Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition
Microbial elements use efficiencies are the important parameters in regulating soil carbon (C) and nitrogen (N) mineralization processes. Microbial C use efficiency (CUE) describes the proportion of C used for growth relative to the total organic C uptake. As such, high CUE values mean relatively le...
Saved in:
Published in | Soil biology & biochemistry Vol. 156; p. 108207 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microbial elements use efficiencies are the important parameters in regulating soil carbon (C) and nitrogen (N) mineralization processes. Microbial C use efficiency (CUE) describes the proportion of C used for growth relative to the total organic C uptake. As such, high CUE values mean relatively less CO2 emission and more C retention in microbial biomass. Similarly, a higher microbial N use efficiency (NUE) indicates efficient biomass N sequestration and less N mineralization. However, very little is known how the microbial CUE and NUE are affected by N enrichment in forest soils. Here, we studied soil microbial CUE and NUE simultaneously using 18O-water tracer approach in a long-term N addition experiment comprising control (atmospheric N deposition, 2.7 g N m−2 yr−1), low N addition (atmospheric N deposition + 2.5 g N m−2 yr−1) and high N addition (atmospheric N deposition + 7.5 g N m−2 yr−1) in a temperate forest. We found microbial CUE responses to N addition were dependent on N addition rates and soil horizons. Specifically, low N addition significantly increased the microbial CUE by 45.12% while high N addition significantly reduced it by 27.84% in organic soil. Further, mineral soil microbial CUE did not change under low N addition but significantly increased by 133.18% under high N addition. We also found microbial NUE decreased with increasing N addition rate in organic soil but showed an opposite pattern in mineral soil. The stoichiometric imbalances associated with phosphorus between microbial biomass and resources and the microbial community changes under N addition were correlated with microbial CUE and NUE. Further, N addition decreased microbial biomass turnover in organic soil but accelerated it in mineral soil. Altogether, our results indicated that N addition could control soil C and N cycling processes by affecting microbial elements use efficiencies (i.e. CUE and NUE), which may consequently impact C and N sequestration in this temperate forest soil.
•Higher N depressed microbial growth in organic soil but promoted it in mineral soil.•N addition declined microbial NUE in organic soil but increased it in mineral soil.•Microbial CUE was non-linearly correlated with microbial NUE.•Shifts in microbial community composition affected microbial CUE and NUE. |
---|---|
AbstractList | Microbial elements use efficiencies are the important parameters in regulating soil carbon (C) and nitrogen (N) mineralization processes. Microbial C use efficiency (CUE) describes the proportion of C used for growth relative to the total organic C uptake. As such, high CUE values mean relatively less CO₂ emission and more C retention in microbial biomass. Similarly, a higher microbial N use efficiency (NUE) indicates efficient biomass N sequestration and less N mineralization. However, very little is known how the microbial CUE and NUE are affected by N enrichment in forest soils. Here, we studied soil microbial CUE and NUE simultaneously using ¹⁸O-water tracer approach in a long-term N addition experiment comprising control (atmospheric N deposition, 2.7 g N m⁻² yr⁻¹), low N addition (atmospheric N deposition + 2.5 g N m⁻² yr⁻¹) and high N addition (atmospheric N deposition + 7.5 g N m⁻² yr⁻¹) in a temperate forest. We found microbial CUE responses to N addition were dependent on N addition rates and soil horizons. Specifically, low N addition significantly increased the microbial CUE by 45.12% while high N addition significantly reduced it by 27.84% in organic soil. Further, mineral soil microbial CUE did not change under low N addition but significantly increased by 133.18% under high N addition. We also found microbial NUE decreased with increasing N addition rate in organic soil but showed an opposite pattern in mineral soil. The stoichiometric imbalances associated with phosphorus between microbial biomass and resources and the microbial community changes under N addition were correlated with microbial CUE and NUE. Further, N addition decreased microbial biomass turnover in organic soil but accelerated it in mineral soil. Altogether, our results indicated that N addition could control soil C and N cycling processes by affecting microbial elements use efficiencies (i.e. CUE and NUE), which may consequently impact C and N sequestration in this temperate forest soil. Microbial elements use efficiencies are the important parameters in regulating soil carbon (C) and nitrogen (N) mineralization processes. Microbial C use efficiency (CUE) describes the proportion of C used for growth relative to the total organic C uptake. As such, high CUE values mean relatively less CO2 emission and more C retention in microbial biomass. Similarly, a higher microbial N use efficiency (NUE) indicates efficient biomass N sequestration and less N mineralization. However, very little is known how the microbial CUE and NUE are affected by N enrichment in forest soils. Here, we studied soil microbial CUE and NUE simultaneously using 18O-water tracer approach in a long-term N addition experiment comprising control (atmospheric N deposition, 2.7 g N m−2 yr−1), low N addition (atmospheric N deposition + 2.5 g N m−2 yr−1) and high N addition (atmospheric N deposition + 7.5 g N m−2 yr−1) in a temperate forest. We found microbial CUE responses to N addition were dependent on N addition rates and soil horizons. Specifically, low N addition significantly increased the microbial CUE by 45.12% while high N addition significantly reduced it by 27.84% in organic soil. Further, mineral soil microbial CUE did not change under low N addition but significantly increased by 133.18% under high N addition. We also found microbial NUE decreased with increasing N addition rate in organic soil but showed an opposite pattern in mineral soil. The stoichiometric imbalances associated with phosphorus between microbial biomass and resources and the microbial community changes under N addition were correlated with microbial CUE and NUE. Further, N addition decreased microbial biomass turnover in organic soil but accelerated it in mineral soil. Altogether, our results indicated that N addition could control soil C and N cycling processes by affecting microbial elements use efficiencies (i.e. CUE and NUE), which may consequently impact C and N sequestration in this temperate forest soil. •Higher N depressed microbial growth in organic soil but promoted it in mineral soil.•N addition declined microbial NUE in organic soil but increased it in mineral soil.•Microbial CUE was non-linearly correlated with microbial NUE.•Shifts in microbial community composition affected microbial CUE and NUE. |
ArticleNumber | 108207 |
Author | He, Hongbo Yang, Jingyi Qu, Lingrui Wang, Chao Wang, Xugao Li, Jing Jiang, Ping Sang, Changpeng Xia, Zongwei Sun, Hao |
Author_xml | – sequence: 1 givenname: Jing surname: Li fullname: Li, Jing organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 2 givenname: Changpeng surname: Sang fullname: Sang, Changpeng organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 3 givenname: Jingyi surname: Yang fullname: Yang, Jingyi organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 4 givenname: Lingrui surname: Qu fullname: Qu, Lingrui organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 5 givenname: Zongwei surname: Xia fullname: Xia, Zongwei organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 6 givenname: Hao surname: Sun fullname: Sun, Hao organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 7 givenname: Ping surname: Jiang fullname: Jiang, Ping organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 8 givenname: Xugao surname: Wang fullname: Wang, Xugao organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 9 givenname: Hongbo surname: He fullname: He, Hongbo organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China – sequence: 10 givenname: Chao surname: Wang fullname: Wang, Chao email: cwang@iae.ac.cn organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China |
BookMark | eNqFkEFrFTEQgINU8LX6E4QcvexzknQ3WTyIFKuFggf1HJLsbJ3HblKTrNB_b56vB-mlhzBkZr5h5jtnZzFFZOytgL0AMbw_7EuixVPaS5Ci5YwE_YLthNFjpy6lOWM7AGU60EK_YuelHABA9kLt2Pa9Jgq_KK1YMwVOq3eLiwG5ixNfKeTkyS08pHXdItUHnvFuW1zF_4q44IqxFr4V5DjPFAhjey0RJ8y8cTndYeRumqhSiq_Zy9ktBd88xgv28_rzj6uv3e23LzdXn267cAmmdrNTw2DAu9mIGRCFlhqk9sqISfdDGDwYNWrl_RjMKGT7-nEalQc9aKNQXbB3p7n3Of3esFS7Ugm4tAsxbcXKvhejEbpXrfXDqbUdVUrG2Qaq7rhszY4WK8AeZduDfZRtj7LtSXaj-yf0fabV5YdnuY8nDpuFP4TZln_ucKKModop0TMT_gKpjaEA |
CitedBy_id | crossref_primary_10_3390_land12030615 crossref_primary_10_1080_10643389_2023_2266312 crossref_primary_10_1016_j_ejsobi_2023_103472 crossref_primary_10_1029_2024JG008027 crossref_primary_10_3389_fpls_2024_1445230 crossref_primary_10_1016_j_ecoenv_2023_115707 crossref_primary_10_1016_j_soilbio_2024_109502 crossref_primary_10_1007_s11104_023_06405_9 crossref_primary_10_1016_j_catena_2024_108227 crossref_primary_10_3390_plants11212893 crossref_primary_10_3390_f14040699 crossref_primary_10_1016_j_jenvman_2024_122198 crossref_primary_10_5194_soil_9_301_2023 crossref_primary_10_1016_j_scitotenv_2021_152014 crossref_primary_10_3390_land12030724 crossref_primary_10_1016_j_geoderma_2024_116883 crossref_primary_10_1016_j_soisec_2022_100041 crossref_primary_10_1016_j_geoderma_2024_116885 crossref_primary_10_1002_ldr_5505 crossref_primary_10_1016_j_jenvman_2021_114155 crossref_primary_10_1016_j_soilbio_2022_108767 crossref_primary_10_1002_ece3_70875 crossref_primary_10_1016_j_ecoenv_2022_113932 crossref_primary_10_3390_f14010021 crossref_primary_10_1016_j_agee_2023_108702 crossref_primary_10_1016_j_jenvman_2024_123736 crossref_primary_10_1007_s11356_021_16189_z crossref_primary_10_1016_j_scitotenv_2024_174933 crossref_primary_10_1016_j_jece_2025_115860 crossref_primary_10_1016_j_scitotenv_2024_173286 crossref_primary_10_1016_j_apsoil_2024_105744 crossref_primary_10_1111_gcb_17492 crossref_primary_10_1007_s11368_024_03853_3 crossref_primary_10_1093_jpe_rtae100 crossref_primary_10_3390_soilsystems8010028 crossref_primary_10_3390_agriculture14122162 crossref_primary_10_1016_j_agee_2023_108439 crossref_primary_10_1111_gcb_16563 crossref_primary_10_1016_j_jenvman_2024_123067 crossref_primary_10_1080_13102818_2022_2155568 crossref_primary_10_1016_j_geoderma_2024_117159 crossref_primary_10_1016_j_eja_2023_127058 crossref_primary_10_1016_j_jenvman_2022_116335 crossref_primary_10_1016_j_agee_2025_109582 crossref_primary_10_3390_agriculture15030238 crossref_primary_10_3390_land11112093 crossref_primary_10_1111_1365_2745_14448 crossref_primary_10_1007_s42729_024_01749_2 crossref_primary_10_1016_j_envpol_2024_123353 crossref_primary_10_1007_s11368_023_03694_6 crossref_primary_10_1016_j_scitotenv_2023_163236 crossref_primary_10_3390_ijerph20064939 crossref_primary_10_1002_ldr_4513 crossref_primary_10_1007_s42832_022_0137_3 crossref_primary_10_1111_gcb_17247 crossref_primary_10_1016_j_geoderma_2023_116729 crossref_primary_10_1016_j_catena_2024_108478 crossref_primary_10_1111_gcbb_13041 crossref_primary_10_1007_s00374_023_01712_w crossref_primary_10_1016_j_scitotenv_2021_150388 crossref_primary_10_1016_j_apsoil_2023_105169 crossref_primary_10_1007_s11104_022_05710_z crossref_primary_10_1016_j_geoderma_2023_116676 crossref_primary_10_1093_jpe_rtac015 crossref_primary_10_1016_j_geoderma_2022_116159 crossref_primary_10_1016_j_indcrop_2023_117858 crossref_primary_10_1016_j_soilbio_2022_108731 crossref_primary_10_1016_j_soilbio_2024_109383 crossref_primary_10_1007_s11104_024_06772_x crossref_primary_10_1016_j_ejsobi_2022_103428 crossref_primary_10_1111_gcb_70036 crossref_primary_10_1007_s11104_024_06509_w crossref_primary_10_1016_j_cej_2023_147511 crossref_primary_10_3390_f15061040 crossref_primary_10_1016_j_scitotenv_2024_171655 crossref_primary_10_1016_j_envres_2022_114981 crossref_primary_10_3390_f13020276 crossref_primary_10_3389_fmicb_2024_1414724 crossref_primary_10_1016_j_geoderma_2023_116381 crossref_primary_10_1016_j_soilbio_2025_109717 crossref_primary_10_1016_j_catena_2023_107341 crossref_primary_10_1002_ldr_5029 crossref_primary_10_1007_s11270_024_07106_4 crossref_primary_10_3390_pr10112425 crossref_primary_10_3389_fmicb_2024_1496268 crossref_primary_10_3390_agronomy14050899 crossref_primary_10_1007_s11104_021_05237_9 crossref_primary_10_1016_j_apsoil_2023_105144 crossref_primary_10_1016_j_fecs_2024_100192 crossref_primary_10_1021_acs_jafc_3c09655 crossref_primary_10_1111_ele_14065 crossref_primary_10_1016_j_scitotenv_2024_171581 crossref_primary_10_1029_2024EF005356 crossref_primary_10_3390_f15030400 crossref_primary_10_3390_agronomy13092420 crossref_primary_10_1093_ismeco_ycae173 crossref_primary_10_3389_fmicb_2024_1304985 crossref_primary_10_1016_j_scitotenv_2023_162472 crossref_primary_10_1016_j_foreco_2024_121970 crossref_primary_10_3390_agronomy14030638 crossref_primary_10_1021_acsearthspacechem_1c00243 crossref_primary_10_1111_1365_2435_14569 crossref_primary_10_1016_j_apsoil_2024_105555 crossref_primary_10_1007_s11104_024_07059_x crossref_primary_10_1016_j_agee_2024_109007 crossref_primary_10_1186_s13717_023_00457_6 crossref_primary_10_1007_s11104_022_05372_x crossref_primary_10_3390_agronomy13102593 crossref_primary_10_3390_plants12101931 crossref_primary_10_1016_j_catena_2023_107321 crossref_primary_10_1007_s42832_023_0176_4 crossref_primary_10_1016_j_apsoil_2024_105680 |
Cites_doi | 10.1111/j.1469-8137.2010.03563.x 10.1016/j.soilbio.2018.10.006 10.1038/nature08632 10.3389/fmicb.2015.00615 10.1126/science.aav0550 10.1111/gcb.14557 10.1111/j.1461-0248.2008.01230.x 10.1016/j.soilbio.2018.02.003 10.1016/0038-0717(85)90144-0 10.1016/0038-0717(90)90046-3 10.1016/j.soilbio.2019.03.008 10.3390/microorganisms8111828 10.3389/fmicb.2014.00022 10.1890/08-1140.1 10.1007/BF00002772 10.1038/s41467-020-17502-z 10.1016/j.soilbio.2010.08.032 10.1038/s41467-020-16881-7 10.1016/j.soilbio.2016.03.008 10.1002/2015GB005084 10.1038/ngeo846 10.1016/j.soilbio.2016.04.023 10.1038/ngeo721 10.1038/s41396-018-0096-y 10.1111/geb.12576 10.1890/05-0150 10.1016/j.soilbio.2019.01.010 10.1016/j.soilbio.2019.05.019 10.1016/0038-0717(87)90052-6 10.1111/j.1461-0248.2010.01482.x 10.1016/j.soilbio.2018.12.019 10.1016/j.soilbio.2020.107802 10.1007/s10533-007-9132-0 10.1128/mBio.02293-19 10.1111/j.1365-2486.2012.02639.x 10.1111/nph.15161 10.1111/j.1469-8137.2012.04225.x 10.1007/s10533-015-0157-5 10.1016/j.soilbio.2005.07.010 10.1111/gcb.14962 10.1016/j.soilbio.2019.107687 10.1038/nmicrobiol.2017.105 10.1016/j.geoderma.2017.11.026 10.1038/ncomms4694 10.1016/0038-0717(82)90001-3 10.1038/nclimate1796 10.1016/j.soilbio.2016.01.016 10.1890/03-5120 10.1002/ldr.3439 10.1038/s41561-019-0530-4 10.1088/1748-9326/10/2/024019 10.1016/j.ecoser.2013.09.001 10.1016/j.soilbio.2005.03.016 10.1111/gcb.14777 10.1111/j.1744-7429.2011.00831.x 10.1016/j.soilbio.2010.04.001 10.1126/science.1136674 10.1016/j.soilbio.2018.02.022 10.1007/s10533-011-9658-z 10.1016/j.soilbio.2019.107580 10.1016/j.soilbio.2007.08.019 10.1038/ncomms13630 10.1016/j.soilbio.2020.107815 10.1111/gcb.12113 10.1016/j.foreco.2019.117793 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.soilbio.2021.108207 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
ExternalDocumentID | 10_1016_j_soilbio_2021_108207 S0038071721000791 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-fa36680baf81f0ee1727027b381d756c6b083973bb9c8912b08b9d93b076783e3 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Fri Jul 11 15:35:07 EDT 2025 Thu Apr 24 23:03:04 EDT 2025 Tue Jul 01 03:20:04 EDT 2025 Fri Feb 23 02:43:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Global N deposition Nitrogen use efficiency Stoichiometry Microbial carbon use efficiency Microbial community |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-fa36680baf81f0ee1727027b381d756c6b083973bb9c8912b08b9d93b076783e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2551981753 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551981753 crossref_citationtrail_10_1016_j_soilbio_2021_108207 crossref_primary_10_1016_j_soilbio_2021_108207 elsevier_sciencedirect_doi_10_1016_j_soilbio_2021_108207 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2021 2021-05-00 20210501 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
PublicationDecade | 2020 |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Miltner, Bombach, Schmidt-Brucken, Kastner (bib27) 2012; 111 Vance, Brookes, Jenkinson (bib50) 1987; 19 Frey, Lee, Melillo, Six (bib15) 2013; 3 Knorr, Frey, Curtis (bib19) 2005; 86 Allison, Wallenstein, Bradford (bib1) 2010; 3 Brookes, Powlson, Jenkinson (bib5) 1982; 14 Cenini, Fornara, McMullan, Ternan, Lajtha, Crawley (bib6) 2015; 126 Galloway, Townsend, Erisman, Bekunda, Cai, Freney (bib16) 2008; 320 Qu, Wang, Bai (bib33) 2020; 145 Tian, Niu (bib48) 2015; 10 Pold, Domeignoz-Horta, Morrison, Frey, Sistla, DeAngelis (bib31) 2020; 11 Stapleton, Crout, Säwström, Marshall, Poulton, Tye (bib44) 2005; 37 Jones, Provins, Holland, Mills, Hayes, Emmett (bib17) 2014; 7 Brookes, Landman, Pruden, Jenkinson (bib4) 1985; 17 Mooshammer, Wanek, Zechmeister-Boltenstern, Richter (bib29) 2014; 5 Waldrop, Zak, Sinsabaugh, Gallo, Lauber (bib53) 2004; 14 Xiong, Huang, Yang, Cai, Lin, Liu (bib61) 2020; 458 Du, Terrer, Pellegrini, Ahlström, van Lissa, Zhao (bib14) 2020; 13 Spohn, Pötsch, Eichorst, Woebken, Wanek, Richter (bib43) 2016; 97 Yang, Cheng, Gao, An (bib62) 2019; 31 Wang, Liu, Bai (bib55) 2018; 120 Riggs, Hobbie (bib37) 2016; 99 Thiet, Frey, Six (bib47) 2006; 38 Delgado-Baquerizo, Fry, Eldridge, de Vries, Manning, Hamonts (bib10) 2018; 219 Soares, Rousk (bib40) 2019; 131 Sterner, elser (bib45) 2002 Xia, Yang, Sang, Wang, Sun, Jiang (bib60) 2020; 8 Ramirez, Craine, Fierer (bib36) 2012; 18 Mooshammer, Wanek, Hämmerle, Fuchslueger, Hofhansl, Knoltsch (bib28) 2014; 5 Lu, Mo, Gilliam, Fang, Zhu, Fang (bib25) 2012; 44 Manzoni, Taylor, Richter, Porporato, Agren (bib26) 2012; 196 Poeplau, Helfrich, Dechow, Szoboszlay, Tebbe, Don (bib30) 2019; 130 Zheng, Hu, Zhang, Noll, Böckle, Richter (bib66) 2019; 128 Zhang, Chen, Ruan (bib65) 2018; 12 Wu, Joergensen, Pommerening, Chaussod, Brookes (bib59) 1990; 22 Liu, Greaver (bib23) 2010; 13 Vitousek, Aber, Howarth, Likens, Matson, Schindler (bib51) 1997; 7 Wang, Wang, Pei, Xia, Peng, Sun (bib56) 2020; 141 Crowther, Hoogen, Wan, Mayes, Keiser, Mo (bib9) 2019; 365 Zhang, Zheng, Noll, Hu, Wanek (bib64) 2019; 135 Liang, Schimel, Jastrow (bib21) 2017; 2 Ramirez, Craine, Fierer (bib35) 2010; 42 Domeignoz-Horta, Pold, Liu, Frey, Melillo, DeAngelis (bib13) 2020; 11 Cotrufo, Wallenstein, Boot, Denef, Paul (bib8) 2013; 19 Cleveland, Liptzin (bib7) 2007; 85 Spohn, Klaus, Wanek, Richter (bib42) 2016; 96 Treseder (bib49) 2008; 11 Yuan, Niu, Gherardi, Liu, Wang, Elser (bib63) 2019; 138 Bonner, Shoo, Brackin, Schmidt (bib3) 2018; 315 Demoling, Ola Nilsson, Bååth (bib11) 2008; 40 Widdig, Schleuss, Biederman, Borer, Crawley, Kirkman (bib57) 2020; 146 Zhou, Wang, Luo (bib67) 2020; 11 Kallenbach, Frey, Grandy (bib18) 2016; 7 Lu, Yang, Luo, Fang, Zhou, Chen (bib24) 2011; 189 Lipson (bib22) 2015; 6 Wanek, Mooshammer, Blöchl, Hanreich, Richter (bib54) 2010; 42 Prommer, Walker, Wanek, Braun, Zezula, Hu (bib32) 2019; 26 Takriti, Wild, Schnecker, Mooshammer, Knoltsch, Lashchinskiy (bib46) 2018; 121 Bobbink, Hicks, Galloway, Spranger, Alkemade, Ashmore (bib2) 2010; 20 Vitousek, Howarth (bib52) 1991; 13 Deng, Hui, Dennis, Reddy (bib12) 2017; 26 Quinn Thomas, Canham, Weathers, Goodale (bib34) 2009; 3 Wild, Schnecker, Knoltsch, Takriti, Mooshammer, Gentsch (bib58) 2015; 29 Soong, Fuchslueger, Maranon-Jimenez, Torn, Janssens, Penuelas (bib41) 2019; 26 Silva-Sánchez, Soares, Rousk (bib38) 2019; 134 Li, Tian, Wang, Wang, Wang, Chen (bib20) 2019; 25 Sinsabaugh, Hill, Follstad Shah (bib39) 2009; 462 Bonner (10.1016/j.soilbio.2021.108207_bib3) 2018; 315 Brookes (10.1016/j.soilbio.2021.108207_bib4) 1985; 17 Spohn (10.1016/j.soilbio.2021.108207_bib42) 2016; 96 Galloway (10.1016/j.soilbio.2021.108207_bib16) 2008; 320 Liang (10.1016/j.soilbio.2021.108207_bib21) 2017; 2 Demoling (10.1016/j.soilbio.2021.108207_bib11) 2008; 40 Vance (10.1016/j.soilbio.2021.108207_bib50) 1987; 19 Zheng (10.1016/j.soilbio.2021.108207_bib66) 2019; 128 Pold (10.1016/j.soilbio.2021.108207_bib31) 2020; 11 Liu (10.1016/j.soilbio.2021.108207_bib23) 2010; 13 Waldrop (10.1016/j.soilbio.2021.108207_bib53) 2004; 14 Crowther (10.1016/j.soilbio.2021.108207_bib9) 2019; 365 Li (10.1016/j.soilbio.2021.108207_bib20) 2019; 25 Deng (10.1016/j.soilbio.2021.108207_bib12) 2017; 26 Quinn Thomas (10.1016/j.soilbio.2021.108207_bib34) 2009; 3 Brookes (10.1016/j.soilbio.2021.108207_bib5) 1982; 14 Silva-Sánchez (10.1016/j.soilbio.2021.108207_bib38) 2019; 134 Yuan (10.1016/j.soilbio.2021.108207_bib63) 2019; 138 Frey (10.1016/j.soilbio.2021.108207_bib15) 2013; 3 Bobbink (10.1016/j.soilbio.2021.108207_bib2) 2010; 20 Spohn (10.1016/j.soilbio.2021.108207_bib43) 2016; 97 Kallenbach (10.1016/j.soilbio.2021.108207_bib18) 2016; 7 Treseder (10.1016/j.soilbio.2021.108207_bib49) 2008; 11 Wang (10.1016/j.soilbio.2021.108207_bib56) 2020; 141 Thiet (10.1016/j.soilbio.2021.108207_bib47) 2006; 38 Zhou (10.1016/j.soilbio.2021.108207_bib67) 2020; 11 Lu (10.1016/j.soilbio.2021.108207_bib25) 2012; 44 Yang (10.1016/j.soilbio.2021.108207_bib62) 2019; 31 Zhang (10.1016/j.soilbio.2021.108207_bib64) 2019; 135 Lipson (10.1016/j.soilbio.2021.108207_bib22) 2015; 6 Allison (10.1016/j.soilbio.2021.108207_bib1) 2010; 3 Xiong (10.1016/j.soilbio.2021.108207_bib61) 2020; 458 Wu (10.1016/j.soilbio.2021.108207_bib59) 1990; 22 Lu (10.1016/j.soilbio.2021.108207_bib24) 2011; 189 Mooshammer (10.1016/j.soilbio.2021.108207_bib29) 2014; 5 Knorr (10.1016/j.soilbio.2021.108207_bib19) 2005; 86 Prommer (10.1016/j.soilbio.2021.108207_bib32) 2019; 26 Manzoni (10.1016/j.soilbio.2021.108207_bib26) 2012; 196 Wang (10.1016/j.soilbio.2021.108207_bib55) 2018; 120 Poeplau (10.1016/j.soilbio.2021.108207_bib30) 2019; 130 Widdig (10.1016/j.soilbio.2021.108207_bib57) 2020; 146 Takriti (10.1016/j.soilbio.2021.108207_bib46) 2018; 121 Xia (10.1016/j.soilbio.2021.108207_bib60) 2020; 8 Qu (10.1016/j.soilbio.2021.108207_bib33) 2020; 145 Sterner (10.1016/j.soilbio.2021.108207_bib45) 2002 Ramirez (10.1016/j.soilbio.2021.108207_bib35) 2010; 42 Soong (10.1016/j.soilbio.2021.108207_bib41) 2019; 26 Tian (10.1016/j.soilbio.2021.108207_bib48) 2015; 10 Zhang (10.1016/j.soilbio.2021.108207_bib65) 2018; 12 Vitousek (10.1016/j.soilbio.2021.108207_bib52) 1991; 13 Delgado-Baquerizo (10.1016/j.soilbio.2021.108207_bib10) 2018; 219 Vitousek (10.1016/j.soilbio.2021.108207_bib51) 1997; 7 Cenini (10.1016/j.soilbio.2021.108207_bib6) 2015; 126 Jones (10.1016/j.soilbio.2021.108207_bib17) 2014; 7 Stapleton (10.1016/j.soilbio.2021.108207_bib44) 2005; 37 Ramirez (10.1016/j.soilbio.2021.108207_bib36) 2012; 18 Miltner (10.1016/j.soilbio.2021.108207_bib27) 2012; 111 Cleveland (10.1016/j.soilbio.2021.108207_bib7) 2007; 85 Riggs (10.1016/j.soilbio.2021.108207_bib37) 2016; 99 Domeignoz-Horta (10.1016/j.soilbio.2021.108207_bib13) 2020; 11 Cotrufo (10.1016/j.soilbio.2021.108207_bib8) 2013; 19 Du (10.1016/j.soilbio.2021.108207_bib14) 2020; 13 Wild (10.1016/j.soilbio.2021.108207_bib58) 2015; 29 Soares (10.1016/j.soilbio.2021.108207_bib40) 2019; 131 Wanek (10.1016/j.soilbio.2021.108207_bib54) 2010; 42 Mooshammer (10.1016/j.soilbio.2021.108207_bib28) 2014; 5 Sinsabaugh (10.1016/j.soilbio.2021.108207_bib39) 2009; 462 |
References_xml | – volume: 315 start-page: 96 year: 2018 end-page: 103 ident: bib3 article-title: Relationship between microbial composition and substrate use efficiency in a tropical soil publication-title: Geoderma – volume: 126 start-page: 301 year: 2015 end-page: 313 ident: bib6 article-title: Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link publication-title: Biogeochemistry – volume: 5 start-page: 22 year: 2014 ident: bib29 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources publication-title: Front. Microbiol. – volume: 37 start-page: 2088 year: 2005 end-page: 2098 ident: bib44 article-title: Microbial carbon dynamics in nitrogen amended Arctic tundra soil: measurement and model testing publication-title: Soil Biol. Biochem. – volume: 3 start-page: 395 year: 2013 end-page: 398 ident: bib15 article-title: The temperature response of soil microbial efficiency and its feedback to climate publication-title: Nat. Clim. Chang. – volume: 99 start-page: 54 year: 2016 end-page: 65 ident: bib37 article-title: Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils publication-title: Soil Biol. Biochem. – volume: 96 start-page: 74 year: 2016 end-page: 81 ident: bib42 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth – implications for carbon cycling publication-title: Soil Biol. Biochem. – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: bib50 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. – volume: 13 start-page: 87 year: 1991 end-page: 115 ident: bib52 article-title: Nitrogen limitation on land and in the sea: how can it occur? publication-title: Biogeochemistry – volume: 458 year: 2020 ident: bib61 article-title: The effects of warming and nitrogen addition on fine root exudation rates in a young Chinese-fir stand publication-title: For. Ecol. Manag. – volume: 11 start-page: 3684 year: 2020 ident: bib13 article-title: Microbial diversity drives carbon use efficiency in a model soil publication-title: Nature Communications – volume: 11 start-page: 1111 year: 2008 end-page: 1120 ident: bib49 article-title: Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies publication-title: Ecol. Lett. – volume: 19 start-page: 988 year: 2013 end-page: 995 ident: bib8 article-title: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Glob. Chang. Biol. – volume: 44 start-page: 302 year: 2012 end-page: 311 ident: bib25 article-title: Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China publication-title: Biotropica – volume: 196 start-page: 79 year: 2012 end-page: 91 ident: bib26 article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils publication-title: New Phytologist – volume: 128 start-page: 45 year: 2019 end-page: 55 ident: bib66 article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology publication-title: Soil Biol. Biochem. – volume: 3 start-page: 336 year: 2010 end-page: 340 ident: bib1 article-title: Soil-carbon response to warming dependent on microbial physiology publication-title: Nat. Geosci. – volume: 26 start-page: 713 year: 2017 end-page: 728 ident: bib12 article-title: Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta‐analysis publication-title: Glob. Ecol. Biogeogr. – volume: 11 year: 2020 ident: bib31 article-title: Carbon use efficiency and its temperature sensitivity covary in soil bacteria publication-title: mBio – volume: 29 start-page: 567 year: 2015 end-page: 582 ident: bib58 article-title: Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia publication-title: Glob. Biogeochem. Cycles – volume: 31 start-page: 190 year: 2019 end-page: 204 ident: bib62 article-title: Response and driving factors of soil microbial diversity related to global nitrogen addition publication-title: Land Degrad. Develop. – volume: 11 start-page: 3072 year: 2020 ident: bib67 article-title: Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality publication-title: Nat. Commun. – volume: 40 start-page: 370 year: 2008 end-page: 379 ident: bib11 article-title: Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils publication-title: Soil Biol. Biochem. – volume: 320 start-page: 889 year: 2008 end-page: 892 ident: bib16 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science – volume: 138 year: 2019 ident: bib63 article-title: Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: evidence from a long-term grassland experiment publication-title: Soil Biol. Biochem. – volume: 6 start-page: 615 year: 2015 ident: bib22 article-title: The complex relationship between microbial growth rate and yield and its implications for ecosystem processes publication-title: Front. Microbiol. – volume: 7 start-page: 737 year: 1997 end-page: 750 ident: bib51 article-title: Human alteration of the global nitrogen cycle: sources and consequences publication-title: Ecol. Appl. – volume: 135 start-page: 304 year: 2019 end-page: 315 ident: bib64 article-title: Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization publication-title: Soil Biol. Biochem. – volume: 131 start-page: 195 year: 2019 end-page: 205 ident: bib40 article-title: Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry publication-title: Soil Biol. Biochem. – volume: 5 start-page: 3694 year: 2014 ident: bib28 article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling publication-title: Nat. Commun. – volume: 20 start-page: 30 year: 2010 end-page: 59 ident: bib2 article-title: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis publication-title: Ecol. Appl. – volume: 121 start-page: 212 year: 2018 end-page: 220 ident: bib46 article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect publication-title: Soil Biol. Biochem. – volume: 120 start-page: 126 year: 2018 end-page: 133 ident: bib55 article-title: Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition publication-title: Soil Biol. Biochem. – volume: 25 start-page: 1078 year: 2019 end-page: 1088 ident: bib20 article-title: Microbes drive global soil nitrogen mineralization and availability publication-title: Glob. Chang. Biol. – volume: 85 start-page: 235 year: 2007 end-page: 252 ident: bib7 article-title: C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? publication-title: Biogeochemistry – volume: 97 start-page: 168 year: 2016 end-page: 175 ident: bib43 article-title: Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland publication-title: Soil Biol. Biochem. – volume: 13 start-page: 819 year: 2010 end-page: 828 ident: bib23 article-title: A global perspective on belowground carbon dynamics under nitrogen enrichment publication-title: Ecol. Lett. – volume: 38 start-page: 837 year: 2006 end-page: 844 ident: bib47 article-title: Do growth yield efficiencies differ between soil microbial communities differing in fungal:bacterial ratios? Reality check and methodological issues publication-title: Soil Biol. Biochem. – volume: 26 start-page: 1953 year: 2019 end-page: 1961 ident: bib41 article-title: Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling publication-title: Glob. Chang. Biol. – volume: 42 start-page: 2336 year: 2010 end-page: 2338 ident: bib35 article-title: Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied publication-title: Soil Biol. Biochem. – volume: 18 start-page: 1918 year: 2012 end-page: 1927 ident: bib36 article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes publication-title: Glob. Chang. Biol. – volume: 145 year: 2020 ident: bib33 article-title: Evaluation of the publication-title: Soil Biol. Biochem. – volume: 14 start-page: 319 year: 1982 end-page: 329 ident: bib5 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biol. Biochem. – volume: 7 start-page: 13630 year: 2016 ident: bib18 article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls publication-title: Nat. Commun. – volume: 134 start-page: 25 year: 2019 end-page: 35 ident: bib38 article-title: Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality publication-title: Soil Biol. Biochem. – volume: 141 year: 2020 ident: bib56 article-title: Stabilization of microbial residues in soil organic matter after two years of decomposition publication-title: Soil Biol. Biochem. – volume: 3 start-page: 13 year: 2009 end-page: 17 ident: bib34 article-title: Increased tree carbon storage in response to nitrogen deposition in the US publication-title: Nat. Geosci. – volume: 42 start-page: 1293 year: 2010 end-page: 1302 ident: bib54 article-title: Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel publication-title: Soil Biol. Biochem. – volume: 2 start-page: 17105 year: 2017 ident: bib21 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. – volume: 8 start-page: 1828 year: 2020 ident: bib60 article-title: Phosphorus reduces negative effects of nitrogen addition on soil microbial communities and functions publication-title: Microorganisms – volume: 111 start-page: 41 year: 2012 end-page: 55 ident: bib27 article-title: SOM genesis: microbial biomass as a significant source publication-title: Biogeochemistry – volume: 189 start-page: 1040 year: 2011 end-page: 1050 ident: bib24 article-title: Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis publication-title: New Phytologist – volume: 12 start-page: 1817 year: 2018 end-page: 1825 ident: bib65 article-title: Global negative effects of nitrogen deposition on soil microbes publication-title: ISME J. – volume: 146 year: 2020 ident: bib57 article-title: Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions publication-title: Soil Biol. Biochem. – volume: 365 year: 2019 ident: bib9 article-title: The global soil community and its influence on biogeochemistry publication-title: Science – volume: 7 start-page: 76 year: 2014 end-page: 88 ident: bib17 article-title: A review and application of the evidence for nitrogen impacts on ecosystem services publication-title: Ecosyst. Serv. – volume: 130 start-page: 167 year: 2019 end-page: 176 ident: bib30 article-title: Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands publication-title: Soil Biol. Biochem. – volume: 13 start-page: 221 year: 2020 end-page: 226 ident: bib14 article-title: Global patterns of terrestrial nitrogen and phosphorus limitation publication-title: Nat. Geosci. – volume: 219 start-page: 574 year: 2018 end-page: 587 ident: bib10 article-title: Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe publication-title: New Phytologist – volume: 17 start-page: 837 year: 1985 end-page: 842 ident: bib4 article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biol. Biochem. – volume: 26 start-page: 669 year: 2019 end-page: 681 ident: bib32 article-title: Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity publication-title: Glob. Chang. Biol. – volume: 462 start-page: 795 year: 2009 end-page: 798 ident: bib39 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature – volume: 14 start-page: 1172 year: 2004 end-page: 1177 ident: bib53 article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity publication-title: Ecol. Appl. – volume: 22 start-page: 1167 year: 1990 end-page: 1169 ident: bib59 article-title: Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure publication-title: Soil Biol. Biochem. – year: 2002 ident: bib45 article-title: Ecological Stoichiometry: Biology of Elements from Molecules to the Biosphere – volume: 10 year: 2015 ident: bib48 article-title: A global analysis of soil acidification caused by nitrogen addition publication-title: Environ. Res. Lett. – volume: 86 start-page: 3252 year: 2005 end-page: 3257 ident: bib19 article-title: Nitrogen additions and litter decomposition: a meta-analysis publication-title: Ecology – volume: 189 start-page: 1040 year: 2011 ident: 10.1016/j.soilbio.2021.108207_bib24 article-title: Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis publication-title: New Phytologist doi: 10.1111/j.1469-8137.2010.03563.x – volume: 128 start-page: 45 year: 2019 ident: 10.1016/j.soilbio.2021.108207_bib66 article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.10.006 – volume: 462 start-page: 795 year: 2009 ident: 10.1016/j.soilbio.2021.108207_bib39 article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment publication-title: Nature doi: 10.1038/nature08632 – volume: 6 start-page: 615 year: 2015 ident: 10.1016/j.soilbio.2021.108207_bib22 article-title: The complex relationship between microbial growth rate and yield and its implications for ecosystem processes publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00615 – volume: 365 year: 2019 ident: 10.1016/j.soilbio.2021.108207_bib9 article-title: The global soil community and its influence on biogeochemistry publication-title: Science doi: 10.1126/science.aav0550 – volume: 25 start-page: 1078 year: 2019 ident: 10.1016/j.soilbio.2021.108207_bib20 article-title: Microbes drive global soil nitrogen mineralization and availability publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14557 – volume: 11 start-page: 1111 year: 2008 ident: 10.1016/j.soilbio.2021.108207_bib49 article-title: Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2008.01230.x – volume: 120 start-page: 126 year: 2018 ident: 10.1016/j.soilbio.2021.108207_bib55 article-title: Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.02.003 – volume: 17 start-page: 837 year: 1985 ident: 10.1016/j.soilbio.2021.108207_bib4 article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(85)90144-0 – volume: 22 start-page: 1167 year: 1990 ident: 10.1016/j.soilbio.2021.108207_bib59 article-title: Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(90)90046-3 – volume: 134 start-page: 25 year: 2019 ident: 10.1016/j.soilbio.2021.108207_bib38 article-title: Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.03.008 – volume: 8 start-page: 1828 year: 2020 ident: 10.1016/j.soilbio.2021.108207_bib60 article-title: Phosphorus reduces negative effects of nitrogen addition on soil microbial communities and functions publication-title: Microorganisms doi: 10.3390/microorganisms8111828 – volume: 5 start-page: 22 year: 2014 ident: 10.1016/j.soilbio.2021.108207_bib29 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00022 – volume: 20 start-page: 30 year: 2010 ident: 10.1016/j.soilbio.2021.108207_bib2 article-title: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis publication-title: Ecol. Appl. doi: 10.1890/08-1140.1 – volume: 13 start-page: 87 year: 1991 ident: 10.1016/j.soilbio.2021.108207_bib52 article-title: Nitrogen limitation on land and in the sea: how can it occur? publication-title: Biogeochemistry doi: 10.1007/BF00002772 – volume: 11 start-page: 3684 year: 2020 ident: 10.1016/j.soilbio.2021.108207_bib13 article-title: Microbial diversity drives carbon use efficiency in a model soil publication-title: Nature Communications doi: 10.1038/s41467-020-17502-z – volume: 42 start-page: 2336 year: 2010 ident: 10.1016/j.soilbio.2021.108207_bib35 article-title: Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.08.032 – volume: 11 start-page: 3072 year: 2020 ident: 10.1016/j.soilbio.2021.108207_bib67 article-title: Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality publication-title: Nat. Commun. doi: 10.1038/s41467-020-16881-7 – volume: 97 start-page: 168 year: 2016 ident: 10.1016/j.soilbio.2021.108207_bib43 article-title: Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.03.008 – year: 2002 ident: 10.1016/j.soilbio.2021.108207_bib45 – volume: 29 start-page: 567 year: 2015 ident: 10.1016/j.soilbio.2021.108207_bib58 article-title: Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia publication-title: Glob. Biogeochem. Cycles doi: 10.1002/2015GB005084 – volume: 3 start-page: 336 year: 2010 ident: 10.1016/j.soilbio.2021.108207_bib1 article-title: Soil-carbon response to warming dependent on microbial physiology publication-title: Nat. Geosci. doi: 10.1038/ngeo846 – volume: 99 start-page: 54 year: 2016 ident: 10.1016/j.soilbio.2021.108207_bib37 article-title: Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.04.023 – volume: 3 start-page: 13 year: 2009 ident: 10.1016/j.soilbio.2021.108207_bib34 article-title: Increased tree carbon storage in response to nitrogen deposition in the US publication-title: Nat. Geosci. doi: 10.1038/ngeo721 – volume: 12 start-page: 1817 year: 2018 ident: 10.1016/j.soilbio.2021.108207_bib65 article-title: Global negative effects of nitrogen deposition on soil microbes publication-title: ISME J. doi: 10.1038/s41396-018-0096-y – volume: 26 start-page: 713 year: 2017 ident: 10.1016/j.soilbio.2021.108207_bib12 article-title: Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta‐analysis publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12576 – volume: 86 start-page: 3252 year: 2005 ident: 10.1016/j.soilbio.2021.108207_bib19 article-title: Nitrogen additions and litter decomposition: a meta-analysis publication-title: Ecology doi: 10.1890/05-0150 – volume: 131 start-page: 195 year: 2019 ident: 10.1016/j.soilbio.2021.108207_bib40 article-title: Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.01.010 – volume: 135 start-page: 304 year: 2019 ident: 10.1016/j.soilbio.2021.108207_bib64 article-title: Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.05.019 – volume: 19 start-page: 703 year: 1987 ident: 10.1016/j.soilbio.2021.108207_bib50 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90052-6 – volume: 13 start-page: 819 year: 2010 ident: 10.1016/j.soilbio.2021.108207_bib23 article-title: A global perspective on belowground carbon dynamics under nitrogen enrichment publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2010.01482.x – volume: 130 start-page: 167 year: 2019 ident: 10.1016/j.soilbio.2021.108207_bib30 article-title: Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.12.019 – volume: 145 year: 2020 ident: 10.1016/j.soilbio.2021.108207_bib33 article-title: Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107802 – volume: 85 start-page: 235 year: 2007 ident: 10.1016/j.soilbio.2021.108207_bib7 article-title: C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? publication-title: Biogeochemistry doi: 10.1007/s10533-007-9132-0 – volume: 11 year: 2020 ident: 10.1016/j.soilbio.2021.108207_bib31 article-title: Carbon use efficiency and its temperature sensitivity covary in soil bacteria publication-title: mBio doi: 10.1128/mBio.02293-19 – volume: 18 start-page: 1918 year: 2012 ident: 10.1016/j.soilbio.2021.108207_bib36 article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2012.02639.x – volume: 219 start-page: 574 year: 2018 ident: 10.1016/j.soilbio.2021.108207_bib10 article-title: Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe publication-title: New Phytologist doi: 10.1111/nph.15161 – volume: 196 start-page: 79 year: 2012 ident: 10.1016/j.soilbio.2021.108207_bib26 article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils publication-title: New Phytologist doi: 10.1111/j.1469-8137.2012.04225.x – volume: 126 start-page: 301 year: 2015 ident: 10.1016/j.soilbio.2021.108207_bib6 article-title: Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link publication-title: Biogeochemistry doi: 10.1007/s10533-015-0157-5 – volume: 38 start-page: 837 year: 2006 ident: 10.1016/j.soilbio.2021.108207_bib47 article-title: Do growth yield efficiencies differ between soil microbial communities differing in fungal:bacterial ratios? Reality check and methodological issues publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.07.010 – volume: 26 start-page: 1953 year: 2019 ident: 10.1016/j.soilbio.2021.108207_bib41 article-title: Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14962 – volume: 7 start-page: 737 year: 1997 ident: 10.1016/j.soilbio.2021.108207_bib51 article-title: Human alteration of the global nitrogen cycle: sources and consequences publication-title: Ecol. Appl. – volume: 141 year: 2020 ident: 10.1016/j.soilbio.2021.108207_bib56 article-title: Stabilization of microbial residues in soil organic matter after two years of decomposition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107687 – volume: 2 start-page: 17105 year: 2017 ident: 10.1016/j.soilbio.2021.108207_bib21 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.105 – volume: 315 start-page: 96 year: 2018 ident: 10.1016/j.soilbio.2021.108207_bib3 article-title: Relationship between microbial composition and substrate use efficiency in a tropical soil publication-title: Geoderma doi: 10.1016/j.geoderma.2017.11.026 – volume: 5 start-page: 3694 year: 2014 ident: 10.1016/j.soilbio.2021.108207_bib28 article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling publication-title: Nat. Commun. doi: 10.1038/ncomms4694 – volume: 14 start-page: 319 year: 1982 ident: 10.1016/j.soilbio.2021.108207_bib5 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(82)90001-3 – volume: 3 start-page: 395 year: 2013 ident: 10.1016/j.soilbio.2021.108207_bib15 article-title: The temperature response of soil microbial efficiency and its feedback to climate publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate1796 – volume: 96 start-page: 74 year: 2016 ident: 10.1016/j.soilbio.2021.108207_bib42 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth – implications for carbon cycling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.01.016 – volume: 14 start-page: 1172 year: 2004 ident: 10.1016/j.soilbio.2021.108207_bib53 article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity publication-title: Ecol. Appl. doi: 10.1890/03-5120 – volume: 31 start-page: 190 year: 2019 ident: 10.1016/j.soilbio.2021.108207_bib62 article-title: Response and driving factors of soil microbial diversity related to global nitrogen addition publication-title: Land Degrad. Develop. doi: 10.1002/ldr.3439 – volume: 13 start-page: 221 year: 2020 ident: 10.1016/j.soilbio.2021.108207_bib14 article-title: Global patterns of terrestrial nitrogen and phosphorus limitation publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0530-4 – volume: 10 year: 2015 ident: 10.1016/j.soilbio.2021.108207_bib48 article-title: A global analysis of soil acidification caused by nitrogen addition publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/10/2/024019 – volume: 7 start-page: 76 year: 2014 ident: 10.1016/j.soilbio.2021.108207_bib17 article-title: A review and application of the evidence for nitrogen impacts on ecosystem services publication-title: Ecosyst. Serv. doi: 10.1016/j.ecoser.2013.09.001 – volume: 37 start-page: 2088 year: 2005 ident: 10.1016/j.soilbio.2021.108207_bib44 article-title: Microbial carbon dynamics in nitrogen amended Arctic tundra soil: measurement and model testing publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.03.016 – volume: 26 start-page: 669 year: 2019 ident: 10.1016/j.soilbio.2021.108207_bib32 article-title: Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14777 – volume: 44 start-page: 302 year: 2012 ident: 10.1016/j.soilbio.2021.108207_bib25 article-title: Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China publication-title: Biotropica doi: 10.1111/j.1744-7429.2011.00831.x – volume: 42 start-page: 1293 year: 2010 ident: 10.1016/j.soilbio.2021.108207_bib54 article-title: Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.04.001 – volume: 320 start-page: 889 year: 2008 ident: 10.1016/j.soilbio.2021.108207_bib16 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science doi: 10.1126/science.1136674 – volume: 121 start-page: 212 year: 2018 ident: 10.1016/j.soilbio.2021.108207_bib46 article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.02.022 – volume: 111 start-page: 41 year: 2012 ident: 10.1016/j.soilbio.2021.108207_bib27 article-title: SOM genesis: microbial biomass as a significant source publication-title: Biogeochemistry doi: 10.1007/s10533-011-9658-z – volume: 138 year: 2019 ident: 10.1016/j.soilbio.2021.108207_bib63 article-title: Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: evidence from a long-term grassland experiment publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107580 – volume: 40 start-page: 370 year: 2008 ident: 10.1016/j.soilbio.2021.108207_bib11 article-title: Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.08.019 – volume: 7 start-page: 13630 year: 2016 ident: 10.1016/j.soilbio.2021.108207_bib18 article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls publication-title: Nat. Commun. doi: 10.1038/ncomms13630 – volume: 146 year: 2020 ident: 10.1016/j.soilbio.2021.108207_bib57 article-title: Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2020.107815 – volume: 19 start-page: 988 year: 2013 ident: 10.1016/j.soilbio.2021.108207_bib8 article-title: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12113 – volume: 458 year: 2020 ident: 10.1016/j.soilbio.2021.108207_bib61 article-title: The effects of warming and nitrogen addition on fine root exudation rates in a young Chinese-fir stand publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2019.117793 |
SSID | ssj0002513 |
Score | 2.6320193 |
Snippet | Microbial elements use efficiencies are the important parameters in regulating soil carbon (C) and nitrogen (N) mineralization processes. Microbial C use... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108207 |
SubjectTerms | biochemistry forest soils Global N deposition microbial biomass Microbial carbon use efficiency microbial communities Microbial community mineral soils mineralization nitrogen Nitrogen use efficiency nutrient use efficiency phosphorus soil biology soil carbon Stoichiometry temperate forests |
Title | Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition |
URI | https://dx.doi.org/10.1016/j.soilbio.2021.108207 https://www.proquest.com/docview/2551981753 |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQHAqHiq8KaItciWvYZONN7ONqVbRQlUtB4mZl_FGC2CzazR564bczEzulVEhIHONorMgzmhkr771h7EQWZeoJilP5skqEkjapLEAirM9HoixAZMRG_nlZTK_Fxc3oZo1Nei4MwSpj7g85vcvWcWUQT3PwUNfE8SWxdLrCUKELDHbcHWP69PEZ5oH1OwrvSiLrlM8snsEd6eXeQ00cwGFGaLshTZV9vT79l6m78nO2zT7GvpGPw6ftsDXX7LKt8e9F1M5wu-zDpB_etsdWv9p5bW6JW08S_LyeAWEYjeNVY_ms7uSXcD8T-CHtH74IQ-ndPy9dgJYv-WrpuOu0JhzN8sUFosRwtFvMMQA5gZLIwfvs-uz71WSaxAkLiRGpbBNf5UUhU6i8zHzqHHUzeE8FLOO2HBWmAOzQVJkDKCNVNsRHUFblkJZY5HKXf2LrzbxxB4x7O4Jc5amvlBC2MABD47EbwWRrJdjykIn-XLWJ8uM0BeNe9zizOx3dockdOrjjkJ3-NXsI-htvGcjeafpFIGmsEW-ZfuudrNFd9Oekatx8tdR478qUJFHTo_dv_5lt0lNAS35h6-1i5b5iR9PCcReyx2xjfP5jevkEDmn4qQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6h8lD2gEYBDdjASHsNTRonsR-raqgM6MtA4s3K-ccWBClq0wf-e3yNwzY0CWmPsXWW5bPuzsr3fQfwVeRF7AiKU7qijLgUJioNYsSNSzNe5MgTYiNfz_LpLf9-l91twKTjwhCsMsT-Nqavo3UYGYbTHD5VFXF8SSydnjCU6IjBvknqVFkPNscXl9PZa0D2KTxo7wri6xS_iTzDe5LMfcCKaICjhAB3I2os--8U9SZYrzPQ-UfYDqUjG7e724ENWw_gw_jnIshn2AH0J13_tl1Y_Wjmlf5F9HpS4WfVIxKMUVtW1oY9VmsFJr-ebikizTNbtH3p7R-TtkWXL9lqaZldy01YaufrB4gVw7zdYu7vICNcEvl4D27Pv91MplFoshBpHosmcmWa5yLG0onExdZSQeOfqugzuSmyXOfoizRZpIhSC5mM_CdKI1OMC5_nUpvuQ6-e1_YTMGcyTGUau1JybnKNONLOFyQ-3hqBpjgA3p2r0kGBnBphPKgOanavgjsUuUO17jiAs1ezp1aC4z0D0TlN_XWXlE8T75medk5W3l3086Ss7Xy1VP7plUhBuqaH_7_8CfSnN9dX6upidnkEWzTTgic_Q69ZrOwXX-A0eBwu8AuLgfta |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stoichiometric+imbalance+and+microbial+community+regulate+microbial+elements+use+efficiencies+under+nitrogen+addition&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Angremy%2C+Berenice&rft.au=Sang%2C+Changpeng&rft.au=Yang%2C+Jingyi&rft.au=Qu%2C+Lingrui&rft.date=2021-05-01&rft.issn=0038-0717&rft.volume=156+p.108207-&rft_id=info:doi/10.1016%2Fj.soilbio.2021.108207&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |