srivastava (ref70) 0 ref39 ng (ref7) 0; 19 bengio (ref99) 2012; 27 bottou (ref88) 0 ref24 kirk (ref20) 2013 ref26 (ref4) 2011 ref22 ref21 krizhevsky (ref47) 2009 vanhoucke (ref46) 0 gantz (ref2) 2011 ref27 ref29 laney (ref63) 2012 krizhevsky (ref55) 0 mesnil (ref101) 2011; 7 haberlin (ref61) 0 ref13 (ref62) 2013 ref12 pan (ref106) 2011; 22 ref15 ref14 ref97 ref96 ref98 ref16 ref19 scherer (ref37) 0 ref18 ref93 ref92 seide (ref35) 0 ref95 ref94 ref91 ref90 ref89 ref85 ref87 coats (ref58) 2013; 28 ngiam (ref69) 0 glorot (ref100) 0 fergus (ref68) 0 tomov (ref59) 2011 ref82 ref81 ref84 ref83 sinha (ref67) 0 ref80 ref79 ref78 ref75 ref104 ref105 ref77 ref102 ref76 ref103 wang (ref65) 2007; 8 (ref1) 0 mesnil (ref107) 0 bengio (ref30) 0 bengio (ref10) 0; 12 larochelle (ref33) 2009; 10 ref73 ref72 lee (ref34) 0 ref64 ref66 martens (ref42) 0 crego (ref9) 2013 bottou (ref71) 1998 ruiz de angulo (ref86) 1995; 6 efrati (ref17) 2013 |
References_xml | – ident: ref64 doi: 10.1109/TPAMI.2008.128 – start-page: 437 year: 0 ident: ref35 article-title: Conversational speech transcription using context-dependent deep neural networks publication-title: Proc INTERSPEECH – volume: 7 start-page: 1 year: 2011 ident: ref101 article-title: Unsupervised and transfer learning challenge: A deep learning approach publication-title: J Mach Learn Res – ident: ref32 doi: 10.1145/1390156.1390294 – ident: ref83 doi: 10.1103/PhysRevE.56.3426 – start-page: 325 year: 0 ident: ref74 article-title: Game theory, on-line prediction and boosting publication-title: Proc 9th Annu Conf Comput Learn Theory – volume: 8 start-page: 1867 year: 2007 ident: ref65 article-title: Large margin semi-supervised learning publication-title: J Mach Learn Res – ident: ref12 doi: 10.1109/TASL.2011.2134090 – year: 2013 ident: ref20 publication-title: Universities IBM join forces to build a brain-like computer PCWorld – ident: ref44 doi: 10.1109/ICASSP.2012.6288333 – volume: 22 start-page: 199 year: 2011 ident: ref106 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2091281 – ident: ref103 doi: 10.1142/S0218213008004059 – volume: 6 start-page: 657 year: 1995 ident: ref86 article-title: On-line learning with minimal degradation in feedforward networks publication-title: Torras – year: 0 ident: ref1 publication-title: National Security Agency The National Security Agency Missions Authorities Oversight and Partnerships – ident: ref29 doi: 10.1162/neco.2006.18.7.1527 – year: 2011 ident: ref4 publication-title: Big Data The Next Frontier for Innovation Competition and Productivity – ident: ref43 doi: 10.1109/ACCESS.2014.2319813 – ident: ref104 doi: 10.1145/279943.279962 – year: 2013 ident: ref17 publication-title: How 'deep learning' works at Apple beyond Information – volume: 19 start-page: 281 year: 0 ident: ref7 article-title: Map-reduce for machine learning on multicore publication-title: Proc Adv Neu Inf Proc Sys – ident: ref90 doi: 10.1109/TNNLS.2013.2242090 – ident: ref82 doi: 10.1103/PhysRevLett.74.4337 – start-page: 1106 year: 0 ident: ref55 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv NIPS – volume: 22 start-page: 1339 year: 2009 ident: ref23 article-title: 3D object recongition with deep belief nets publication-title: Proc Adv NIPS – year: 2013 ident: ref9 publication-title: Business – ident: ref66 doi: 10.1145/1390156.1390303 – ident: ref77 doi: 10.1016/S0924-6509(08)70038-2 – year: 2012 ident: ref60 publication-title: Obama Administration Unveils Big Data Initiative Announces $200 Million in New R&D Investments [R] – ident: ref15 doi: 10.1162/NECO_a_00052 – ident: ref92 doi: 10.1109/IJCNN.2009.5178779 – volume: 12 start-page: 2493 year: 2011 ident: ref25 article-title: Natural language processing almost from scratch publication-title: J Mach Learn Res – ident: ref52 doi: 10.1109/TPAMI.1984.4767596 – ident: ref102 doi: 10.1109/TKDE.2009.191 – ident: ref53 doi: 10.2307/2685208 – year: 0 ident: ref69 article-title: Multimodal deep learning publication-title: Proc 28th Int Conf Mach Learn – ident: ref48 doi: 10.1017/CBO9781139042918.020 – ident: ref21 doi: 10.1126/science.1127647 – ident: ref84 doi: 10.1109/72.750549 – ident: ref76 doi: 10.1561/2200000018 – ident: ref81 doi: 10.1088/0305-4470/28/20/002 – ident: ref13 doi: 10.1109/MSP.2012.2205597 – year: 0 ident: ref100 article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach publication-title: Proc 28th Int Conf Mach Learn – ident: ref22 doi: 10.1561/2200000006 – year: 1998 ident: ref71 article-title: Online algorithms and stochastic approximations publication-title: On-Line Learning in Neural Networks – ident: ref41 doi: 10.1145/1553374.1553486 – ident: ref96 doi: 10.1109/TNN.2004.828757 – ident: ref18 doi: 10.1038/505146a – ident: ref39 doi: 10.1109/CVPR.2009.5206545 – ident: ref24 doi: 10.1109/5.726791 – start-page: 153 year: 0 ident: ref30 article-title: Greedy layer-wise training of deep networks publication-title: Proc Neural Inf Process Syst – ident: ref95 doi: 10.1109/TNN.2008.2003998 – ident: ref40 doi: 10.1113/jphysiol.1968.sp008455 – ident: ref72 doi: 10.1145/267460.267475 – volume: 12 start-page: 2121 year: 2011 ident: ref57 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J Mach Learn Res – year: 0 ident: ref42 article-title: Deep learning via Hessian-free optimization publication-title: Proc 27th Int Conf Mach Learn – ident: ref16 doi: 10.1109/ICCV.2011.6126474 – ident: ref105 doi: 10.1145/1273496.1273592 – ident: ref14 doi: 10.1145/1273496.1273596 – ident: ref93 doi: 10.1109/TNN.2011.2160459 – year: 1998 ident: ref38 article-title: Efficient backprop publication-title: Neural Networks Tricks of the Trade doi: 10.1007/3-540-49430-8_2 – ident: ref31 doi: 10.1162/089976602760128018 – volume: 12 start-page: 400 year: 0 ident: ref10 article-title: Modeling high-dimensional discrete data with multi-layer neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref80 doi: 10.1088/0305-4470/30/22/005 – ident: ref6 doi: 10.14778/1920841.1920931 – year: 2013 ident: ref49 publication-title: CUDA C Programming Guide PG-02829-001_v5 5 – ident: ref85 doi: 10.1109/TNN.2006.880583 – ident: ref27 doi: 10.1038/323533a0 – start-page: 92 year: 0 ident: ref37 article-title: Evaluation of pooling operations in convolutional architectures for object recognition publication-title: Proc Int Conf Artif Neural Netw – ident: ref50 doi: 10.1109/ICASSP.2013.6639343 – ident: ref97 doi: 10.1109/TNN.2006.889943 – year: 2010 ident: ref3 publication-title: The Digital Universe Decade-Are You Ready – ident: ref26 doi: 10.1109/TNN.2006.879766 – volume: 28 start-page: 1337 year: 2013 ident: ref58 article-title: Deep Learning with COTS HPS systems publication-title: J Mach Learn Res – ident: ref75 doi: 10.1145/103418.103467 – year: 0 ident: ref70 article-title: Multimodal learning with deep Boltzmann machines publication-title: Proc Adv NIPS – start-page: 1687 year: 0 ident: ref67 article-title: Semi-supervised learning using sparse eigenfunction bases publication-title: Proc Adv NIPS – ident: ref5 doi: 10.1145/2213836.2213958 – volume: 10 start-page: 1 year: 2009 ident: ref33 article-title: Exploring strategies for training deep neural networks publication-title: J Mach Learn Res – start-page: 522 year: 0 ident: ref68 article-title: Semi-supervised learning in gigantic image collections publication-title: Proc Adv NIPS – year: 2011 ident: ref2 publication-title: Extracting Value from Chaos – ident: ref79 doi: 10.1109/TSMCC.2003.813150 – ident: ref89 doi: 10.1145/1273496.1273598 – ident: ref78 doi: 10.1016/S0305-0548(03)00104-7 – year: 2012 ident: ref63 publication-title: The Importance of 'Big Data' A Definition – start-page: 345 year: 0 ident: ref107 article-title: Unsupervised and transfer learning under uncertainty: From object detections to scene categorization publication-title: Proc ICPR – volume: 27 start-page: 17 year: 2012 ident: ref99 article-title: Deep learning of representations for unsupervised and transfer learning publication-title: J Mach Learn Res – ident: ref54 doi: 10.1109/ICDAR.2003.1227801 – ident: ref19 doi: 10.1002/9781119992691.ch5 – start-page: 801 year: 0 ident: ref34 article-title: Efficient sparse coding algorithms publication-title: Proc Neural Info Proc Sys – year: 2009 ident: ref47 publication-title: Learning multiple layers of features from tiny images – ident: ref91 doi: 10.7551/mitpress/9780262017091.001.0001 – start-page: 1237 year: 0 ident: ref36 article-title: Flexible, high performance convolutional neural networks for image classification publication-title: Proc 22nd Conf Artif Intell – year: 2013 ident: ref62 publication-title: Fact Sheet Brain Initiative – ident: ref94 doi: 10.1109/TNN.2008.2000082 – volume: 20 start-page: 1185 year: 0 ident: ref11 article-title: Sparse feature learning for deep belief networks publication-title: Proc Adv Neural Inf Process Syst – year: 0 ident: ref88 article-title: Stochastic gradient learning in neural networks publication-title: Proc Neuro-Nimes – ident: ref8 doi: 10.1017/CBO9781139042918.003 – year: 2011 ident: ref59 – year: 0 ident: ref46 article-title: Improving the speed of neural networks on CPUs publication-title: Proc NIPS Workshop on Deep Learning and Unsupervised Feature Learning – year: 2010 ident: ref28 article-title: A practical guide to training restricted Boltzmann machines publication-title: Dept Comput Sci Univ Toronto – start-page: 1232 year: 0 ident: ref56 article-title: Large scale distributed deep networks publication-title: Proc Adv NIPS – ident: ref73 doi: 10.1007/BF00115301 – ident: ref87 doi: 10.1109/TNN.2006.881710 – ident: ref51 doi: 10.1145/1390156.1390256 – ident: ref45 doi: 10.1109/TPAMI.2012.268 – year: 0 ident: ref61 publication-title: Governor Patrick Announces New Initiative to Strengthen Massachusetts' Position as a World Leader in Big Data – ident: ref98 doi: 10.1007/978-3-642-16108-7_6 |
SSID | ssj0000816957 |
Score | 2.5414584 |
SecondaryResourceType | review_article |
Snippet | Deep learning is currently an extremely active research area in machine learning and pattern recognition society. It has gained huge successes in a broad area... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 514 |
SubjectTerms | Big Data Classifier design and evaluation Computer vision Data processing Deep learning feature representation Information analysis Machine learning Natural language processing neural nets models parallel processing Pattern recognition Speech recognition |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx5EnWJ1Sg8erUvbNE28bZ1jCIoHB7uF_ByCzOHq_-9Lm_0AQS9e07Rp3kvyvtcm34fQDaAGU5jCJTTHMiHUkcSrOySlzpmRGVbY-rPDT890MiWPs2K2I_Xl94S19MCt4fpcmlJaXRhP1casZZTJFAoZ4G4YTc05coh5O8lUswZDg7woA81Qinl_UFXQI7-Xi9wBiihwAyq3oahh7A8SKz_W5SbYjI_QYUCJ8aB9u2O0Zxcn6GCHO7CL8uHbPB7JWsYja5dx4Emd38fVWh5lFcuFiV-2pylXp2g6fnitJklQQEg0waxOnE0ddpqnxGWWKU6LDBtAYMooLZV2SlMiNeaSuNxRlkOuq5nkmdYqc8yo_Ax1Fh8Le45iA9PXOrha5JpwxTiG-JVZxRnV3JYuQtnaGEIHenCvUvEumjQBc9FaUHgLimDBCN1ublq27Bi_Vx96K2-qemrrpgAcLoLDxV8Oj1DX-2jzEMoAAaVZhHprn4kwDVfC_9UFSAIo5uI_mr5E-7477ReYHurUn1_2CjBJra6b4fcNJuXZpg priority: 102 providerName: Directory of Open Access Journals |
Title | Big Data Deep Learning: Challenges and Perspectives |
URI | https://ieeexplore.ieee.org/document/6817512 https://www.proquest.com/docview/2456381181 https://doaj.org/article/9ad7aec5d77548ee868a19ad86660177 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3qAAq26haIcOJLFmziOzQ0WEEKi6qFI3Cx_jFFFtSA2e-mvZ-x4Q9UixC1y7Mjx2J43Y88bgANCDb7xTShFzUzJReBlzO5Qtq6W3lTMMoyxw9ffxeUNv7ptblfgcIiFQcR0-QzH8TGd5fsHt4iusiMhSdnFlMKrZLj1sVqDPyUmkFBNm4mFJkwdnUyn9A_x9hYfE25oWIKRL8oncfTnpCr_7cRJvVxswvWyY_2tkvvxorNj9-cfzsb39vwjbGScWZz0E2MLVnC2DR_-Yh_cgfr0111xZjpTnCE-Fplp9e64mC4TrMwLM_PFj5d4zPknuLk4_zm9LHMOhdJxJrsy4CSw4NSEhwqlVaKpmCcMZ711xrpgneDGMWV4qIOQNVnLThpVOWerIL2tP8Pa7GGGX6DwtAFgoLdN7biyUjHSgBVaJYVT2IYRVMvB1S4TjMc8F791MjSY0r1EdJSIzhIZweHQ6LHn13i7-mmU2lA1kmOnAhptndeaVsa3Bl3jI7ufRJRCmgkVSjLVaANqR7ATJTR8JAtnBHvLOaDzQp7reC5MoIZw0NfXW-3Ceuxg75XZg7XuaYHfCKd0dj_Z9_tpmj4DpiDkIg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOFCgVSwvkADeydZyXjdRDu0u1pQ9xaKXejB_jClFtq25WCH4Lf6X_jXHiTREgbpW4RY5tRfaXmW_seQC8JtbgSlf6tMqZTovKF2mo7pDWNhdOc2YYhtjhw6NqclJ8OC1Pl-BHHwuDiK3zGQ7DY3uX7y7sPByVbVaClF3GowvlPn77SgbabGtvTLv5hvPd98ejSRprCKS2YKJJPWaeeSuzwnMURlYlZ444jHHGamO9sVWhLZO68LmvRE7WohVacmsN98KZnOa9A3eJZ5S8iw7rT3BCyQpZ1jGVUcbk5vZoRKsW_MWKITGVkrXE9UbdtVUBYhmXP2R_q9B2V-B6sRSdH8uX4bwxQ_v9tyyR_-taPYKHkUkn2x30H8MSTp_Ag1_yK65CvvP5LBnrRidjxMsk5pI9e5eMFiVkZomeuuTjTcTp7Cmc3MpXr8Hy9GKKzyBxJOLQ09syt4U0QjLS8RyNFJWVWPsB8MVmKhtTqIdKHueqNaWYVB0CVECAiggYwNt-0GWXQeTf3XcCSvquIf1320C7q6I0UVK7WqMtXchfKBBFJXRGjYKMURKx9QBWAyL6SSIYBrCxwJyKomqmws030TZies__PuoV3JscHx6og72j_XW4Hz62O4PagOXmao4viJU15mX7cyTw6bYR9hMPwkT5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+Data+Deep+Learning%3A+Challenges+and+Perspectives&rft.jtitle=IEEE+access&rft.au=Chen%2C+Xue-Wen&rft.au=Lin%2C+Xiaotong&rft.date=2014&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=2&rft.spage=514&rft.epage=525&rft_id=info:doi/10.1109%2FACCESS.2014.2325029&rft.externalDocID=6817512 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |