A Novel Task Provisioning Approach Fusing Reinforcement Learning for Big Data
The large-scale tasks processing for big data using cloud computing has become a hot research topic. Most of previous work on task processing is directly customized and achieved through existing methods. It may result in relatively more system response time, high algorithm complexity and resource wa...
Saved in:
Published in | IEEE access Vol. 7; pp. 143699 - 143709 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The large-scale tasks processing for big data using cloud computing has become a hot research topic. Most of previous work on task processing is directly customized and achieved through existing methods. It may result in relatively more system response time, high algorithm complexity and resource waste, etc. Based on this argument, aiming at realizing overall load balancing, bandwidth cost minimization and energy conservation while satisfying resource requirements, a novel large-scale tasks processing approach called TOPE (Two-phase Optimization for Parallel Execution) is developed. The deep reinforcement learning model is designed for virtual link mapping decisions. We treat whole network as a multi-agent system and the whole process of selecting each node's next hop node is formalized via Markov decision process. We train the learning agent by deep neural network to store parameters of deep network model while approximating the value function, rather than tons of state-action values. The virtual node mapping is achieved by designed distributed multi-objective swarm intelligence to realize our two-phase optimization for task allocation in topology structure of Fat-tree. We provide experiments to show the ability of TOPE in analyzing task requests and infrastructure network. The superiority of TOPE for large-scale tasks processing is convincingly demonstrated by comparing with state-of-the-art approaches in cloud environment. |
---|---|
AbstractList | The large-scale tasks processing for big data using cloud computing has become a hot research topic. Most of previous work on task processing is directly customized and achieved through existing methods. It may result in relatively more system response time, high algorithm complexity and resource waste, etc. Based on this argument, aiming at realizing overall load balancing, bandwidth cost minimization and energy conservation while satisfying resource requirements, a novel large-scale tasks processing approach called TOPE (Two-phase Optimization for Parallel Execution) is developed. The deep reinforcement learning model is designed for virtual link mapping decisions. We treat whole network as a multi-agent system and the whole process of selecting each node's next hop node is formalized via Markov decision process. We train the learning agent by deep neural network to store parameters of deep network model while approximating the value function, rather than tons of state-action values. The virtual node mapping is achieved by designed distributed multi-objective swarm intelligence to realize our two-phase optimization for task allocation in topology structure of Fat-tree. We provide experiments to show the ability of TOPE in analyzing task requests and infrastructure network. The superiority of TOPE for large-scale tasks processing is convincingly demonstrated by comparing with state-of-the-art approaches in cloud environment. |
Author | Xu, Gaochao Cheng, Yongyi |
Author_xml | – sequence: 1 givenname: Yongyi orcidid: 0000-0002-8300-8950 surname: Cheng fullname: Cheng, Yongyi organization: College of Computer Science and Technology, Jilin University, Changchun, China – sequence: 2 givenname: Gaochao surname: Xu fullname: Xu, Gaochao email: xugc@jlu.edu.cn organization: College of Computer Science and Technology, Jilin University, Changchun, China |
BookMark | eNqFUU1vGjEUtKJUKk3zC7is1DPU37s-UpoviTZRQs_Ws9cmpmRN7SVS_30Mi1DVS3x59mhmnt-bT-i8i51DaEzwlBCsvs7m86unpynFRE2p4owodoZGlEg1YYLJ83_uH9FlzmtcTlMgUY_Qj1n1M766TbWE_Lt6SPE15BC70K2q2XabItjn6nqX9-9HFzofk3UvruurhYN0oBWo-hZW1Xfo4TP64GGT3eWxXqBf11fL-e1kcX9zN58tJpbjpp94K6z0nhLGibPSgWqwaD0TRLRGMCYMB88Y9lwBx6b1RhHqiSRARd3Sml2gu8G3jbDW2xReIP3VEYI-ADGtNKQ-2I3T1GPBa1bcwZdqFAAxEmqihDFG7L2-DF5l2j87l3u9jrvUle9ryoWQVCrCC4sNLJtizsn5U1eC9T4GPcSg9zHoYwxFpf5T2dBDXxbcJwibd7TjQRucc6duTcOlrCl7A2DolmQ |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_techfore_2021_121193 crossref_primary_10_1109_TPDS_2021_3124670 crossref_primary_10_1007_s12652_020_02716_2 crossref_primary_10_1109_ACCESS_2019_2946848 |
Cites_doi | 10.1109/CloudNet.2013.6710551 10.1109/TCC.2015.2437231 10.1002/dac.3465 10.1109/ICC.2017.7996332 10.1109/LCNW.2015.7365918 10.1109/CTS.2013.6567202 10.3390/data3040038 10.1109/TVT.2010.2059055 10.1109/TPDS.2015.2402655 10.1109/INFCOM.2010.5461933 10.1109/NaNA.2016.24 10.1109/ICFST.2017.8210526 10.1109/TETC.2016.2517930 10.1145/1592648.1592662 10.1109/TNSE.2018.2813333 10.1109/TPDS.2016.2603511 10.1109/MIC.2012.144 10.1109/TEVC.2004.826067 10.1109/PDP.2016.10 10.1016/j.amc.2006.06.107 10.1109/TNET.2011.2159308 10.1109/ICOIN.2016.7427075 10.1109/TKDE.2013.109 10.1145/2934664 10.1109/CONFLUENCE.2017.7943147 10.3934/jimo.2014.10.113 10.1109/ICWS.2014.70 10.1109/TC.2017.2669964 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2943193 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 143709 |
ExternalDocumentID | oai_doaj_org_article_2f05473df3af473b9aa1b6a7195bbb57 10_1109_ACCESS_2019_2943193 8846672 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61972054 funderid: 10.13039/501100001809 – fundername: Jilin Provincial Industrial Innovation Special Foundation Project grantid: 2017C028-4 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-fc5c6ff21341ec6ea9805df3515db5335b4af330f49a40bdfb912f161a257d273 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:32:42 EDT 2025 Sun Jun 29 15:31:20 EDT 2025 Tue Jul 01 02:41:58 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Wed Aug 27 08:28:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-fc5c6ff21341ec6ea9805df3515db5335b4af330f49a40bdfb912f161a257d273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8300-8950 |
OpenAccessLink | https://doaj.org/article/2f05473df3af473b9aa1b6a7195bbb57 |
PQID | 2455626914 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2019_2943193 crossref_primary_10_1109_ACCESS_2019_2943193 doaj_primary_oai_doaj_org_article_2f05473df3af473b9aa1b6a7195bbb57 ieee_primary_8846672 proquest_journals_2455626914 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref14 ref31 ref30 ref11 ref10 jin (ref13) 2016 gu (ref15) 2016 ref2 ref17 ref16 ref19 ref18 ref24 ref23 ref26 wu (ref1) 2014; 26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 dhok (ref28) 2010 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref4 doi: 10.1109/CloudNet.2013.6710551 – ident: ref2 doi: 10.1109/TCC.2015.2437231 – ident: ref22 doi: 10.1002/dac.3465 – ident: ref23 doi: 10.1109/ICC.2017.7996332 – ident: ref27 doi: 10.1109/LCNW.2015.7365918 – ident: ref3 doi: 10.1109/CTS.2013.6567202 – ident: ref31 doi: 10.3390/data3040038 – ident: ref10 doi: 10.1109/TVT.2010.2059055 – ident: ref6 doi: 10.1109/TPDS.2015.2402655 – ident: ref24 doi: 10.1109/INFCOM.2010.5461933 – ident: ref29 doi: 10.1109/NaNA.2016.24 – ident: ref19 doi: 10.1109/ICFST.2017.8210526 – ident: ref16 doi: 10.1109/TETC.2016.2517930 – ident: ref7 doi: 10.1145/1592648.1592662 – start-page: 44 year: 2016 ident: ref15 article-title: Arana: A cross-domain workflow scheduling system publication-title: Proc 3rd Int Conf Wireless Commun Sensor Netw Adv Comput Sci Res – ident: ref20 doi: 10.1109/TNSE.2018.2813333 – ident: ref18 doi: 10.1109/TPDS.2016.2603511 – start-page: 212 year: 2016 ident: ref13 article-title: A study on load balancing techniques for task allocation in big data processing publication-title: Proc Int Forum Mech Control Automat – ident: ref5 doi: 10.1109/MIC.2012.144 – ident: ref9 doi: 10.1109/TEVC.2004.826067 – ident: ref11 doi: 10.1109/PDP.2016.10 – start-page: 1 year: 2010 ident: ref28 article-title: Using pattern classification for task assignment in MapReduce publication-title: Proc ISEC – ident: ref25 doi: 10.1016/j.amc.2006.06.107 – ident: ref8 doi: 10.1109/TNET.2011.2159308 – ident: ref12 doi: 10.1109/ICOIN.2016.7427075 – volume: 26 start-page: 97 year: 2014 ident: ref1 article-title: Data mining with big data publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2013.109 – ident: ref30 doi: 10.1145/2934664 – ident: ref17 doi: 10.1109/CONFLUENCE.2017.7943147 – ident: ref14 doi: 10.3934/jimo.2014.10.113 – ident: ref21 doi: 10.1109/ICWS.2014.70 – ident: ref26 doi: 10.1109/TC.2017.2669964 |
SSID | ssj0000816957 |
Score | 2.1458473 |
Snippet | The large-scale tasks processing for big data using cloud computing has become a hot research topic. Most of previous work on task processing is directly... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 143699 |
SubjectTerms | Algorithms Artificial neural networks Big Data Cloud computing fat-tree Large-scale tasks Load management Machine learning Mapping Markov processes Multiagent systems Nodes Optimization Provisioning Reinforcement learning Resource conservation Resource management Response time (computers) Swarm intelligence Task analysis Topology two-phase optimization |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4BJziwPEVZQD5wJCUP24mPpVAhJBBCIHGzbMeuEKhdbVMO--t37LgRLyFOiSI7sjMzns-T8TcAx4hZK24qkYg61QktC55oWtgEdUlz5TKfeuGzLW745QO9emSPS3DSnYWx1obkM9v3t-Fffj01cx8qO63QWfISF9xl3Li1Z7W6eIovICFYGYmFslScDoZDnIPP3hL9XKCjFMU75xM4-mNRlU8rcXAvo19wvRhYm1Xy3J83um_-feBs_OnIN2A94kwyaBVjE5bsZAvW3rAPbsP1gNxMX-0LuVezZ3LrYwuzNjpLBpFpnIx8XvyY3NlAsGpCLJFETtYxwUfk7GlMzlWjduBhdHE_vExidYXE0LRqEmeY4c4FRjdruFWiSlntCgQ4tUYQyDRVrihSR4Wiqa6dFlnuECAqtPIaUc8urEymE7sHROeaOlvVHMEgZYXAlo4VurRladHAWQ_yxWeXJlKP-woYLzJsQVIhW1lJLysZZdWDk67Tn5Z54_vmZ16eXVNPmx0eoBxktEKZu9TXWsZZKodXLZTyKllmgmmtWdmDbS-77iVRbD04WGiHjCY-kzhTxI5cZHT_616_YdUPsI3XHMBK83duDxHBNPooqO5_GzvrSA priority: 102 providerName: IEEE |
Title | A Novel Task Provisioning Approach Fusing Reinforcement Learning for Big Data |
URI | https://ieeexplore.ieee.org/document/8846672 https://www.proquest.com/docview/2455626914 https://doaj.org/article/2f05473df3af473b9aa1b6a7195bbb57 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykx5EnWJ1jhw8WtcfSdocu-kYgkNkg91C0iZDHJu46t_vS5qNiaAXT4WQpn0vL3lfHi_fQ-gaMGvOypyHvIpUSLKUhYqkOgRbUkya2KZe2GyLMRtNycOMznZKfdmcsIYeuFFcLzGRLY9bmVQaeCoupR0lizlVSlF3jxx83s5hyu3Becw4zTzNUBzxXjEYgEQ2l4vfJhzcJk-_uSLH2O9LrPzYl52zGR6hQ48ScdH83THa08sTdLDDHdhGjwUerz71Ak_k-hU_2cjAuomt4sLzhOOhzWqf42ft6FFLFwnEnlF1jqEJ91_m-E7W8hRNh_eTwSj0tRHCkkR5HZqSlswYx8emS6YlzyMKSgJ4UimAcFQRadI0MoRLEqnKKB4nBuCdhDVaAWY5Q63laqnPEVaJIkbnFQMoR2jKoaehqcp0lmlYnjRAyUZNovTE4bZ-xUK4A0TERaNbYXUrvG4DdLN96a3hzfi9e9_qf9vVkl67BjAF4U1B_GUKAWrb2dsOkgO2YlkSoM5mNoVfoGsBkgLyYzwmF__x6Uu0b8VpYjMd1KrfP_QVoJVadZ1hdt3Fwi-dweMb |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8heNj2AGxsWhljftgjKfmwnfixdFRlo9U0FYk3y3bsagK1iKY88Nfv7LjRvoR4SmTZkZ278_1yOf8O4DNi1oqbSiSiTnVCy4InmhY2QV3SXLnMp174bIspH1_Rr9fsegtOurMw1tqQfGb7_jb8y6-XZu1DZacVOkte4oa7g36fZe1prS6i4ktICFZGaqEsFaeD4RBX4fO3RD8X6CpF8Yf7CSz9sazKP3txcDCjPZhsptbmldz0143um8e_WBufO_d92I1Ikwxa1XgNW3bxBl79xj94AJMBmS4f7C2ZqdUN-e6jC6s2PksGkWucjHxm_Jz8sIFi1YRoIomsrHOCTeTs55x8UY16C1ej89lwnMT6ComhadUkzjDDnQucbtZwq0SVstoVCHFqjTCQaapcUaSOCkVTXTststwhRFRo5zXinnewvVgu7HsgOtfU2armCAcpKwT2dKzQpS1LiybOepBvXrs0kXzc18C4leEjJBWylZX0spJRVj046QbdtdwbT3c_8_Lsunri7NCAcpDRDmXuUl9tGVepHF61UMorZZkJprVmZQ8OvOy6h0Sx9eBoox0yGvlK4koRPXKR0cP_j_oEL8azyaW8vJh--wAv_WTb6M0RbDf3a_sR8Uyjj4Ma_wKGju6R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Task+Provisioning+Approach+Fusing+Reinforcement+Learning+for+Big+Data&rft.jtitle=IEEE+access&rft.au=Cheng%2C+Yongyi&rft.au=Xu%2C+Gaochao&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=143699&rft.epage=143709&rft_id=info:doi/10.1109%2FACCESS.2019.2943193&rft.externalDocID=8846672 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |