3D micromechanical modeling of dual phase steels using the representative volume element method
•Fundamentals of the RVE technique are summarized. It is a good start for keen readers to learn this method.•Statistical quantitative metallography data is used to generate 3D RVEs very similar to the actual microstructure. More than 3000 grains were analyzed in each steel.•Morphology of martensite...
Saved in:
Published in | Mechanics of materials Vol. 101; pp. 27 - 39 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Fundamentals of the RVE technique are summarized. It is a good start for keen readers to learn this method.•Statistical quantitative metallography data is used to generate 3D RVEs very similar to the actual microstructure. More than 3000 grains were analyzed in each steel.•Morphology of martensite is included in the 3D RVEs. Hence, steel supplier can optimize both fraction and morphology of martensite in the microstructure.•Using the present model, steel suppliers can predict the UTS of DP500 and DP600 steels with error less than 0.5% before production.•Optimized RVE size, mesh size and element type are reported.
There is a steady increase in the implementation of dual phase steels in stamped automotive components. Therefore, steel suppliers who develop dual phase steels are interested in predicting the microstructure-properties relationship for optimization of microstructural design. This goal is achievable by micromechanical modeling. The representative volume element (RVE) method has been a popular technique for micromechanical modeling of dual phase steels. It is generally considered that 2D modeling underestimates the flow curves and that 3D modeling predicts the experimental stress-strain curves more accurately. However, much of the research has focused on 2D modeling. This paper develops 3D micromechanical modeling of DP500 and bainite-aided DP600 steels by including statistical quantitative metallography data in the models. More than 3000 grains were analyzed in each steel. Hence, both volume fraction and morphology of martensite were statistically determined. This model predicted the ultimate tensile strength of these two dual phase steels with less than 0.5% error.
[Display omitted] |
---|---|
AbstractList | There is a steady increase in the implementation of dual phase steels in stamped automotive components. Therefore, steel suppliers who develop dual phase steels are interested in predicting the microstructure-properties relationship for optimization of microstructural design. This goal is achievable by micromechanical modeling. The representative volume element (RVE) method has been a popular technique for micromechanical modeling of dual phase steels. It is generally considered that 2D modeling underestimates the flow curves and that 3D modeling predicts the experimental stress-strain curves more accurately. However, much of the research has focused on 2D modeling. This paper develops 3D micromechanical modeling of DP500 and bainite-aided DP600 steels by including statistical quantitative metallography data in the models. More than 3000 grains were analyzed in each steel. Hence, both volume fraction and morphology of martensite were statistically determined. This model predicted the ultimate tensile strength of these two dual phase steels with less than 0.5% error. •Fundamentals of the RVE technique are summarized. It is a good start for keen readers to learn this method.•Statistical quantitative metallography data is used to generate 3D RVEs very similar to the actual microstructure. More than 3000 grains were analyzed in each steel.•Morphology of martensite is included in the 3D RVEs. Hence, steel supplier can optimize both fraction and morphology of martensite in the microstructure.•Using the present model, steel suppliers can predict the UTS of DP500 and DP600 steels with error less than 0.5% before production.•Optimized RVE size, mesh size and element type are reported. There is a steady increase in the implementation of dual phase steels in stamped automotive components. Therefore, steel suppliers who develop dual phase steels are interested in predicting the microstructure-properties relationship for optimization of microstructural design. This goal is achievable by micromechanical modeling. The representative volume element (RVE) method has been a popular technique for micromechanical modeling of dual phase steels. It is generally considered that 2D modeling underestimates the flow curves and that 3D modeling predicts the experimental stress-strain curves more accurately. However, much of the research has focused on 2D modeling. This paper develops 3D micromechanical modeling of DP500 and bainite-aided DP600 steels by including statistical quantitative metallography data in the models. More than 3000 grains were analyzed in each steel. Hence, both volume fraction and morphology of martensite were statistically determined. This model predicted the ultimate tensile strength of these two dual phase steels with less than 0.5% error. [Display omitted] |
Author | Amirmaleki, Maedeh van Riemsdijk, Isadora Green, Daniel E. Stewart, Lorna Samei, Javad |
Author_xml | – sequence: 1 givenname: Maedeh surname: Amirmaleki fullname: Amirmaleki, Maedeh organization: Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada – sequence: 2 givenname: Javad orcidid: 0000-0002-2951-8036 surname: Samei fullname: Samei, Javad email: sameij@uwindsor.ca organization: Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada – sequence: 3 givenname: Daniel E. surname: Green fullname: Green, Daniel E. organization: Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada – sequence: 4 givenname: Isadora surname: van Riemsdijk fullname: van Riemsdijk, Isadora organization: ArcelorMittal Global Research, Hamilton Laboratory, 1330 Burlington Street East, Hamilton, ON L8N 3J5, Canada – sequence: 5 givenname: Lorna surname: Stewart fullname: Stewart, Lorna organization: ArcelorMittal Global Research, Hamilton Laboratory, 1330 Burlington Street East, Hamilton, ON L8N 3J5, Canada |
BookMark | eNqFkE9r3DAQxUVJoJs_HyGgYy52JUu2LHIoJU2bQCCX9Cy00jirRbI2krzQb1-ZzamXnIZ5M-_B-12gsznOgNANJS0ldPi2bwOYXdCl7eraEtESSr-gDR1F1wjB2Rna1INohoENX9FFzntCSC97sUGK_cTBmRTXCD07oz0O0YJ38xuOE7ZLFQ47nQHnAuAzXvJ6KjvACQ4JMsxFF3cEfIx-CYDBQ6gaDlB20V6h80n7DNcf8xL9-fXwev_YPL_8frr_8dwYTsbSTJpKLg3v-SQsMDA9M5NgY98JKagctqMZ5dZshdQds0R0HHorLVje8YkAYZfo9pR7SPF9gVxUcNmA93qGuGRFR9YPhHRc1te702ttnXOCSRm3VohzSdp5RYlasaq9-sCqVqyKCFWxVnf_n_uQXNDp76e-7ydfZQhHB0ll42A2YF0CU5SN7pOEfz1jmMM |
CitedBy_id | crossref_primary_10_1016_j_msea_2021_142582 crossref_primary_10_1016_j_ijmecsci_2019_105133 crossref_primary_10_1016_j_ceramint_2016_11_157 crossref_primary_10_1016_j_probengmech_2023_103571 crossref_primary_10_1080_23311916_2023_2297470 crossref_primary_10_1016_j_probengmech_2021_103170 crossref_primary_10_1016_j_ijmecsci_2024_109719 crossref_primary_10_1016_j_mechmat_2018_11_015 crossref_primary_10_1088_1361_651X_ad200b crossref_primary_10_1016_j_scriptamat_2019_08_012 crossref_primary_10_3390_ma17205004 crossref_primary_10_1016_j_mtcomm_2022_103125 crossref_primary_10_1016_j_engfracmech_2018_01_026 crossref_primary_10_1016_j_ijmecsci_2023_108850 crossref_primary_10_1016_j_msea_2020_140155 crossref_primary_10_1016_j_mechmat_2021_103961 crossref_primary_10_1002_mawe_202200242 crossref_primary_10_1088_2053_1591_ab4bb7 crossref_primary_10_1016_j_matchemphys_2023_128850 crossref_primary_10_1007_s11665_019_04029_8 crossref_primary_10_1016_j_matdes_2021_109544 crossref_primary_10_1155_2020_8159058 crossref_primary_10_3390_ma15217531 crossref_primary_10_1016_j_optlastec_2022_108713 crossref_primary_10_1115_1_4056033 crossref_primary_10_1016_j_addma_2021_102068 crossref_primary_10_1007_s11661_018_4563_x crossref_primary_10_1016_j_ijplas_2022_103435 crossref_primary_10_1016_j_engfracmech_2018_04_026 crossref_primary_10_1088_1757_899X_175_1_012040 crossref_primary_10_1016_j_matpr_2018_06_165 crossref_primary_10_1007_s12289_022_01731_2 crossref_primary_10_1016_j_jeurceramsoc_2017_11_038 crossref_primary_10_1115_1_4039292 crossref_primary_10_1088_1742_6596_1368_2_022025 crossref_primary_10_1088_2051_672X_abc0f8 crossref_primary_10_1007_s12540_019_00519_5 crossref_primary_10_1016_j_finel_2020_103510 crossref_primary_10_1109_ACCESS_2021_3050745 crossref_primary_10_1016_j_compscitech_2021_108964 crossref_primary_10_1016_j_cja_2021_12_011 crossref_primary_10_1016_j_ijplas_2023_103745 crossref_primary_10_1007_s11665_024_09542_z crossref_primary_10_1016_j_ijplas_2017_12_009 crossref_primary_10_1016_j_prostr_2019_12_087 crossref_primary_10_1016_j_applthermaleng_2019_113949 crossref_primary_10_1016_j_msea_2022_143301 crossref_primary_10_1002_srin_202000536 crossref_primary_10_1016_j_ijplas_2019_02_005 crossref_primary_10_1007_s10853_020_04715_2 crossref_primary_10_3390_condmat7010022 crossref_primary_10_1007_s11661_020_05764_7 crossref_primary_10_1016_j_jmps_2023_105367 crossref_primary_10_1016_j_mechmat_2025_105275 crossref_primary_10_1021_acsomega_2c06716 crossref_primary_10_1007_s13632_024_01139_1 crossref_primary_10_1007_s11661_017_4351_z crossref_primary_10_1016_j_tafmec_2020_102687 crossref_primary_10_4028_www_scientific_net_MSF_930_349 crossref_primary_10_1007_s11665_020_04877_9 crossref_primary_10_35784_acs_2017_23 crossref_primary_10_1016_j_ijplas_2024_103930 |
Cites_doi | 10.1017/S0305004100061818 10.1002/pamm.201110243 10.1016/j.matdes.2015.12.103 10.1002/nme.541 10.1016/j.ijmecsci.2003.10.007 10.1016/S0927-0256(02)00256-2 10.1016/j.actamat.2015.05.038 10.1179/174328405X47609 10.1088/0965-0393/21/5/055001 10.1016/j.engfracmech.2010.08.017 10.1016/j.matlet.2009.08.015 10.1016/j.msea.2012.09.046 10.4028/www.scientific.net/MSF.426-432.4525 10.1016/0001-6160(73)90064-3 10.1016/0022-5096(63)90036-X 10.1016/j.commatsci.2011.05.041 10.1051/metal:2002182 10.1007/s11665-012-0438-2 10.1016/0025-5416(70)90081-9 10.1016/j.actamat.2011.03.062 10.1007/s00419-015-1044-1 10.1016/S0167-6636(98)00073-8 10.1016/S0167-6636(00)00019-3 10.1016/S0020-7683(98)00341-2 10.1016/j.msea.2013.09.056 10.1115/1.4027940 10.1016/j.msea.2010.01.004 10.1016/j.commatsci.2013.05.017 10.1016/j.commatsci.2012.05.061 10.1146/annurev-matsci-070214-021103 10.1016/j.actamat.2014.07.071 10.1115/1.4027492 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.mechmat.2016.07.011 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7743 |
EndPage | 39 |
ExternalDocumentID | 10_1016_j_mechmat_2016_07_011 S0167663616301582 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M24 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SST SSZ T5K WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c408t-fa1949c454f7de3ec53cf73852797196b8c89bcb79a23d0724e5d9ded424f0e03 |
IEDL.DBID | .~1 |
ISSN | 0167-6636 |
IngestDate | Fri Jul 11 00:43:37 EDT 2025 Tue Jul 01 03:20:16 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Fri Feb 23 02:27:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 3D modeling Representative volume element Microstructural design Quantitative metallography Dual phase steels Micromechanical modeling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-fa1949c454f7de3ec53cf73852797196b8c89bcb79a23d0724e5d9ded424f0e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2951-8036 |
PQID | 1835600249 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1835600249 crossref_citationtrail_10_1016_j_mechmat_2016_07_011 crossref_primary_10_1016_j_mechmat_2016_07_011 elsevier_sciencedirect_doi_10_1016_j_mechmat_2016_07_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2016 2016-10-00 20161001 |
PublicationDateYYYYMMDD | 2016-10-01 |
PublicationDate_xml | – month: 10 year: 2016 text: October 2016 |
PublicationDecade | 2010 |
PublicationTitle | Mechanics of materials |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Paul (bib0020) 2013; 21 Paul, Kumar (bib0021) 2012; 63 Liedl, Traint, Werner (bib0018) 2002; 25 Gil Sevillano (bib0010) 1993 Thomser, C., Uthaisangsuk, V., Bleck, W., 2009. Influence of martensite distribution on the mechanical properties of dual phase steels : experiments and simulation 80. doi Buessler, P., 1999. ECSC steel RTD first report. Kadkhodapour, Schmauder, Raabe, Ziaei-Rad, Weber, Calcagnotto (bib0015) 2011; 59 Sluis, O. Van Der, Schreurs, P.J.G., Brekelmans, W.A.M., Meijer, H.E.H., 2000. Overall behaviour of heterogeneous elastoviscoplastic materials : effect of microstructural modelling 32, 449–462. Brands, Balzani, Scheunemann, Schröder, Richter, Raabe (bib0005) 2016; 86 Kouznetsova (bib0016) 2002 Ramazani, Pinard, Richter, Schwedt, Prahl (bib0025) 2013; 80 Ramazani, Mukherjee, Quade, Prahl, Bleck (bib0024) 2013; 560 Bergstrom (bib0003) 1970; 5 Rodriguez, Gutierrez (bib0026) 2003; 426-432 Samei, Green, Golovashchenko, Hassannejadasl (bib0030) 2013; 22 Brands, Schröder, Balzani, Dmitrieva, Raabe (bib0006) 2011; 11 Samei, Green, Cheng, de Carvalho Lima (bib0027) 2016; 92 Uthaisangsuk, Prahl, Bleck (bib0037) 2011; 78 Hwang, Cao, Shin, Kim, Lee, Kim (bib0014) 2005; 21 Sodjit, Uthaisangsuk (bib0032) 2012; 22 Terada, Hori, Kyoya, Kikuchi (bib0035) 2000; 37 Gündüz (bib0011) 2009; 63 Tasan, Diehl, Yan, Bechtold, Roters, Schemmann, Zheng, Peranio, Ponge, Koyama, Tsuzaki, Raabe (bib0033) 2015; 45 Calcagnotto, Ponge, Demir, Raabe (bib0008) 2010; 527 Abbaschian, Abbaschian, Reed-Hill (bib0001) 2008 Samei, Green, Golovashchenko (bib0029) 2014; 136 Cottrell, Bilby (bib0009) 1949; 62 Ramazani, Mukherjee, Abdurakhmanov, Prahl, Schleser, Reisgen, Bleck (bib0022) 2014; 589 . Bouaziz, Irsid, Group, Usinor (bib0004) 2002; 99 Nemat-Nasser (bib0100) 1999; 31 Ramazani, Mukherjee, Prahl, Bleck (bib0023) 2012; 52 Yan, Tasan, Raabe (bib0038) 2015; 96 Tasan, Diehl, Yan, Zambaldi, Shanthraj, Roters, Raabe (bib0034) 2014; 81 Hill (bib0013) 1963; 11 Mori, Tanaka (bib0019) 1973; 21 Kouznetsova, Geers, Brekelmans (bib0017) 2002; 54 Samei, Green, Golovashchenko (bib0028) 2014; 136 Hill (bib0012) 1984; 95 Al-Abbasi, Nemes (bib0002) 2003; 45 Liedl (10.1016/j.mechmat.2016.07.011_bib0018) 2002; 25 Tasan (10.1016/j.mechmat.2016.07.011_bib0034) 2014; 81 Kouznetsova (10.1016/j.mechmat.2016.07.011_bib0016) 2002 Samei (10.1016/j.mechmat.2016.07.011_bib0030) 2013; 22 Bergstrom (10.1016/j.mechmat.2016.07.011_bib0003) 1970; 5 Samei (10.1016/j.mechmat.2016.07.011_bib0028) 2014; 136 Cottrell (10.1016/j.mechmat.2016.07.011_bib0009) 1949; 62 Rodriguez (10.1016/j.mechmat.2016.07.011_bib0026) 2003; 426-432 Mori (10.1016/j.mechmat.2016.07.011_bib0019) 1973; 21 10.1016/j.mechmat.2016.07.011_bib0007 Hill (10.1016/j.mechmat.2016.07.011_bib0012) 1984; 95 Brands (10.1016/j.mechmat.2016.07.011_bib0006) 2011; 11 Sodjit (10.1016/j.mechmat.2016.07.011_bib0032) 2012; 22 Brands (10.1016/j.mechmat.2016.07.011_bib0005) 2016; 86 Kouznetsova (10.1016/j.mechmat.2016.07.011_bib0017) 2002; 54 Ramazani (10.1016/j.mechmat.2016.07.011_bib0023) 2012; 52 Ramazani (10.1016/j.mechmat.2016.07.011_bib0024) 2013; 560 Calcagnotto (10.1016/j.mechmat.2016.07.011_bib0008) 2010; 527 Uthaisangsuk (10.1016/j.mechmat.2016.07.011_bib0037) 2011; 78 Yan (10.1016/j.mechmat.2016.07.011_bib0038) 2015; 96 Paul (10.1016/j.mechmat.2016.07.011_bib0020) 2013; 21 Ramazani (10.1016/j.mechmat.2016.07.011_bib0022) 2014; 589 Samei (10.1016/j.mechmat.2016.07.011_bib0027) 2016; 92 Bouaziz (10.1016/j.mechmat.2016.07.011_bib0004) 2002; 99 Paul (10.1016/j.mechmat.2016.07.011_bib0021) 2012; 63 Hill (10.1016/j.mechmat.2016.07.011_bib0013) 1963; 11 Tasan (10.1016/j.mechmat.2016.07.011_bib0033) 2015; 45 Abbaschian (10.1016/j.mechmat.2016.07.011_bib0001) 2008 10.1016/j.mechmat.2016.07.011_bib0031 Terada (10.1016/j.mechmat.2016.07.011_bib0035) 2000; 37 10.1016/j.mechmat.2016.07.011_bib0036 Samei (10.1016/j.mechmat.2016.07.011_bib0029) 2014; 136 Gil Sevillano (10.1016/j.mechmat.2016.07.011_bib0010) 1993 Ramazani (10.1016/j.mechmat.2016.07.011_bib0025) 2013; 80 Kadkhodapour (10.1016/j.mechmat.2016.07.011_bib0015) 2011; 59 Al-Abbasi (10.1016/j.mechmat.2016.07.011_bib0002) 2003; 45 Hwang (10.1016/j.mechmat.2016.07.011_bib0014) 2005; 21 Gündüz (10.1016/j.mechmat.2016.07.011_bib0011) 2009; 63 Nemat-Nasser (10.1016/j.mechmat.2016.07.011_bib0100) 1999; 31 |
References_xml | – volume: 31 start-page: 493 year: 1999 end-page: 523 ident: bib0100 article-title: Averaging theorems in finite deformation plasticity publication-title: Mech. Mater. – volume: 99 start-page: 71 year: 2002 end-page: 77 ident: bib0004 article-title: Mechanical behaviour of multiphase materials : an intermediate mixture law without fitting parameter publication-title: Rev. Métallurgie – volume: 560 start-page: 129 year: 2013 end-page: 139 ident: bib0024 article-title: Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach publication-title: Mater. Sci. Eng. A – volume: 136 year: 2014 ident: bib0029 article-title: Metallurgical investigations on hyperplasticity in dual phase steel sheets publication-title: J. Manuf. Sci. Eng. – volume: 25 start-page: 122 year: 2002 end-page: 128 ident: bib0018 article-title: An unexpected feature of the stress–strain diagram of dual-phase steel publication-title: Comput. Mater. Sci. – volume: 22 start-page: 2080 year: 2013 end-page: 2088 ident: bib0030 article-title: Quantitative microstructural analysis of formability enhancement in dual phase steels subject to electrohydraulic forming publication-title: J. Mater. Eng. Perform. – volume: 81 start-page: 386 year: 2014 end-page: 400 ident: bib0034 article-title: Integrated experimental – simulation analysis of stress and strain partitioning in multiphase alloys publication-title: Acta Mater – volume: 22 start-page: 87 year: 2012 end-page: 97 ident: bib0032 article-title: A micromechanical flow curve model for dual phase steels publication-title: J. Met. Mater. Miner. – volume: 21 year: 2013 ident: bib0020 article-title: Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual-phase steel publication-title: Model. Simul. Mater. Sci. Eng. – volume: 96 start-page: 399 year: 2015 end-page: 409 ident: bib0038 article-title: High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels publication-title: Acta Mater – volume: 426-432 start-page: 4525 year: 2003 end-page: 4530 ident: bib0026 article-title: Unified formulation to predict the tensile curves of steels with different microstructures publication-title: Mater. Sci. Forum – start-page: 19 year: 1993 end-page: 88 ident: bib0010 article-title: Flow stress and work hardening publication-title: Plastic Deformation of Materials – reference: Sluis, O. Van Der, Schreurs, P.J.G., Brekelmans, W.A.M., Meijer, H.E.H., 2000. Overall behaviour of heterogeneous elastoviscoplastic materials : effect of microstructural modelling 32, 449–462. – volume: 54 start-page: 1235 year: 2002 end-page: 1260 ident: bib0017 article-title: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme publication-title: Int. J. Numer. Methods Eng. – year: 2008 ident: bib0001 article-title: Physical Metallurgy Principles – volume: 59 start-page: 4387 year: 2011 end-page: 4394 ident: bib0015 article-title: Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels publication-title: Acta Mater – volume: 11 start-page: 357 year: 1963 end-page: 372 ident: bib0013 article-title: Elastic properties of reinforced solids: some theoretical principles publication-title: J. Mech. Phys. Solids – reference: Buessler, P., 1999. ECSC steel RTD first report. – volume: 11 start-page: 503 year: 2011 end-page: 504 ident: bib0006 article-title: On the reconstruction and computation of dual-phase steel microstructures based on 3D EBSD data publication-title: Pamm – volume: 62 start-page: 49 year: 1949 end-page: 62 ident: bib0009 article-title: Dislocation theory of yielding and strain ageing of iron – year: 2002 ident: bib0016 article-title: Computational Homogenization for the Multi-Scale Analysis of Multi-Phase Materials – volume: 527 start-page: 2738 year: 2010 end-page: 2746 ident: bib0008 article-title: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD publication-title: Mater. Sci. Eng. A – volume: 63 start-page: 66 year: 2012 end-page: 74 ident: bib0021 article-title: Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels publication-title: Comput. Mater. Sci. – volume: 80 start-page: 134 year: 2013 end-page: 141 ident: bib0025 article-title: Characterisation of microstructure and modelling of flow behaviour of bainite-aided dual-phase steel publication-title: Comput. Mater. Sci. – reference: Thomser, C., Uthaisangsuk, V., Bleck, W., 2009. Influence of martensite distribution on the mechanical properties of dual phase steels : experiments and simulation 80. doi: – volume: 37 start-page: 2285 year: 2000 end-page: 2311 ident: bib0035 article-title: Simulation of the multi-scale convergence in computational homogenization approaches publication-title: Int. J. Solids Struct. – volume: 95 start-page: 481 year: 1984 end-page: 494 ident: bib0012 article-title: On macroscopic effects of heterogeneity in elastoplastic media at finite strain publication-title: Math. Proc. Cambridge Philos. Soc. – volume: 52 start-page: 46 year: 2012 end-page: 54 ident: bib0023 article-title: Modelling the effect of microstructural banding on the flow curve behaviour of dual-phase (DP) steels publication-title: Comput. Mater. Sci. – reference: . – volume: 78 start-page: 469 year: 2011 end-page: 486 ident: bib0037 article-title: Modelling of damage and failure in multiphase high strength DP and TRIP steels publication-title: Eng. Fract. Mech. – volume: 63 start-page: 2381 year: 2009 end-page: 2383 ident: bib0011 article-title: Effect of chemical composition, martensite volume fraction and tempering on tensile behaviour of dual phase steels publication-title: Mater. Lett. – volume: 45 start-page: 1449 year: 2003 end-page: 1465 ident: bib0002 article-title: Micromechanical modeling of dual phase steels publication-title: Int. J. Mech. Sci. – volume: 136 year: 2014 ident: bib0028 article-title: Analysis of failure in dual phase steel sheets subject to electrohydraulic forming publication-title: J. Manuf. Sci. Eng. – volume: 92 start-page: 1028 year: 2016 end-page: 1037 ident: bib0027 article-title: Influence of strain path on nucleation and growth of voids in dual phase steel sheets publication-title: Mater. Des. – volume: 21 start-page: 571 year: 1973 end-page: 574 ident: bib0019 article-title: Average stress in matrix and avegare elastic energy of materials with misfitting inclusions publication-title: Acta Metall – volume: 21 start-page: 967 year: 2005 end-page: 975 ident: bib0014 article-title: Effects of ferrite grain size and martensite volume fraction on dynamic deformation behaviour of 0·15C–2·0Mn–0·2Si dual phase steels publication-title: Mater. Sci. Technol. – volume: 5 start-page: 193 year: 1970 end-page: 200 ident: bib0003 article-title: A dislocation model for the stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations publication-title: Mater. Sci. Eng. – volume: 86 start-page: 575 year: 2016 end-page: 598 ident: bib0005 article-title: Computational modeling of dual-phase steels based on representative three-dimensional microstructures obtained from EBSD data publication-title: Arch. Appl. Mech. – volume: 589 start-page: 1 year: 2014 end-page: 14 ident: bib0022 article-title: Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel publication-title: Mater. Sci. Eng. A – volume: 45 start-page: 391 year: 2015 end-page: 431 ident: bib0033 article-title: An overview of dual-phase steels : advances in processing and micromechanically guided design publication-title: Annu. Rev. Mater. Res. – volume: 62 start-page: 49 year: 1949 ident: 10.1016/j.mechmat.2016.07.011_bib0009 article-title: Dislocation theory of yielding and strain ageing of iron – volume: 95 start-page: 481 year: 1984 ident: 10.1016/j.mechmat.2016.07.011_bib0012 article-title: On macroscopic effects of heterogeneity in elastoplastic media at finite strain publication-title: Math. Proc. Cambridge Philos. Soc. doi: 10.1017/S0305004100061818 – volume: 11 start-page: 503 year: 2011 ident: 10.1016/j.mechmat.2016.07.011_bib0006 article-title: On the reconstruction and computation of dual-phase steel microstructures based on 3D EBSD data publication-title: Pamm doi: 10.1002/pamm.201110243 – volume: 92 start-page: 1028 year: 2016 ident: 10.1016/j.mechmat.2016.07.011_bib0027 article-title: Influence of strain path on nucleation and growth of voids in dual phase steel sheets publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.12.103 – volume: 54 start-page: 1235 year: 2002 ident: 10.1016/j.mechmat.2016.07.011_bib0017 article-title: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.541 – ident: 10.1016/j.mechmat.2016.07.011_bib0007 – volume: 22 start-page: 87 year: 2012 ident: 10.1016/j.mechmat.2016.07.011_bib0032 article-title: A micromechanical flow curve model for dual phase steels publication-title: J. Met. Mater. Miner. – volume: 45 start-page: 1449 year: 2003 ident: 10.1016/j.mechmat.2016.07.011_bib0002 article-title: Micromechanical modeling of dual phase steels publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2003.10.007 – volume: 25 start-page: 122 year: 2002 ident: 10.1016/j.mechmat.2016.07.011_bib0018 article-title: An unexpected feature of the stress–strain diagram of dual-phase steel publication-title: Comput. Mater. Sci. doi: 10.1016/S0927-0256(02)00256-2 – volume: 96 start-page: 399 year: 2015 ident: 10.1016/j.mechmat.2016.07.011_bib0038 article-title: High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels publication-title: Acta Mater doi: 10.1016/j.actamat.2015.05.038 – volume: 21 start-page: 967 year: 2005 ident: 10.1016/j.mechmat.2016.07.011_bib0014 article-title: Effects of ferrite grain size and martensite volume fraction on dynamic deformation behaviour of 0·15C–2·0Mn–0·2Si dual phase steels publication-title: Mater. Sci. Technol. doi: 10.1179/174328405X47609 – ident: 10.1016/j.mechmat.2016.07.011_bib0036 – volume: 21 year: 2013 ident: 10.1016/j.mechmat.2016.07.011_bib0020 article-title: Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual-phase steel publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/21/5/055001 – volume: 78 start-page: 469 year: 2011 ident: 10.1016/j.mechmat.2016.07.011_bib0037 article-title: Modelling of damage and failure in multiphase high strength DP and TRIP steels publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2010.08.017 – volume: 63 start-page: 2381 year: 2009 ident: 10.1016/j.mechmat.2016.07.011_bib0011 article-title: Effect of chemical composition, martensite volume fraction and tempering on tensile behaviour of dual phase steels publication-title: Mater. Lett. doi: 10.1016/j.matlet.2009.08.015 – year: 2002 ident: 10.1016/j.mechmat.2016.07.011_bib0016 – year: 2008 ident: 10.1016/j.mechmat.2016.07.011_bib0001 – volume: 560 start-page: 129 year: 2013 ident: 10.1016/j.mechmat.2016.07.011_bib0024 article-title: Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.09.046 – volume: 426-432 start-page: 4525 year: 2003 ident: 10.1016/j.mechmat.2016.07.011_bib0026 article-title: Unified formulation to predict the tensile curves of steels with different microstructures publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.426-432.4525 – volume: 21 start-page: 571 year: 1973 ident: 10.1016/j.mechmat.2016.07.011_bib0019 article-title: Average stress in matrix and avegare elastic energy of materials with misfitting inclusions publication-title: Acta Metall doi: 10.1016/0001-6160(73)90064-3 – volume: 11 start-page: 357 year: 1963 ident: 10.1016/j.mechmat.2016.07.011_bib0013 article-title: Elastic properties of reinforced solids: some theoretical principles publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(63)90036-X – volume: 52 start-page: 46 year: 2012 ident: 10.1016/j.mechmat.2016.07.011_bib0023 article-title: Modelling the effect of microstructural banding on the flow curve behaviour of dual-phase (DP) steels publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2011.05.041 – volume: 99 start-page: 71 year: 2002 ident: 10.1016/j.mechmat.2016.07.011_bib0004 article-title: Mechanical behaviour of multiphase materials : an intermediate mixture law without fitting parameter publication-title: Rev. Métallurgie doi: 10.1051/metal:2002182 – volume: 22 start-page: 2080 year: 2013 ident: 10.1016/j.mechmat.2016.07.011_bib0030 article-title: Quantitative microstructural analysis of formability enhancement in dual phase steels subject to electrohydraulic forming publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-012-0438-2 – volume: 5 start-page: 193 year: 1970 ident: 10.1016/j.mechmat.2016.07.011_bib0003 article-title: A dislocation model for the stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations publication-title: Mater. Sci. Eng. doi: 10.1016/0025-5416(70)90081-9 – volume: 59 start-page: 4387 year: 2011 ident: 10.1016/j.mechmat.2016.07.011_bib0015 article-title: Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels publication-title: Acta Mater doi: 10.1016/j.actamat.2011.03.062 – volume: 86 start-page: 575 year: 2016 ident: 10.1016/j.mechmat.2016.07.011_bib0005 article-title: Computational modeling of dual-phase steels based on representative three-dimensional microstructures obtained from EBSD data publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-015-1044-1 – volume: 31 start-page: 493 year: 1999 ident: 10.1016/j.mechmat.2016.07.011_bib0100 article-title: Averaging theorems in finite deformation plasticity publication-title: Mech. Mater. doi: 10.1016/S0167-6636(98)00073-8 – ident: 10.1016/j.mechmat.2016.07.011_bib0031 doi: 10.1016/S0167-6636(00)00019-3 – volume: 37 start-page: 2285 year: 2000 ident: 10.1016/j.mechmat.2016.07.011_bib0035 article-title: Simulation of the multi-scale convergence in computational homogenization approaches publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(98)00341-2 – volume: 589 start-page: 1 year: 2014 ident: 10.1016/j.mechmat.2016.07.011_bib0022 article-title: Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.09.056 – volume: 136 year: 2014 ident: 10.1016/j.mechmat.2016.07.011_bib0028 article-title: Analysis of failure in dual phase steel sheets subject to electrohydraulic forming publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4027940 – volume: 527 start-page: 2738 year: 2010 ident: 10.1016/j.mechmat.2016.07.011_bib0008 article-title: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.01.004 – volume: 80 start-page: 134 year: 2013 ident: 10.1016/j.mechmat.2016.07.011_bib0025 article-title: Characterisation of microstructure and modelling of flow behaviour of bainite-aided dual-phase steel publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2013.05.017 – volume: 63 start-page: 66 year: 2012 ident: 10.1016/j.mechmat.2016.07.011_bib0021 article-title: Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.05.061 – volume: 45 start-page: 391 year: 2015 ident: 10.1016/j.mechmat.2016.07.011_bib0033 article-title: An overview of dual-phase steels : advances in processing and micromechanically guided design publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070214-021103 – start-page: 19 year: 1993 ident: 10.1016/j.mechmat.2016.07.011_bib0010 article-title: Flow stress and work hardening – volume: 81 start-page: 386 year: 2014 ident: 10.1016/j.mechmat.2016.07.011_bib0034 article-title: Integrated experimental – simulation analysis of stress and strain partitioning in multiphase alloys publication-title: Acta Mater doi: 10.1016/j.actamat.2014.07.071 – volume: 136 year: 2014 ident: 10.1016/j.mechmat.2016.07.011_bib0029 article-title: Metallurgical investigations on hyperplasticity in dual phase steel sheets publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4027492 |
SSID | ssj0005957 |
Score | 2.404758 |
Snippet | •Fundamentals of the RVE technique are summarized. It is a good start for keen readers to learn this method.•Statistical quantitative metallography data is... There is a steady increase in the implementation of dual phase steels in stamped automotive components. Therefore, steel suppliers who develop dual phase... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 27 |
SubjectTerms | 3D modeling Dual phase steels Duplex stainless steels Mathematical models Micromechanical modeling Microstructural design Modelling Quantitative metallography Representative volume element Structural steels Three dimensional models Two dimensional Ultimate tensile strength |
Title | 3D micromechanical modeling of dual phase steels using the representative volume element method |
URI | https://dx.doi.org/10.1016/j.mechmat.2016.07.011 https://www.proquest.com/docview/1835600249 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcoEDYhVlqYzENW2aOHF8rApVAdELVOrNSiYObUUXQcuRb2cmTqAgoUrcsjmJxvabsfzmDWNXErw0DGNwIMjAEbjUcRIvEY6n0jhz8UjlSWEP_bA3EHfDYFhhnTIXhmiVBfZbTM_RurjSLKzZXIzHzUci0KO_DDGiQJ8WEQ4LIWmUNz7WaB7Kqn2Svjc9_Z3F05w0pgZGGBgSw8tqeLZaf_mnX0idu5_uHtst4kbetr-2zypmdsB21tQED5n2r_k059cZSucl6_O80A3e5fOMU9YVX4zQbXHsWvwmJ9L7M8cQkOfalkUe0rvhFrO4sdxybstMH7FB9-ap03OK-gkOCDdaOlncUkKBCEQmU-MbCHzISL3Gk0rizEsiiFQCiVSx56eu9IQJUpWaVHgic43rH7PqbD4zJ4wnABJoF9EHI0AYhMjQJGnmR1GIEUhcY6K0moZCXJxqXLzokkU20YWxNRlbu1KjsWus8dVsYdU1NjWIyi7RP4aJRg-wqell2YUapxDti8QzM1-9aUQ1ivtwIXr6_9efsW06szy_c1Zdvq7MBcYry6SeD8g622rf3vf6n47E7E8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcQAOiKcYzyBxLeva9JHjNJg22HYBJG5R66awiXUTDH4_dpPyktAkblUrt5WdfHaUz18YO4_Ay8IwAQeCHByBSx0n9VLheDJLchevZNkUNhyFvXtx_RA81Fin6oUhWqXFfoPpJVrbO03rzeZ8PG7eEoEe82WIFQXmtBhxeIXUqYI6W2n3b3qjL6aHNIKfJPFNBl-NPM3JxVTDE9aGRPIyMp6t1l8p6hdYlxmou8k2bOnI2-bvtlhNF9ts_Zug4A5T_iWflhQ7TR29FABennWDT_ks59R4xedPmLk4Rhe_yYn3_sixCuSlvKVtRXrX3MAW14Zezs1J07vsvnt11-k59ggFB4QbL5w8aUkhAf2SR5n2NQQ-5CRg40UywsmXxhDLFNJIJp6fuZEndJDJTGfCE7mrXX-P1YtZofcZTwEioI1EH7QAoRElQ51muR_HIRYhSYOJymsKrL44HXPxrCoi2URZZytytnIjhc5usItPs7kR2FhmEFchUT9GisIksMz0rAqhwllEWyNJoWdvrwqBjUo_XIse_P_1p2y1dzccqEF_dHPI1uiJof0dsfri5U0fY_mySE_s8PwAp2_vAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+micromechanical+modeling+of+dual+phase+steels+using+the+representative+volume+element+method&rft.jtitle=Mechanics+of+materials&rft.au=Amirmaleki%2C+Maedeh&rft.au=Samei%2C+Javad&rft.au=Green%2C+Daniel+E.&rft.au=van+Riemsdijk%2C+Isadora&rft.date=2016-10-01&rft.issn=0167-6636&rft.volume=101&rft.spage=27&rft.epage=39&rft_id=info:doi/10.1016%2Fj.mechmat.2016.07.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mechmat_2016_07_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6636&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6636&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6636&client=summon |