A Novel Task Provisioning Approach Fusing Reinforcement Learning for Big Data

The large-scale tasks processing for big data using cloud computing has become a hot research topic. Most of previous work on task processing is directly customized and achieved through existing methods. It may result in relatively more system response time, high algorithm complexity and resource wa...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 143699 - 143709
Main Authors Cheng, Yongyi, Xu, Gaochao
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The large-scale tasks processing for big data using cloud computing has become a hot research topic. Most of previous work on task processing is directly customized and achieved through existing methods. It may result in relatively more system response time, high algorithm complexity and resource waste, etc. Based on this argument, aiming at realizing overall load balancing, bandwidth cost minimization and energy conservation while satisfying resource requirements, a novel large-scale tasks processing approach called TOPE (Two-phase Optimization for Parallel Execution) is developed. The deep reinforcement learning model is designed for virtual link mapping decisions. We treat whole network as a multi-agent system and the whole process of selecting each node's next hop node is formalized via Markov decision process. We train the learning agent by deep neural network to store parameters of deep network model while approximating the value function, rather than tons of state-action values. The virtual node mapping is achieved by designed distributed multi-objective swarm intelligence to realize our two-phase optimization for task allocation in topology structure of Fat-tree. We provide experiments to show the ability of TOPE in analyzing task requests and infrastructure network. The superiority of TOPE for large-scale tasks processing is convincingly demonstrated by comparing with state-of-the-art approaches in cloud environment.
AbstractList The large-scale tasks processing for big data using cloud computing has become a hot research topic. Most of previous work on task processing is directly customized and achieved through existing methods. It may result in relatively more system response time, high algorithm complexity and resource waste, etc. Based on this argument, aiming at realizing overall load balancing, bandwidth cost minimization and energy conservation while satisfying resource requirements, a novel large-scale tasks processing approach called TOPE (Two-phase Optimization for Parallel Execution) is developed. The deep reinforcement learning model is designed for virtual link mapping decisions. We treat whole network as a multi-agent system and the whole process of selecting each node's next hop node is formalized via Markov decision process. We train the learning agent by deep neural network to store parameters of deep network model while approximating the value function, rather than tons of state-action values. The virtual node mapping is achieved by designed distributed multi-objective swarm intelligence to realize our two-phase optimization for task allocation in topology structure of Fat-tree. We provide experiments to show the ability of TOPE in analyzing task requests and infrastructure network. The superiority of TOPE for large-scale tasks processing is convincingly demonstrated by comparing with state-of-the-art approaches in cloud environment.
Author Xu, Gaochao
Cheng, Yongyi
Author_xml – sequence: 1
  givenname: Yongyi
  orcidid: 0000-0002-8300-8950
  surname: Cheng
  fullname: Cheng, Yongyi
  organization: College of Computer Science and Technology, Jilin University, Changchun, China
– sequence: 2
  givenname: Gaochao
  surname: Xu
  fullname: Xu, Gaochao
  email: xugc@jlu.edu.cn
  organization: College of Computer Science and Technology, Jilin University, Changchun, China
BookMark eNqFUU1vGjEUtKJUKk3zC7is1DPU37s-UpoviTZRQs_Ws9cmpmRN7SVS_30Mi1DVS3x59mhmnt-bT-i8i51DaEzwlBCsvs7m86unpynFRE2p4owodoZGlEg1YYLJ83_uH9FlzmtcTlMgUY_Qj1n1M766TbWE_Lt6SPE15BC70K2q2XabItjn6nqX9-9HFzofk3UvruurhYN0oBWo-hZW1Xfo4TP64GGT3eWxXqBf11fL-e1kcX9zN58tJpbjpp94K6z0nhLGibPSgWqwaD0TRLRGMCYMB88Y9lwBx6b1RhHqiSRARd3Sml2gu8G3jbDW2xReIP3VEYI-ADGtNKQ-2I3T1GPBa1bcwZdqFAAxEmqihDFG7L2-DF5l2j87l3u9jrvUle9ryoWQVCrCC4sNLJtizsn5U1eC9T4GPcSg9zHoYwxFpf5T2dBDXxbcJwibd7TjQRucc6duTcOlrCl7A2DolmQ
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_techfore_2021_121193
crossref_primary_10_1109_TPDS_2021_3124670
crossref_primary_10_1007_s12652_020_02716_2
crossref_primary_10_1109_ACCESS_2019_2946848
Cites_doi 10.1109/CloudNet.2013.6710551
10.1109/TCC.2015.2437231
10.1002/dac.3465
10.1109/ICC.2017.7996332
10.1109/LCNW.2015.7365918
10.1109/CTS.2013.6567202
10.3390/data3040038
10.1109/TVT.2010.2059055
10.1109/TPDS.2015.2402655
10.1109/INFCOM.2010.5461933
10.1109/NaNA.2016.24
10.1109/ICFST.2017.8210526
10.1109/TETC.2016.2517930
10.1145/1592648.1592662
10.1109/TNSE.2018.2813333
10.1109/TPDS.2016.2603511
10.1109/MIC.2012.144
10.1109/TEVC.2004.826067
10.1109/PDP.2016.10
10.1016/j.amc.2006.06.107
10.1109/TNET.2011.2159308
10.1109/ICOIN.2016.7427075
10.1109/TKDE.2013.109
10.1145/2934664
10.1109/CONFLUENCE.2017.7943147
10.3934/jimo.2014.10.113
10.1109/ICWS.2014.70
10.1109/TC.2017.2669964
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2943193
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 143709
ExternalDocumentID oai_doaj_org_article_2f05473df3af473b9aa1b6a7195bbb57
10_1109_ACCESS_2019_2943193
8846672
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61972054
  funderid: 10.13039/501100001809
– fundername: Jilin Provincial Industrial Innovation Special Foundation Project
  grantid: 2017C028-4
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-fc5c6ff21341ec6ea9805df3515db5335b4af330f49a40bdfb912f161a257d273
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:32:42 EDT 2025
Sun Jun 29 15:31:20 EDT 2025
Tue Jul 01 02:41:58 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Wed Aug 27 08:28:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-fc5c6ff21341ec6ea9805df3515db5335b4af330f49a40bdfb912f161a257d273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8300-8950
OpenAccessLink https://doaj.org/article/2f05473df3af473b9aa1b6a7195bbb57
PQID 2455626914
PQPubID 4845423
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2019_2943193
crossref_primary_10_1109_ACCESS_2019_2943193
doaj_primary_oai_doaj_org_article_2f05473df3af473b9aa1b6a7195bbb57
ieee_primary_8846672
proquest_journals_2455626914
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
ref31
ref30
ref11
ref10
jin (ref13) 2016
gu (ref15) 2016
ref2
ref17
ref16
ref19
ref18
ref24
ref23
ref26
wu (ref1) 2014; 26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
dhok (ref28) 2010
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref4
  doi: 10.1109/CloudNet.2013.6710551
– ident: ref2
  doi: 10.1109/TCC.2015.2437231
– ident: ref22
  doi: 10.1002/dac.3465
– ident: ref23
  doi: 10.1109/ICC.2017.7996332
– ident: ref27
  doi: 10.1109/LCNW.2015.7365918
– ident: ref3
  doi: 10.1109/CTS.2013.6567202
– ident: ref31
  doi: 10.3390/data3040038
– ident: ref10
  doi: 10.1109/TVT.2010.2059055
– ident: ref6
  doi: 10.1109/TPDS.2015.2402655
– ident: ref24
  doi: 10.1109/INFCOM.2010.5461933
– ident: ref29
  doi: 10.1109/NaNA.2016.24
– ident: ref19
  doi: 10.1109/ICFST.2017.8210526
– ident: ref16
  doi: 10.1109/TETC.2016.2517930
– ident: ref7
  doi: 10.1145/1592648.1592662
– start-page: 44
  year: 2016
  ident: ref15
  article-title: Arana: A cross-domain workflow scheduling system
  publication-title: Proc 3rd Int Conf Wireless Commun Sensor Netw Adv Comput Sci Res
– ident: ref20
  doi: 10.1109/TNSE.2018.2813333
– ident: ref18
  doi: 10.1109/TPDS.2016.2603511
– start-page: 212
  year: 2016
  ident: ref13
  article-title: A study on load balancing techniques for task allocation in big data processing
  publication-title: Proc Int Forum Mech Control Automat
– ident: ref5
  doi: 10.1109/MIC.2012.144
– ident: ref9
  doi: 10.1109/TEVC.2004.826067
– ident: ref11
  doi: 10.1109/PDP.2016.10
– start-page: 1
  year: 2010
  ident: ref28
  article-title: Using pattern classification for task assignment in MapReduce
  publication-title: Proc ISEC
– ident: ref25
  doi: 10.1016/j.amc.2006.06.107
– ident: ref8
  doi: 10.1109/TNET.2011.2159308
– ident: ref12
  doi: 10.1109/ICOIN.2016.7427075
– volume: 26
  start-page: 97
  year: 2014
  ident: ref1
  article-title: Data mining with big data
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2013.109
– ident: ref30
  doi: 10.1145/2934664
– ident: ref17
  doi: 10.1109/CONFLUENCE.2017.7943147
– ident: ref14
  doi: 10.3934/jimo.2014.10.113
– ident: ref21
  doi: 10.1109/ICWS.2014.70
– ident: ref26
  doi: 10.1109/TC.2017.2669964
SSID ssj0000816957
Score 2.1458473
Snippet The large-scale tasks processing for big data using cloud computing has become a hot research topic. Most of previous work on task processing is directly...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 143699
SubjectTerms Algorithms
Artificial neural networks
Big Data
Cloud computing
fat-tree
Large-scale tasks
Load management
Machine learning
Mapping
Markov processes
Multiagent systems
Nodes
Optimization
Provisioning
Reinforcement learning
Resource conservation
Resource management
Response time (computers)
Swarm intelligence
Task analysis
Topology
two-phase optimization
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJziwPEVZQD5wJCUP24mPpVAhJBBCIHGzbMeuEKhdbVMO--t37LgRLyFOiSI7sjMzns-T8TcAx4hZK24qkYg61QktC55oWtgEdUlz5TKfeuGzLW745QO9emSPS3DSnYWx1obkM9v3t-Fffj01cx8qO63QWfISF9xl3Li1Z7W6eIovICFYGYmFslScDoZDnIPP3hL9XKCjFMU75xM4-mNRlU8rcXAvo19wvRhYm1Xy3J83um_-feBs_OnIN2A94kwyaBVjE5bsZAvW3rAPbsP1gNxMX-0LuVezZ3LrYwuzNjpLBpFpnIx8XvyY3NlAsGpCLJFETtYxwUfk7GlMzlWjduBhdHE_vExidYXE0LRqEmeY4c4FRjdruFWiSlntCgQ4tUYQyDRVrihSR4Wiqa6dFlnuECAqtPIaUc8urEymE7sHROeaOlvVHMEgZYXAlo4VurRladHAWQ_yxWeXJlKP-woYLzJsQVIhW1lJLysZZdWDk67Tn5Z54_vmZ16eXVNPmx0eoBxktEKZu9TXWsZZKodXLZTyKllmgmmtWdmDbS-77iVRbD04WGiHjCY-kzhTxI5cZHT_616_YdUPsI3XHMBK83duDxHBNPooqO5_GzvrSA
  priority: 102
  providerName: IEEE
Title A Novel Task Provisioning Approach Fusing Reinforcement Learning for Big Data
URI https://ieeexplore.ieee.org/document/8846672
https://www.proquest.com/docview/2455626914
https://doaj.org/article/2f05473df3af473b9aa1b6a7195bbb57
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx5EnWJ1jhw8WtcfSdocu-kYgkNkg91C0iZDHJu46t_vS5qNiaAXT4WQpn0vL3lfHi_fQ-gaMGvOypyHvIpUSLKUhYqkOgRbUkya2KZe2GyLMRtNycOMznZKfdmcsIYeuFFcLzGRLY9bmVQaeCoupR0lizlVSlF3jxx83s5hyu3Becw4zTzNUBzxXjEYgEQ2l4vfJhzcJk-_uSLH2O9LrPzYl52zGR6hQ48ScdH83THa08sTdLDDHdhGjwUerz71Ak_k-hU_2cjAuomt4sLzhOOhzWqf42ft6FFLFwnEnlF1jqEJ91_m-E7W8hRNh_eTwSj0tRHCkkR5HZqSlswYx8emS6YlzyMKSgJ4UimAcFQRadI0MoRLEqnKKB4nBuCdhDVaAWY5Q63laqnPEVaJIkbnFQMoR2jKoaehqcp0lmlYnjRAyUZNovTE4bZ-xUK4A0TERaNbYXUrvG4DdLN96a3hzfi9e9_qf9vVkl67BjAF4U1B_GUKAWrb2dsOkgO2YlkSoM5mNoVfoGsBkgLyYzwmF__x6Uu0b8VpYjMd1KrfP_QVoJVadZ1hdt3Fwi-dweMb
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8heNj2AGxsWhljftgjKfmwnfixdFRlo9U0FYk3y3bsagK1iKY88Nfv7LjRvoR4SmTZkZ278_1yOf8O4DNi1oqbSiSiTnVCy4InmhY2QV3SXLnMp174bIspH1_Rr9fsegtOurMw1tqQfGb7_jb8y6-XZu1DZacVOkte4oa7g36fZe1prS6i4ktICFZGaqEsFaeD4RBX4fO3RD8X6CpF8Yf7CSz9sazKP3txcDCjPZhsptbmldz0143um8e_WBufO_d92I1Ikwxa1XgNW3bxBl79xj94AJMBmS4f7C2ZqdUN-e6jC6s2PksGkWucjHxm_Jz8sIFi1YRoIomsrHOCTeTs55x8UY16C1ej89lwnMT6ComhadUkzjDDnQucbtZwq0SVstoVCHFqjTCQaapcUaSOCkVTXTststwhRFRo5zXinnewvVgu7HsgOtfU2armCAcpKwT2dKzQpS1LiybOepBvXrs0kXzc18C4leEjJBWylZX0spJRVj046QbdtdwbT3c_8_Lsunri7NCAcpDRDmXuUl9tGVepHF61UMorZZkJprVmZQ8OvOy6h0Sx9eBoox0yGvlK4koRPXKR0cP_j_oEL8azyaW8vJh--wAv_WTb6M0RbDf3a_sR8Uyjj4Ma_wKGju6R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Task+Provisioning+Approach+Fusing+Reinforcement+Learning+for+Big+Data&rft.jtitle=IEEE+access&rft.au=Cheng%2C+Yongyi&rft.au=Xu%2C+Gaochao&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=143699&rft.epage=143709&rft_id=info:doi/10.1109%2FACCESS.2019.2943193&rft.externalDocID=8846672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon