A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: An experimental study
•We experimentally prove a novel concept for highly efficient liquid cooling of non-uniform power maps.•It uses rationally distributed microchannel structures which passively target cooling on hotspots.•Hotspot-targeted embedded microstructures minimize chip temperature non-uniformity.•This is achie...
Saved in:
Published in | International journal of heat and mass transfer Vol. 88; pp. 684 - 694 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We experimentally prove a novel concept for highly efficient liquid cooling of non-uniform power maps.•It uses rationally distributed microchannel structures which passively target cooling on hotspots.•Hotspot-targeted embedded microstructures minimize chip temperature non-uniformity.•This is achieved with pumping power consumption less than 0.3% of total chip power.•No additional system level complexity is required.
The shift to multicore microprocessor architecture is likely to result in higher coolant flow requirements and thus exacerbate the problem of increasing data center energy consumption, also with respect to hotspot elimination. We present and experimentally prove a novel concept, for embedded, hotspot-targeted and energy efficient cooling of heterogeneous chip power landscapes. The rationally distributed, embedded microstructures presented here are able to adapt the heat transfer capability to a steady but non-uniform chip power map by passively throttling the flow in low heat flux areas. For the industrially acceptable limit on pressure drop of approximately 0.4bar, the hotspot-targeted embedded liquid cooling (HT-ELC) designs are evaluated against a conservatively chosen conventional embedded liquid cooling (C-ELC) design and existing heat sinks in the literature. For an average steady-state heat flux of 150W/cm2 in core areas (hotspots) and 20W/cm2 over the remaining chip area (background), the chip temperature variation is reduced from 10°C under the conventional cooling to 4°C under the current hotspot targeted heat sink – a reduction of 57%. For heat fluxes of 300 and 24W/cm2, the temperature variation is reduced by 30%. We show that the HT-ELC designs consume less than 0.3% of total chip power as pumping power to achieve this thermal performance, which the C-ELC design cannot match under all feasible levels of pumping power. Moreover, the HT-ELC designs achieve at least 70% improvement over the existing hotspot targeted heat sinks in terms of normalized chip temperature non-uniformity, without the need for any additional system level complexity, reducing reliability risks. |
---|---|
AbstractList | •We experimentally prove a novel concept for highly efficient liquid cooling of non-uniform power maps.•It uses rationally distributed microchannel structures which passively target cooling on hotspots.•Hotspot-targeted embedded microstructures minimize chip temperature non-uniformity.•This is achieved with pumping power consumption less than 0.3% of total chip power.•No additional system level complexity is required.
The shift to multicore microprocessor architecture is likely to result in higher coolant flow requirements and thus exacerbate the problem of increasing data center energy consumption, also with respect to hotspot elimination. We present and experimentally prove a novel concept, for embedded, hotspot-targeted and energy efficient cooling of heterogeneous chip power landscapes. The rationally distributed, embedded microstructures presented here are able to adapt the heat transfer capability to a steady but non-uniform chip power map by passively throttling the flow in low heat flux areas. For the industrially acceptable limit on pressure drop of approximately 0.4bar, the hotspot-targeted embedded liquid cooling (HT-ELC) designs are evaluated against a conservatively chosen conventional embedded liquid cooling (C-ELC) design and existing heat sinks in the literature. For an average steady-state heat flux of 150W/cm2 in core areas (hotspots) and 20W/cm2 over the remaining chip area (background), the chip temperature variation is reduced from 10°C under the conventional cooling to 4°C under the current hotspot targeted heat sink – a reduction of 57%. For heat fluxes of 300 and 24W/cm2, the temperature variation is reduced by 30%. We show that the HT-ELC designs consume less than 0.3% of total chip power as pumping power to achieve this thermal performance, which the C-ELC design cannot match under all feasible levels of pumping power. Moreover, the HT-ELC designs achieve at least 70% improvement over the existing hotspot targeted heat sinks in terms of normalized chip temperature non-uniformity, without the need for any additional system level complexity, reducing reliability risks. |
Author | Brunschwiler, Thomas Sharma, Chander Shekhar Schlottig, Gerd Michel, Bruno Tiwari, Manish K. Poulikakos, Dimos |
Author_xml | – sequence: 1 givenname: Chander Shekhar surname: Sharma fullname: Sharma, Chander Shekhar organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland – sequence: 2 givenname: Gerd surname: Schlottig fullname: Schlottig, Gerd organization: Advanced Micro Integration, IBM Research – Zurich, 8803 Rüschlikon, Switzerland – sequence: 3 givenname: Thomas surname: Brunschwiler fullname: Brunschwiler, Thomas organization: Advanced Micro Integration, IBM Research – Zurich, 8803 Rüschlikon, Switzerland – sequence: 4 givenname: Manish K. surname: Tiwari fullname: Tiwari, Manish K. organization: Department of Mechanical Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK – sequence: 5 givenname: Bruno surname: Michel fullname: Michel, Bruno organization: Advanced Micro Integration, IBM Research – Zurich, 8803 Rüschlikon, Switzerland – sequence: 6 givenname: Dimos surname: Poulikakos fullname: Poulikakos, Dimos email: dpoulikakos@ethz.ch organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland |
BookMark | eNqNkE1rwzAMhs3oYG23_-DjLsnsNnGSnVbKPinssp2DYsutQ2p3tlvWfz-X7rbLQCAJwcOrZ0JG1lkk5JaznDMu7vrc9BuEuIUQogcbNPp8xniZsyJVdUHGvK6abMbrZkTGjPEqa-acXZFJCP1pZYUYE7-g1h1woFuMG6eo0xQt-vWRotZGGrSRblwMOxezCH6NERXFbYdKpWEwX3ujqHRuMHZNtfMUB5TRO2tkuKcLS_F7h95sEwcGGuJeHa_JpYYh4M1vn5LPp8eP5Uu2en9-XS5WmSxYHTM909ClmIAdsFJ0XECKxCpRCtAwE4ViDQeNJShZdnUJWhfQFJUQUjJWlvMpeThzpXcheNTtLgUBf2w5a08O277967A9OWxZkapKiLczAlPOg0nXcFIiURmf3myVM_-H_QBOd40w |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2024_125746 crossref_primary_10_7567_1347_4065_ab002d crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_039 crossref_primary_10_1016_j_applthermaleng_2021_117149 crossref_primary_10_1109_TPEL_2020_3015226 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121025 crossref_primary_10_1615_JEnhHeatTransf_2022044339 crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_086 crossref_primary_10_1016_j_applthermaleng_2015_08_086 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125463 crossref_primary_10_1016_j_applthermaleng_2019_114259 crossref_primary_10_1115_1_4052400 crossref_primary_10_1016_j_applthermaleng_2024_123587 crossref_primary_10_1016_j_energy_2020_119223 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119572 crossref_primary_10_1016_j_ijheatmasstransfer_2015_12_039 crossref_primary_10_1080_01457632_2019_1637136 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123611 crossref_primary_10_1016_j_ijthermalsci_2018_07_043 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_004 crossref_primary_10_1007_s11708_017_0521_3 crossref_primary_10_1016_j_applthermaleng_2023_120047 crossref_primary_10_1016_j_apenergy_2022_120048 crossref_primary_10_1016_j_applthermaleng_2024_123612 crossref_primary_10_1016_j_ijthermalsci_2018_06_019 crossref_primary_10_1016_j_rser_2017_09_110 crossref_primary_10_1007_s10973_020_09739_z crossref_primary_10_1007_s40430_021_02912_x crossref_primary_10_1080_01457632_2018_1470286 crossref_primary_10_1080_10407782_2019_1599272 crossref_primary_10_1016_j_ijthermalsci_2024_109128 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119843 crossref_primary_10_7736_JKSPE_022_077 crossref_primary_10_1016_j_solener_2020_03_106 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_059 crossref_primary_10_1115_1_4036643 crossref_primary_10_1016_j_applthermaleng_2021_117913 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119681 crossref_primary_10_1016_j_applthermaleng_2023_121294 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120790 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120395 crossref_primary_10_1002_pol_20230725 crossref_primary_10_1063_1_4979477 crossref_primary_10_1115_1_4064458 crossref_primary_10_1016_j_applthermaleng_2021_118010 crossref_primary_10_1016_j_applthermaleng_2018_08_030 crossref_primary_10_1007_s11431_022_2071_9 crossref_primary_10_1016_j_applthermaleng_2023_120452 crossref_primary_10_1007_s42452_019_1784_6 crossref_primary_10_1016_j_csite_2022_102354 crossref_primary_10_1016_j_applthermaleng_2021_117849 crossref_primary_10_1039_C5RA17152K crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_051 crossref_primary_10_1007_s11630_020_1334_y crossref_primary_10_1016_j_apenergy_2018_02_014 crossref_primary_10_1016_j_applthermaleng_2022_118201 crossref_primary_10_1080_01457632_2019_1649939 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_028 crossref_primary_10_1109_TPEL_2018_2872904 crossref_primary_10_1016_j_applthermaleng_2019_02_075 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118928 crossref_primary_10_1016_j_rser_2022_112512 crossref_primary_10_1002_htj_23016 crossref_primary_10_1063_5_0023758 crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_042 crossref_primary_10_1016_j_applthermaleng_2020_116227 crossref_primary_10_1016_j_rser_2018_04_010 crossref_primary_10_1016_j_applthermaleng_2024_123073 crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_015 crossref_primary_10_1016_j_applthermaleng_2016_12_061 crossref_primary_10_1109_TCPMT_2018_2874241 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2011.11.052 10.1016/j.ijheatmasstransfer.2004.11.019 10.1109/JSSC.1974.1050511 10.1016/j.applthermaleng.2011.10.001 10.1016/S1369-7021(06)71539-5 10.1080/10920277.2013.826480 10.1007/s10404-013-1137-5 10.1016/j.ijheatmasstransfer.2012.11.012 10.1109/TCPMT.2012.2189925 10.1557/PROC-1112-E06-02 10.1016/j.apenergy.2013.02.047 10.1080/01457630701421703 10.1016/S0017-9310(02)00443-X 10.1007/s00542-008-0690-4 10.1016/j.ijheatmasstransfer.2013.05.066 10.1080/01457630490519772 10.1109/95.588554 10.1016/j.sse.2007.02.004 10.1109/EDL.1981.25367 10.1016/j.apenergy.2014.10.068 10.1109/LED.2005.862693 10.1109/TCPMT.2013.2244164 10.1109/TCAPT.2008.916859 10.1109/IPDPS.2006.1639600 10.1109/TVLSI.2007.915434 10.1016/j.ijheatfluidflow.2010.03.001 10.1109/JPROC.2006.879791 10.1147/JRD.2011.2127330 10.1016/S0017-9310(02)00048-0 10.1038/nnano.2008.417 10.1109/TCAPT.2007.897977 10.1115/1.4002287 10.1016/j.energy.2012.04.037 10.1088/0508-3443/18/8/310 10.1109/ECTC.2009.5074053 10.1145/2324876.2324879 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijheatmasstransfer.2015.04.047 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
EndPage | 694 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2015_04_047 S0017931015004159 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AAXKI AAYXX ABDPE ACRPL ADNMO AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c408t-f2fab017aeba056b16aeff07656afa264d091afe5adc5b85aff4a94766cc00553 |
IEDL.DBID | AIKHN |
ISSN | 0017-9310 |
IngestDate | Fri Dec 06 00:36:30 EST 2024 Fri Feb 23 02:24:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hotspot-targeted cooling Microchannel cooling Electronics cooling Energy efficient computing Multicore microprocessors Hotspots |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-f2fab017aeba056b16aeff07656afa264d091afe5adc5b85aff4a94766cc00553 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_ijheatmasstransfer_2015_04_047 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2015_04_047 |
PublicationCentury | 2000 |
PublicationDate | September 2015 2015-09-00 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
PublicationDecade | 2010 |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sharma, Tiwari, Zimmermann, Brunschwiler, Schlottig, Michel, Poulikakos (b0185) 2015; 138 Sharma, Tiwari, Michel, Poulikakos (b0075) 2013; 58 Renfer, Tiwari, Tiwari, Alfieri, Brunschwiler, Michel, Poulikakos (b0215) 2013; 65 Brunschwiler, Michel, Rothuizen, Kloter, Wunderle, Oppermann, Reichl (b0130) 2009; 15 Lee, Lee, Chou (b0155) 2013; 3 S. Sharma, H. Chung-Hsing, F. Wu-chun, Making a case for a green500 list, in: Proceedings of 20th International IEEE Parallel and Distributed Processing Symposium, 2006. Lee, Garimella, Liu (b0055) 2005; 48 Alfieri, Gianini, Tiwari, Brunschwiler, Michel, Poulikakos (b0135) 2013; 65 Madding (b0190) 1999; 3700 Ryu, Choi, Kim (b0065) 2003; 46 Garimella, Persoons, Weibel, Yeh (b0015) 2013; 107 Dennard, Cai, Kumar (b0035) 2007; 51 Quinn (b0195) 1967; 18 Hetsroni, Mosyak, Segal, Ziskind (b0100) 2002; 45 Escher, Michel, Poulikakos (b0070) 2010; 31 2013. JEDEC, Failure mechanisms and models for semiconductor devices, in: JEDEC, 2010, pp. 1–9, 68–72. Tuckerman, Pease (b0050) 1981; 2 Etessam-Yazdani, Asheghi, Hamann (b0180) 2008; 31 Dennard, Gaensslen, Rideout, Bassous, LeBlanc (b0010) 1974; 9 Rubio-Jimenez, Kandlikar, Hernandez-Guerrero (b0105) 2012; 2 Alfieri, Tiwari, Zinovik, Poulikakos, Brunschwiler, Michel (b0210) 2010; 132 Madou (b0200) 2002 Koomey (b0020) 2011 Zimmermann, Meijer, Tiwari, Paredes, Michel, Poulikakos (b0080) 2012; 43 Kandlikar, Bapat (b0090) 2007; 28 Esmaeilzadeh, Blem, Ren, Amant, Sankaralingam, Burger (b0115) 2012; 30 Renfer, Tiwari, Meyer, Brunschwiler, Michel, Poulikakos (b0220) 2013; 15 Dang, Bakir, Meindl (b0165) 2006; 27 Bar-Cohen, Arik, Ohadi (b0095) 2006; 94 T. Brunschwiler, H. Rothuizen, S. Paredes, B. Michel, E. Colgan, P. Bezama, Hotspot-adapted cold plates to maximize system efficiency, in: 15th International Workshop on Thermal Investigations of ICs and Systems, 2009. THERMINIC 2009, 2009, pp. 150–156. Sinharoy, Kalla, Starke, Le, Cargnoni, Van Norstrand, Ronchetti, Stuecheli, Leenstra, Guthrie, Nguyen, Blaner, Marino, Retter, Williams (b0120) 2011; 55 Paik, Pamula, Chakrabarty (b0145) 2008; 16 Sharma, Zimmermann, Tiwari, Michel, Poulikakos (b0045) 2012; 55 Moore (b0005) 1965; 38 Chowdhury, Prasher, Lofgreen, Chrysler, Narasimhan, Mahajan, Koester, Alley, Venkatasubramanian (b0140) 2009; 4 Lee, Garimella (b0150) 2005; vol. 2005 Thompson, Parthasarathy (b0125) 2006; 9 Colgan, Furman, Gaynes, Graham, LaBianca (b0205) 2007; 30 Copeland, Behnia, Nakayama (b0060) 1997; 20 Z. Mingyuan, Z.R. Huang, Design of on-chip microchannel fluidic cooling structures, in: Electronic Components and Technology Conference, 2007. ECTC ‘07. Proceedings. 57th, 2007, pp. 2017–2023. E. Kermani, S. Dessiatoun, A. Shooshtari, M.M. Ohadi, Experimental investigation of heat transfer performance of a manifold microchannel heat sink for cooling of concentrated solar cells, in: Electronic Components and Technology Conference, 2009. ECTC 2009. 59th, 2009, pp. 453–459. Barrau, Omri, Chemisana, Rosell, Ibañez, Tadrist (b0110) 2012; 33–34 T. Brunschwiler, B. Michel, H. Rothuizen, U. Kloter, B. Wunderle, H. Reichl, Hotspot-optimized interlayer cooling in vertically integrated packages, in: Materials Research Society, Symposium on Materials and Technologies for 3-D Integration Boston, 2008. The Green500 List, in, vol. 2013 Kandlikar, Grande (b0170) 2004; 25 Sinharoy (10.1016/j.ijheatmasstransfer.2015.04.047_b0120) 2011; 55 Renfer (10.1016/j.ijheatmasstransfer.2015.04.047_b0215) 2013; 65 Moore (10.1016/j.ijheatmasstransfer.2015.04.047_b0005) 1965; 38 Ryu (10.1016/j.ijheatmasstransfer.2015.04.047_b0065) 2003; 46 Etessam-Yazdani (10.1016/j.ijheatmasstransfer.2015.04.047_b0180) 2008; 31 Quinn (10.1016/j.ijheatmasstransfer.2015.04.047_b0195) 1967; 18 Barrau (10.1016/j.ijheatmasstransfer.2015.04.047_b0110) 2012; 33–34 10.1016/j.ijheatmasstransfer.2015.04.047_b0175 Lee (10.1016/j.ijheatmasstransfer.2015.04.047_b0155) 2013; 3 10.1016/j.ijheatmasstransfer.2015.04.047_b0030 Sharma (10.1016/j.ijheatmasstransfer.2015.04.047_b0075) 2013; 58 Madding (10.1016/j.ijheatmasstransfer.2015.04.047_b0190) 1999; 3700 Kandlikar (10.1016/j.ijheatmasstransfer.2015.04.047_b0170) 2004; 25 Brunschwiler (10.1016/j.ijheatmasstransfer.2015.04.047_b0130) 2009; 15 Renfer (10.1016/j.ijheatmasstransfer.2015.04.047_b0220) 2013; 15 Alfieri (10.1016/j.ijheatmasstransfer.2015.04.047_b0135) 2013; 65 Madou (10.1016/j.ijheatmasstransfer.2015.04.047_b0200) 2002 Colgan (10.1016/j.ijheatmasstransfer.2015.04.047_b0205) 2007; 30 Tuckerman (10.1016/j.ijheatmasstransfer.2015.04.047_b0050) 1981; 2 Garimella (10.1016/j.ijheatmasstransfer.2015.04.047_b0015) 2013; 107 Zimmermann (10.1016/j.ijheatmasstransfer.2015.04.047_b0080) 2012; 43 Sharma (10.1016/j.ijheatmasstransfer.2015.04.047_b0045) 2012; 55 Escher (10.1016/j.ijheatmasstransfer.2015.04.047_b0070) 2010; 31 Rubio-Jimenez (10.1016/j.ijheatmasstransfer.2015.04.047_b0105) 2012; 2 Esmaeilzadeh (10.1016/j.ijheatmasstransfer.2015.04.047_b0115) 2012; 30 Hetsroni (10.1016/j.ijheatmasstransfer.2015.04.047_b0100) 2002; 45 Sharma (10.1016/j.ijheatmasstransfer.2015.04.047_b0185) 2015; 138 Alfieri (10.1016/j.ijheatmasstransfer.2015.04.047_b0210) 2010; 132 10.1016/j.ijheatmasstransfer.2015.04.047_b0225 Dennard (10.1016/j.ijheatmasstransfer.2015.04.047_b0010) 1974; 9 10.1016/j.ijheatmasstransfer.2015.04.047_b0025 Thompson (10.1016/j.ijheatmasstransfer.2015.04.047_b0125) 2006; 9 Dang (10.1016/j.ijheatmasstransfer.2015.04.047_b0165) 2006; 27 10.1016/j.ijheatmasstransfer.2015.04.047_b0085 10.1016/j.ijheatmasstransfer.2015.04.047_b0040 10.1016/j.ijheatmasstransfer.2015.04.047_b0160 Copeland (10.1016/j.ijheatmasstransfer.2015.04.047_b0060) 1997; 20 Koomey (10.1016/j.ijheatmasstransfer.2015.04.047_b0020) 2011 Bar-Cohen (10.1016/j.ijheatmasstransfer.2015.04.047_b0095) 2006; 94 Dennard (10.1016/j.ijheatmasstransfer.2015.04.047_b0035) 2007; 51 Paik (10.1016/j.ijheatmasstransfer.2015.04.047_b0145) 2008; 16 Kandlikar (10.1016/j.ijheatmasstransfer.2015.04.047_b0090) 2007; 28 Chowdhury (10.1016/j.ijheatmasstransfer.2015.04.047_b0140) 2009; 4 Lee (10.1016/j.ijheatmasstransfer.2015.04.047_b0150) 2005; vol. 2005 Lee (10.1016/j.ijheatmasstransfer.2015.04.047_b0055) 2005; 48 |
References_xml | – volume: 31 start-page: 211 year: 2008 end-page: 215 ident: b0180 article-title: Investigation of the impact of power granularity on chip thermal modeling using white noise analysis publication-title: IEEE Trans. Compon. Packag. Technol. contributor: fullname: Hamann – volume: 132 start-page: 121402 year: 2010 ident: b0210 article-title: 3D integrated water cooling of a composite multilayer stack of chips publication-title: J. Heat Transfer contributor: fullname: Michel – volume: 43 start-page: 237 year: 2012 end-page: 245 ident: b0080 article-title: Aquasar: A hot water cooled data center with direct energy reuse publication-title: Energy contributor: fullname: Poulikakos – volume: 3700 start-page: 393 year: 1999 end-page: 401 ident: b0190 publication-title: Emissivity Measurement and Temperature Correction Accuracy Considerations contributor: fullname: Madding – volume: 2 start-page: 126 year: 1981 end-page: 129 ident: b0050 article-title: High-performance heat sinking for VLSI publication-title: IEEE Electron Device Lett. contributor: fullname: Pease – volume: 107 start-page: 66 year: 2013 end-page: 80 ident: b0015 article-title: Technological drivers in data centers and telecom systems: multiscale thermal, electrical, and energy management publication-title: Appl. Energy contributor: fullname: Yeh – volume: 30 start-page: 1 year: 2012 end-page: 27 ident: b0115 article-title: Power limitations and dark silicon challenge the future of multicore publication-title: ACM Trans. Comput. Syst. contributor: fullname: Burger – volume: 27 start-page: 117 year: 2006 end-page: 119 ident: b0165 article-title: Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink publication-title: IEEE Electron Device Lett. contributor: fullname: Meindl – volume: 46 start-page: 1553 year: 2003 end-page: 1562 ident: b0065 article-title: Three-dimensional numerical optimization of a manifold microchannel heat sink publication-title: Int. J. Heat Mass Transfer contributor: fullname: Kim – volume: 65 start-page: 33 year: 2013 end-page: 43 ident: b0215 article-title: Microvortex-enhanced heat transfer in 3D-integrated liquid cooling of electronic chip stacks publication-title: Int. J. Heat Mass Transfer contributor: fullname: Poulikakos – volume: 58 start-page: 135 year: 2013 end-page: 151 ident: b0075 article-title: Thermofluidics and energetics of a manifold microchannel heat sink for electronics with recovered hot water as working fluid publication-title: Int. J. Heat Mass Transfer contributor: fullname: Poulikakos – volume: 33–34 start-page: 237 year: 2012 end-page: 245 ident: b0110 article-title: Numerical study of a hybrid jet impingement/micro-channel cooling scheme publication-title: Appl. Therm. Eng. contributor: fullname: Tadrist – volume: 3 start-page: 1332 year: 2013 end-page: 1341 ident: b0155 article-title: Hotspot mitigating with obliquely finned microchannel heat sink–an experimental study publication-title: IEEE Trans. Compon. Packag. Technol. contributor: fullname: Chou – volume: 38 start-page: 114 year: 1965 end-page: 117 ident: b0005 article-title: Cramming more components onto integrated circuits publication-title: Electronics contributor: fullname: Moore – volume: 20 start-page: 96 year: 1997 end-page: 102 ident: b0060 article-title: Manifold microchannel heat sinks: isothermal analysis publication-title: IEEE Trans. Compon. Packag. Technol. Part A contributor: fullname: Nakayama – volume: 25 start-page: 5 year: 2004 end-page: 16 ident: b0170 article-title: Evaluation of single phase flow in microchannels for high heat flux chip cooling—thermohydraulic performance enhancement and fabrication technology publication-title: Heat Transfer Eng. contributor: fullname: Grande – volume: 30 start-page: 218 year: 2007 end-page: 225 ident: b0205 article-title: A practical implementation of silicon microchannel coolers for high power chips publication-title: IEEE Trans. Compon. Packag. Technol. contributor: fullname: LaBianca – volume: 48 start-page: 1688 year: 2005 end-page: 1704 ident: b0055 article-title: Investigation of heat transfer in rectangular microchannels publication-title: Int. J. Heat Mass Transfer contributor: fullname: Liu – volume: 15 start-page: 231 year: 2013 end-page: 242 ident: b0220 article-title: Vortex shedding from confined micropin arrays publication-title: Microfluid. Nanofluid. contributor: fullname: Poulikakos – volume: 31 start-page: 586 year: 2010 end-page: 598 ident: b0070 article-title: A novel high performance, ultra thin heat sink for electronics publication-title: Int. J. Heat Fluid Flow contributor: fullname: Poulikakos – volume: 18 start-page: 1105 year: 1967 end-page: 1113 ident: b0195 article-title: The calculation of the emissivity of cylindrical cavities giving near black-body radiation publication-title: Br. J. Appl. Phys. contributor: fullname: Quinn – volume: 28 start-page: 911 year: 2007 end-page: 923 ident: b0090 article-title: Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal publication-title: Heat Transfer Eng. contributor: fullname: Bapat – volume: vol. 2005 start-page: 643 year: 2005 end-page: 647 ident: b0150 article-title: Hot-spot thermal management with flow modulation in a microchannel heat sink publication-title: ASME International Mechanical Engineering Congress and Exposition contributor: fullname: Garimella – volume: 51 start-page: 518 year: 2007 end-page: 525 ident: b0035 article-title: A perspective on today’s scaling challenges and possible future directions publication-title: Solid-State Electron. contributor: fullname: Kumar – volume: 15 start-page: 57 year: 2009 end-page: 74 ident: b0130 article-title: Interlayer cooling potential in vertically integrated packages publication-title: Microsyst. Technol. contributor: fullname: Reichl – volume: 55 start-page: 1957 year: 2012 end-page: 1969 ident: b0045 article-title: Optimal thermal operation of liquid-cooled electronic chips publication-title: Int. J. Heat Mass Transfer contributor: fullname: Poulikakos – volume: 2 start-page: 825 year: 2012 end-page: 833 ident: b0105 article-title: Numerical analysis of novel micro pin fin heat sink with variable fin density publication-title: IEEE Trans. Compon. Packag. Technol. contributor: fullname: Hernandez-Guerrero – volume: 4 start-page: 235 year: 2009 end-page: 238 ident: b0140 article-title: On-chip cooling by superlattice-based thin-film thermoelectrics publication-title: Nat. Nano contributor: fullname: Venkatasubramanian – volume: 45 start-page: 3275 year: 2002 end-page: 3286 ident: b0100 article-title: A uniform temperature heat sink for cooling of electronic devices publication-title: Int. J. Heat Mass Transfer contributor: fullname: Ziskind – volume: 9 start-page: 20 year: 2006 end-page: 25 ident: b0125 article-title: Moore’s law: the future of Si microelectronics publication-title: Mater. Today contributor: fullname: Parthasarathy – volume: 138 start-page: 414 year: 2015 end-page: 422 ident: b0185 article-title: Energy efficient hotspot-targeted embedded liquid cooling of electronics publication-title: Appl. Energy contributor: fullname: Poulikakos – volume: 65 start-page: 201 year: 2013 end-page: 215 ident: b0135 article-title: Computational modeling of hot-spot identification and control in 3-D stacked chips with integrated cooling publication-title: Numer. Heat Transfer Part A Appl. contributor: fullname: Poulikakos – year: 2011 ident: b0020 article-title: Growth in Data Center Electricity Use 2005 to 2010, in, Oakland contributor: fullname: Koomey – volume: 16 start-page: 432 year: 2008 end-page: 443 ident: b0145 article-title: Adaptive cooling of integrated circuits using digital microfluidics publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. contributor: fullname: Chakrabarty – volume: 94 start-page: 1549 year: 2006 end-page: 1570 ident: b0095 article-title: Direct liquid cooling of high flux micro and nano electronic components publication-title: Proc. IEEE contributor: fullname: Ohadi – volume: 55 start-page: 1:1 year: 2011 end-page: 1:29 ident: b0120 article-title: IBM POWER7 multicore server processor publication-title: IBM J. Res. Develop. contributor: fullname: Williams – year: 2002 ident: b0200 article-title: Fundamentals of Microfabrication: The Science of Miniaturization contributor: fullname: Madou – volume: 9 start-page: 256 year: 1974 end-page: 268 ident: b0010 article-title: Design of ion-implanted MOSFET’s with very small physical dimensions publication-title: IEEE J. Solid-State Circuits contributor: fullname: LeBlanc – volume: 55 start-page: 1957 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0045 article-title: Optimal thermal operation of liquid-cooled electronic chips publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.11.052 contributor: fullname: Sharma – volume: 48 start-page: 1688 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0055 article-title: Investigation of heat transfer in rectangular microchannels publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2004.11.019 contributor: fullname: Lee – volume: 9 start-page: 256 year: 1974 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0010 article-title: Design of ion-implanted MOSFET’s with very small physical dimensions publication-title: IEEE J. Solid-State Circuits doi: 10.1109/JSSC.1974.1050511 contributor: fullname: Dennard – volume: 33–34 start-page: 237 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0110 article-title: Numerical study of a hybrid jet impingement/micro-channel cooling scheme publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.10.001 contributor: fullname: Barrau – volume: 38 start-page: 114 year: 1965 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0005 article-title: Cramming more components onto integrated circuits publication-title: Electronics contributor: fullname: Moore – ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0040 – volume: 9 start-page: 20 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0125 article-title: Moore’s law: the future of Si microelectronics publication-title: Mater. Today doi: 10.1016/S1369-7021(06)71539-5 contributor: fullname: Thompson – volume: 65 start-page: 201 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0135 article-title: Computational modeling of hot-spot identification and control in 3-D stacked chips with integrated cooling publication-title: Numer. Heat Transfer Part A Appl. doi: 10.1080/10920277.2013.826480 contributor: fullname: Alfieri – volume: vol. 2005 start-page: 643 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0150 article-title: Hot-spot thermal management with flow modulation in a microchannel heat sink contributor: fullname: Lee – volume: 15 start-page: 231 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0220 article-title: Vortex shedding from confined micropin arrays publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-013-1137-5 contributor: fullname: Renfer – volume: 58 start-page: 135 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0075 article-title: Thermofluidics and energetics of a manifold microchannel heat sink for electronics with recovered hot water as working fluid publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.11.012 contributor: fullname: Sharma – volume: 2 start-page: 825 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0105 article-title: Numerical analysis of novel micro pin fin heat sink with variable fin density publication-title: IEEE Trans. Compon. Packag. Technol. doi: 10.1109/TCPMT.2012.2189925 contributor: fullname: Rubio-Jimenez – ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0160 – volume: 3700 start-page: 393 year: 1999 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0190 contributor: fullname: Madding – ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0030 – ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0225 doi: 10.1557/PROC-1112-E06-02 – volume: 107 start-page: 66 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0015 article-title: Technological drivers in data centers and telecom systems: multiscale thermal, electrical, and energy management publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.02.047 contributor: fullname: Garimella – volume: 28 start-page: 911 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0090 article-title: Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal publication-title: Heat Transfer Eng. doi: 10.1080/01457630701421703 contributor: fullname: Kandlikar – volume: 46 start-page: 1553 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0065 article-title: Three-dimensional numerical optimization of a manifold microchannel heat sink publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(02)00443-X contributor: fullname: Ryu – volume: 15 start-page: 57 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0130 article-title: Interlayer cooling potential in vertically integrated packages publication-title: Microsyst. Technol. doi: 10.1007/s00542-008-0690-4 contributor: fullname: Brunschwiler – volume: 65 start-page: 33 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0215 article-title: Microvortex-enhanced heat transfer in 3D-integrated liquid cooling of electronic chip stacks publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.05.066 contributor: fullname: Renfer – volume: 25 start-page: 5 year: 2004 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0170 article-title: Evaluation of single phase flow in microchannels for high heat flux chip cooling—thermohydraulic performance enhancement and fabrication technology publication-title: Heat Transfer Eng. doi: 10.1080/01457630490519772 contributor: fullname: Kandlikar – volume: 20 start-page: 96 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0060 article-title: Manifold microchannel heat sinks: isothermal analysis publication-title: IEEE Trans. Compon. Packag. Technol. Part A doi: 10.1109/95.588554 contributor: fullname: Copeland – volume: 51 start-page: 518 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0035 article-title: A perspective on today’s scaling challenges and possible future directions publication-title: Solid-State Electron. doi: 10.1016/j.sse.2007.02.004 contributor: fullname: Dennard – volume: 2 start-page: 126 year: 1981 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0050 article-title: High-performance heat sinking for VLSI publication-title: IEEE Electron Device Lett. doi: 10.1109/EDL.1981.25367 contributor: fullname: Tuckerman – ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0175 – volume: 138 start-page: 414 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0185 article-title: Energy efficient hotspot-targeted embedded liquid cooling of electronics publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.10.068 contributor: fullname: Sharma – volume: 27 start-page: 117 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0165 article-title: Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2005.862693 contributor: fullname: Dang – volume: 3 start-page: 1332 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0155 article-title: Hotspot mitigating with obliquely finned microchannel heat sink–an experimental study publication-title: IEEE Trans. Compon. Packag. Technol. doi: 10.1109/TCPMT.2013.2244164 contributor: fullname: Lee – volume: 31 start-page: 211 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0180 article-title: Investigation of the impact of power granularity on chip thermal modeling using white noise analysis publication-title: IEEE Trans. Compon. Packag. Technol. doi: 10.1109/TCAPT.2008.916859 contributor: fullname: Etessam-Yazdani – ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0025 doi: 10.1109/IPDPS.2006.1639600 – year: 2002 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0200 contributor: fullname: Madou – volume: 16 start-page: 432 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0145 article-title: Adaptive cooling of integrated circuits using digital microfluidics publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi: 10.1109/TVLSI.2007.915434 contributor: fullname: Paik – volume: 31 start-page: 586 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0070 article-title: A novel high performance, ultra thin heat sink for electronics publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2010.03.001 contributor: fullname: Escher – volume: 94 start-page: 1549 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0095 article-title: Direct liquid cooling of high flux micro and nano electronic components publication-title: Proc. IEEE doi: 10.1109/JPROC.2006.879791 contributor: fullname: Bar-Cohen – volume: 55 start-page: 1:1 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0120 article-title: IBM POWER7 multicore server processor publication-title: IBM J. Res. Develop. doi: 10.1147/JRD.2011.2127330 contributor: fullname: Sinharoy – year: 2011 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0020 contributor: fullname: Koomey – volume: 45 start-page: 3275 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0100 article-title: A uniform temperature heat sink for cooling of electronic devices publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(02)00048-0 contributor: fullname: Hetsroni – volume: 4 start-page: 235 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0140 article-title: On-chip cooling by superlattice-based thin-film thermoelectrics publication-title: Nat. Nano doi: 10.1038/nnano.2008.417 contributor: fullname: Chowdhury – volume: 30 start-page: 218 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0205 article-title: A practical implementation of silicon microchannel coolers for high power chips publication-title: IEEE Trans. Compon. Packag. Technol. doi: 10.1109/TCAPT.2007.897977 contributor: fullname: Colgan – volume: 132 start-page: 121402 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0210 article-title: 3D integrated water cooling of a composite multilayer stack of chips publication-title: J. Heat Transfer doi: 10.1115/1.4002287 contributor: fullname: Alfieri – volume: 43 start-page: 237 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0080 article-title: Aquasar: A hot water cooled data center with direct energy reuse publication-title: Energy doi: 10.1016/j.energy.2012.04.037 contributor: fullname: Zimmermann – volume: 18 start-page: 1105 year: 1967 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0195 article-title: The calculation of the emissivity of cylindrical cavities giving near black-body radiation publication-title: Br. J. Appl. Phys. doi: 10.1088/0508-3443/18/8/310 contributor: fullname: Quinn – ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0085 doi: 10.1109/ECTC.2009.5074053 – volume: 30 start-page: 1 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0115 article-title: Power limitations and dark silicon challenge the future of multicore publication-title: ACM Trans. Comput. Syst. doi: 10.1145/2324876.2324879 contributor: fullname: Esmaeilzadeh |
SSID | ssj0017046 |
Score | 2.5091078 |
Snippet | •We experimentally prove a novel concept for highly efficient liquid cooling of non-uniform power maps.•It uses rationally distributed microchannel structures... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 684 |
SubjectTerms | Electronics cooling Energy efficient computing Hotspot-targeted cooling Hotspots Microchannel cooling Multicore microprocessors |
Title | A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: An experimental study |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.04.047 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5ai-JFfGJ9lD148BJNmqRJvJWiVIseRNFb2GRnNaVNapt69Lc7k6Q-0IMHISEkkGX5GL75hp0HwJGPZDioteErRQGKaytDBm1pkLf1Eem2keudr286_Xvn6tF9rEFvUQvDaZUV95ecXrB19eW0QvN0kiRc48vGZXHIznXmQR0a5I74rLbRvRz0bz4OEzyzrNdhQuYfVuD4M80rGTLpjUmp5oVSRG4SarlF_1OeufKbt_rigS7WYa2SjqJb7m4DaphuwnKRwhnPtmDaFWn2iiNRDoUWmRZYFPYJLNpEkHcRz1lOYWxulPnfqASOIyTqUWKUvMwTJeKMh_g8CZKy4nNCzuxMdFPxdRiAKNrSbsP9xfldr29UExWM2DH93NBtLSOCQWIkSflEVkfSFkyPRJ3UkrSRIvkgNbpSxW7ku1JrRwaO1-nEMXfrsndgKc1S3AUReLEX-4Q7tpUjyfG3NYkztF2tXc_WQROCBXLhpGycES4yyobhT9RDRj00Hbq8JvQWUIffjCEknv_zKnv_sso-rPJbmVZ2AEv5dI6HpEPyqAX1kzerVVkbPwe3D4N3MaHl7w |
link.rule.ids | 314,780,784,4502,24116,27924,27925,45585,45679 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4gxsfF-Iz43IMHL5VHu7T1RogEFThBwq3Zdme1BFqE4tHf7mxbBKMHDybtpdtsNl8m33ybfDMDcOMgBQ4qZThS0gWFm9IQbk0YlG0dRHpN1PXO3V69PbCehnxYgOayFkbbKnPuzzg9Zev8SzlHszwNQ13jq4Orqq_sus7c3YBNi5P6paC--_jyeVTtSlato-lY_74NtyuTVzjSlDchnZqkOhF1i9AqT7uf6okrv-WqtfzT2oe9XDiyRna2AyhgdAhbqYEzmB_BrMGi-B3HLBsJzWLFMC3rY5g2iaDcwl7jhC6xiZG5v1EynPhIxCPZOHxbhJIFsR7h88JIyLLVfJz5PWtEbH0UAEub0h7DoPXQb7aNfJ6CEVgVJzFUTQmfYBDoC9I9frUu6AgVmySdUIKUkSTxIBRyIQPuO1woZQnXsuv1INC9uswTKEZxhKfAXDuwA4dQx5q0BKX9miJphiZXitumckvgLpHzplnbDG_pJxt5P1H3NOpexaLHLkFzCbX3LRQ8Yvk_73L2L7tcw0673-14ncfe8zns6pXMYHYBxWS2wEtSJIl_lUbcJySC5SU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+of+energy+efficient+hotspot-targeted+embedded+liquid+cooling+for+electronics%3A+An+experimental+study&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Sharma%2C+Chander+Shekhar&rft.au=Schlottig%2C+Gerd&rft.au=Brunschwiler%2C+Thomas&rft.au=Tiwari%2C+Manish+K.&rft.date=2015-09-01&rft.issn=0017-9310&rft.volume=88&rft.spage=684&rft.epage=694&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2015.04.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2015_04_047 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |