Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition

Microbial elements use efficiencies are the important parameters in regulating soil carbon (C) and nitrogen (N) mineralization processes. Microbial C use efficiency (CUE) describes the proportion of C used for growth relative to the total organic C uptake. As such, high CUE values mean relatively le...

Full description

Saved in:
Bibliographic Details
Published inSoil biology & biochemistry Vol. 156; p. 108207
Main Authors Li, Jing, Sang, Changpeng, Yang, Jingyi, Qu, Lingrui, Xia, Zongwei, Sun, Hao, Jiang, Ping, Wang, Xugao, He, Hongbo, Wang, Chao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microbial elements use efficiencies are the important parameters in regulating soil carbon (C) and nitrogen (N) mineralization processes. Microbial C use efficiency (CUE) describes the proportion of C used for growth relative to the total organic C uptake. As such, high CUE values mean relatively less CO2 emission and more C retention in microbial biomass. Similarly, a higher microbial N use efficiency (NUE) indicates efficient biomass N sequestration and less N mineralization. However, very little is known how the microbial CUE and NUE are affected by N enrichment in forest soils. Here, we studied soil microbial CUE and NUE simultaneously using 18O-water tracer approach in a long-term N addition experiment comprising control (atmospheric N deposition, 2.7 g N m−2 yr−1), low N addition (atmospheric N deposition + 2.5 g N m−2 yr−1) and high N addition (atmospheric N deposition + 7.5 g N m−2 yr−1) in a temperate forest. We found microbial CUE responses to N addition were dependent on N addition rates and soil horizons. Specifically, low N addition significantly increased the microbial CUE by 45.12% while high N addition significantly reduced it by 27.84% in organic soil. Further, mineral soil microbial CUE did not change under low N addition but significantly increased by 133.18% under high N addition. We also found microbial NUE decreased with increasing N addition rate in organic soil but showed an opposite pattern in mineral soil. The stoichiometric imbalances associated with phosphorus between microbial biomass and resources and the microbial community changes under N addition were correlated with microbial CUE and NUE. Further, N addition decreased microbial biomass turnover in organic soil but accelerated it in mineral soil. Altogether, our results indicated that N addition could control soil C and N cycling processes by affecting microbial elements use efficiencies (i.e. CUE and NUE), which may consequently impact C and N sequestration in this temperate forest soil. •Higher N depressed microbial growth in organic soil but promoted it in mineral soil.•N addition declined microbial NUE in organic soil but increased it in mineral soil.•Microbial CUE was non-linearly correlated with microbial NUE.•Shifts in microbial community composition affected microbial CUE and NUE.
AbstractList Microbial elements use efficiencies are the important parameters in regulating soil carbon (C) and nitrogen (N) mineralization processes. Microbial C use efficiency (CUE) describes the proportion of C used for growth relative to the total organic C uptake. As such, high CUE values mean relatively less CO₂ emission and more C retention in microbial biomass. Similarly, a higher microbial N use efficiency (NUE) indicates efficient biomass N sequestration and less N mineralization. However, very little is known how the microbial CUE and NUE are affected by N enrichment in forest soils. Here, we studied soil microbial CUE and NUE simultaneously using ¹⁸O-water tracer approach in a long-term N addition experiment comprising control (atmospheric N deposition, 2.7 g N m⁻² yr⁻¹), low N addition (atmospheric N deposition + 2.5 g N m⁻² yr⁻¹) and high N addition (atmospheric N deposition + 7.5 g N m⁻² yr⁻¹) in a temperate forest. We found microbial CUE responses to N addition were dependent on N addition rates and soil horizons. Specifically, low N addition significantly increased the microbial CUE by 45.12% while high N addition significantly reduced it by 27.84% in organic soil. Further, mineral soil microbial CUE did not change under low N addition but significantly increased by 133.18% under high N addition. We also found microbial NUE decreased with increasing N addition rate in organic soil but showed an opposite pattern in mineral soil. The stoichiometric imbalances associated with phosphorus between microbial biomass and resources and the microbial community changes under N addition were correlated with microbial CUE and NUE. Further, N addition decreased microbial biomass turnover in organic soil but accelerated it in mineral soil. Altogether, our results indicated that N addition could control soil C and N cycling processes by affecting microbial elements use efficiencies (i.e. CUE and NUE), which may consequently impact C and N sequestration in this temperate forest soil.
Microbial elements use efficiencies are the important parameters in regulating soil carbon (C) and nitrogen (N) mineralization processes. Microbial C use efficiency (CUE) describes the proportion of C used for growth relative to the total organic C uptake. As such, high CUE values mean relatively less CO2 emission and more C retention in microbial biomass. Similarly, a higher microbial N use efficiency (NUE) indicates efficient biomass N sequestration and less N mineralization. However, very little is known how the microbial CUE and NUE are affected by N enrichment in forest soils. Here, we studied soil microbial CUE and NUE simultaneously using 18O-water tracer approach in a long-term N addition experiment comprising control (atmospheric N deposition, 2.7 g N m−2 yr−1), low N addition (atmospheric N deposition + 2.5 g N m−2 yr−1) and high N addition (atmospheric N deposition + 7.5 g N m−2 yr−1) in a temperate forest. We found microbial CUE responses to N addition were dependent on N addition rates and soil horizons. Specifically, low N addition significantly increased the microbial CUE by 45.12% while high N addition significantly reduced it by 27.84% in organic soil. Further, mineral soil microbial CUE did not change under low N addition but significantly increased by 133.18% under high N addition. We also found microbial NUE decreased with increasing N addition rate in organic soil but showed an opposite pattern in mineral soil. The stoichiometric imbalances associated with phosphorus between microbial biomass and resources and the microbial community changes under N addition were correlated with microbial CUE and NUE. Further, N addition decreased microbial biomass turnover in organic soil but accelerated it in mineral soil. Altogether, our results indicated that N addition could control soil C and N cycling processes by affecting microbial elements use efficiencies (i.e. CUE and NUE), which may consequently impact C and N sequestration in this temperate forest soil. •Higher N depressed microbial growth in organic soil but promoted it in mineral soil.•N addition declined microbial NUE in organic soil but increased it in mineral soil.•Microbial CUE was non-linearly correlated with microbial NUE.•Shifts in microbial community composition affected microbial CUE and NUE.
ArticleNumber 108207
Author He, Hongbo
Yang, Jingyi
Qu, Lingrui
Wang, Chao
Wang, Xugao
Li, Jing
Jiang, Ping
Sang, Changpeng
Xia, Zongwei
Sun, Hao
Author_xml – sequence: 1
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 2
  givenname: Changpeng
  surname: Sang
  fullname: Sang, Changpeng
  organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 3
  givenname: Jingyi
  surname: Yang
  fullname: Yang, Jingyi
  organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 4
  givenname: Lingrui
  surname: Qu
  fullname: Qu, Lingrui
  organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 5
  givenname: Zongwei
  surname: Xia
  fullname: Xia, Zongwei
  organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 6
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
  organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 7
  givenname: Ping
  surname: Jiang
  fullname: Jiang, Ping
  organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 8
  givenname: Xugao
  surname: Wang
  fullname: Wang, Xugao
  organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 9
  givenname: Hongbo
  surname: He
  fullname: He, Hongbo
  organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
– sequence: 10
  givenname: Chao
  surname: Wang
  fullname: Wang, Chao
  email: cwang@iae.ac.cn
  organization: CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
BookMark eNqFkEFrFTEQgINU8LX6E4QcvexzknQ3WTyIFKuFggf1HJLsbJ3HblKTrNB_b56vB-mlhzBkZr5h5jtnZzFFZOytgL0AMbw_7EuixVPaS5Ci5YwE_YLthNFjpy6lOWM7AGU60EK_YuelHABA9kLt2Pa9Jgq_KK1YMwVOq3eLiwG5ixNfKeTkyS08pHXdItUHnvFuW1zF_4q44IqxFr4V5DjPFAhjey0RJ8y8cTndYeRumqhSiq_Zy9ktBd88xgv28_rzj6uv3e23LzdXn267cAmmdrNTw2DAu9mIGRCFlhqk9sqISfdDGDwYNWrl_RjMKGT7-nEalQc9aKNQXbB3p7n3Of3esFS7Ugm4tAsxbcXKvhejEbpXrfXDqbUdVUrG2Qaq7rhszY4WK8AeZduDfZRtj7LtSXaj-yf0fabV5YdnuY8nDpuFP4TZln_ucKKModop0TMT_gKpjaEA
CitedBy_id crossref_primary_10_3390_land12030615
crossref_primary_10_1080_10643389_2023_2266312
crossref_primary_10_1016_j_ejsobi_2023_103472
crossref_primary_10_1029_2024JG008027
crossref_primary_10_3389_fpls_2024_1445230
crossref_primary_10_1016_j_ecoenv_2023_115707
crossref_primary_10_1016_j_soilbio_2024_109502
crossref_primary_10_1007_s11104_023_06405_9
crossref_primary_10_1016_j_catena_2024_108227
crossref_primary_10_3390_plants11212893
crossref_primary_10_3390_f14040699
crossref_primary_10_1016_j_jenvman_2024_122198
crossref_primary_10_5194_soil_9_301_2023
crossref_primary_10_1016_j_scitotenv_2021_152014
crossref_primary_10_3390_land12030724
crossref_primary_10_1016_j_geoderma_2024_116883
crossref_primary_10_1016_j_soisec_2022_100041
crossref_primary_10_1016_j_geoderma_2024_116885
crossref_primary_10_1002_ldr_5505
crossref_primary_10_1016_j_jenvman_2021_114155
crossref_primary_10_1016_j_soilbio_2022_108767
crossref_primary_10_1002_ece3_70875
crossref_primary_10_1016_j_ecoenv_2022_113932
crossref_primary_10_3390_f14010021
crossref_primary_10_1016_j_agee_2023_108702
crossref_primary_10_1016_j_jenvman_2024_123736
crossref_primary_10_1007_s11356_021_16189_z
crossref_primary_10_1016_j_scitotenv_2024_174933
crossref_primary_10_1016_j_jece_2025_115860
crossref_primary_10_1016_j_scitotenv_2024_173286
crossref_primary_10_1016_j_apsoil_2024_105744
crossref_primary_10_1111_gcb_17492
crossref_primary_10_1007_s11368_024_03853_3
crossref_primary_10_1093_jpe_rtae100
crossref_primary_10_3390_soilsystems8010028
crossref_primary_10_3390_agriculture14122162
crossref_primary_10_1016_j_agee_2023_108439
crossref_primary_10_1111_gcb_16563
crossref_primary_10_1016_j_jenvman_2024_123067
crossref_primary_10_1080_13102818_2022_2155568
crossref_primary_10_1016_j_geoderma_2024_117159
crossref_primary_10_1016_j_eja_2023_127058
crossref_primary_10_1016_j_jenvman_2022_116335
crossref_primary_10_1016_j_agee_2025_109582
crossref_primary_10_3390_agriculture15030238
crossref_primary_10_3390_land11112093
crossref_primary_10_1111_1365_2745_14448
crossref_primary_10_1007_s42729_024_01749_2
crossref_primary_10_1016_j_envpol_2024_123353
crossref_primary_10_1007_s11368_023_03694_6
crossref_primary_10_1016_j_scitotenv_2023_163236
crossref_primary_10_3390_ijerph20064939
crossref_primary_10_1002_ldr_4513
crossref_primary_10_1007_s42832_022_0137_3
crossref_primary_10_1111_gcb_17247
crossref_primary_10_1016_j_geoderma_2023_116729
crossref_primary_10_1016_j_catena_2024_108478
crossref_primary_10_1111_gcbb_13041
crossref_primary_10_1007_s00374_023_01712_w
crossref_primary_10_1016_j_scitotenv_2021_150388
crossref_primary_10_1016_j_apsoil_2023_105169
crossref_primary_10_1007_s11104_022_05710_z
crossref_primary_10_1016_j_geoderma_2023_116676
crossref_primary_10_1093_jpe_rtac015
crossref_primary_10_1016_j_geoderma_2022_116159
crossref_primary_10_1016_j_indcrop_2023_117858
crossref_primary_10_1016_j_soilbio_2022_108731
crossref_primary_10_1016_j_soilbio_2024_109383
crossref_primary_10_1007_s11104_024_06772_x
crossref_primary_10_1016_j_ejsobi_2022_103428
crossref_primary_10_1111_gcb_70036
crossref_primary_10_1007_s11104_024_06509_w
crossref_primary_10_1016_j_cej_2023_147511
crossref_primary_10_3390_f15061040
crossref_primary_10_1016_j_scitotenv_2024_171655
crossref_primary_10_1016_j_envres_2022_114981
crossref_primary_10_3390_f13020276
crossref_primary_10_3389_fmicb_2024_1414724
crossref_primary_10_1016_j_geoderma_2023_116381
crossref_primary_10_1016_j_soilbio_2025_109717
crossref_primary_10_1016_j_catena_2023_107341
crossref_primary_10_1002_ldr_5029
crossref_primary_10_1007_s11270_024_07106_4
crossref_primary_10_3390_pr10112425
crossref_primary_10_3389_fmicb_2024_1496268
crossref_primary_10_3390_agronomy14050899
crossref_primary_10_1007_s11104_021_05237_9
crossref_primary_10_1016_j_apsoil_2023_105144
crossref_primary_10_1016_j_fecs_2024_100192
crossref_primary_10_1021_acs_jafc_3c09655
crossref_primary_10_1111_ele_14065
crossref_primary_10_1016_j_scitotenv_2024_171581
crossref_primary_10_1029_2024EF005356
crossref_primary_10_3390_f15030400
crossref_primary_10_3390_agronomy13092420
crossref_primary_10_1093_ismeco_ycae173
crossref_primary_10_3389_fmicb_2024_1304985
crossref_primary_10_1016_j_scitotenv_2023_162472
crossref_primary_10_1016_j_foreco_2024_121970
crossref_primary_10_3390_agronomy14030638
crossref_primary_10_1021_acsearthspacechem_1c00243
crossref_primary_10_1111_1365_2435_14569
crossref_primary_10_1016_j_apsoil_2024_105555
crossref_primary_10_1007_s11104_024_07059_x
crossref_primary_10_1016_j_agee_2024_109007
crossref_primary_10_1186_s13717_023_00457_6
crossref_primary_10_1007_s11104_022_05372_x
crossref_primary_10_3390_agronomy13102593
crossref_primary_10_3390_plants12101931
crossref_primary_10_1016_j_catena_2023_107321
crossref_primary_10_1007_s42832_023_0176_4
crossref_primary_10_1016_j_apsoil_2024_105680
Cites_doi 10.1111/j.1469-8137.2010.03563.x
10.1016/j.soilbio.2018.10.006
10.1038/nature08632
10.3389/fmicb.2015.00615
10.1126/science.aav0550
10.1111/gcb.14557
10.1111/j.1461-0248.2008.01230.x
10.1016/j.soilbio.2018.02.003
10.1016/0038-0717(85)90144-0
10.1016/0038-0717(90)90046-3
10.1016/j.soilbio.2019.03.008
10.3390/microorganisms8111828
10.3389/fmicb.2014.00022
10.1890/08-1140.1
10.1007/BF00002772
10.1038/s41467-020-17502-z
10.1016/j.soilbio.2010.08.032
10.1038/s41467-020-16881-7
10.1016/j.soilbio.2016.03.008
10.1002/2015GB005084
10.1038/ngeo846
10.1016/j.soilbio.2016.04.023
10.1038/ngeo721
10.1038/s41396-018-0096-y
10.1111/geb.12576
10.1890/05-0150
10.1016/j.soilbio.2019.01.010
10.1016/j.soilbio.2019.05.019
10.1016/0038-0717(87)90052-6
10.1111/j.1461-0248.2010.01482.x
10.1016/j.soilbio.2018.12.019
10.1016/j.soilbio.2020.107802
10.1007/s10533-007-9132-0
10.1128/mBio.02293-19
10.1111/j.1365-2486.2012.02639.x
10.1111/nph.15161
10.1111/j.1469-8137.2012.04225.x
10.1007/s10533-015-0157-5
10.1016/j.soilbio.2005.07.010
10.1111/gcb.14962
10.1016/j.soilbio.2019.107687
10.1038/nmicrobiol.2017.105
10.1016/j.geoderma.2017.11.026
10.1038/ncomms4694
10.1016/0038-0717(82)90001-3
10.1038/nclimate1796
10.1016/j.soilbio.2016.01.016
10.1890/03-5120
10.1002/ldr.3439
10.1038/s41561-019-0530-4
10.1088/1748-9326/10/2/024019
10.1016/j.ecoser.2013.09.001
10.1016/j.soilbio.2005.03.016
10.1111/gcb.14777
10.1111/j.1744-7429.2011.00831.x
10.1016/j.soilbio.2010.04.001
10.1126/science.1136674
10.1016/j.soilbio.2018.02.022
10.1007/s10533-011-9658-z
10.1016/j.soilbio.2019.107580
10.1016/j.soilbio.2007.08.019
10.1038/ncomms13630
10.1016/j.soilbio.2020.107815
10.1111/gcb.12113
10.1016/j.foreco.2019.117793
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.soilbio.2021.108207
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1879-3428
ExternalDocumentID 10_1016_j_soilbio_2021_108207
S0038071721000791
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CBWCG
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HMA
HMC
HMG
HVGLF
HZ~
IHE
J1W
K-O
KCYFY
KOM
LW9
LX3
LY3
LY9
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SIN
SPCBC
SSA
SSJ
SSU
SSZ
T5K
TN5
TWZ
WUQ
XPP
Y6R
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c408t-fa36680baf81f0ee1727027b381d756c6b083973bb9c8912b08b9d93b076783e3
IEDL.DBID .~1
ISSN 0038-0717
IngestDate Fri Jul 11 15:35:07 EDT 2025
Thu Apr 24 23:03:04 EDT 2025
Tue Jul 01 03:20:04 EDT 2025
Fri Feb 23 02:43:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Global N deposition
Nitrogen use efficiency
Stoichiometry
Microbial carbon use efficiency
Microbial community
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-fa36680baf81f0ee1727027b381d756c6b083973bb9c8912b08b9d93b076783e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2551981753
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551981753
crossref_citationtrail_10_1016_j_soilbio_2021_108207
crossref_primary_10_1016_j_soilbio_2021_108207
elsevier_sciencedirect_doi_10_1016_j_soilbio_2021_108207
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Soil biology & biochemistry
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Miltner, Bombach, Schmidt-Brucken, Kastner (bib27) 2012; 111
Vance, Brookes, Jenkinson (bib50) 1987; 19
Frey, Lee, Melillo, Six (bib15) 2013; 3
Knorr, Frey, Curtis (bib19) 2005; 86
Allison, Wallenstein, Bradford (bib1) 2010; 3
Brookes, Powlson, Jenkinson (bib5) 1982; 14
Cenini, Fornara, McMullan, Ternan, Lajtha, Crawley (bib6) 2015; 126
Galloway, Townsend, Erisman, Bekunda, Cai, Freney (bib16) 2008; 320
Qu, Wang, Bai (bib33) 2020; 145
Tian, Niu (bib48) 2015; 10
Pold, Domeignoz-Horta, Morrison, Frey, Sistla, DeAngelis (bib31) 2020; 11
Stapleton, Crout, Säwström, Marshall, Poulton, Tye (bib44) 2005; 37
Jones, Provins, Holland, Mills, Hayes, Emmett (bib17) 2014; 7
Brookes, Landman, Pruden, Jenkinson (bib4) 1985; 17
Mooshammer, Wanek, Zechmeister-Boltenstern, Richter (bib29) 2014; 5
Waldrop, Zak, Sinsabaugh, Gallo, Lauber (bib53) 2004; 14
Xiong, Huang, Yang, Cai, Lin, Liu (bib61) 2020; 458
Du, Terrer, Pellegrini, Ahlström, van Lissa, Zhao (bib14) 2020; 13
Spohn, Pötsch, Eichorst, Woebken, Wanek, Richter (bib43) 2016; 97
Yang, Cheng, Gao, An (bib62) 2019; 31
Wang, Liu, Bai (bib55) 2018; 120
Riggs, Hobbie (bib37) 2016; 99
Thiet, Frey, Six (bib47) 2006; 38
Delgado-Baquerizo, Fry, Eldridge, de Vries, Manning, Hamonts (bib10) 2018; 219
Soares, Rousk (bib40) 2019; 131
Sterner, elser (bib45) 2002
Xia, Yang, Sang, Wang, Sun, Jiang (bib60) 2020; 8
Ramirez, Craine, Fierer (bib36) 2012; 18
Mooshammer, Wanek, Hämmerle, Fuchslueger, Hofhansl, Knoltsch (bib28) 2014; 5
Lu, Mo, Gilliam, Fang, Zhu, Fang (bib25) 2012; 44
Manzoni, Taylor, Richter, Porporato, Agren (bib26) 2012; 196
Poeplau, Helfrich, Dechow, Szoboszlay, Tebbe, Don (bib30) 2019; 130
Zheng, Hu, Zhang, Noll, Böckle, Richter (bib66) 2019; 128
Zhang, Chen, Ruan (bib65) 2018; 12
Wu, Joergensen, Pommerening, Chaussod, Brookes (bib59) 1990; 22
Liu, Greaver (bib23) 2010; 13
Vitousek, Aber, Howarth, Likens, Matson, Schindler (bib51) 1997; 7
Wang, Wang, Pei, Xia, Peng, Sun (bib56) 2020; 141
Crowther, Hoogen, Wan, Mayes, Keiser, Mo (bib9) 2019; 365
Zhang, Zheng, Noll, Hu, Wanek (bib64) 2019; 135
Liang, Schimel, Jastrow (bib21) 2017; 2
Ramirez, Craine, Fierer (bib35) 2010; 42
Domeignoz-Horta, Pold, Liu, Frey, Melillo, DeAngelis (bib13) 2020; 11
Cotrufo, Wallenstein, Boot, Denef, Paul (bib8) 2013; 19
Cleveland, Liptzin (bib7) 2007; 85
Spohn, Klaus, Wanek, Richter (bib42) 2016; 96
Treseder (bib49) 2008; 11
Yuan, Niu, Gherardi, Liu, Wang, Elser (bib63) 2019; 138
Bonner, Shoo, Brackin, Schmidt (bib3) 2018; 315
Demoling, Ola Nilsson, Bååth (bib11) 2008; 40
Widdig, Schleuss, Biederman, Borer, Crawley, Kirkman (bib57) 2020; 146
Zhou, Wang, Luo (bib67) 2020; 11
Kallenbach, Frey, Grandy (bib18) 2016; 7
Lu, Yang, Luo, Fang, Zhou, Chen (bib24) 2011; 189
Lipson (bib22) 2015; 6
Wanek, Mooshammer, Blöchl, Hanreich, Richter (bib54) 2010; 42
Prommer, Walker, Wanek, Braun, Zezula, Hu (bib32) 2019; 26
Takriti, Wild, Schnecker, Mooshammer, Knoltsch, Lashchinskiy (bib46) 2018; 121
Bobbink, Hicks, Galloway, Spranger, Alkemade, Ashmore (bib2) 2010; 20
Vitousek, Howarth (bib52) 1991; 13
Deng, Hui, Dennis, Reddy (bib12) 2017; 26
Quinn Thomas, Canham, Weathers, Goodale (bib34) 2009; 3
Wild, Schnecker, Knoltsch, Takriti, Mooshammer, Gentsch (bib58) 2015; 29
Soong, Fuchslueger, Maranon-Jimenez, Torn, Janssens, Penuelas (bib41) 2019; 26
Silva-Sánchez, Soares, Rousk (bib38) 2019; 134
Li, Tian, Wang, Wang, Wang, Chen (bib20) 2019; 25
Sinsabaugh, Hill, Follstad Shah (bib39) 2009; 462
Bonner (10.1016/j.soilbio.2021.108207_bib3) 2018; 315
Brookes (10.1016/j.soilbio.2021.108207_bib4) 1985; 17
Spohn (10.1016/j.soilbio.2021.108207_bib42) 2016; 96
Galloway (10.1016/j.soilbio.2021.108207_bib16) 2008; 320
Liang (10.1016/j.soilbio.2021.108207_bib21) 2017; 2
Demoling (10.1016/j.soilbio.2021.108207_bib11) 2008; 40
Vance (10.1016/j.soilbio.2021.108207_bib50) 1987; 19
Zheng (10.1016/j.soilbio.2021.108207_bib66) 2019; 128
Pold (10.1016/j.soilbio.2021.108207_bib31) 2020; 11
Liu (10.1016/j.soilbio.2021.108207_bib23) 2010; 13
Waldrop (10.1016/j.soilbio.2021.108207_bib53) 2004; 14
Crowther (10.1016/j.soilbio.2021.108207_bib9) 2019; 365
Li (10.1016/j.soilbio.2021.108207_bib20) 2019; 25
Deng (10.1016/j.soilbio.2021.108207_bib12) 2017; 26
Quinn Thomas (10.1016/j.soilbio.2021.108207_bib34) 2009; 3
Brookes (10.1016/j.soilbio.2021.108207_bib5) 1982; 14
Silva-Sánchez (10.1016/j.soilbio.2021.108207_bib38) 2019; 134
Yuan (10.1016/j.soilbio.2021.108207_bib63) 2019; 138
Frey (10.1016/j.soilbio.2021.108207_bib15) 2013; 3
Bobbink (10.1016/j.soilbio.2021.108207_bib2) 2010; 20
Spohn (10.1016/j.soilbio.2021.108207_bib43) 2016; 97
Kallenbach (10.1016/j.soilbio.2021.108207_bib18) 2016; 7
Treseder (10.1016/j.soilbio.2021.108207_bib49) 2008; 11
Wang (10.1016/j.soilbio.2021.108207_bib56) 2020; 141
Thiet (10.1016/j.soilbio.2021.108207_bib47) 2006; 38
Zhou (10.1016/j.soilbio.2021.108207_bib67) 2020; 11
Lu (10.1016/j.soilbio.2021.108207_bib25) 2012; 44
Yang (10.1016/j.soilbio.2021.108207_bib62) 2019; 31
Zhang (10.1016/j.soilbio.2021.108207_bib64) 2019; 135
Lipson (10.1016/j.soilbio.2021.108207_bib22) 2015; 6
Allison (10.1016/j.soilbio.2021.108207_bib1) 2010; 3
Xiong (10.1016/j.soilbio.2021.108207_bib61) 2020; 458
Wu (10.1016/j.soilbio.2021.108207_bib59) 1990; 22
Lu (10.1016/j.soilbio.2021.108207_bib24) 2011; 189
Mooshammer (10.1016/j.soilbio.2021.108207_bib29) 2014; 5
Knorr (10.1016/j.soilbio.2021.108207_bib19) 2005; 86
Prommer (10.1016/j.soilbio.2021.108207_bib32) 2019; 26
Manzoni (10.1016/j.soilbio.2021.108207_bib26) 2012; 196
Wang (10.1016/j.soilbio.2021.108207_bib55) 2018; 120
Poeplau (10.1016/j.soilbio.2021.108207_bib30) 2019; 130
Widdig (10.1016/j.soilbio.2021.108207_bib57) 2020; 146
Takriti (10.1016/j.soilbio.2021.108207_bib46) 2018; 121
Xia (10.1016/j.soilbio.2021.108207_bib60) 2020; 8
Qu (10.1016/j.soilbio.2021.108207_bib33) 2020; 145
Sterner (10.1016/j.soilbio.2021.108207_bib45) 2002
Ramirez (10.1016/j.soilbio.2021.108207_bib35) 2010; 42
Soong (10.1016/j.soilbio.2021.108207_bib41) 2019; 26
Tian (10.1016/j.soilbio.2021.108207_bib48) 2015; 10
Zhang (10.1016/j.soilbio.2021.108207_bib65) 2018; 12
Vitousek (10.1016/j.soilbio.2021.108207_bib52) 1991; 13
Delgado-Baquerizo (10.1016/j.soilbio.2021.108207_bib10) 2018; 219
Vitousek (10.1016/j.soilbio.2021.108207_bib51) 1997; 7
Cenini (10.1016/j.soilbio.2021.108207_bib6) 2015; 126
Jones (10.1016/j.soilbio.2021.108207_bib17) 2014; 7
Stapleton (10.1016/j.soilbio.2021.108207_bib44) 2005; 37
Ramirez (10.1016/j.soilbio.2021.108207_bib36) 2012; 18
Miltner (10.1016/j.soilbio.2021.108207_bib27) 2012; 111
Cleveland (10.1016/j.soilbio.2021.108207_bib7) 2007; 85
Riggs (10.1016/j.soilbio.2021.108207_bib37) 2016; 99
Domeignoz-Horta (10.1016/j.soilbio.2021.108207_bib13) 2020; 11
Cotrufo (10.1016/j.soilbio.2021.108207_bib8) 2013; 19
Du (10.1016/j.soilbio.2021.108207_bib14) 2020; 13
Wild (10.1016/j.soilbio.2021.108207_bib58) 2015; 29
Soares (10.1016/j.soilbio.2021.108207_bib40) 2019; 131
Wanek (10.1016/j.soilbio.2021.108207_bib54) 2010; 42
Mooshammer (10.1016/j.soilbio.2021.108207_bib28) 2014; 5
Sinsabaugh (10.1016/j.soilbio.2021.108207_bib39) 2009; 462
References_xml – volume: 315
  start-page: 96
  year: 2018
  end-page: 103
  ident: bib3
  article-title: Relationship between microbial composition and substrate use efficiency in a tropical soil
  publication-title: Geoderma
– volume: 126
  start-page: 301
  year: 2015
  end-page: 313
  ident: bib6
  article-title: Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link
  publication-title: Biogeochemistry
– volume: 5
  start-page: 22
  year: 2014
  ident: bib29
  article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources
  publication-title: Front. Microbiol.
– volume: 37
  start-page: 2088
  year: 2005
  end-page: 2098
  ident: bib44
  article-title: Microbial carbon dynamics in nitrogen amended Arctic tundra soil: measurement and model testing
  publication-title: Soil Biol. Biochem.
– volume: 3
  start-page: 395
  year: 2013
  end-page: 398
  ident: bib15
  article-title: The temperature response of soil microbial efficiency and its feedback to climate
  publication-title: Nat. Clim. Chang.
– volume: 99
  start-page: 54
  year: 2016
  end-page: 65
  ident: bib37
  article-title: Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils
  publication-title: Soil Biol. Biochem.
– volume: 96
  start-page: 74
  year: 2016
  end-page: 81
  ident: bib42
  article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth – implications for carbon cycling
  publication-title: Soil Biol. Biochem.
– volume: 19
  start-page: 703
  year: 1987
  end-page: 707
  ident: bib50
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biol. Biochem.
– volume: 13
  start-page: 87
  year: 1991
  end-page: 115
  ident: bib52
  article-title: Nitrogen limitation on land and in the sea: how can it occur?
  publication-title: Biogeochemistry
– volume: 458
  year: 2020
  ident: bib61
  article-title: The effects of warming and nitrogen addition on fine root exudation rates in a young Chinese-fir stand
  publication-title: For. Ecol. Manag.
– volume: 11
  start-page: 3684
  year: 2020
  ident: bib13
  article-title: Microbial diversity drives carbon use efficiency in a model soil
  publication-title: Nature Communications
– volume: 11
  start-page: 1111
  year: 2008
  end-page: 1120
  ident: bib49
  article-title: Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies
  publication-title: Ecol. Lett.
– volume: 19
  start-page: 988
  year: 2013
  end-page: 995
  ident: bib8
  article-title: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
  publication-title: Glob. Chang. Biol.
– volume: 44
  start-page: 302
  year: 2012
  end-page: 311
  ident: bib25
  article-title: Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China
  publication-title: Biotropica
– volume: 196
  start-page: 79
  year: 2012
  end-page: 91
  ident: bib26
  article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils
  publication-title: New Phytologist
– volume: 128
  start-page: 45
  year: 2019
  end-page: 55
  ident: bib66
  article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology
  publication-title: Soil Biol. Biochem.
– volume: 3
  start-page: 336
  year: 2010
  end-page: 340
  ident: bib1
  article-title: Soil-carbon response to warming dependent on microbial physiology
  publication-title: Nat. Geosci.
– volume: 26
  start-page: 713
  year: 2017
  end-page: 728
  ident: bib12
  article-title: Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta‐analysis
  publication-title: Glob. Ecol. Biogeogr.
– volume: 11
  year: 2020
  ident: bib31
  article-title: Carbon use efficiency and its temperature sensitivity covary in soil bacteria
  publication-title: mBio
– volume: 29
  start-page: 567
  year: 2015
  end-page: 582
  ident: bib58
  article-title: Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia
  publication-title: Glob. Biogeochem. Cycles
– volume: 31
  start-page: 190
  year: 2019
  end-page: 204
  ident: bib62
  article-title: Response and driving factors of soil microbial diversity related to global nitrogen addition
  publication-title: Land Degrad. Develop.
– volume: 11
  start-page: 3072
  year: 2020
  ident: bib67
  article-title: Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality
  publication-title: Nat. Commun.
– volume: 40
  start-page: 370
  year: 2008
  end-page: 379
  ident: bib11
  article-title: Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils
  publication-title: Soil Biol. Biochem.
– volume: 320
  start-page: 889
  year: 2008
  end-page: 892
  ident: bib16
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
– volume: 138
  year: 2019
  ident: bib63
  article-title: Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: evidence from a long-term grassland experiment
  publication-title: Soil Biol. Biochem.
– volume: 6
  start-page: 615
  year: 2015
  ident: bib22
  article-title: The complex relationship between microbial growth rate and yield and its implications for ecosystem processes
  publication-title: Front. Microbiol.
– volume: 7
  start-page: 737
  year: 1997
  end-page: 750
  ident: bib51
  article-title: Human alteration of the global nitrogen cycle: sources and consequences
  publication-title: Ecol. Appl.
– volume: 135
  start-page: 304
  year: 2019
  end-page: 315
  ident: bib64
  article-title: Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization
  publication-title: Soil Biol. Biochem.
– volume: 131
  start-page: 195
  year: 2019
  end-page: 205
  ident: bib40
  article-title: Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry
  publication-title: Soil Biol. Biochem.
– volume: 5
  start-page: 3694
  year: 2014
  ident: bib28
  article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling
  publication-title: Nat. Commun.
– volume: 20
  start-page: 30
  year: 2010
  end-page: 59
  ident: bib2
  article-title: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis
  publication-title: Ecol. Appl.
– volume: 121
  start-page: 212
  year: 2018
  end-page: 220
  ident: bib46
  article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect
  publication-title: Soil Biol. Biochem.
– volume: 120
  start-page: 126
  year: 2018
  end-page: 133
  ident: bib55
  article-title: Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition
  publication-title: Soil Biol. Biochem.
– volume: 25
  start-page: 1078
  year: 2019
  end-page: 1088
  ident: bib20
  article-title: Microbes drive global soil nitrogen mineralization and availability
  publication-title: Glob. Chang. Biol.
– volume: 85
  start-page: 235
  year: 2007
  end-page: 252
  ident: bib7
  article-title: C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?
  publication-title: Biogeochemistry
– volume: 97
  start-page: 168
  year: 2016
  end-page: 175
  ident: bib43
  article-title: Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland
  publication-title: Soil Biol. Biochem.
– volume: 13
  start-page: 819
  year: 2010
  end-page: 828
  ident: bib23
  article-title: A global perspective on belowground carbon dynamics under nitrogen enrichment
  publication-title: Ecol. Lett.
– volume: 38
  start-page: 837
  year: 2006
  end-page: 844
  ident: bib47
  article-title: Do growth yield efficiencies differ between soil microbial communities differing in fungal:bacterial ratios? Reality check and methodological issues
  publication-title: Soil Biol. Biochem.
– volume: 26
  start-page: 1953
  year: 2019
  end-page: 1961
  ident: bib41
  article-title: Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling
  publication-title: Glob. Chang. Biol.
– volume: 42
  start-page: 2336
  year: 2010
  end-page: 2338
  ident: bib35
  article-title: Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied
  publication-title: Soil Biol. Biochem.
– volume: 18
  start-page: 1918
  year: 2012
  end-page: 1927
  ident: bib36
  article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes
  publication-title: Glob. Chang. Biol.
– volume: 145
  year: 2020
  ident: bib33
  article-title: Evaluation of the
  publication-title: Soil Biol. Biochem.
– volume: 14
  start-page: 319
  year: 1982
  end-page: 329
  ident: bib5
  article-title: Measurement of microbial biomass phosphorus in soil
  publication-title: Soil Biol. Biochem.
– volume: 7
  start-page: 13630
  year: 2016
  ident: bib18
  article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls
  publication-title: Nat. Commun.
– volume: 134
  start-page: 25
  year: 2019
  end-page: 35
  ident: bib38
  article-title: Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality
  publication-title: Soil Biol. Biochem.
– volume: 141
  year: 2020
  ident: bib56
  article-title: Stabilization of microbial residues in soil organic matter after two years of decomposition
  publication-title: Soil Biol. Biochem.
– volume: 3
  start-page: 13
  year: 2009
  end-page: 17
  ident: bib34
  article-title: Increased tree carbon storage in response to nitrogen deposition in the US
  publication-title: Nat. Geosci.
– volume: 42
  start-page: 1293
  year: 2010
  end-page: 1302
  ident: bib54
  article-title: Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel
  publication-title: Soil Biol. Biochem.
– volume: 2
  start-page: 17105
  year: 2017
  ident: bib21
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat. Microbiol.
– volume: 8
  start-page: 1828
  year: 2020
  ident: bib60
  article-title: Phosphorus reduces negative effects of nitrogen addition on soil microbial communities and functions
  publication-title: Microorganisms
– volume: 111
  start-page: 41
  year: 2012
  end-page: 55
  ident: bib27
  article-title: SOM genesis: microbial biomass as a significant source
  publication-title: Biogeochemistry
– volume: 189
  start-page: 1040
  year: 2011
  end-page: 1050
  ident: bib24
  article-title: Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis
  publication-title: New Phytologist
– volume: 12
  start-page: 1817
  year: 2018
  end-page: 1825
  ident: bib65
  article-title: Global negative effects of nitrogen deposition on soil microbes
  publication-title: ISME J.
– volume: 146
  year: 2020
  ident: bib57
  article-title: Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions
  publication-title: Soil Biol. Biochem.
– volume: 365
  year: 2019
  ident: bib9
  article-title: The global soil community and its influence on biogeochemistry
  publication-title: Science
– volume: 7
  start-page: 76
  year: 2014
  end-page: 88
  ident: bib17
  article-title: A review and application of the evidence for nitrogen impacts on ecosystem services
  publication-title: Ecosyst. Serv.
– volume: 130
  start-page: 167
  year: 2019
  end-page: 176
  ident: bib30
  article-title: Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands
  publication-title: Soil Biol. Biochem.
– volume: 13
  start-page: 221
  year: 2020
  end-page: 226
  ident: bib14
  article-title: Global patterns of terrestrial nitrogen and phosphorus limitation
  publication-title: Nat. Geosci.
– volume: 219
  start-page: 574
  year: 2018
  end-page: 587
  ident: bib10
  article-title: Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe
  publication-title: New Phytologist
– volume: 17
  start-page: 837
  year: 1985
  end-page: 842
  ident: bib4
  article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biol. Biochem.
– volume: 26
  start-page: 669
  year: 2019
  end-page: 681
  ident: bib32
  article-title: Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity
  publication-title: Glob. Chang. Biol.
– volume: 462
  start-page: 795
  year: 2009
  end-page: 798
  ident: bib39
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
– volume: 14
  start-page: 1172
  year: 2004
  end-page: 1177
  ident: bib53
  article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity
  publication-title: Ecol. Appl.
– volume: 22
  start-page: 1167
  year: 1990
  end-page: 1169
  ident: bib59
  article-title: Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure
  publication-title: Soil Biol. Biochem.
– year: 2002
  ident: bib45
  article-title: Ecological Stoichiometry: Biology of Elements from Molecules to the Biosphere
– volume: 10
  year: 2015
  ident: bib48
  article-title: A global analysis of soil acidification caused by nitrogen addition
  publication-title: Environ. Res. Lett.
– volume: 86
  start-page: 3252
  year: 2005
  end-page: 3257
  ident: bib19
  article-title: Nitrogen additions and litter decomposition: a meta-analysis
  publication-title: Ecology
– volume: 189
  start-page: 1040
  year: 2011
  ident: 10.1016/j.soilbio.2021.108207_bib24
  article-title: Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2010.03563.x
– volume: 128
  start-page: 45
  year: 2019
  ident: 10.1016/j.soilbio.2021.108207_bib66
  article-title: Growth explains microbial carbon use efficiency across soils differing in land use and geology
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.10.006
– volume: 462
  start-page: 795
  year: 2009
  ident: 10.1016/j.soilbio.2021.108207_bib39
  article-title: Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment
  publication-title: Nature
  doi: 10.1038/nature08632
– volume: 6
  start-page: 615
  year: 2015
  ident: 10.1016/j.soilbio.2021.108207_bib22
  article-title: The complex relationship between microbial growth rate and yield and its implications for ecosystem processes
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00615
– volume: 365
  year: 2019
  ident: 10.1016/j.soilbio.2021.108207_bib9
  article-title: The global soil community and its influence on biogeochemistry
  publication-title: Science
  doi: 10.1126/science.aav0550
– volume: 25
  start-page: 1078
  year: 2019
  ident: 10.1016/j.soilbio.2021.108207_bib20
  article-title: Microbes drive global soil nitrogen mineralization and availability
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14557
– volume: 11
  start-page: 1111
  year: 2008
  ident: 10.1016/j.soilbio.2021.108207_bib49
  article-title: Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2008.01230.x
– volume: 120
  start-page: 126
  year: 2018
  ident: 10.1016/j.soilbio.2021.108207_bib55
  article-title: Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.02.003
– volume: 17
  start-page: 837
  year: 1985
  ident: 10.1016/j.soilbio.2021.108207_bib4
  article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(85)90144-0
– volume: 22
  start-page: 1167
  year: 1990
  ident: 10.1016/j.soilbio.2021.108207_bib59
  article-title: Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(90)90046-3
– volume: 134
  start-page: 25
  year: 2019
  ident: 10.1016/j.soilbio.2021.108207_bib38
  article-title: Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.03.008
– volume: 8
  start-page: 1828
  year: 2020
  ident: 10.1016/j.soilbio.2021.108207_bib60
  article-title: Phosphorus reduces negative effects of nitrogen addition on soil microbial communities and functions
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8111828
– volume: 5
  start-page: 22
  year: 2014
  ident: 10.1016/j.soilbio.2021.108207_bib29
  article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2014.00022
– volume: 20
  start-page: 30
  year: 2010
  ident: 10.1016/j.soilbio.2021.108207_bib2
  article-title: Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis
  publication-title: Ecol. Appl.
  doi: 10.1890/08-1140.1
– volume: 13
  start-page: 87
  year: 1991
  ident: 10.1016/j.soilbio.2021.108207_bib52
  article-title: Nitrogen limitation on land and in the sea: how can it occur?
  publication-title: Biogeochemistry
  doi: 10.1007/BF00002772
– volume: 11
  start-page: 3684
  year: 2020
  ident: 10.1016/j.soilbio.2021.108207_bib13
  article-title: Microbial diversity drives carbon use efficiency in a model soil
  publication-title: Nature Communications
  doi: 10.1038/s41467-020-17502-z
– volume: 42
  start-page: 2336
  year: 2010
  ident: 10.1016/j.soilbio.2021.108207_bib35
  article-title: Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.08.032
– volume: 11
  start-page: 3072
  year: 2020
  ident: 10.1016/j.soilbio.2021.108207_bib67
  article-title: Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16881-7
– volume: 97
  start-page: 168
  year: 2016
  ident: 10.1016/j.soilbio.2021.108207_bib43
  article-title: Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.03.008
– year: 2002
  ident: 10.1016/j.soilbio.2021.108207_bib45
– volume: 29
  start-page: 567
  year: 2015
  ident: 10.1016/j.soilbio.2021.108207_bib58
  article-title: Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1002/2015GB005084
– volume: 3
  start-page: 336
  year: 2010
  ident: 10.1016/j.soilbio.2021.108207_bib1
  article-title: Soil-carbon response to warming dependent on microbial physiology
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo846
– volume: 99
  start-page: 54
  year: 2016
  ident: 10.1016/j.soilbio.2021.108207_bib37
  article-title: Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.04.023
– volume: 3
  start-page: 13
  year: 2009
  ident: 10.1016/j.soilbio.2021.108207_bib34
  article-title: Increased tree carbon storage in response to nitrogen deposition in the US
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo721
– volume: 12
  start-page: 1817
  year: 2018
  ident: 10.1016/j.soilbio.2021.108207_bib65
  article-title: Global negative effects of nitrogen deposition on soil microbes
  publication-title: ISME J.
  doi: 10.1038/s41396-018-0096-y
– volume: 26
  start-page: 713
  year: 2017
  ident: 10.1016/j.soilbio.2021.108207_bib12
  article-title: Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta‐analysis
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12576
– volume: 86
  start-page: 3252
  year: 2005
  ident: 10.1016/j.soilbio.2021.108207_bib19
  article-title: Nitrogen additions and litter decomposition: a meta-analysis
  publication-title: Ecology
  doi: 10.1890/05-0150
– volume: 131
  start-page: 195
  year: 2019
  ident: 10.1016/j.soilbio.2021.108207_bib40
  article-title: Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.01.010
– volume: 135
  start-page: 304
  year: 2019
  ident: 10.1016/j.soilbio.2021.108207_bib64
  article-title: Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.05.019
– volume: 19
  start-page: 703
  year: 1987
  ident: 10.1016/j.soilbio.2021.108207_bib50
  article-title: An extraction method for measuring soil microbial biomass C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(87)90052-6
– volume: 13
  start-page: 819
  year: 2010
  ident: 10.1016/j.soilbio.2021.108207_bib23
  article-title: A global perspective on belowground carbon dynamics under nitrogen enrichment
  publication-title: Ecol. Lett.
  doi: 10.1111/j.1461-0248.2010.01482.x
– volume: 130
  start-page: 167
  year: 2019
  ident: 10.1016/j.soilbio.2021.108207_bib30
  article-title: Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.12.019
– volume: 145
  year: 2020
  ident: 10.1016/j.soilbio.2021.108207_bib33
  article-title: Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107802
– volume: 85
  start-page: 235
  year: 2007
  ident: 10.1016/j.soilbio.2021.108207_bib7
  article-title: C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-007-9132-0
– volume: 11
  year: 2020
  ident: 10.1016/j.soilbio.2021.108207_bib31
  article-title: Carbon use efficiency and its temperature sensitivity covary in soil bacteria
  publication-title: mBio
  doi: 10.1128/mBio.02293-19
– volume: 18
  start-page: 1918
  year: 2012
  ident: 10.1016/j.soilbio.2021.108207_bib36
  article-title: Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2012.02639.x
– volume: 219
  start-page: 574
  year: 2018
  ident: 10.1016/j.soilbio.2021.108207_bib10
  article-title: Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe
  publication-title: New Phytologist
  doi: 10.1111/nph.15161
– volume: 196
  start-page: 79
  year: 2012
  ident: 10.1016/j.soilbio.2021.108207_bib26
  article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2012.04225.x
– volume: 126
  start-page: 301
  year: 2015
  ident: 10.1016/j.soilbio.2021.108207_bib6
  article-title: Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-015-0157-5
– volume: 38
  start-page: 837
  year: 2006
  ident: 10.1016/j.soilbio.2021.108207_bib47
  article-title: Do growth yield efficiencies differ between soil microbial communities differing in fungal:bacterial ratios? Reality check and methodological issues
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.07.010
– volume: 26
  start-page: 1953
  year: 2019
  ident: 10.1016/j.soilbio.2021.108207_bib41
  article-title: Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14962
– volume: 7
  start-page: 737
  year: 1997
  ident: 10.1016/j.soilbio.2021.108207_bib51
  article-title: Human alteration of the global nitrogen cycle: sources and consequences
  publication-title: Ecol. Appl.
– volume: 141
  year: 2020
  ident: 10.1016/j.soilbio.2021.108207_bib56
  article-title: Stabilization of microbial residues in soil organic matter after two years of decomposition
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.107687
– volume: 2
  start-page: 17105
  year: 2017
  ident: 10.1016/j.soilbio.2021.108207_bib21
  article-title: The importance of anabolism in microbial control over soil carbon storage
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.105
– volume: 315
  start-page: 96
  year: 2018
  ident: 10.1016/j.soilbio.2021.108207_bib3
  article-title: Relationship between microbial composition and substrate use efficiency in a tropical soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.11.026
– volume: 5
  start-page: 3694
  year: 2014
  ident: 10.1016/j.soilbio.2021.108207_bib28
  article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4694
– volume: 14
  start-page: 319
  year: 1982
  ident: 10.1016/j.soilbio.2021.108207_bib5
  article-title: Measurement of microbial biomass phosphorus in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(82)90001-3
– volume: 3
  start-page: 395
  year: 2013
  ident: 10.1016/j.soilbio.2021.108207_bib15
  article-title: The temperature response of soil microbial efficiency and its feedback to climate
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate1796
– volume: 96
  start-page: 74
  year: 2016
  ident: 10.1016/j.soilbio.2021.108207_bib42
  article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth – implications for carbon cycling
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.01.016
– volume: 14
  start-page: 1172
  year: 2004
  ident: 10.1016/j.soilbio.2021.108207_bib53
  article-title: Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity
  publication-title: Ecol. Appl.
  doi: 10.1890/03-5120
– volume: 31
  start-page: 190
  year: 2019
  ident: 10.1016/j.soilbio.2021.108207_bib62
  article-title: Response and driving factors of soil microbial diversity related to global nitrogen addition
  publication-title: Land Degrad. Develop.
  doi: 10.1002/ldr.3439
– volume: 13
  start-page: 221
  year: 2020
  ident: 10.1016/j.soilbio.2021.108207_bib14
  article-title: Global patterns of terrestrial nitrogen and phosphorus limitation
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0530-4
– volume: 10
  year: 2015
  ident: 10.1016/j.soilbio.2021.108207_bib48
  article-title: A global analysis of soil acidification caused by nitrogen addition
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/10/2/024019
– volume: 7
  start-page: 76
  year: 2014
  ident: 10.1016/j.soilbio.2021.108207_bib17
  article-title: A review and application of the evidence for nitrogen impacts on ecosystem services
  publication-title: Ecosyst. Serv.
  doi: 10.1016/j.ecoser.2013.09.001
– volume: 37
  start-page: 2088
  year: 2005
  ident: 10.1016/j.soilbio.2021.108207_bib44
  article-title: Microbial carbon dynamics in nitrogen amended Arctic tundra soil: measurement and model testing
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.03.016
– volume: 26
  start-page: 669
  year: 2019
  ident: 10.1016/j.soilbio.2021.108207_bib32
  article-title: Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14777
– volume: 44
  start-page: 302
  year: 2012
  ident: 10.1016/j.soilbio.2021.108207_bib25
  article-title: Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China
  publication-title: Biotropica
  doi: 10.1111/j.1744-7429.2011.00831.x
– volume: 42
  start-page: 1293
  year: 2010
  ident: 10.1016/j.soilbio.2021.108207_bib54
  article-title: Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.04.001
– volume: 320
  start-page: 889
  year: 2008
  ident: 10.1016/j.soilbio.2021.108207_bib16
  article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions
  publication-title: Science
  doi: 10.1126/science.1136674
– volume: 121
  start-page: 212
  year: 2018
  ident: 10.1016/j.soilbio.2021.108207_bib46
  article-title: Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.02.022
– volume: 111
  start-page: 41
  year: 2012
  ident: 10.1016/j.soilbio.2021.108207_bib27
  article-title: SOM genesis: microbial biomass as a significant source
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-011-9658-z
– volume: 138
  year: 2019
  ident: 10.1016/j.soilbio.2021.108207_bib63
  article-title: Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: evidence from a long-term grassland experiment
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2019.107580
– volume: 40
  start-page: 370
  year: 2008
  ident: 10.1016/j.soilbio.2021.108207_bib11
  article-title: Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.08.019
– volume: 7
  start-page: 13630
  year: 2016
  ident: 10.1016/j.soilbio.2021.108207_bib18
  article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13630
– volume: 146
  year: 2020
  ident: 10.1016/j.soilbio.2021.108207_bib57
  article-title: Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.107815
– volume: 19
  start-page: 988
  year: 2013
  ident: 10.1016/j.soilbio.2021.108207_bib8
  article-title: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12113
– volume: 458
  year: 2020
  ident: 10.1016/j.soilbio.2021.108207_bib61
  article-title: The effects of warming and nitrogen addition on fine root exudation rates in a young Chinese-fir stand
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2019.117793
SSID ssj0002513
Score 2.6320193
Snippet Microbial elements use efficiencies are the important parameters in regulating soil carbon (C) and nitrogen (N) mineralization processes. Microbial C use...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108207
SubjectTerms biochemistry
forest soils
Global N deposition
microbial biomass
Microbial carbon use efficiency
microbial communities
Microbial community
mineral soils
mineralization
nitrogen
Nitrogen use efficiency
nutrient use efficiency
phosphorus
soil biology
soil carbon
Stoichiometry
temperate forests
Title Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition
URI https://dx.doi.org/10.1016/j.soilbio.2021.108207
https://www.proquest.com/docview/2551981753
Volume 156
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQHAqHiq8KaItciWvYZONN7ONqVbRQlUtB4mZl_FGC2CzazR564bczEzulVEhIHONorMgzmhkr771h7EQWZeoJilP5skqEkjapLEAirM9HoixAZMRG_nlZTK_Fxc3oZo1Nei4MwSpj7g85vcvWcWUQT3PwUNfE8SWxdLrCUKELDHbcHWP69PEZ5oH1OwrvSiLrlM8snsEd6eXeQ00cwGFGaLshTZV9vT79l6m78nO2zT7GvpGPw6ftsDXX7LKt8e9F1M5wu-zDpB_etsdWv9p5bW6JW08S_LyeAWEYjeNVY_ms7uSXcD8T-CHtH74IQ-ndPy9dgJYv-WrpuOu0JhzN8sUFosRwtFvMMQA5gZLIwfvs-uz71WSaxAkLiRGpbBNf5UUhU6i8zHzqHHUzeE8FLOO2HBWmAOzQVJkDKCNVNsRHUFblkJZY5HKXf2LrzbxxB4x7O4Jc5amvlBC2MABD47EbwWRrJdjykIn-XLWJ8uM0BeNe9zizOx3dockdOrjjkJ3-NXsI-htvGcjeafpFIGmsEW-ZfuudrNFd9Oekatx8tdR478qUJFHTo_dv_5lt0lNAS35h6-1i5b5iR9PCcReyx2xjfP5jevkEDmn4qQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6h8lD2gEYBDdjASHsNTRonsR-raqgM6MtA4s3K-ccWBClq0wf-e3yNwzY0CWmPsXWW5bPuzsr3fQfwVeRF7AiKU7qijLgUJioNYsSNSzNe5MgTYiNfz_LpLf9-l91twKTjwhCsMsT-Nqavo3UYGYbTHD5VFXF8SSydnjCU6IjBvknqVFkPNscXl9PZa0D2KTxo7wri6xS_iTzDe5LMfcCKaICjhAB3I2os--8U9SZYrzPQ-UfYDqUjG7e724ENWw_gw_jnIshn2AH0J13_tl1Y_Wjmlf5F9HpS4WfVIxKMUVtW1oY9VmsFJr-ebikizTNbtH3p7R-TtkWXL9lqaZldy01YaufrB4gVw7zdYu7vICNcEvl4D27Pv91MplFoshBpHosmcmWa5yLG0onExdZSQeOfqugzuSmyXOfoizRZpIhSC5mM_CdKI1OMC5_nUpvuQ6-e1_YTMGcyTGUau1JybnKNONLOFyQ-3hqBpjgA3p2r0kGBnBphPKgOanavgjsUuUO17jiAs1ezp1aC4z0D0TlN_XWXlE8T75medk5W3l3086Ss7Xy1VP7plUhBuqaH_7_8CfSnN9dX6upidnkEWzTTgic_Q69ZrOwXX-A0eBwu8AuLgfta
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stoichiometric+imbalance+and+microbial+community+regulate+microbial+elements+use+efficiencies+under+nitrogen+addition&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Angremy%2C+Berenice&rft.au=Sang%2C+Changpeng&rft.au=Yang%2C+Jingyi&rft.au=Qu%2C+Lingrui&rft.date=2021-05-01&rft.issn=0038-0717&rft.volume=156+p.108207-&rft_id=info:doi/10.1016%2Fj.soilbio.2021.108207&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon