ATT Squeeze U-Net: A Lightweight Network for Forest Fire Detection and Recognition

Forest fire is becoming one of the most significant natural disasters at the expense of ecology and economy. In this article, we develop an effective SqueezeNet based asymmetric encoder-decoder U-shape architecture, Attention U-Net and SqueezeNet (ATT Squeeze U-Net), mainly functions as an extractor...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 10858 - 10870
Main Authors Zhang, Jianmei, Zhu, Hongqing, Wang, Pengyu, Ling, Xiaofeng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Forest fire is becoming one of the most significant natural disasters at the expense of ecology and economy. In this article, we develop an effective SqueezeNet based asymmetric encoder-decoder U-shape architecture, Attention U-Net and SqueezeNet (ATT Squeeze U-Net), mainly functions as an extractor and a discriminator of forest fire. This model takes attention mechanism to highlight useful features and suppress irrelevant contents by embedding Attention Gate (AG) units in the skip connection of U-shape structure. In this way, salient features are emphasized so that the proposed method could be competent at forest fire segmentation tasks with a small number of parameters. Specifically, we first replace classical convolution layer by a depthwise one and engage a Channel Shuffle operation as a feature communicator in the Fire module of classical SqueezeNet. Then, this modified SqueezeNet is employed as a substitution of the encoder of Attention U-Net and a corresponding DeFire module designed is combined into the decoder as well. Finally, to classify true fire, we take use of a fragment of the encoder in ATT Squeeze U-Net. The experimental results of modified SqueezeNet integrated Attention U-Net show that a competitive accuracy at 0.93 and an average prediction time at 0.89 second per image are achieved for reliable real-time forest fire detection.
AbstractList Forest fire is becoming one of the most significant natural disasters at the expense of ecology and economy. In this article, we develop an effective SqueezeNet based asymmetric encoder-decoder U-shape architecture, Attention U-Net and SqueezeNet (ATT Squeeze U-Net), mainly functions as an extractor and a discriminator of forest fire. This model takes attention mechanism to highlight useful features and suppress irrelevant contents by embedding Attention Gate (AG) units in the skip connection of U-shape structure. In this way, salient features are emphasized so that the proposed method could be competent at forest fire segmentation tasks with a small number of parameters. Specifically, we first replace classical convolution layer by a depthwise one and engage a Channel Shuffle operation as a feature communicator in the Fire module of classical SqueezeNet. Then, this modified SqueezeNet is employed as a substitution of the encoder of Attention U-Net and a corresponding DeFire module designed is combined into the decoder as well. Finally, to classify true fire, we take use of a fragment of the encoder in ATT Squeeze U-Net. The experimental results of modified SqueezeNet integrated Attention U-Net show that a competitive accuracy at 0.93 and an average prediction time at 0.89 second per image are achieved for reliable real-time forest fire detection.
Author Zhu, Hongqing
Ling, Xiaofeng
Zhang, Jianmei
Wang, Pengyu
Author_xml – sequence: 1
  givenname: Jianmei
  surname: Zhang
  fullname: Zhang, Jianmei
  organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
– sequence: 2
  givenname: Hongqing
  orcidid: 0000-0002-2122-7066
  surname: Zhu
  fullname: Zhu, Hongqing
  email: hqzhu@ecust.edu.cn
  organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
– sequence: 3
  givenname: Pengyu
  orcidid: 0000-0003-0997-9887
  surname: Wang
  fullname: Wang, Pengyu
  organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
– sequence: 4
  givenname: Xiaofeng
  orcidid: 0000-0002-1107-6305
  surname: Ling
  fullname: Ling, Xiaofeng
  organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China
BookMark eNqFUctKAzEUDaLg8wvcBFxPzWMmk7gr1apQFGxdhzRzU1PrRDMR0a8344iIG0PI43DPOZd79tF2G1pA6JiSEaVEnY4nk4v5fMQIoyNOKiKY3EJ7jApV8IqL7V_vXXTUdWuSl8xQVe-hu_FigecvrwAfgO-LG0hneIxnfvWQ3qA_cYbeQnzELkQ8DRG6hKc-Aj6HBDb50GLTNvgObFi1vv8foh1nNh0cfd8H6H56sZhcFbPby-vJeFbYkshUuNo4aBhIkxtjvHHS1MJaYMpxQiyTRObtFGOilHxZgllKqxqaKbReOs4P0PWg2wSz1s_RP5n4roPx-gsIcaVNTN5uQDMBy7KSlDJuSumo6j24qUSVZWkNWetk0HqOIQ-jS3odXmOb29esrJWUshYiV_GhysbQdRHcjyslus9CD1noPgv9nUVmqT8s65PpJ5Wi8Zt_uMcD1wPAj5viVDFS809xipca
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s00371_021_02365_2
crossref_primary_10_1016_j_eswa_2024_124783
crossref_primary_10_1109_JSEN_2024_3416548
crossref_primary_10_23919_JSEE_2022_000026
crossref_primary_10_3390_f15101711
crossref_primary_10_1007_s12524_024_01888_0
crossref_primary_10_1016_j_isprsjprs_2023_10_019
crossref_primary_10_1007_s10694_023_01486_5
crossref_primary_10_1016_j_asoc_2023_110362
crossref_primary_10_1186_s13638_023_02320_w
crossref_primary_10_1016_j_egyr_2023_05_260
crossref_primary_10_3390_fire6080315
crossref_primary_10_3390_rs15184491
crossref_primary_10_1016_j_eswa_2024_125620
crossref_primary_10_1016_j_patcog_2024_110983
crossref_primary_10_32604_cmes_2023_027676
crossref_primary_10_3390_electronics13020348
crossref_primary_10_3390_f15071221
crossref_primary_10_1016_j_engappai_2022_104737
crossref_primary_10_3390_rs15010124
crossref_primary_10_3390_s23125702
crossref_primary_10_3390_f13091448
crossref_primary_10_3390_f15010204
crossref_primary_10_1109_ACCESS_2023_3344813
crossref_primary_10_1016_j_engappai_2023_107275
crossref_primary_10_3233_JIFS_211386
crossref_primary_10_3390_electronics10212675
crossref_primary_10_3390_app132312941
crossref_primary_10_3390_f13071133
crossref_primary_10_3390_rs15071821
crossref_primary_10_3390_app131911088
crossref_primary_10_1007_s10694_022_01214_5
crossref_primary_10_1007_s11042_024_20053_w
crossref_primary_10_1109_ACCESS_2022_3184707
crossref_primary_10_3390_info15090538
crossref_primary_10_3390_geosciences15010032
crossref_primary_10_3390_rs14092224
crossref_primary_10_1109_TGRS_2023_3346041
crossref_primary_10_1016_j_engappai_2022_105403
crossref_primary_10_3390_f14071499
crossref_primary_10_1016_j_geoderma_2024_116941
crossref_primary_10_1109_ACCESS_2023_3322143
crossref_primary_10_3390_rs14133159
crossref_primary_10_1080_22797254_2022_2133745
crossref_primary_10_1109_ACCESS_2025_3534782
crossref_primary_10_3390_fire8020038
crossref_primary_10_3390_s21103351
crossref_primary_10_3390_safety10020043
crossref_primary_10_32604_iasc_2023_030142
crossref_primary_10_3390_rs13193800
crossref_primary_10_3390_f13081302
crossref_primary_10_1016_j_bspc_2024_106047
crossref_primary_10_3390_electronics12224566
crossref_primary_10_1080_01431161_2023_2255349
crossref_primary_10_1088_1742_6596_2466_1_012031
crossref_primary_10_1109_JIOT_2024_3454697
crossref_primary_10_3390_f15111975
crossref_primary_10_3390_electronics11010073
crossref_primary_10_1038_s41598_024_82001_w
crossref_primary_10_1016_j_ins_2024_120633
crossref_primary_10_1109_TITS_2022_3203868
crossref_primary_10_3390_electronics11111738
Cites_doi 10.1016/j.patcog.2012.06.008
10.1016/j.infrared.2018.11.013
10.1016/j.firesaf.2006.02.001
10.1109/ACCESS.2019.2953558
10.1109/CVPR.2018.00291
10.1109/ICIAI.2019.8850815
10.1007/s10694-019-00832-w
10.1007/s11676-016-0361-8
10.1109/ICIP.2018.8451657
10.1016/j.firesaf.2011.01.001
10.1109/CVPR.2017.243
10.1109/TPAMI.2016.2644615
10.1007/s11042-017-5561-5
10.1109/CVPR.2018.00716
10.32604/cmes.2019.04985
10.1109/TBIOM.2019.2962190
10.1109/TCSVT.2015.2392531
10.1109/TIP.2013.2258353
10.1109/IECON.2016.7793196
10.1109/TII.2019.2897594
10.1109/ACCESS.2018.2812835
10.1109/ICASSP.2019.8682647
10.1109/CVPR.2016.90
10.3390/electronics8030281
10.1016/j.firesaf.2015.03.001
10.1007/s10694-009-0110-z
10.1016/j.compag.2019.105029
10.1109/ACCESS.2019.2914873
10.1109/TNNLS.2017.2716952
10.1109/JSEN.2019.2895735
10.1016/j.proeng.2017.12.034
10.1016/j.infrared.2014.03.002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3050628
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Forestry
EISSN 2169-3536
EndPage 10870
ExternalDocumentID oai_doaj_org_article_26eb4581123a48f199f303a5654ea17e
10_1109_ACCESS_2021_3050628
9319207
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Shanghai
  grantid: 19ZR1413400
  funderid: 10.13039/100007219
– fundername: National Nature Science Foundation of China
  grantid: 61872143
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-f7afed2e8a53623df8a76cce29f300c2808808f9226483b4eab8c9d1d2e17bf33
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:29 EDT 2025
Mon Jun 30 05:34:18 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Tue Jul 01 04:03:09 EDT 2025
Wed Aug 27 06:01:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f7afed2e8a53623df8a76cce29f300c2808808f9226483b4eab8c9d1d2e17bf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0997-9887
0000-0002-2122-7066
0000-0002-1107-6305
OpenAccessLink https://doaj.org/article/26eb4581123a48f199f303a5654ea17e
PQID 2479888766
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_primary_10_1109_ACCESS_2021_3050628
doaj_primary_oai_doaj_org_article_26eb4581123a48f199f303a5654ea17e
proquest_journals_2479888766
ieee_primary_9319207
crossref_citationtrail_10_1109_ACCESS_2021_3050628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
simonyan (ref26) 2014
ref34
ref12
ref37
ref15
ref14
ref31
ref30
ref11
ref32
ref10
ref1
ref39
ref17
krizhevsky (ref24) 2012
ref16
ref19
ref18
zahangir alom (ref36) 2018
iandola (ref3) 2016
ref23
ref25
ref20
ref41
ref22
ronneberger (ref33) 2015
ref21
ref28
ref27
kingma (ref38) 2014
ref8
ref9
ref4
oktay (ref2) 2018
ref6
ref5
howard (ref29) 2017
ref40
krüll (ref7) 2012; 45
References_xml – ident: ref13
  doi: 10.1016/j.patcog.2012.06.008
– ident: ref5
  doi: 10.1016/j.infrared.2018.11.013
– ident: ref9
  doi: 10.1016/j.firesaf.2006.02.001
– ident: ref41
  doi: 10.1109/ACCESS.2019.2953558
– ident: ref32
  doi: 10.1109/CVPR.2018.00291
– ident: ref22
  doi: 10.1109/ICIAI.2019.8850815
– ident: ref19
  doi: 10.1007/s10694-019-00832-w
– ident: ref6
  doi: 10.1007/s11676-016-0361-8
– ident: ref23
  doi: 10.1109/ICIP.2018.8451657
– year: 2014
  ident: ref38
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv 1412 6980
– ident: ref11
  doi: 10.1016/j.firesaf.2011.01.001
– ident: ref31
  doi: 10.1109/CVPR.2017.243
– ident: ref37
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref16
  doi: 10.1007/s11042-017-5561-5
– start-page: 234
  year: 2015
  ident: ref33
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent (MICCAI)
– year: 2017
  ident: ref29
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv 1704 04861
– ident: ref30
  doi: 10.1109/CVPR.2018.00716
– volume: 45
  start-page: 584
  year: 2012
  ident: ref7
  article-title: Early forest fire detection and verification using optical smoke, gas and microwave sensors
  publication-title: J Forestry Res
– year: 2018
  ident: ref36
  article-title: Recurrent residual convolutional neural network based on U-net (R2U-Net) for medical image segmentation
  publication-title: arXiv 1802 06955
– year: 2018
  ident: ref2
  article-title: Attention U-net: Learning where to look for the pancreas
  publication-title: arXiv 1804 03999
– ident: ref25
  doi: 10.32604/cmes.2019.04985
– ident: ref34
  doi: 10.1109/TBIOM.2019.2962190
– ident: ref10
  doi: 10.1109/TCSVT.2015.2392531
– ident: ref15
  doi: 10.1109/TIP.2013.2258353
– ident: ref18
  doi: 10.1109/IECON.2016.7793196
– ident: ref28
  doi: 10.1109/TII.2019.2897594
– ident: ref17
  doi: 10.1109/ACCESS.2018.2812835
– ident: ref21
  doi: 10.1109/ICASSP.2019.8682647
– start-page: 1097
  year: 2012
  ident: ref24
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– year: 2016
  ident: ref3
  article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and ¡0.5MB model size
  publication-title: arXiv 1602 07360
– ident: ref39
  doi: 10.1109/CVPR.2016.90
– ident: ref1
  doi: 10.3390/electronics8030281
– ident: ref12
  doi: 10.1016/j.firesaf.2015.03.001
– ident: ref14
  doi: 10.1007/s10694-009-0110-z
– ident: ref27
  doi: 10.1016/j.compag.2019.105029
– ident: ref35
  doi: 10.1109/ACCESS.2019.2914873
– ident: ref40
  doi: 10.1109/TNNLS.2017.2716952
– ident: ref4
  doi: 10.1109/JSEN.2019.2895735
– ident: ref20
  doi: 10.1016/j.proeng.2017.12.034
– ident: ref8
  doi: 10.1016/j.infrared.2014.03.002
– year: 2014
  ident: ref26
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv 1409 1556
SSID ssj0000816957
Score 2.4881954
Snippet Forest fire is becoming one of the most significant natural disasters at the expense of ecology and economy. In this article, we develop an effective...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10858
SubjectTerms attention U-Net
Coders
Convolution
Ecological effects
Encoders-Decoders
Feature extraction
fire module
Forest fire detection
Forest fire detection and recognition
Forestry
Image color analysis
Image segmentation
light-weight network
Modules
Natural disasters
Shape
SqueezeNet
Task analysis
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOLbQgFgrygWOzTWLnYW7bhVWF6B7KrtRb5Mf4QpVFkFWl_npmbG9EKULcoii2bH1jzyMz3zD23mgigbM6Q21eZRKkyEwDMnNSWKW8ljHgdrmsL9by83V1vcdOx1oYAAjJZzClx_Av323slkJlZwrlpaTS8UfouMVarTGeQg0kVNUkYqEiV2ez-Rz3gC5gWUxRqqlY8J7yCRz9qanKg5s4qJfFIbvcLSxmlXybbgcztXd_cDb-78qfsYNkZ_JZFIznbA_6I_b0N_bBI_aY2nJSr7djdjVbrfhXcmrvgK-zJQwf-Ix_Icf9NsRO-TKmi3O0cXkcxxd4W_KPMIRkrp7r3vGrXTrSpn_B1otPq_lFlrotZFbm7ZD5RntwJbS6QqUmnG91U1sLpfIiz23Z4n2Ut15R5W0rjARtWqtcgUOKxnghXrL9ftPDK0qXaloNBTgptaydVxbnk6pwDZQ-r82ElTsYOpuoyKkjxk0XXJJcdRG7jrDrEnYTdjoO-h6ZOP79-TnhO35KNNrhBeLSpVPZlTUYWbVocwqUSl8o2qvQaOTi9ooGJuyYsBwnSTBO2MlOWrp05H92pSTqN1Qu9eu_j3rDntACY_zmhO0PP7bwFi2awbwLovwLweDwYQ
  priority: 102
  providerName: IEEE
Title ATT Squeeze U-Net: A Lightweight Network for Forest Fire Detection and Recognition
URI https://ieeexplore.ieee.org/document/9319207
https://www.proquest.com/docview/2479888766
https://doaj.org/article/26eb4581123a48f199f303a5654ea17e
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzhUhW3VLQ_5wJGU2HFim9uysEKI7mG7K3GzHGd8qkJVUiHx65lxsqtFldoL18h24s-TeWn8DWNntScSuOAztOZlpkAVWa1BZY0qgrXRqz7h9n1e3a7U3UP5sNXqi2rCenrgHrgLWUGtSoNuQYETo8AFUOt69EMUeKGBtC_avK1gKulgIypb6oFmSOT2YjKd4o4wIJTiG8o4XR18Y4oSY__QYuUvvZyMzewj-zB4iXzSf90B24H2kO1vcQeO2GKyXPIfFIe-AF9lc-gu-YTfU6z9nNKdfN5XeHN0Szl14Hzq-AwVHL-GLtVftdy3DV-sK4ge209sNbtZTm-zoUFCFlRuuixqH6GRYHyJdqhoovG6CgEkYZQHaVCF5CZauixrihoBq02wjcApQtexKD6z3faxhS9U4aSNBwGNUl5VTbQB11NWNBpkzKt6zOQaKxcG9nBqYvHTpSgit64H2BHAbgB4zM43k3715Bn_Hn5Fh7AZSszX6QHKgxvkwf1PHsZsREe4WcSijpG5HrPj9ZG64S99clIRWxvag-rre7z6iO3RdvoEzTHb7X7_gRN0Wbr6NEnnabpd-AptdONj
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZWuxKPA49dEGUX8IHjppvEzsN7K4WqQNvD0kp7s_wYX0ApglRI--uZcdKIBYS4RVHGsvWNPePJzDeMvbaGSOCcSdCaF4kEKRJbgUy8FE6pYGQXcFuuyvlGfrgurg_Y-VALAwAx-QzG9Bj_5fut21Go7EKhvuRUOn6Edr_IumqtIaJCLSRUUfXUQlmqLibTKa4CL4F5Nka9pnLBW-YnsvT3bVX-OIujgZk9ZMv91Lq8ks_jXWvH7uY31sb_nfsj9qD3NPmkU43H7ACaY3b_F_7BY3aHGnNSt7cTdjVZr_knutbeAN8kK2gv-YQv6Or-I0ZP-apLGOfo5fJOjs_wvORvoY3pXA03jedX-4SkbfOEbWbv1tN50vdbSJxM6zYJlQngc6hNgWZN-FCbqnQOchVEmrq8xhMprYOi2ttaWAnG1k75DEWyygYhnrLDZtvAM0qYqmoDGXgpjSx9UA7HkyrzFeQhLe2I5XsYtOvJyKknxhcdLyWp0h12mrDTPXYjdj4Ife24OP79-RvCd_iUiLTjC8RF9_tS5yVYWdTodQrUy5ApWqsw6Obi8rIKRuyEsBwG6WEcsbO9tuh-03_XuSTyNzQv5fO_S71id-fr5UIv3q8-nrJ7NNkumnPGDttvO3iB_k1rX0a1_glx1POq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ATT+Squeeze+U-Net%3A+A+Lightweight+Network+for+Forest+Fire+Detection+and+Recognition&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Jianmei&rft.au=Zhu%2C+Hongqing&rft.au=Wang%2C+Pengyu&rft.au=Ling%2C+Xiaofeng&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=10858&rft.epage=10870&rft_id=info:doi/10.1109%2FACCESS.2021.3050628&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3050628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon