ATT Squeeze U-Net: A Lightweight Network for Forest Fire Detection and Recognition
Forest fire is becoming one of the most significant natural disasters at the expense of ecology and economy. In this article, we develop an effective SqueezeNet based asymmetric encoder-decoder U-shape architecture, Attention U-Net and SqueezeNet (ATT Squeeze U-Net), mainly functions as an extractor...
Saved in:
Published in | IEEE access Vol. 9; pp. 10858 - 10870 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Forest fire is becoming one of the most significant natural disasters at the expense of ecology and economy. In this article, we develop an effective SqueezeNet based asymmetric encoder-decoder U-shape architecture, Attention U-Net and SqueezeNet (ATT Squeeze U-Net), mainly functions as an extractor and a discriminator of forest fire. This model takes attention mechanism to highlight useful features and suppress irrelevant contents by embedding Attention Gate (AG) units in the skip connection of U-shape structure. In this way, salient features are emphasized so that the proposed method could be competent at forest fire segmentation tasks with a small number of parameters. Specifically, we first replace classical convolution layer by a depthwise one and engage a Channel Shuffle operation as a feature communicator in the Fire module of classical SqueezeNet. Then, this modified SqueezeNet is employed as a substitution of the encoder of Attention U-Net and a corresponding DeFire module designed is combined into the decoder as well. Finally, to classify true fire, we take use of a fragment of the encoder in ATT Squeeze U-Net. The experimental results of modified SqueezeNet integrated Attention U-Net show that a competitive accuracy at 0.93 and an average prediction time at 0.89 second per image are achieved for reliable real-time forest fire detection. |
---|---|
AbstractList | Forest fire is becoming one of the most significant natural disasters at the expense of ecology and economy. In this article, we develop an effective SqueezeNet based asymmetric encoder-decoder U-shape architecture, Attention U-Net and SqueezeNet (ATT Squeeze U-Net), mainly functions as an extractor and a discriminator of forest fire. This model takes attention mechanism to highlight useful features and suppress irrelevant contents by embedding Attention Gate (AG) units in the skip connection of U-shape structure. In this way, salient features are emphasized so that the proposed method could be competent at forest fire segmentation tasks with a small number of parameters. Specifically, we first replace classical convolution layer by a depthwise one and engage a Channel Shuffle operation as a feature communicator in the Fire module of classical SqueezeNet. Then, this modified SqueezeNet is employed as a substitution of the encoder of Attention U-Net and a corresponding DeFire module designed is combined into the decoder as well. Finally, to classify true fire, we take use of a fragment of the encoder in ATT Squeeze U-Net. The experimental results of modified SqueezeNet integrated Attention U-Net show that a competitive accuracy at 0.93 and an average prediction time at 0.89 second per image are achieved for reliable real-time forest fire detection. |
Author | Zhu, Hongqing Ling, Xiaofeng Zhang, Jianmei Wang, Pengyu |
Author_xml | – sequence: 1 givenname: Jianmei surname: Zhang fullname: Zhang, Jianmei organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China – sequence: 2 givenname: Hongqing orcidid: 0000-0002-2122-7066 surname: Zhu fullname: Zhu, Hongqing email: hqzhu@ecust.edu.cn organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China – sequence: 3 givenname: Pengyu orcidid: 0000-0003-0997-9887 surname: Wang fullname: Wang, Pengyu organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China – sequence: 4 givenname: Xiaofeng orcidid: 0000-0002-1107-6305 surname: Ling fullname: Ling, Xiaofeng organization: School of Information Science and Engineering, East China University of Science and Technology, Shanghai, China |
BookMark | eNqFUctKAzEUDaLg8wvcBFxPzWMmk7gr1apQFGxdhzRzU1PrRDMR0a8344iIG0PI43DPOZd79tF2G1pA6JiSEaVEnY4nk4v5fMQIoyNOKiKY3EJ7jApV8IqL7V_vXXTUdWuSl8xQVe-hu_FigecvrwAfgO-LG0hneIxnfvWQ3qA_cYbeQnzELkQ8DRG6hKc-Aj6HBDb50GLTNvgObFi1vv8foh1nNh0cfd8H6H56sZhcFbPby-vJeFbYkshUuNo4aBhIkxtjvHHS1MJaYMpxQiyTRObtFGOilHxZgllKqxqaKbReOs4P0PWg2wSz1s_RP5n4roPx-gsIcaVNTN5uQDMBy7KSlDJuSumo6j24qUSVZWkNWetk0HqOIQ-jS3odXmOb29esrJWUshYiV_GhysbQdRHcjyslus9CD1noPgv9nUVmqT8s65PpJ5Wi8Zt_uMcD1wPAj5viVDFS809xipca |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1007_s00371_021_02365_2 crossref_primary_10_1016_j_eswa_2024_124783 crossref_primary_10_1109_JSEN_2024_3416548 crossref_primary_10_23919_JSEE_2022_000026 crossref_primary_10_3390_f15101711 crossref_primary_10_1007_s12524_024_01888_0 crossref_primary_10_1016_j_isprsjprs_2023_10_019 crossref_primary_10_1007_s10694_023_01486_5 crossref_primary_10_1016_j_asoc_2023_110362 crossref_primary_10_1186_s13638_023_02320_w crossref_primary_10_1016_j_egyr_2023_05_260 crossref_primary_10_3390_fire6080315 crossref_primary_10_3390_rs15184491 crossref_primary_10_1016_j_eswa_2024_125620 crossref_primary_10_1016_j_patcog_2024_110983 crossref_primary_10_32604_cmes_2023_027676 crossref_primary_10_3390_electronics13020348 crossref_primary_10_3390_f15071221 crossref_primary_10_1016_j_engappai_2022_104737 crossref_primary_10_3390_rs15010124 crossref_primary_10_3390_s23125702 crossref_primary_10_3390_f13091448 crossref_primary_10_3390_f15010204 crossref_primary_10_1109_ACCESS_2023_3344813 crossref_primary_10_1016_j_engappai_2023_107275 crossref_primary_10_3233_JIFS_211386 crossref_primary_10_3390_electronics10212675 crossref_primary_10_3390_app132312941 crossref_primary_10_3390_f13071133 crossref_primary_10_3390_rs15071821 crossref_primary_10_3390_app131911088 crossref_primary_10_1007_s10694_022_01214_5 crossref_primary_10_1007_s11042_024_20053_w crossref_primary_10_1109_ACCESS_2022_3184707 crossref_primary_10_3390_info15090538 crossref_primary_10_3390_geosciences15010032 crossref_primary_10_3390_rs14092224 crossref_primary_10_1109_TGRS_2023_3346041 crossref_primary_10_1016_j_engappai_2022_105403 crossref_primary_10_3390_f14071499 crossref_primary_10_1016_j_geoderma_2024_116941 crossref_primary_10_1109_ACCESS_2023_3322143 crossref_primary_10_3390_rs14133159 crossref_primary_10_1080_22797254_2022_2133745 crossref_primary_10_1109_ACCESS_2025_3534782 crossref_primary_10_3390_fire8020038 crossref_primary_10_3390_s21103351 crossref_primary_10_3390_safety10020043 crossref_primary_10_32604_iasc_2023_030142 crossref_primary_10_3390_rs13193800 crossref_primary_10_3390_f13081302 crossref_primary_10_1016_j_bspc_2024_106047 crossref_primary_10_3390_electronics12224566 crossref_primary_10_1080_01431161_2023_2255349 crossref_primary_10_1088_1742_6596_2466_1_012031 crossref_primary_10_1109_JIOT_2024_3454697 crossref_primary_10_3390_f15111975 crossref_primary_10_3390_electronics11010073 crossref_primary_10_1038_s41598_024_82001_w crossref_primary_10_1016_j_ins_2024_120633 crossref_primary_10_1109_TITS_2022_3203868 crossref_primary_10_3390_electronics11111738 |
Cites_doi | 10.1016/j.patcog.2012.06.008 10.1016/j.infrared.2018.11.013 10.1016/j.firesaf.2006.02.001 10.1109/ACCESS.2019.2953558 10.1109/CVPR.2018.00291 10.1109/ICIAI.2019.8850815 10.1007/s10694-019-00832-w 10.1007/s11676-016-0361-8 10.1109/ICIP.2018.8451657 10.1016/j.firesaf.2011.01.001 10.1109/CVPR.2017.243 10.1109/TPAMI.2016.2644615 10.1007/s11042-017-5561-5 10.1109/CVPR.2018.00716 10.32604/cmes.2019.04985 10.1109/TBIOM.2019.2962190 10.1109/TCSVT.2015.2392531 10.1109/TIP.2013.2258353 10.1109/IECON.2016.7793196 10.1109/TII.2019.2897594 10.1109/ACCESS.2018.2812835 10.1109/ICASSP.2019.8682647 10.1109/CVPR.2016.90 10.3390/electronics8030281 10.1016/j.firesaf.2015.03.001 10.1007/s10694-009-0110-z 10.1016/j.compag.2019.105029 10.1109/ACCESS.2019.2914873 10.1109/TNNLS.2017.2716952 10.1109/JSEN.2019.2895735 10.1016/j.proeng.2017.12.034 10.1016/j.infrared.2014.03.002 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2021.3050628 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals (WRLC) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Forestry |
EISSN | 2169-3536 |
EndPage | 10870 |
ExternalDocumentID | oai_doaj_org_article_26eb4581123a48f199f303a5654ea17e 10_1109_ACCESS_2021_3050628 9319207 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Shanghai grantid: 19ZR1413400 funderid: 10.13039/100007219 – fundername: National Nature Science Foundation of China grantid: 61872143 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-f7afed2e8a53623df8a76cce29f300c2808808f9226483b4eab8c9d1d2e17bf33 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:29 EDT 2025 Mon Jun 30 05:34:18 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Tue Jul 01 04:03:09 EDT 2025 Wed Aug 27 06:01:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-f7afed2e8a53623df8a76cce29f300c2808808f9226483b4eab8c9d1d2e17bf33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0997-9887 0000-0002-2122-7066 0000-0002-1107-6305 |
OpenAccessLink | https://doaj.org/article/26eb4581123a48f199f303a5654ea17e |
PQID | 2479888766 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2021_3050628 doaj_primary_oai_doaj_org_article_26eb4581123a48f199f303a5654ea17e proquest_journals_2479888766 ieee_primary_9319207 crossref_citationtrail_10_1109_ACCESS_2021_3050628 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 simonyan (ref26) 2014 ref34 ref12 ref37 ref15 ref14 ref31 ref30 ref11 ref32 ref10 ref1 ref39 ref17 krizhevsky (ref24) 2012 ref16 ref19 ref18 zahangir alom (ref36) 2018 iandola (ref3) 2016 ref23 ref25 ref20 ref41 ref22 ronneberger (ref33) 2015 ref21 ref28 ref27 kingma (ref38) 2014 ref8 ref9 ref4 oktay (ref2) 2018 ref6 ref5 howard (ref29) 2017 ref40 krüll (ref7) 2012; 45 |
References_xml | – ident: ref13 doi: 10.1016/j.patcog.2012.06.008 – ident: ref5 doi: 10.1016/j.infrared.2018.11.013 – ident: ref9 doi: 10.1016/j.firesaf.2006.02.001 – ident: ref41 doi: 10.1109/ACCESS.2019.2953558 – ident: ref32 doi: 10.1109/CVPR.2018.00291 – ident: ref22 doi: 10.1109/ICIAI.2019.8850815 – ident: ref19 doi: 10.1007/s10694-019-00832-w – ident: ref6 doi: 10.1007/s11676-016-0361-8 – ident: ref23 doi: 10.1109/ICIP.2018.8451657 – year: 2014 ident: ref38 article-title: Adam: A method for stochastic optimization publication-title: arXiv 1412 6980 – ident: ref11 doi: 10.1016/j.firesaf.2011.01.001 – ident: ref31 doi: 10.1109/CVPR.2017.243 – ident: ref37 doi: 10.1109/TPAMI.2016.2644615 – ident: ref16 doi: 10.1007/s11042-017-5561-5 – start-page: 234 year: 2015 ident: ref33 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent (MICCAI) – year: 2017 ident: ref29 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv 1704 04861 – ident: ref30 doi: 10.1109/CVPR.2018.00716 – volume: 45 start-page: 584 year: 2012 ident: ref7 article-title: Early forest fire detection and verification using optical smoke, gas and microwave sensors publication-title: J Forestry Res – year: 2018 ident: ref36 article-title: Recurrent residual convolutional neural network based on U-net (R2U-Net) for medical image segmentation publication-title: arXiv 1802 06955 – year: 2018 ident: ref2 article-title: Attention U-net: Learning where to look for the pancreas publication-title: arXiv 1804 03999 – ident: ref25 doi: 10.32604/cmes.2019.04985 – ident: ref34 doi: 10.1109/TBIOM.2019.2962190 – ident: ref10 doi: 10.1109/TCSVT.2015.2392531 – ident: ref15 doi: 10.1109/TIP.2013.2258353 – ident: ref18 doi: 10.1109/IECON.2016.7793196 – ident: ref28 doi: 10.1109/TII.2019.2897594 – ident: ref17 doi: 10.1109/ACCESS.2018.2812835 – ident: ref21 doi: 10.1109/ICASSP.2019.8682647 – start-page: 1097 year: 2012 ident: ref24 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst (NIPS) – year: 2016 ident: ref3 article-title: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and ¡0.5MB model size publication-title: arXiv 1602 07360 – ident: ref39 doi: 10.1109/CVPR.2016.90 – ident: ref1 doi: 10.3390/electronics8030281 – ident: ref12 doi: 10.1016/j.firesaf.2015.03.001 – ident: ref14 doi: 10.1007/s10694-009-0110-z – ident: ref27 doi: 10.1016/j.compag.2019.105029 – ident: ref35 doi: 10.1109/ACCESS.2019.2914873 – ident: ref40 doi: 10.1109/TNNLS.2017.2716952 – ident: ref4 doi: 10.1109/JSEN.2019.2895735 – ident: ref20 doi: 10.1016/j.proeng.2017.12.034 – ident: ref8 doi: 10.1016/j.infrared.2014.03.002 – year: 2014 ident: ref26 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv 1409 1556 |
SSID | ssj0000816957 |
Score | 2.4881954 |
Snippet | Forest fire is becoming one of the most significant natural disasters at the expense of ecology and economy. In this article, we develop an effective... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10858 |
SubjectTerms | attention U-Net Coders Convolution Ecological effects Encoders-Decoders Feature extraction fire module Forest fire detection Forest fire detection and recognition Forestry Image color analysis Image segmentation light-weight network Modules Natural disasters Shape SqueezeNet Task analysis |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKDwgOLbQgFgrygWOzTWLnYW7bhVWF6B7KrtRb5Mf4QpVFkFWl_npmbG9EKULcoii2bH1jzyMz3zD23mgigbM6Q21eZRKkyEwDMnNSWKW8ljHgdrmsL9by83V1vcdOx1oYAAjJZzClx_Av323slkJlZwrlpaTS8UfouMVarTGeQg0kVNUkYqEiV2ez-Rz3gC5gWUxRqqlY8J7yCRz9qanKg5s4qJfFIbvcLSxmlXybbgcztXd_cDb-78qfsYNkZ_JZFIznbA_6I_b0N_bBI_aY2nJSr7djdjVbrfhXcmrvgK-zJQwf-Ix_Icf9NsRO-TKmi3O0cXkcxxd4W_KPMIRkrp7r3vGrXTrSpn_B1otPq_lFlrotZFbm7ZD5RntwJbS6QqUmnG91U1sLpfIiz23Z4n2Ut15R5W0rjARtWqtcgUOKxnghXrL9ftPDK0qXaloNBTgptaydVxbnk6pwDZQ-r82ElTsYOpuoyKkjxk0XXJJcdRG7jrDrEnYTdjoO-h6ZOP79-TnhO35KNNrhBeLSpVPZlTUYWbVocwqUSl8o2qvQaOTi9ooGJuyYsBwnSTBO2MlOWrp05H92pSTqN1Qu9eu_j3rDntACY_zmhO0PP7bwFi2awbwLovwLweDwYQ priority: 102 providerName: IEEE |
Title | ATT Squeeze U-Net: A Lightweight Network for Forest Fire Detection and Recognition |
URI | https://ieeexplore.ieee.org/document/9319207 https://www.proquest.com/docview/2479888766 https://doaj.org/article/26eb4581123a48f199f303a5654ea17e |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzhUhW3VLQ_5wJGU2HFim9uysEKI7mG7K3GzHGd8qkJVUiHx65lxsqtFldoL18h24s-TeWn8DWNntScSuOAztOZlpkAVWa1BZY0qgrXRqz7h9n1e3a7U3UP5sNXqi2rCenrgHrgLWUGtSoNuQYETo8AFUOt69EMUeKGBtC_avK1gKulgIypb6oFmSOT2YjKd4o4wIJTiG8o4XR18Y4oSY__QYuUvvZyMzewj-zB4iXzSf90B24H2kO1vcQeO2GKyXPIfFIe-AF9lc-gu-YTfU6z9nNKdfN5XeHN0Szl14Hzq-AwVHL-GLtVftdy3DV-sK4ge209sNbtZTm-zoUFCFlRuuixqH6GRYHyJdqhoovG6CgEkYZQHaVCF5CZauixrihoBq02wjcApQtexKD6z3faxhS9U4aSNBwGNUl5VTbQB11NWNBpkzKt6zOQaKxcG9nBqYvHTpSgit64H2BHAbgB4zM43k3715Bn_Hn5Fh7AZSszX6QHKgxvkwf1PHsZsREe4WcSijpG5HrPj9ZG64S99clIRWxvag-rre7z6iO3RdvoEzTHb7X7_gRN0Wbr6NEnnabpd-AptdONj |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZWuxKPA49dEGUX8IHjppvEzsN7K4WqQNvD0kp7s_wYX0ApglRI--uZcdKIBYS4RVHGsvWNPePJzDeMvbaGSOCcSdCaF4kEKRJbgUy8FE6pYGQXcFuuyvlGfrgurg_Y-VALAwAx-QzG9Bj_5fut21Go7EKhvuRUOn6Edr_IumqtIaJCLSRUUfXUQlmqLibTKa4CL4F5Nka9pnLBW-YnsvT3bVX-OIujgZk9ZMv91Lq8ks_jXWvH7uY31sb_nfsj9qD3NPmkU43H7ACaY3b_F_7BY3aHGnNSt7cTdjVZr_knutbeAN8kK2gv-YQv6Or-I0ZP-apLGOfo5fJOjs_wvORvoY3pXA03jedX-4SkbfOEbWbv1tN50vdbSJxM6zYJlQngc6hNgWZN-FCbqnQOchVEmrq8xhMprYOi2ttaWAnG1k75DEWyygYhnrLDZtvAM0qYqmoDGXgpjSx9UA7HkyrzFeQhLe2I5XsYtOvJyKknxhcdLyWp0h12mrDTPXYjdj4Ife24OP79-RvCd_iUiLTjC8RF9_tS5yVYWdTodQrUy5ApWqsw6Obi8rIKRuyEsBwG6WEcsbO9tuh-03_XuSTyNzQv5fO_S71id-fr5UIv3q8-nrJ7NNkumnPGDttvO3iB_k1rX0a1_glx1POq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ATT+Squeeze+U-Net%3A+A+Lightweight+Network+for+Forest+Fire+Detection+and+Recognition&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Jianmei&rft.au=Zhu%2C+Hongqing&rft.au=Wang%2C+Pengyu&rft.au=Ling%2C+Xiaofeng&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=10858&rft.epage=10870&rft_id=info:doi/10.1109%2FACCESS.2021.3050628&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3050628 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |