A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: An experimental study

•We experimentally prove a novel concept for highly efficient liquid cooling of non-uniform power maps.•It uses rationally distributed microchannel structures which passively target cooling on hotspots.•Hotspot-targeted embedded microstructures minimize chip temperature non-uniformity.•This is achie...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 88; pp. 684 - 694
Main Authors Sharma, Chander Shekhar, Schlottig, Gerd, Brunschwiler, Thomas, Tiwari, Manish K., Michel, Bruno, Poulikakos, Dimos
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We experimentally prove a novel concept for highly efficient liquid cooling of non-uniform power maps.•It uses rationally distributed microchannel structures which passively target cooling on hotspots.•Hotspot-targeted embedded microstructures minimize chip temperature non-uniformity.•This is achieved with pumping power consumption less than 0.3% of total chip power.•No additional system level complexity is required. The shift to multicore microprocessor architecture is likely to result in higher coolant flow requirements and thus exacerbate the problem of increasing data center energy consumption, also with respect to hotspot elimination. We present and experimentally prove a novel concept, for embedded, hotspot-targeted and energy efficient cooling of heterogeneous chip power landscapes. The rationally distributed, embedded microstructures presented here are able to adapt the heat transfer capability to a steady but non-uniform chip power map by passively throttling the flow in low heat flux areas. For the industrially acceptable limit on pressure drop of approximately 0.4bar, the hotspot-targeted embedded liquid cooling (HT-ELC) designs are evaluated against a conservatively chosen conventional embedded liquid cooling (C-ELC) design and existing heat sinks in the literature. For an average steady-state heat flux of 150W/cm2 in core areas (hotspots) and 20W/cm2 over the remaining chip area (background), the chip temperature variation is reduced from 10°C under the conventional cooling to 4°C under the current hotspot targeted heat sink – a reduction of 57%. For heat fluxes of 300 and 24W/cm2, the temperature variation is reduced by 30%. We show that the HT-ELC designs consume less than 0.3% of total chip power as pumping power to achieve this thermal performance, which the C-ELC design cannot match under all feasible levels of pumping power. Moreover, the HT-ELC designs achieve at least 70% improvement over the existing hotspot targeted heat sinks in terms of normalized chip temperature non-uniformity, without the need for any additional system level complexity, reducing reliability risks.
AbstractList •We experimentally prove a novel concept for highly efficient liquid cooling of non-uniform power maps.•It uses rationally distributed microchannel structures which passively target cooling on hotspots.•Hotspot-targeted embedded microstructures minimize chip temperature non-uniformity.•This is achieved with pumping power consumption less than 0.3% of total chip power.•No additional system level complexity is required. The shift to multicore microprocessor architecture is likely to result in higher coolant flow requirements and thus exacerbate the problem of increasing data center energy consumption, also with respect to hotspot elimination. We present and experimentally prove a novel concept, for embedded, hotspot-targeted and energy efficient cooling of heterogeneous chip power landscapes. The rationally distributed, embedded microstructures presented here are able to adapt the heat transfer capability to a steady but non-uniform chip power map by passively throttling the flow in low heat flux areas. For the industrially acceptable limit on pressure drop of approximately 0.4bar, the hotspot-targeted embedded liquid cooling (HT-ELC) designs are evaluated against a conservatively chosen conventional embedded liquid cooling (C-ELC) design and existing heat sinks in the literature. For an average steady-state heat flux of 150W/cm2 in core areas (hotspots) and 20W/cm2 over the remaining chip area (background), the chip temperature variation is reduced from 10°C under the conventional cooling to 4°C under the current hotspot targeted heat sink – a reduction of 57%. For heat fluxes of 300 and 24W/cm2, the temperature variation is reduced by 30%. We show that the HT-ELC designs consume less than 0.3% of total chip power as pumping power to achieve this thermal performance, which the C-ELC design cannot match under all feasible levels of pumping power. Moreover, the HT-ELC designs achieve at least 70% improvement over the existing hotspot targeted heat sinks in terms of normalized chip temperature non-uniformity, without the need for any additional system level complexity, reducing reliability risks.
Author Brunschwiler, Thomas
Sharma, Chander Shekhar
Schlottig, Gerd
Michel, Bruno
Tiwari, Manish K.
Poulikakos, Dimos
Author_xml – sequence: 1
  givenname: Chander Shekhar
  surname: Sharma
  fullname: Sharma, Chander Shekhar
  organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
– sequence: 2
  givenname: Gerd
  surname: Schlottig
  fullname: Schlottig, Gerd
  organization: Advanced Micro Integration, IBM Research – Zurich, 8803 Rüschlikon, Switzerland
– sequence: 3
  givenname: Thomas
  surname: Brunschwiler
  fullname: Brunschwiler, Thomas
  organization: Advanced Micro Integration, IBM Research – Zurich, 8803 Rüschlikon, Switzerland
– sequence: 4
  givenname: Manish K.
  surname: Tiwari
  fullname: Tiwari, Manish K.
  organization: Department of Mechanical Engineering, University College London (UCL), Torrington Place, London WC1E 7JE, UK
– sequence: 5
  givenname: Bruno
  surname: Michel
  fullname: Michel, Bruno
  organization: Advanced Micro Integration, IBM Research – Zurich, 8803 Rüschlikon, Switzerland
– sequence: 6
  givenname: Dimos
  surname: Poulikakos
  fullname: Poulikakos, Dimos
  email: dpoulikakos@ethz.ch
  organization: Laboratory of Thermodynamics in Emerging Technologies, Institute of Energy Technology, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
BookMark eNqNkE1rwzAMhs3oYG23_-DjLsnsNnGSnVbKPinssp2DYsutQ2p3tlvWfz-X7rbLQCAJwcOrZ0JG1lkk5JaznDMu7vrc9BuEuIUQogcbNPp8xniZsyJVdUHGvK6abMbrZkTGjPEqa-acXZFJCP1pZYUYE7-g1h1woFuMG6eo0xQt-vWRotZGGrSRblwMOxezCH6NERXFbYdKpWEwX3ujqHRuMHZNtfMUB5TRO2tkuKcLS_F7h95sEwcGGuJeHa_JpYYh4M1vn5LPp8eP5Uu2en9-XS5WmSxYHTM909ClmIAdsFJ0XECKxCpRCtAwE4ViDQeNJShZdnUJWhfQFJUQUjJWlvMpeThzpXcheNTtLgUBf2w5a08O277967A9OWxZkapKiLczAlPOg0nXcFIiURmf3myVM_-H_QBOd40w
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2024_125746
crossref_primary_10_7567_1347_4065_ab002d
crossref_primary_10_1016_j_ijheatmasstransfer_2018_01_039
crossref_primary_10_1016_j_applthermaleng_2021_117149
crossref_primary_10_1109_TPEL_2020_3015226
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121025
crossref_primary_10_1615_JEnhHeatTransf_2022044339
crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_086
crossref_primary_10_1016_j_applthermaleng_2015_08_086
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125463
crossref_primary_10_1016_j_applthermaleng_2019_114259
crossref_primary_10_1115_1_4052400
crossref_primary_10_1016_j_applthermaleng_2024_123587
crossref_primary_10_1016_j_energy_2020_119223
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119572
crossref_primary_10_1016_j_ijheatmasstransfer_2015_12_039
crossref_primary_10_1080_01457632_2019_1637136
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123611
crossref_primary_10_1016_j_ijthermalsci_2018_07_043
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_004
crossref_primary_10_1007_s11708_017_0521_3
crossref_primary_10_1016_j_applthermaleng_2023_120047
crossref_primary_10_1016_j_apenergy_2022_120048
crossref_primary_10_1016_j_applthermaleng_2024_123612
crossref_primary_10_1016_j_ijthermalsci_2018_06_019
crossref_primary_10_1016_j_rser_2017_09_110
crossref_primary_10_1007_s10973_020_09739_z
crossref_primary_10_1007_s40430_021_02912_x
crossref_primary_10_1080_01457632_2018_1470286
crossref_primary_10_1080_10407782_2019_1599272
crossref_primary_10_1016_j_ijthermalsci_2024_109128
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119843
crossref_primary_10_7736_JKSPE_022_077
crossref_primary_10_1016_j_solener_2020_03_106
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_059
crossref_primary_10_1115_1_4036643
crossref_primary_10_1016_j_applthermaleng_2021_117913
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119681
crossref_primary_10_1016_j_applthermaleng_2023_121294
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120790
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120395
crossref_primary_10_1002_pol_20230725
crossref_primary_10_1063_1_4979477
crossref_primary_10_1115_1_4064458
crossref_primary_10_1016_j_applthermaleng_2021_118010
crossref_primary_10_1016_j_applthermaleng_2018_08_030
crossref_primary_10_1007_s11431_022_2071_9
crossref_primary_10_1016_j_applthermaleng_2023_120452
crossref_primary_10_1007_s42452_019_1784_6
crossref_primary_10_1016_j_csite_2022_102354
crossref_primary_10_1016_j_applthermaleng_2021_117849
crossref_primary_10_1039_C5RA17152K
crossref_primary_10_1016_j_ijheatmasstransfer_2019_07_051
crossref_primary_10_1007_s11630_020_1334_y
crossref_primary_10_1016_j_apenergy_2018_02_014
crossref_primary_10_1016_j_applthermaleng_2022_118201
crossref_primary_10_1080_01457632_2019_1649939
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_028
crossref_primary_10_1109_TPEL_2018_2872904
crossref_primary_10_1016_j_applthermaleng_2019_02_075
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118928
crossref_primary_10_1016_j_rser_2022_112512
crossref_primary_10_1002_htj_23016
crossref_primary_10_1063_5_0023758
crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_042
crossref_primary_10_1016_j_applthermaleng_2020_116227
crossref_primary_10_1016_j_rser_2018_04_010
crossref_primary_10_1016_j_applthermaleng_2024_123073
crossref_primary_10_1016_j_ijheatmasstransfer_2017_10_015
crossref_primary_10_1016_j_applthermaleng_2016_12_061
crossref_primary_10_1109_TCPMT_2018_2874241
Cites_doi 10.1016/j.ijheatmasstransfer.2011.11.052
10.1016/j.ijheatmasstransfer.2004.11.019
10.1109/JSSC.1974.1050511
10.1016/j.applthermaleng.2011.10.001
10.1016/S1369-7021(06)71539-5
10.1080/10920277.2013.826480
10.1007/s10404-013-1137-5
10.1016/j.ijheatmasstransfer.2012.11.012
10.1109/TCPMT.2012.2189925
10.1557/PROC-1112-E06-02
10.1016/j.apenergy.2013.02.047
10.1080/01457630701421703
10.1016/S0017-9310(02)00443-X
10.1007/s00542-008-0690-4
10.1016/j.ijheatmasstransfer.2013.05.066
10.1080/01457630490519772
10.1109/95.588554
10.1016/j.sse.2007.02.004
10.1109/EDL.1981.25367
10.1016/j.apenergy.2014.10.068
10.1109/LED.2005.862693
10.1109/TCPMT.2013.2244164
10.1109/TCAPT.2008.916859
10.1109/IPDPS.2006.1639600
10.1109/TVLSI.2007.915434
10.1016/j.ijheatfluidflow.2010.03.001
10.1109/JPROC.2006.879791
10.1147/JRD.2011.2127330
10.1016/S0017-9310(02)00048-0
10.1038/nnano.2008.417
10.1109/TCAPT.2007.897977
10.1115/1.4002287
10.1016/j.energy.2012.04.037
10.1088/0508-3443/18/8/310
10.1109/ECTC.2009.5074053
10.1145/2324876.2324879
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijheatmasstransfer.2015.04.047
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 694
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2015_04_047
S0017931015004159
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AAXKI
AAYXX
ABDPE
ACRPL
ADNMO
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c408t-f2fab017aeba056b16aeff07656afa264d091afe5adc5b85aff4a94766cc00553
IEDL.DBID AIKHN
ISSN 0017-9310
IngestDate Fri Dec 06 00:36:30 EST 2024
Fri Feb 23 02:24:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hotspot-targeted cooling
Microchannel cooling
Electronics cooling
Energy efficient computing
Multicore microprocessors
Hotspots
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f2fab017aeba056b16aeff07656afa264d091afe5adc5b85aff4a94766cc00553
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_ijheatmasstransfer_2015_04_047
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2015_04_047
PublicationCentury 2000
PublicationDate September 2015
2015-09-00
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationTitle International journal of heat and mass transfer
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sharma, Tiwari, Zimmermann, Brunschwiler, Schlottig, Michel, Poulikakos (b0185) 2015; 138
Sharma, Tiwari, Michel, Poulikakos (b0075) 2013; 58
Renfer, Tiwari, Tiwari, Alfieri, Brunschwiler, Michel, Poulikakos (b0215) 2013; 65
Brunschwiler, Michel, Rothuizen, Kloter, Wunderle, Oppermann, Reichl (b0130) 2009; 15
Lee, Lee, Chou (b0155) 2013; 3
S. Sharma, H. Chung-Hsing, F. Wu-chun, Making a case for a green500 list, in: Proceedings of 20th International IEEE Parallel and Distributed Processing Symposium, 2006.
Lee, Garimella, Liu (b0055) 2005; 48
Alfieri, Gianini, Tiwari, Brunschwiler, Michel, Poulikakos (b0135) 2013; 65
Madding (b0190) 1999; 3700
Ryu, Choi, Kim (b0065) 2003; 46
Garimella, Persoons, Weibel, Yeh (b0015) 2013; 107
Dennard, Cai, Kumar (b0035) 2007; 51
Quinn (b0195) 1967; 18
Hetsroni, Mosyak, Segal, Ziskind (b0100) 2002; 45
Escher, Michel, Poulikakos (b0070) 2010; 31
2013.
JEDEC, Failure mechanisms and models for semiconductor devices, in: JEDEC, 2010, pp. 1–9, 68–72.
Tuckerman, Pease (b0050) 1981; 2
Etessam-Yazdani, Asheghi, Hamann (b0180) 2008; 31
Dennard, Gaensslen, Rideout, Bassous, LeBlanc (b0010) 1974; 9
Rubio-Jimenez, Kandlikar, Hernandez-Guerrero (b0105) 2012; 2
Alfieri, Tiwari, Zinovik, Poulikakos, Brunschwiler, Michel (b0210) 2010; 132
Madou (b0200) 2002
Koomey (b0020) 2011
Zimmermann, Meijer, Tiwari, Paredes, Michel, Poulikakos (b0080) 2012; 43
Kandlikar, Bapat (b0090) 2007; 28
Esmaeilzadeh, Blem, Ren, Amant, Sankaralingam, Burger (b0115) 2012; 30
Renfer, Tiwari, Meyer, Brunschwiler, Michel, Poulikakos (b0220) 2013; 15
Dang, Bakir, Meindl (b0165) 2006; 27
Bar-Cohen, Arik, Ohadi (b0095) 2006; 94
T. Brunschwiler, H. Rothuizen, S. Paredes, B. Michel, E. Colgan, P. Bezama, Hotspot-adapted cold plates to maximize system efficiency, in: 15th International Workshop on Thermal Investigations of ICs and Systems, 2009. THERMINIC 2009, 2009, pp. 150–156.
Sinharoy, Kalla, Starke, Le, Cargnoni, Van Norstrand, Ronchetti, Stuecheli, Leenstra, Guthrie, Nguyen, Blaner, Marino, Retter, Williams (b0120) 2011; 55
Paik, Pamula, Chakrabarty (b0145) 2008; 16
Sharma, Zimmermann, Tiwari, Michel, Poulikakos (b0045) 2012; 55
Moore (b0005) 1965; 38
Chowdhury, Prasher, Lofgreen, Chrysler, Narasimhan, Mahajan, Koester, Alley, Venkatasubramanian (b0140) 2009; 4
Lee, Garimella (b0150) 2005; vol. 2005
Thompson, Parthasarathy (b0125) 2006; 9
Colgan, Furman, Gaynes, Graham, LaBianca (b0205) 2007; 30
Copeland, Behnia, Nakayama (b0060) 1997; 20
Z. Mingyuan, Z.R. Huang, Design of on-chip microchannel fluidic cooling structures, in: Electronic Components and Technology Conference, 2007. ECTC ‘07. Proceedings. 57th, 2007, pp. 2017–2023.
E. Kermani, S. Dessiatoun, A. Shooshtari, M.M. Ohadi, Experimental investigation of heat transfer performance of a manifold microchannel heat sink for cooling of concentrated solar cells, in: Electronic Components and Technology Conference, 2009. ECTC 2009. 59th, 2009, pp. 453–459.
Barrau, Omri, Chemisana, Rosell, Ibañez, Tadrist (b0110) 2012; 33–34
T. Brunschwiler, B. Michel, H. Rothuizen, U. Kloter, B. Wunderle, H. Reichl, Hotspot-optimized interlayer cooling in vertically integrated packages, in: Materials Research Society, Symposium on Materials and Technologies for 3-D Integration Boston, 2008.
The Green500 List, in, vol. 2013
Kandlikar, Grande (b0170) 2004; 25
Sinharoy (10.1016/j.ijheatmasstransfer.2015.04.047_b0120) 2011; 55
Renfer (10.1016/j.ijheatmasstransfer.2015.04.047_b0215) 2013; 65
Moore (10.1016/j.ijheatmasstransfer.2015.04.047_b0005) 1965; 38
Ryu (10.1016/j.ijheatmasstransfer.2015.04.047_b0065) 2003; 46
Etessam-Yazdani (10.1016/j.ijheatmasstransfer.2015.04.047_b0180) 2008; 31
Quinn (10.1016/j.ijheatmasstransfer.2015.04.047_b0195) 1967; 18
Barrau (10.1016/j.ijheatmasstransfer.2015.04.047_b0110) 2012; 33–34
10.1016/j.ijheatmasstransfer.2015.04.047_b0175
Lee (10.1016/j.ijheatmasstransfer.2015.04.047_b0155) 2013; 3
10.1016/j.ijheatmasstransfer.2015.04.047_b0030
Sharma (10.1016/j.ijheatmasstransfer.2015.04.047_b0075) 2013; 58
Madding (10.1016/j.ijheatmasstransfer.2015.04.047_b0190) 1999; 3700
Kandlikar (10.1016/j.ijheatmasstransfer.2015.04.047_b0170) 2004; 25
Brunschwiler (10.1016/j.ijheatmasstransfer.2015.04.047_b0130) 2009; 15
Renfer (10.1016/j.ijheatmasstransfer.2015.04.047_b0220) 2013; 15
Alfieri (10.1016/j.ijheatmasstransfer.2015.04.047_b0135) 2013; 65
Madou (10.1016/j.ijheatmasstransfer.2015.04.047_b0200) 2002
Colgan (10.1016/j.ijheatmasstransfer.2015.04.047_b0205) 2007; 30
Tuckerman (10.1016/j.ijheatmasstransfer.2015.04.047_b0050) 1981; 2
Garimella (10.1016/j.ijheatmasstransfer.2015.04.047_b0015) 2013; 107
Zimmermann (10.1016/j.ijheatmasstransfer.2015.04.047_b0080) 2012; 43
Sharma (10.1016/j.ijheatmasstransfer.2015.04.047_b0045) 2012; 55
Escher (10.1016/j.ijheatmasstransfer.2015.04.047_b0070) 2010; 31
Rubio-Jimenez (10.1016/j.ijheatmasstransfer.2015.04.047_b0105) 2012; 2
Esmaeilzadeh (10.1016/j.ijheatmasstransfer.2015.04.047_b0115) 2012; 30
Hetsroni (10.1016/j.ijheatmasstransfer.2015.04.047_b0100) 2002; 45
Sharma (10.1016/j.ijheatmasstransfer.2015.04.047_b0185) 2015; 138
Alfieri (10.1016/j.ijheatmasstransfer.2015.04.047_b0210) 2010; 132
10.1016/j.ijheatmasstransfer.2015.04.047_b0225
Dennard (10.1016/j.ijheatmasstransfer.2015.04.047_b0010) 1974; 9
10.1016/j.ijheatmasstransfer.2015.04.047_b0025
Thompson (10.1016/j.ijheatmasstransfer.2015.04.047_b0125) 2006; 9
Dang (10.1016/j.ijheatmasstransfer.2015.04.047_b0165) 2006; 27
10.1016/j.ijheatmasstransfer.2015.04.047_b0085
10.1016/j.ijheatmasstransfer.2015.04.047_b0040
10.1016/j.ijheatmasstransfer.2015.04.047_b0160
Copeland (10.1016/j.ijheatmasstransfer.2015.04.047_b0060) 1997; 20
Koomey (10.1016/j.ijheatmasstransfer.2015.04.047_b0020) 2011
Bar-Cohen (10.1016/j.ijheatmasstransfer.2015.04.047_b0095) 2006; 94
Dennard (10.1016/j.ijheatmasstransfer.2015.04.047_b0035) 2007; 51
Paik (10.1016/j.ijheatmasstransfer.2015.04.047_b0145) 2008; 16
Kandlikar (10.1016/j.ijheatmasstransfer.2015.04.047_b0090) 2007; 28
Chowdhury (10.1016/j.ijheatmasstransfer.2015.04.047_b0140) 2009; 4
Lee (10.1016/j.ijheatmasstransfer.2015.04.047_b0150) 2005; vol. 2005
Lee (10.1016/j.ijheatmasstransfer.2015.04.047_b0055) 2005; 48
References_xml – volume: 31
  start-page: 211
  year: 2008
  end-page: 215
  ident: b0180
  article-title: Investigation of the impact of power granularity on chip thermal modeling using white noise analysis
  publication-title: IEEE Trans. Compon. Packag. Technol.
  contributor:
    fullname: Hamann
– volume: 132
  start-page: 121402
  year: 2010
  ident: b0210
  article-title: 3D integrated water cooling of a composite multilayer stack of chips
  publication-title: J. Heat Transfer
  contributor:
    fullname: Michel
– volume: 43
  start-page: 237
  year: 2012
  end-page: 245
  ident: b0080
  article-title: Aquasar: A hot water cooled data center with direct energy reuse
  publication-title: Energy
  contributor:
    fullname: Poulikakos
– volume: 3700
  start-page: 393
  year: 1999
  end-page: 401
  ident: b0190
  publication-title: Emissivity Measurement and Temperature Correction Accuracy Considerations
  contributor:
    fullname: Madding
– volume: 2
  start-page: 126
  year: 1981
  end-page: 129
  ident: b0050
  article-title: High-performance heat sinking for VLSI
  publication-title: IEEE Electron Device Lett.
  contributor:
    fullname: Pease
– volume: 107
  start-page: 66
  year: 2013
  end-page: 80
  ident: b0015
  article-title: Technological drivers in data centers and telecom systems: multiscale thermal, electrical, and energy management
  publication-title: Appl. Energy
  contributor:
    fullname: Yeh
– volume: 30
  start-page: 1
  year: 2012
  end-page: 27
  ident: b0115
  article-title: Power limitations and dark silicon challenge the future of multicore
  publication-title: ACM Trans. Comput. Syst.
  contributor:
    fullname: Burger
– volume: 27
  start-page: 117
  year: 2006
  end-page: 119
  ident: b0165
  article-title: Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink
  publication-title: IEEE Electron Device Lett.
  contributor:
    fullname: Meindl
– volume: 46
  start-page: 1553
  year: 2003
  end-page: 1562
  ident: b0065
  article-title: Three-dimensional numerical optimization of a manifold microchannel heat sink
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Kim
– volume: 65
  start-page: 33
  year: 2013
  end-page: 43
  ident: b0215
  article-title: Microvortex-enhanced heat transfer in 3D-integrated liquid cooling of electronic chip stacks
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Poulikakos
– volume: 58
  start-page: 135
  year: 2013
  end-page: 151
  ident: b0075
  article-title: Thermofluidics and energetics of a manifold microchannel heat sink for electronics with recovered hot water as working fluid
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Poulikakos
– volume: 33–34
  start-page: 237
  year: 2012
  end-page: 245
  ident: b0110
  article-title: Numerical study of a hybrid jet impingement/micro-channel cooling scheme
  publication-title: Appl. Therm. Eng.
  contributor:
    fullname: Tadrist
– volume: 3
  start-page: 1332
  year: 2013
  end-page: 1341
  ident: b0155
  article-title: Hotspot mitigating with obliquely finned microchannel heat sink–an experimental study
  publication-title: IEEE Trans. Compon. Packag. Technol.
  contributor:
    fullname: Chou
– volume: 38
  start-page: 114
  year: 1965
  end-page: 117
  ident: b0005
  article-title: Cramming more components onto integrated circuits
  publication-title: Electronics
  contributor:
    fullname: Moore
– volume: 20
  start-page: 96
  year: 1997
  end-page: 102
  ident: b0060
  article-title: Manifold microchannel heat sinks: isothermal analysis
  publication-title: IEEE Trans. Compon. Packag. Technol. Part A
  contributor:
    fullname: Nakayama
– volume: 25
  start-page: 5
  year: 2004
  end-page: 16
  ident: b0170
  article-title: Evaluation of single phase flow in microchannels for high heat flux chip cooling—thermohydraulic performance enhancement and fabrication technology
  publication-title: Heat Transfer Eng.
  contributor:
    fullname: Grande
– volume: 30
  start-page: 218
  year: 2007
  end-page: 225
  ident: b0205
  article-title: A practical implementation of silicon microchannel coolers for high power chips
  publication-title: IEEE Trans. Compon. Packag. Technol.
  contributor:
    fullname: LaBianca
– volume: 48
  start-page: 1688
  year: 2005
  end-page: 1704
  ident: b0055
  article-title: Investigation of heat transfer in rectangular microchannels
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Liu
– volume: 15
  start-page: 231
  year: 2013
  end-page: 242
  ident: b0220
  article-title: Vortex shedding from confined micropin arrays
  publication-title: Microfluid. Nanofluid.
  contributor:
    fullname: Poulikakos
– volume: 31
  start-page: 586
  year: 2010
  end-page: 598
  ident: b0070
  article-title: A novel high performance, ultra thin heat sink for electronics
  publication-title: Int. J. Heat Fluid Flow
  contributor:
    fullname: Poulikakos
– volume: 18
  start-page: 1105
  year: 1967
  end-page: 1113
  ident: b0195
  article-title: The calculation of the emissivity of cylindrical cavities giving near black-body radiation
  publication-title: Br. J. Appl. Phys.
  contributor:
    fullname: Quinn
– volume: 28
  start-page: 911
  year: 2007
  end-page: 923
  ident: b0090
  article-title: Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal
  publication-title: Heat Transfer Eng.
  contributor:
    fullname: Bapat
– volume: vol. 2005
  start-page: 643
  year: 2005
  end-page: 647
  ident: b0150
  article-title: Hot-spot thermal management with flow modulation in a microchannel heat sink
  publication-title: ASME International Mechanical Engineering Congress and Exposition
  contributor:
    fullname: Garimella
– volume: 51
  start-page: 518
  year: 2007
  end-page: 525
  ident: b0035
  article-title: A perspective on today’s scaling challenges and possible future directions
  publication-title: Solid-State Electron.
  contributor:
    fullname: Kumar
– volume: 15
  start-page: 57
  year: 2009
  end-page: 74
  ident: b0130
  article-title: Interlayer cooling potential in vertically integrated packages
  publication-title: Microsyst. Technol.
  contributor:
    fullname: Reichl
– volume: 55
  start-page: 1957
  year: 2012
  end-page: 1969
  ident: b0045
  article-title: Optimal thermal operation of liquid-cooled electronic chips
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Poulikakos
– volume: 2
  start-page: 825
  year: 2012
  end-page: 833
  ident: b0105
  article-title: Numerical analysis of novel micro pin fin heat sink with variable fin density
  publication-title: IEEE Trans. Compon. Packag. Technol.
  contributor:
    fullname: Hernandez-Guerrero
– volume: 4
  start-page: 235
  year: 2009
  end-page: 238
  ident: b0140
  article-title: On-chip cooling by superlattice-based thin-film thermoelectrics
  publication-title: Nat. Nano
  contributor:
    fullname: Venkatasubramanian
– volume: 45
  start-page: 3275
  year: 2002
  end-page: 3286
  ident: b0100
  article-title: A uniform temperature heat sink for cooling of electronic devices
  publication-title: Int. J. Heat Mass Transfer
  contributor:
    fullname: Ziskind
– volume: 9
  start-page: 20
  year: 2006
  end-page: 25
  ident: b0125
  article-title: Moore’s law: the future of Si microelectronics
  publication-title: Mater. Today
  contributor:
    fullname: Parthasarathy
– volume: 138
  start-page: 414
  year: 2015
  end-page: 422
  ident: b0185
  article-title: Energy efficient hotspot-targeted embedded liquid cooling of electronics
  publication-title: Appl. Energy
  contributor:
    fullname: Poulikakos
– volume: 65
  start-page: 201
  year: 2013
  end-page: 215
  ident: b0135
  article-title: Computational modeling of hot-spot identification and control in 3-D stacked chips with integrated cooling
  publication-title: Numer. Heat Transfer Part A Appl.
  contributor:
    fullname: Poulikakos
– year: 2011
  ident: b0020
  article-title: Growth in Data Center Electricity Use 2005 to 2010, in, Oakland
  contributor:
    fullname: Koomey
– volume: 16
  start-page: 432
  year: 2008
  end-page: 443
  ident: b0145
  article-title: Adaptive cooling of integrated circuits using digital microfluidics
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  contributor:
    fullname: Chakrabarty
– volume: 94
  start-page: 1549
  year: 2006
  end-page: 1570
  ident: b0095
  article-title: Direct liquid cooling of high flux micro and nano electronic components
  publication-title: Proc. IEEE
  contributor:
    fullname: Ohadi
– volume: 55
  start-page: 1:1
  year: 2011
  end-page: 1:29
  ident: b0120
  article-title: IBM POWER7 multicore server processor
  publication-title: IBM J. Res. Develop.
  contributor:
    fullname: Williams
– year: 2002
  ident: b0200
  article-title: Fundamentals of Microfabrication: The Science of Miniaturization
  contributor:
    fullname: Madou
– volume: 9
  start-page: 256
  year: 1974
  end-page: 268
  ident: b0010
  article-title: Design of ion-implanted MOSFET’s with very small physical dimensions
  publication-title: IEEE J. Solid-State Circuits
  contributor:
    fullname: LeBlanc
– volume: 55
  start-page: 1957
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0045
  article-title: Optimal thermal operation of liquid-cooled electronic chips
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2011.11.052
  contributor:
    fullname: Sharma
– volume: 48
  start-page: 1688
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0055
  article-title: Investigation of heat transfer in rectangular microchannels
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2004.11.019
  contributor:
    fullname: Lee
– volume: 9
  start-page: 256
  year: 1974
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0010
  article-title: Design of ion-implanted MOSFET’s with very small physical dimensions
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/JSSC.1974.1050511
  contributor:
    fullname: Dennard
– volume: 33–34
  start-page: 237
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0110
  article-title: Numerical study of a hybrid jet impingement/micro-channel cooling scheme
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.10.001
  contributor:
    fullname: Barrau
– volume: 38
  start-page: 114
  year: 1965
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0005
  article-title: Cramming more components onto integrated circuits
  publication-title: Electronics
  contributor:
    fullname: Moore
– ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0040
– volume: 9
  start-page: 20
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0125
  article-title: Moore’s law: the future of Si microelectronics
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(06)71539-5
  contributor:
    fullname: Thompson
– volume: 65
  start-page: 201
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0135
  article-title: Computational modeling of hot-spot identification and control in 3-D stacked chips with integrated cooling
  publication-title: Numer. Heat Transfer Part A Appl.
  doi: 10.1080/10920277.2013.826480
  contributor:
    fullname: Alfieri
– volume: vol. 2005
  start-page: 643
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0150
  article-title: Hot-spot thermal management with flow modulation in a microchannel heat sink
  contributor:
    fullname: Lee
– volume: 15
  start-page: 231
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0220
  article-title: Vortex shedding from confined micropin arrays
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-013-1137-5
  contributor:
    fullname: Renfer
– volume: 58
  start-page: 135
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0075
  article-title: Thermofluidics and energetics of a manifold microchannel heat sink for electronics with recovered hot water as working fluid
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.11.012
  contributor:
    fullname: Sharma
– volume: 2
  start-page: 825
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0105
  article-title: Numerical analysis of novel micro pin fin heat sink with variable fin density
  publication-title: IEEE Trans. Compon. Packag. Technol.
  doi: 10.1109/TCPMT.2012.2189925
  contributor:
    fullname: Rubio-Jimenez
– ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0160
– volume: 3700
  start-page: 393
  year: 1999
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0190
  contributor:
    fullname: Madding
– ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0030
– ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0225
  doi: 10.1557/PROC-1112-E06-02
– volume: 107
  start-page: 66
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0015
  article-title: Technological drivers in data centers and telecom systems: multiscale thermal, electrical, and energy management
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.02.047
  contributor:
    fullname: Garimella
– volume: 28
  start-page: 911
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0090
  article-title: Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457630701421703
  contributor:
    fullname: Kandlikar
– volume: 46
  start-page: 1553
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0065
  article-title: Three-dimensional numerical optimization of a manifold microchannel heat sink
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(02)00443-X
  contributor:
    fullname: Ryu
– volume: 15
  start-page: 57
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0130
  article-title: Interlayer cooling potential in vertically integrated packages
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-008-0690-4
  contributor:
    fullname: Brunschwiler
– volume: 65
  start-page: 33
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0215
  article-title: Microvortex-enhanced heat transfer in 3D-integrated liquid cooling of electronic chip stacks
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.05.066
  contributor:
    fullname: Renfer
– volume: 25
  start-page: 5
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0170
  article-title: Evaluation of single phase flow in microchannels for high heat flux chip cooling—thermohydraulic performance enhancement and fabrication technology
  publication-title: Heat Transfer Eng.
  doi: 10.1080/01457630490519772
  contributor:
    fullname: Kandlikar
– volume: 20
  start-page: 96
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0060
  article-title: Manifold microchannel heat sinks: isothermal analysis
  publication-title: IEEE Trans. Compon. Packag. Technol. Part A
  doi: 10.1109/95.588554
  contributor:
    fullname: Copeland
– volume: 51
  start-page: 518
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0035
  article-title: A perspective on today’s scaling challenges and possible future directions
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2007.02.004
  contributor:
    fullname: Dennard
– volume: 2
  start-page: 126
  year: 1981
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0050
  article-title: High-performance heat sinking for VLSI
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/EDL.1981.25367
  contributor:
    fullname: Tuckerman
– ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0175
– volume: 138
  start-page: 414
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0185
  article-title: Energy efficient hotspot-targeted embedded liquid cooling of electronics
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.10.068
  contributor:
    fullname: Sharma
– volume: 27
  start-page: 117
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0165
  article-title: Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2005.862693
  contributor:
    fullname: Dang
– volume: 3
  start-page: 1332
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0155
  article-title: Hotspot mitigating with obliquely finned microchannel heat sink–an experimental study
  publication-title: IEEE Trans. Compon. Packag. Technol.
  doi: 10.1109/TCPMT.2013.2244164
  contributor:
    fullname: Lee
– volume: 31
  start-page: 211
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0180
  article-title: Investigation of the impact of power granularity on chip thermal modeling using white noise analysis
  publication-title: IEEE Trans. Compon. Packag. Technol.
  doi: 10.1109/TCAPT.2008.916859
  contributor:
    fullname: Etessam-Yazdani
– ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0025
  doi: 10.1109/IPDPS.2006.1639600
– year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0200
  contributor:
    fullname: Madou
– volume: 16
  start-page: 432
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0145
  article-title: Adaptive cooling of integrated circuits using digital microfluidics
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
  doi: 10.1109/TVLSI.2007.915434
  contributor:
    fullname: Paik
– volume: 31
  start-page: 586
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0070
  article-title: A novel high performance, ultra thin heat sink for electronics
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2010.03.001
  contributor:
    fullname: Escher
– volume: 94
  start-page: 1549
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0095
  article-title: Direct liquid cooling of high flux micro and nano electronic components
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2006.879791
  contributor:
    fullname: Bar-Cohen
– volume: 55
  start-page: 1:1
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0120
  article-title: IBM POWER7 multicore server processor
  publication-title: IBM J. Res. Develop.
  doi: 10.1147/JRD.2011.2127330
  contributor:
    fullname: Sinharoy
– year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0020
  contributor:
    fullname: Koomey
– volume: 45
  start-page: 3275
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0100
  article-title: A uniform temperature heat sink for cooling of electronic devices
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(02)00048-0
  contributor:
    fullname: Hetsroni
– volume: 4
  start-page: 235
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0140
  article-title: On-chip cooling by superlattice-based thin-film thermoelectrics
  publication-title: Nat. Nano
  doi: 10.1038/nnano.2008.417
  contributor:
    fullname: Chowdhury
– volume: 30
  start-page: 218
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0205
  article-title: A practical implementation of silicon microchannel coolers for high power chips
  publication-title: IEEE Trans. Compon. Packag. Technol.
  doi: 10.1109/TCAPT.2007.897977
  contributor:
    fullname: Colgan
– volume: 132
  start-page: 121402
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0210
  article-title: 3D integrated water cooling of a composite multilayer stack of chips
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4002287
  contributor:
    fullname: Alfieri
– volume: 43
  start-page: 237
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0080
  article-title: Aquasar: A hot water cooled data center with direct energy reuse
  publication-title: Energy
  doi: 10.1016/j.energy.2012.04.037
  contributor:
    fullname: Zimmermann
– volume: 18
  start-page: 1105
  year: 1967
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0195
  article-title: The calculation of the emissivity of cylindrical cavities giving near black-body radiation
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/18/8/310
  contributor:
    fullname: Quinn
– ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0085
  doi: 10.1109/ECTC.2009.5074053
– volume: 30
  start-page: 1
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2015.04.047_b0115
  article-title: Power limitations and dark silicon challenge the future of multicore
  publication-title: ACM Trans. Comput. Syst.
  doi: 10.1145/2324876.2324879
  contributor:
    fullname: Esmaeilzadeh
SSID ssj0017046
Score 2.5091078
Snippet •We experimentally prove a novel concept for highly efficient liquid cooling of non-uniform power maps.•It uses rationally distributed microchannel structures...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 684
SubjectTerms Electronics cooling
Energy efficient computing
Hotspot-targeted cooling
Hotspots
Microchannel cooling
Multicore microprocessors
Title A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: An experimental study
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.04.047
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5ai-JFfGJ9lD148BJNmqRJvJWiVIseRNFb2GRnNaVNapt69Lc7k6Q-0IMHISEkkGX5GL75hp0HwJGPZDioteErRQGKaytDBm1pkLf1Eem2keudr286_Xvn6tF9rEFvUQvDaZUV95ecXrB19eW0QvN0kiRc48vGZXHIznXmQR0a5I74rLbRvRz0bz4OEzyzrNdhQuYfVuD4M80rGTLpjUmp5oVSRG4SarlF_1OeufKbt_rigS7WYa2SjqJb7m4DaphuwnKRwhnPtmDaFWn2iiNRDoUWmRZYFPYJLNpEkHcRz1lOYWxulPnfqASOIyTqUWKUvMwTJeKMh_g8CZKy4nNCzuxMdFPxdRiAKNrSbsP9xfldr29UExWM2DH93NBtLSOCQWIkSflEVkfSFkyPRJ3UkrSRIvkgNbpSxW7ku1JrRwaO1-nEMXfrsndgKc1S3AUReLEX-4Q7tpUjyfG3NYkztF2tXc_WQROCBXLhpGycES4yyobhT9RDRj00Hbq8JvQWUIffjCEknv_zKnv_sso-rPJbmVZ2AEv5dI6HpEPyqAX1kzerVVkbPwe3D4N3MaHl7w
link.rule.ids 314,780,784,4502,24116,27924,27925,45585,45679
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8JAEJ4gxsfF-Iz43IMHL5VHu7T1RogEFThBwq3Zdme1BFqE4tHf7mxbBKMHDybtpdtsNl8m33ybfDMDcOMgBQ4qZThS0gWFm9IQbk0YlG0dRHpN1PXO3V69PbCehnxYgOayFkbbKnPuzzg9Zev8SzlHszwNQ13jq4Orqq_sus7c3YBNi5P6paC--_jyeVTtSlato-lY_74NtyuTVzjSlDchnZqkOhF1i9AqT7uf6okrv-WqtfzT2oe9XDiyRna2AyhgdAhbqYEzmB_BrMGi-B3HLBsJzWLFMC3rY5g2iaDcwl7jhC6xiZG5v1EynPhIxCPZOHxbhJIFsR7h88JIyLLVfJz5PWtEbH0UAEub0h7DoPXQb7aNfJ6CEVgVJzFUTQmfYBDoC9I9frUu6AgVmySdUIKUkSTxIBRyIQPuO1woZQnXsuv1INC9uswTKEZxhKfAXDuwA4dQx5q0BKX9miJphiZXitumckvgLpHzplnbDG_pJxt5P1H3NOpexaLHLkFzCbX3LRQ8Yvk_73L2L7tcw0673-14ncfe8zns6pXMYHYBxWS2wEtSJIl_lUbcJySC5SU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+of+energy+efficient+hotspot-targeted+embedded+liquid+cooling+for+electronics%3A+An+experimental+study&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Sharma%2C+Chander+Shekhar&rft.au=Schlottig%2C+Gerd&rft.au=Brunschwiler%2C+Thomas&rft.au=Tiwari%2C+Manish+K.&rft.date=2015-09-01&rft.issn=0017-9310&rft.volume=88&rft.spage=684&rft.epage=694&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2015.04.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2015_04_047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon