3D micromechanical modeling of dual phase steels using the representative volume element method

•Fundamentals of the RVE technique are summarized. It is a good start for keen readers to learn this method.•Statistical quantitative metallography data is used to generate 3D RVEs very similar to the actual microstructure. More than 3000 grains were analyzed in each steel.•Morphology of martensite...

Full description

Saved in:
Bibliographic Details
Published inMechanics of materials Vol. 101; pp. 27 - 39
Main Authors Amirmaleki, Maedeh, Samei, Javad, Green, Daniel E., van Riemsdijk, Isadora, Stewart, Lorna
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Fundamentals of the RVE technique are summarized. It is a good start for keen readers to learn this method.•Statistical quantitative metallography data is used to generate 3D RVEs very similar to the actual microstructure. More than 3000 grains were analyzed in each steel.•Morphology of martensite is included in the 3D RVEs. Hence, steel supplier can optimize both fraction and morphology of martensite in the microstructure.•Using the present model, steel suppliers can predict the UTS of DP500 and DP600 steels with error less than 0.5% before production.•Optimized RVE size, mesh size and element type are reported. There is a steady increase in the implementation of dual phase steels in stamped automotive components. Therefore, steel suppliers who develop dual phase steels are interested in predicting the microstructure-properties relationship for optimization of microstructural design. This goal is achievable by micromechanical modeling. The representative volume element (RVE) method has been a popular technique for micromechanical modeling of dual phase steels. It is generally considered that 2D modeling underestimates the flow curves and that 3D modeling predicts the experimental stress-strain curves more accurately. However, much of the research has focused on 2D modeling. This paper develops 3D micromechanical modeling of DP500 and bainite-aided DP600 steels by including statistical quantitative metallography data in the models. More than 3000 grains were analyzed in each steel. Hence, both volume fraction and morphology of martensite were statistically determined. This model predicted the ultimate tensile strength of these two dual phase steels with less than 0.5% error. [Display omitted]
AbstractList There is a steady increase in the implementation of dual phase steels in stamped automotive components. Therefore, steel suppliers who develop dual phase steels are interested in predicting the microstructure-properties relationship for optimization of microstructural design. This goal is achievable by micromechanical modeling. The representative volume element (RVE) method has been a popular technique for micromechanical modeling of dual phase steels. It is generally considered that 2D modeling underestimates the flow curves and that 3D modeling predicts the experimental stress-strain curves more accurately. However, much of the research has focused on 2D modeling. This paper develops 3D micromechanical modeling of DP500 and bainite-aided DP600 steels by including statistical quantitative metallography data in the models. More than 3000 grains were analyzed in each steel. Hence, both volume fraction and morphology of martensite were statistically determined. This model predicted the ultimate tensile strength of these two dual phase steels with less than 0.5% error.
•Fundamentals of the RVE technique are summarized. It is a good start for keen readers to learn this method.•Statistical quantitative metallography data is used to generate 3D RVEs very similar to the actual microstructure. More than 3000 grains were analyzed in each steel.•Morphology of martensite is included in the 3D RVEs. Hence, steel supplier can optimize both fraction and morphology of martensite in the microstructure.•Using the present model, steel suppliers can predict the UTS of DP500 and DP600 steels with error less than 0.5% before production.•Optimized RVE size, mesh size and element type are reported. There is a steady increase in the implementation of dual phase steels in stamped automotive components. Therefore, steel suppliers who develop dual phase steels are interested in predicting the microstructure-properties relationship for optimization of microstructural design. This goal is achievable by micromechanical modeling. The representative volume element (RVE) method has been a popular technique for micromechanical modeling of dual phase steels. It is generally considered that 2D modeling underestimates the flow curves and that 3D modeling predicts the experimental stress-strain curves more accurately. However, much of the research has focused on 2D modeling. This paper develops 3D micromechanical modeling of DP500 and bainite-aided DP600 steels by including statistical quantitative metallography data in the models. More than 3000 grains were analyzed in each steel. Hence, both volume fraction and morphology of martensite were statistically determined. This model predicted the ultimate tensile strength of these two dual phase steels with less than 0.5% error. [Display omitted]
Author Amirmaleki, Maedeh
van Riemsdijk, Isadora
Green, Daniel E.
Stewart, Lorna
Samei, Javad
Author_xml – sequence: 1
  givenname: Maedeh
  surname: Amirmaleki
  fullname: Amirmaleki, Maedeh
  organization: Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada
– sequence: 2
  givenname: Javad
  orcidid: 0000-0002-2951-8036
  surname: Samei
  fullname: Samei, Javad
  email: sameij@uwindsor.ca
  organization: Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada
– sequence: 3
  givenname: Daniel E.
  surname: Green
  fullname: Green, Daniel E.
  organization: Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada
– sequence: 4
  givenname: Isadora
  surname: van Riemsdijk
  fullname: van Riemsdijk, Isadora
  organization: ArcelorMittal Global Research, Hamilton Laboratory, 1330 Burlington Street East, Hamilton, ON L8N 3J5, Canada
– sequence: 5
  givenname: Lorna
  surname: Stewart
  fullname: Stewart, Lorna
  organization: ArcelorMittal Global Research, Hamilton Laboratory, 1330 Burlington Street East, Hamilton, ON L8N 3J5, Canada
BookMark eNqFkE9r3DAQxUVJoJs_HyGgYy52JUu2LHIoJU2bQCCX9Cy00jirRbI2krzQb1-ZzamXnIZ5M-_B-12gsznOgNANJS0ldPi2bwOYXdCl7eraEtESSr-gDR1F1wjB2Rna1INohoENX9FFzntCSC97sUGK_cTBmRTXCD07oz0O0YJ38xuOE7ZLFQ47nQHnAuAzXvJ6KjvACQ4JMsxFF3cEfIx-CYDBQ6gaDlB20V6h80n7DNcf8xL9-fXwev_YPL_8frr_8dwYTsbSTJpKLg3v-SQsMDA9M5NgY98JKagctqMZ5dZshdQds0R0HHorLVje8YkAYZfo9pR7SPF9gVxUcNmA93qGuGRFR9YPhHRc1te702ttnXOCSRm3VohzSdp5RYlasaq9-sCqVqyKCFWxVnf_n_uQXNDp76e-7ydfZQhHB0ll42A2YF0CU5SN7pOEfz1jmMM
CitedBy_id crossref_primary_10_1016_j_msea_2021_142582
crossref_primary_10_1016_j_ijmecsci_2019_105133
crossref_primary_10_1016_j_ceramint_2016_11_157
crossref_primary_10_1016_j_probengmech_2023_103571
crossref_primary_10_1080_23311916_2023_2297470
crossref_primary_10_1016_j_probengmech_2021_103170
crossref_primary_10_1016_j_ijmecsci_2024_109719
crossref_primary_10_1016_j_mechmat_2018_11_015
crossref_primary_10_1088_1361_651X_ad200b
crossref_primary_10_1016_j_scriptamat_2019_08_012
crossref_primary_10_3390_ma17205004
crossref_primary_10_1016_j_mtcomm_2022_103125
crossref_primary_10_1016_j_engfracmech_2018_01_026
crossref_primary_10_1016_j_ijmecsci_2023_108850
crossref_primary_10_1016_j_msea_2020_140155
crossref_primary_10_1016_j_mechmat_2021_103961
crossref_primary_10_1002_mawe_202200242
crossref_primary_10_1088_2053_1591_ab4bb7
crossref_primary_10_1016_j_matchemphys_2023_128850
crossref_primary_10_1007_s11665_019_04029_8
crossref_primary_10_1016_j_matdes_2021_109544
crossref_primary_10_1155_2020_8159058
crossref_primary_10_3390_ma15217531
crossref_primary_10_1016_j_optlastec_2022_108713
crossref_primary_10_1115_1_4056033
crossref_primary_10_1016_j_addma_2021_102068
crossref_primary_10_1007_s11661_018_4563_x
crossref_primary_10_1016_j_ijplas_2022_103435
crossref_primary_10_1016_j_engfracmech_2018_04_026
crossref_primary_10_1088_1757_899X_175_1_012040
crossref_primary_10_1016_j_matpr_2018_06_165
crossref_primary_10_1007_s12289_022_01731_2
crossref_primary_10_1016_j_jeurceramsoc_2017_11_038
crossref_primary_10_1115_1_4039292
crossref_primary_10_1088_1742_6596_1368_2_022025
crossref_primary_10_1088_2051_672X_abc0f8
crossref_primary_10_1007_s12540_019_00519_5
crossref_primary_10_1016_j_finel_2020_103510
crossref_primary_10_1109_ACCESS_2021_3050745
crossref_primary_10_1016_j_compscitech_2021_108964
crossref_primary_10_1016_j_cja_2021_12_011
crossref_primary_10_1016_j_ijplas_2023_103745
crossref_primary_10_1007_s11665_024_09542_z
crossref_primary_10_1016_j_ijplas_2017_12_009
crossref_primary_10_1016_j_prostr_2019_12_087
crossref_primary_10_1016_j_applthermaleng_2019_113949
crossref_primary_10_1016_j_msea_2022_143301
crossref_primary_10_1002_srin_202000536
crossref_primary_10_1016_j_ijplas_2019_02_005
crossref_primary_10_1007_s10853_020_04715_2
crossref_primary_10_3390_condmat7010022
crossref_primary_10_1007_s11661_020_05764_7
crossref_primary_10_1016_j_jmps_2023_105367
crossref_primary_10_1016_j_mechmat_2025_105275
crossref_primary_10_1021_acsomega_2c06716
crossref_primary_10_1007_s13632_024_01139_1
crossref_primary_10_1007_s11661_017_4351_z
crossref_primary_10_1016_j_tafmec_2020_102687
crossref_primary_10_4028_www_scientific_net_MSF_930_349
crossref_primary_10_1007_s11665_020_04877_9
crossref_primary_10_35784_acs_2017_23
crossref_primary_10_1016_j_ijplas_2024_103930
Cites_doi 10.1017/S0305004100061818
10.1002/pamm.201110243
10.1016/j.matdes.2015.12.103
10.1002/nme.541
10.1016/j.ijmecsci.2003.10.007
10.1016/S0927-0256(02)00256-2
10.1016/j.actamat.2015.05.038
10.1179/174328405X47609
10.1088/0965-0393/21/5/055001
10.1016/j.engfracmech.2010.08.017
10.1016/j.matlet.2009.08.015
10.1016/j.msea.2012.09.046
10.4028/www.scientific.net/MSF.426-432.4525
10.1016/0001-6160(73)90064-3
10.1016/0022-5096(63)90036-X
10.1016/j.commatsci.2011.05.041
10.1051/metal:2002182
10.1007/s11665-012-0438-2
10.1016/0025-5416(70)90081-9
10.1016/j.actamat.2011.03.062
10.1007/s00419-015-1044-1
10.1016/S0167-6636(98)00073-8
10.1016/S0167-6636(00)00019-3
10.1016/S0020-7683(98)00341-2
10.1016/j.msea.2013.09.056
10.1115/1.4027940
10.1016/j.msea.2010.01.004
10.1016/j.commatsci.2013.05.017
10.1016/j.commatsci.2012.05.061
10.1146/annurev-matsci-070214-021103
10.1016/j.actamat.2014.07.071
10.1115/1.4027492
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.mechmat.2016.07.011
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7743
EndPage 39
ExternalDocumentID 10_1016_j_mechmat_2016_07_011
S0167663616301582
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SST
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c408t-fa1949c454f7de3ec53cf73852797196b8c89bcb79a23d0724e5d9ded424f0e03
IEDL.DBID .~1
ISSN 0167-6636
IngestDate Fri Jul 11 00:43:37 EDT 2025
Tue Jul 01 03:20:16 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Fri Feb 23 02:27:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 3D modeling
Representative volume element
Microstructural design
Quantitative metallography
Dual phase steels
Micromechanical modeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-fa1949c454f7de3ec53cf73852797196b8c89bcb79a23d0724e5d9ded424f0e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2951-8036
PQID 1835600249
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1835600249
crossref_citationtrail_10_1016_j_mechmat_2016_07_011
crossref_primary_10_1016_j_mechmat_2016_07_011
elsevier_sciencedirect_doi_10_1016_j_mechmat_2016_07_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2016
2016-10-00
20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationTitle Mechanics of materials
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Paul (bib0020) 2013; 21
Paul, Kumar (bib0021) 2012; 63
Liedl, Traint, Werner (bib0018) 2002; 25
Gil Sevillano (bib0010) 1993
Thomser, C., Uthaisangsuk, V., Bleck, W., 2009. Influence of martensite distribution on the mechanical properties of dual phase steels : experiments and simulation 80. doi
Buessler, P., 1999. ECSC steel RTD first report.
Kadkhodapour, Schmauder, Raabe, Ziaei-Rad, Weber, Calcagnotto (bib0015) 2011; 59
Sluis, O. Van Der, Schreurs, P.J.G., Brekelmans, W.A.M., Meijer, H.E.H., 2000. Overall behaviour of heterogeneous elastoviscoplastic materials : effect of microstructural modelling 32, 449–462.
Brands, Balzani, Scheunemann, Schröder, Richter, Raabe (bib0005) 2016; 86
Kouznetsova (bib0016) 2002
Ramazani, Pinard, Richter, Schwedt, Prahl (bib0025) 2013; 80
Ramazani, Mukherjee, Quade, Prahl, Bleck (bib0024) 2013; 560
Bergstrom (bib0003) 1970; 5
Rodriguez, Gutierrez (bib0026) 2003; 426-432
Samei, Green, Golovashchenko, Hassannejadasl (bib0030) 2013; 22
Brands, Schröder, Balzani, Dmitrieva, Raabe (bib0006) 2011; 11
Samei, Green, Cheng, de Carvalho Lima (bib0027) 2016; 92
Uthaisangsuk, Prahl, Bleck (bib0037) 2011; 78
Hwang, Cao, Shin, Kim, Lee, Kim (bib0014) 2005; 21
Sodjit, Uthaisangsuk (bib0032) 2012; 22
Terada, Hori, Kyoya, Kikuchi (bib0035) 2000; 37
Gündüz (bib0011) 2009; 63
Tasan, Diehl, Yan, Bechtold, Roters, Schemmann, Zheng, Peranio, Ponge, Koyama, Tsuzaki, Raabe (bib0033) 2015; 45
Calcagnotto, Ponge, Demir, Raabe (bib0008) 2010; 527
Abbaschian, Abbaschian, Reed-Hill (bib0001) 2008
Samei, Green, Golovashchenko (bib0029) 2014; 136
Cottrell, Bilby (bib0009) 1949; 62
Ramazani, Mukherjee, Abdurakhmanov, Prahl, Schleser, Reisgen, Bleck (bib0022) 2014; 589
.
Bouaziz, Irsid, Group, Usinor (bib0004) 2002; 99
Nemat-Nasser (bib0100) 1999; 31
Ramazani, Mukherjee, Prahl, Bleck (bib0023) 2012; 52
Yan, Tasan, Raabe (bib0038) 2015; 96
Tasan, Diehl, Yan, Zambaldi, Shanthraj, Roters, Raabe (bib0034) 2014; 81
Hill (bib0013) 1963; 11
Mori, Tanaka (bib0019) 1973; 21
Kouznetsova, Geers, Brekelmans (bib0017) 2002; 54
Samei, Green, Golovashchenko (bib0028) 2014; 136
Hill (bib0012) 1984; 95
Al-Abbasi, Nemes (bib0002) 2003; 45
Liedl (10.1016/j.mechmat.2016.07.011_bib0018) 2002; 25
Tasan (10.1016/j.mechmat.2016.07.011_bib0034) 2014; 81
Kouznetsova (10.1016/j.mechmat.2016.07.011_bib0016) 2002
Samei (10.1016/j.mechmat.2016.07.011_bib0030) 2013; 22
Bergstrom (10.1016/j.mechmat.2016.07.011_bib0003) 1970; 5
Samei (10.1016/j.mechmat.2016.07.011_bib0028) 2014; 136
Cottrell (10.1016/j.mechmat.2016.07.011_bib0009) 1949; 62
Rodriguez (10.1016/j.mechmat.2016.07.011_bib0026) 2003; 426-432
Mori (10.1016/j.mechmat.2016.07.011_bib0019) 1973; 21
10.1016/j.mechmat.2016.07.011_bib0007
Hill (10.1016/j.mechmat.2016.07.011_bib0012) 1984; 95
Brands (10.1016/j.mechmat.2016.07.011_bib0006) 2011; 11
Sodjit (10.1016/j.mechmat.2016.07.011_bib0032) 2012; 22
Brands (10.1016/j.mechmat.2016.07.011_bib0005) 2016; 86
Kouznetsova (10.1016/j.mechmat.2016.07.011_bib0017) 2002; 54
Ramazani (10.1016/j.mechmat.2016.07.011_bib0023) 2012; 52
Ramazani (10.1016/j.mechmat.2016.07.011_bib0024) 2013; 560
Calcagnotto (10.1016/j.mechmat.2016.07.011_bib0008) 2010; 527
Uthaisangsuk (10.1016/j.mechmat.2016.07.011_bib0037) 2011; 78
Yan (10.1016/j.mechmat.2016.07.011_bib0038) 2015; 96
Paul (10.1016/j.mechmat.2016.07.011_bib0020) 2013; 21
Ramazani (10.1016/j.mechmat.2016.07.011_bib0022) 2014; 589
Samei (10.1016/j.mechmat.2016.07.011_bib0027) 2016; 92
Bouaziz (10.1016/j.mechmat.2016.07.011_bib0004) 2002; 99
Paul (10.1016/j.mechmat.2016.07.011_bib0021) 2012; 63
Hill (10.1016/j.mechmat.2016.07.011_bib0013) 1963; 11
Tasan (10.1016/j.mechmat.2016.07.011_bib0033) 2015; 45
Abbaschian (10.1016/j.mechmat.2016.07.011_bib0001) 2008
10.1016/j.mechmat.2016.07.011_bib0031
Terada (10.1016/j.mechmat.2016.07.011_bib0035) 2000; 37
10.1016/j.mechmat.2016.07.011_bib0036
Samei (10.1016/j.mechmat.2016.07.011_bib0029) 2014; 136
Gil Sevillano (10.1016/j.mechmat.2016.07.011_bib0010) 1993
Ramazani (10.1016/j.mechmat.2016.07.011_bib0025) 2013; 80
Kadkhodapour (10.1016/j.mechmat.2016.07.011_bib0015) 2011; 59
Al-Abbasi (10.1016/j.mechmat.2016.07.011_bib0002) 2003; 45
Hwang (10.1016/j.mechmat.2016.07.011_bib0014) 2005; 21
Gündüz (10.1016/j.mechmat.2016.07.011_bib0011) 2009; 63
Nemat-Nasser (10.1016/j.mechmat.2016.07.011_bib0100) 1999; 31
References_xml – volume: 31
  start-page: 493
  year: 1999
  end-page: 523
  ident: bib0100
  article-title: Averaging theorems in finite deformation plasticity
  publication-title: Mech. Mater.
– volume: 99
  start-page: 71
  year: 2002
  end-page: 77
  ident: bib0004
  article-title: Mechanical behaviour of multiphase materials : an intermediate mixture law without fitting parameter
  publication-title: Rev. Métallurgie
– volume: 560
  start-page: 129
  year: 2013
  end-page: 139
  ident: bib0024
  article-title: Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach
  publication-title: Mater. Sci. Eng. A
– volume: 136
  year: 2014
  ident: bib0029
  article-title: Metallurgical investigations on hyperplasticity in dual phase steel sheets
  publication-title: J. Manuf. Sci. Eng.
– volume: 25
  start-page: 122
  year: 2002
  end-page: 128
  ident: bib0018
  article-title: An unexpected feature of the stress–strain diagram of dual-phase steel
  publication-title: Comput. Mater. Sci.
– volume: 22
  start-page: 2080
  year: 2013
  end-page: 2088
  ident: bib0030
  article-title: Quantitative microstructural analysis of formability enhancement in dual phase steels subject to electrohydraulic forming
  publication-title: J. Mater. Eng. Perform.
– volume: 81
  start-page: 386
  year: 2014
  end-page: 400
  ident: bib0034
  article-title: Integrated experimental – simulation analysis of stress and strain partitioning in multiphase alloys
  publication-title: Acta Mater
– volume: 22
  start-page: 87
  year: 2012
  end-page: 97
  ident: bib0032
  article-title: A micromechanical flow curve model for dual phase steels
  publication-title: J. Met. Mater. Miner.
– volume: 21
  year: 2013
  ident: bib0020
  article-title: Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual-phase steel
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 96
  start-page: 399
  year: 2015
  end-page: 409
  ident: bib0038
  article-title: High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels
  publication-title: Acta Mater
– volume: 426-432
  start-page: 4525
  year: 2003
  end-page: 4530
  ident: bib0026
  article-title: Unified formulation to predict the tensile curves of steels with different microstructures
  publication-title: Mater. Sci. Forum
– start-page: 19
  year: 1993
  end-page: 88
  ident: bib0010
  article-title: Flow stress and work hardening
  publication-title: Plastic Deformation of Materials
– reference: Sluis, O. Van Der, Schreurs, P.J.G., Brekelmans, W.A.M., Meijer, H.E.H., 2000. Overall behaviour of heterogeneous elastoviscoplastic materials : effect of microstructural modelling 32, 449–462.
– volume: 54
  start-page: 1235
  year: 2002
  end-page: 1260
  ident: bib0017
  article-title: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme
  publication-title: Int. J. Numer. Methods Eng.
– year: 2008
  ident: bib0001
  article-title: Physical Metallurgy Principles
– volume: 59
  start-page: 4387
  year: 2011
  end-page: 4394
  ident: bib0015
  article-title: Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels
  publication-title: Acta Mater
– volume: 11
  start-page: 357
  year: 1963
  end-page: 372
  ident: bib0013
  article-title: Elastic properties of reinforced solids: some theoretical principles
  publication-title: J. Mech. Phys. Solids
– reference: Buessler, P., 1999. ECSC steel RTD first report.
– volume: 11
  start-page: 503
  year: 2011
  end-page: 504
  ident: bib0006
  article-title: On the reconstruction and computation of dual-phase steel microstructures based on 3D EBSD data
  publication-title: Pamm
– volume: 62
  start-page: 49
  year: 1949
  end-page: 62
  ident: bib0009
  article-title: Dislocation theory of yielding and strain ageing of iron
– year: 2002
  ident: bib0016
  article-title: Computational Homogenization for the Multi-Scale Analysis of Multi-Phase Materials
– volume: 527
  start-page: 2738
  year: 2010
  end-page: 2746
  ident: bib0008
  article-title: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD
  publication-title: Mater. Sci. Eng. A
– volume: 63
  start-page: 66
  year: 2012
  end-page: 74
  ident: bib0021
  article-title: Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels
  publication-title: Comput. Mater. Sci.
– volume: 80
  start-page: 134
  year: 2013
  end-page: 141
  ident: bib0025
  article-title: Characterisation of microstructure and modelling of flow behaviour of bainite-aided dual-phase steel
  publication-title: Comput. Mater. Sci.
– reference: Thomser, C., Uthaisangsuk, V., Bleck, W., 2009. Influence of martensite distribution on the mechanical properties of dual phase steels : experiments and simulation 80. doi:
– volume: 37
  start-page: 2285
  year: 2000
  end-page: 2311
  ident: bib0035
  article-title: Simulation of the multi-scale convergence in computational homogenization approaches
  publication-title: Int. J. Solids Struct.
– volume: 95
  start-page: 481
  year: 1984
  end-page: 494
  ident: bib0012
  article-title: On macroscopic effects of heterogeneity in elastoplastic media at finite strain
  publication-title: Math. Proc. Cambridge Philos. Soc.
– volume: 52
  start-page: 46
  year: 2012
  end-page: 54
  ident: bib0023
  article-title: Modelling the effect of microstructural banding on the flow curve behaviour of dual-phase (DP) steels
  publication-title: Comput. Mater. Sci.
– reference: .
– volume: 78
  start-page: 469
  year: 2011
  end-page: 486
  ident: bib0037
  article-title: Modelling of damage and failure in multiphase high strength DP and TRIP steels
  publication-title: Eng. Fract. Mech.
– volume: 63
  start-page: 2381
  year: 2009
  end-page: 2383
  ident: bib0011
  article-title: Effect of chemical composition, martensite volume fraction and tempering on tensile behaviour of dual phase steels
  publication-title: Mater. Lett.
– volume: 45
  start-page: 1449
  year: 2003
  end-page: 1465
  ident: bib0002
  article-title: Micromechanical modeling of dual phase steels
  publication-title: Int. J. Mech. Sci.
– volume: 136
  year: 2014
  ident: bib0028
  article-title: Analysis of failure in dual phase steel sheets subject to electrohydraulic forming
  publication-title: J. Manuf. Sci. Eng.
– volume: 92
  start-page: 1028
  year: 2016
  end-page: 1037
  ident: bib0027
  article-title: Influence of strain path on nucleation and growth of voids in dual phase steel sheets
  publication-title: Mater. Des.
– volume: 21
  start-page: 571
  year: 1973
  end-page: 574
  ident: bib0019
  article-title: Average stress in matrix and avegare elastic energy of materials with misfitting inclusions
  publication-title: Acta Metall
– volume: 21
  start-page: 967
  year: 2005
  end-page: 975
  ident: bib0014
  article-title: Effects of ferrite grain size and martensite volume fraction on dynamic deformation behaviour of 0·15C–2·0Mn–0·2Si dual phase steels
  publication-title: Mater. Sci. Technol.
– volume: 5
  start-page: 193
  year: 1970
  end-page: 200
  ident: bib0003
  article-title: A dislocation model for the stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations
  publication-title: Mater. Sci. Eng.
– volume: 86
  start-page: 575
  year: 2016
  end-page: 598
  ident: bib0005
  article-title: Computational modeling of dual-phase steels based on representative three-dimensional microstructures obtained from EBSD data
  publication-title: Arch. Appl. Mech.
– volume: 589
  start-page: 1
  year: 2014
  end-page: 14
  ident: bib0022
  article-title: Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel
  publication-title: Mater. Sci. Eng. A
– volume: 45
  start-page: 391
  year: 2015
  end-page: 431
  ident: bib0033
  article-title: An overview of dual-phase steels : advances in processing and micromechanically guided design
  publication-title: Annu. Rev. Mater. Res.
– volume: 62
  start-page: 49
  year: 1949
  ident: 10.1016/j.mechmat.2016.07.011_bib0009
  article-title: Dislocation theory of yielding and strain ageing of iron
– volume: 95
  start-page: 481
  year: 1984
  ident: 10.1016/j.mechmat.2016.07.011_bib0012
  article-title: On macroscopic effects of heterogeneity in elastoplastic media at finite strain
  publication-title: Math. Proc. Cambridge Philos. Soc.
  doi: 10.1017/S0305004100061818
– volume: 11
  start-page: 503
  year: 2011
  ident: 10.1016/j.mechmat.2016.07.011_bib0006
  article-title: On the reconstruction and computation of dual-phase steel microstructures based on 3D EBSD data
  publication-title: Pamm
  doi: 10.1002/pamm.201110243
– volume: 92
  start-page: 1028
  year: 2016
  ident: 10.1016/j.mechmat.2016.07.011_bib0027
  article-title: Influence of strain path on nucleation and growth of voids in dual phase steel sheets
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.12.103
– volume: 54
  start-page: 1235
  year: 2002
  ident: 10.1016/j.mechmat.2016.07.011_bib0017
  article-title: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.541
– ident: 10.1016/j.mechmat.2016.07.011_bib0007
– volume: 22
  start-page: 87
  year: 2012
  ident: 10.1016/j.mechmat.2016.07.011_bib0032
  article-title: A micromechanical flow curve model for dual phase steels
  publication-title: J. Met. Mater. Miner.
– volume: 45
  start-page: 1449
  year: 2003
  ident: 10.1016/j.mechmat.2016.07.011_bib0002
  article-title: Micromechanical modeling of dual phase steels
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2003.10.007
– volume: 25
  start-page: 122
  year: 2002
  ident: 10.1016/j.mechmat.2016.07.011_bib0018
  article-title: An unexpected feature of the stress–strain diagram of dual-phase steel
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/S0927-0256(02)00256-2
– volume: 96
  start-page: 399
  year: 2015
  ident: 10.1016/j.mechmat.2016.07.011_bib0038
  article-title: High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2015.05.038
– volume: 21
  start-page: 967
  year: 2005
  ident: 10.1016/j.mechmat.2016.07.011_bib0014
  article-title: Effects of ferrite grain size and martensite volume fraction on dynamic deformation behaviour of 0·15C–2·0Mn–0·2Si dual phase steels
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/174328405X47609
– ident: 10.1016/j.mechmat.2016.07.011_bib0036
– volume: 21
  year: 2013
  ident: 10.1016/j.mechmat.2016.07.011_bib0020
  article-title: Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual-phase steel
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/21/5/055001
– volume: 78
  start-page: 469
  year: 2011
  ident: 10.1016/j.mechmat.2016.07.011_bib0037
  article-title: Modelling of damage and failure in multiphase high strength DP and TRIP steels
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2010.08.017
– volume: 63
  start-page: 2381
  year: 2009
  ident: 10.1016/j.mechmat.2016.07.011_bib0011
  article-title: Effect of chemical composition, martensite volume fraction and tempering on tensile behaviour of dual phase steels
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2009.08.015
– year: 2002
  ident: 10.1016/j.mechmat.2016.07.011_bib0016
– year: 2008
  ident: 10.1016/j.mechmat.2016.07.011_bib0001
– volume: 560
  start-page: 129
  year: 2013
  ident: 10.1016/j.mechmat.2016.07.011_bib0024
  article-title: Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2012.09.046
– volume: 426-432
  start-page: 4525
  year: 2003
  ident: 10.1016/j.mechmat.2016.07.011_bib0026
  article-title: Unified formulation to predict the tensile curves of steels with different microstructures
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.426-432.4525
– volume: 21
  start-page: 571
  year: 1973
  ident: 10.1016/j.mechmat.2016.07.011_bib0019
  article-title: Average stress in matrix and avegare elastic energy of materials with misfitting inclusions
  publication-title: Acta Metall
  doi: 10.1016/0001-6160(73)90064-3
– volume: 11
  start-page: 357
  year: 1963
  ident: 10.1016/j.mechmat.2016.07.011_bib0013
  article-title: Elastic properties of reinforced solids: some theoretical principles
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(63)90036-X
– volume: 52
  start-page: 46
  year: 2012
  ident: 10.1016/j.mechmat.2016.07.011_bib0023
  article-title: Modelling the effect of microstructural banding on the flow curve behaviour of dual-phase (DP) steels
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2011.05.041
– volume: 99
  start-page: 71
  year: 2002
  ident: 10.1016/j.mechmat.2016.07.011_bib0004
  article-title: Mechanical behaviour of multiphase materials : an intermediate mixture law without fitting parameter
  publication-title: Rev. Métallurgie
  doi: 10.1051/metal:2002182
– volume: 22
  start-page: 2080
  year: 2013
  ident: 10.1016/j.mechmat.2016.07.011_bib0030
  article-title: Quantitative microstructural analysis of formability enhancement in dual phase steels subject to electrohydraulic forming
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-012-0438-2
– volume: 5
  start-page: 193
  year: 1970
  ident: 10.1016/j.mechmat.2016.07.011_bib0003
  article-title: A dislocation model for the stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/0025-5416(70)90081-9
– volume: 59
  start-page: 4387
  year: 2011
  ident: 10.1016/j.mechmat.2016.07.011_bib0015
  article-title: Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2011.03.062
– volume: 86
  start-page: 575
  year: 2016
  ident: 10.1016/j.mechmat.2016.07.011_bib0005
  article-title: Computational modeling of dual-phase steels based on representative three-dimensional microstructures obtained from EBSD data
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-015-1044-1
– volume: 31
  start-page: 493
  year: 1999
  ident: 10.1016/j.mechmat.2016.07.011_bib0100
  article-title: Averaging theorems in finite deformation plasticity
  publication-title: Mech. Mater.
  doi: 10.1016/S0167-6636(98)00073-8
– ident: 10.1016/j.mechmat.2016.07.011_bib0031
  doi: 10.1016/S0167-6636(00)00019-3
– volume: 37
  start-page: 2285
  year: 2000
  ident: 10.1016/j.mechmat.2016.07.011_bib0035
  article-title: Simulation of the multi-scale convergence in computational homogenization approaches
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(98)00341-2
– volume: 589
  start-page: 1
  year: 2014
  ident: 10.1016/j.mechmat.2016.07.011_bib0022
  article-title: Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.09.056
– volume: 136
  year: 2014
  ident: 10.1016/j.mechmat.2016.07.011_bib0028
  article-title: Analysis of failure in dual phase steel sheets subject to electrohydraulic forming
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4027940
– volume: 527
  start-page: 2738
  year: 2010
  ident: 10.1016/j.mechmat.2016.07.011_bib0008
  article-title: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.01.004
– volume: 80
  start-page: 134
  year: 2013
  ident: 10.1016/j.mechmat.2016.07.011_bib0025
  article-title: Characterisation of microstructure and modelling of flow behaviour of bainite-aided dual-phase steel
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.05.017
– volume: 63
  start-page: 66
  year: 2012
  ident: 10.1016/j.mechmat.2016.07.011_bib0021
  article-title: Micromechanics based modeling to predict flow behavior and plastic strain localization of dual phase steels
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.05.061
– volume: 45
  start-page: 391
  year: 2015
  ident: 10.1016/j.mechmat.2016.07.011_bib0033
  article-title: An overview of dual-phase steels : advances in processing and micromechanically guided design
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070214-021103
– start-page: 19
  year: 1993
  ident: 10.1016/j.mechmat.2016.07.011_bib0010
  article-title: Flow stress and work hardening
– volume: 81
  start-page: 386
  year: 2014
  ident: 10.1016/j.mechmat.2016.07.011_bib0034
  article-title: Integrated experimental – simulation analysis of stress and strain partitioning in multiphase alloys
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2014.07.071
– volume: 136
  year: 2014
  ident: 10.1016/j.mechmat.2016.07.011_bib0029
  article-title: Metallurgical investigations on hyperplasticity in dual phase steel sheets
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4027492
SSID ssj0005957
Score 2.404758
Snippet •Fundamentals of the RVE technique are summarized. It is a good start for keen readers to learn this method.•Statistical quantitative metallography data is...
There is a steady increase in the implementation of dual phase steels in stamped automotive components. Therefore, steel suppliers who develop dual phase...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 27
SubjectTerms 3D modeling
Dual phase steels
Duplex stainless steels
Mathematical models
Micromechanical modeling
Microstructural design
Modelling
Quantitative metallography
Representative volume element
Structural steels
Three dimensional models
Two dimensional
Ultimate tensile strength
Title 3D micromechanical modeling of dual phase steels using the representative volume element method
URI https://dx.doi.org/10.1016/j.mechmat.2016.07.011
https://www.proquest.com/docview/1835600249
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcoEDYhVlqYzENW2aOHF8rApVAdELVOrNSiYObUUXQcuRb2cmTqAgoUrcsjmJxvabsfzmDWNXErw0DGNwIMjAEbjUcRIvEY6n0jhz8UjlSWEP_bA3EHfDYFhhnTIXhmiVBfZbTM_RurjSLKzZXIzHzUci0KO_DDGiQJ8WEQ4LIWmUNz7WaB7Kqn2Svjc9_Z3F05w0pgZGGBgSw8tqeLZaf_mnX0idu5_uHtst4kbetr-2zypmdsB21tQED5n2r_k059cZSucl6_O80A3e5fOMU9YVX4zQbXHsWvwmJ9L7M8cQkOfalkUe0rvhFrO4sdxybstMH7FB9-ap03OK-gkOCDdaOlncUkKBCEQmU-MbCHzISL3Gk0rizEsiiFQCiVSx56eu9IQJUpWaVHgic43rH7PqbD4zJ4wnABJoF9EHI0AYhMjQJGnmR1GIEUhcY6K0moZCXJxqXLzokkU20YWxNRlbu1KjsWus8dVsYdU1NjWIyi7RP4aJRg-wqell2YUapxDti8QzM1-9aUQ1ivtwIXr6_9efsW06szy_c1Zdvq7MBcYry6SeD8g622rf3vf6n47E7E8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcQAOiKcYzyBxLeva9JHjNJg22HYBJG5R66awiXUTDH4_dpPyktAkblUrt5WdfHaUz18YO4_Ay8IwAQeCHByBSx0n9VLheDJLchevZNkUNhyFvXtx_RA81Fin6oUhWqXFfoPpJVrbO03rzeZ8PG7eEoEe82WIFQXmtBhxeIXUqYI6W2n3b3qjL6aHNIKfJPFNBl-NPM3JxVTDE9aGRPIyMp6t1l8p6hdYlxmou8k2bOnI2-bvtlhNF9ts_Zug4A5T_iWflhQ7TR29FABennWDT_ks59R4xedPmLk4Rhe_yYn3_sixCuSlvKVtRXrX3MAW14Zezs1J07vsvnt11-k59ggFB4QbL5w8aUkhAf2SR5n2NQQ-5CRg40UywsmXxhDLFNJIJp6fuZEndJDJTGfCE7mrXX-P1YtZofcZTwEioI1EH7QAoRElQ51muR_HIRYhSYOJymsKrL44HXPxrCoi2URZZytytnIjhc5usItPs7kR2FhmEFchUT9GisIksMz0rAqhwllEWyNJoWdvrwqBjUo_XIse_P_1p2y1dzccqEF_dHPI1uiJof0dsfri5U0fY_mySE_s8PwAp2_vAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+micromechanical+modeling+of+dual+phase+steels+using+the+representative+volume+element+method&rft.jtitle=Mechanics+of+materials&rft.au=Amirmaleki%2C+Maedeh&rft.au=Samei%2C+Javad&rft.au=Green%2C+Daniel+E.&rft.au=van+Riemsdijk%2C+Isadora&rft.date=2016-10-01&rft.issn=0167-6636&rft.volume=101&rft.spage=27&rft.epage=39&rft_id=info:doi/10.1016%2Fj.mechmat.2016.07.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mechmat_2016_07_011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6636&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6636&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6636&client=summon