Solving Distributed Hybrid Flowshop Scheduling Problems by a Hybrid Brain Storm Optimization Algorithm
With the trend of manufacturing globalization, distributed production has attracted wide attention from the industry and academia. Nevertheless, there has been little research on the distributed hybrid flowshop scheduling (DHFS) problem. To make up for the gap, this study aims to solve the DHFS prob...
Saved in:
Published in | IEEE access Vol. 7; pp. 66879 - 66894 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2019.2917273 |
Cover
Loading…
Abstract | With the trend of manufacturing globalization, distributed production has attracted wide attention from the industry and academia. Nevertheless, there has been little research on the distributed hybrid flowshop scheduling (DHFS) problem. To make up for the gap, this study aims to solve the DHFS problem, in which multiple factories with hybrid flowshop scheduling (HFS) problems are considered. This problem consists of two subproblems: 1) how to choose a factory for each job and 2) how to schedule all jobs within the assigned factories. To solve the DHFS problem, a mathematical model is formulated. Then, inspired by successful applications of brain storm optimization (BSO) algorithm in different fields, we try to solve the DHFS with a hybrid BSO (HBSO). In the proposed algorithm, firstly, a new approach to calculate the distance in the procedure of clustering is embedded. Then, a novel constructive heuristic based on the Nawaz-Enscore-Ham (NEH) method, called distributed NEH, is proposed. Moreover, an improved crossover operator based on the partial-mapped crossover (PMX) is designed for the distributed scheduling problem. Finally, the 20 large-scale instances based on the realistic production data are randomly generated to test the performance of the proposed algorithm. The experimental results verify that the proposed algorithm is efficient and effective for solving the considered DHFS problems in comparison with the other recently published efficient algorithms. |
---|---|
AbstractList | With the trend of manufacturing globalization, distributed production has attracted wide attention from the industry and academia. Nevertheless, there has been little research on the distributed hybrid flowshop scheduling (DHFS) problem. To make up for the gap, this study aims to solve the DHFS problem, in which multiple factories with hybrid flowshop scheduling (HFS) problems are considered. This problem consists of two subproblems: 1) how to choose a factory for each job and 2) how to schedule all jobs within the assigned factories. To solve the DHFS problem, a mathematical model is formulated. Then, inspired by successful applications of brain storm optimization (BSO) algorithm in different fields, we try to solve the DHFS with a hybrid BSO (HBSO). In the proposed algorithm, firstly, a new approach to calculate the distance in the procedure of clustering is embedded. Then, a novel constructive heuristic based on the Nawaz-Enscore-Ham (NEH) method, called distributed NEH, is proposed. Moreover, an improved crossover operator based on the partial-mapped crossover (PMX) is designed for the distributed scheduling problem. Finally, the 20 large-scale instances based on the realistic production data are randomly generated to test the performance of the proposed algorithm. The experimental results verify that the proposed algorithm is efficient and effective for solving the considered DHFS problems in comparison with the other recently published efficient algorithms. |
Author | Li, Jun-Qing Hao, Jian-Hua Zhang, Ying-Yu Song, Mei-Xian Duan, Peng Du, Yu |
Author_xml | – sequence: 1 givenname: Jian-Hua orcidid: 0000-0002-1042-876X surname: Hao fullname: Hao, Jian-Hua organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China – sequence: 2 givenname: Jun-Qing orcidid: 0000-0002-3617-6708 surname: Li fullname: Li, Jun-Qing email: lijunqing@lcu-cs.com organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China – sequence: 3 givenname: Yu surname: Du fullname: Du, Yu organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China – sequence: 4 givenname: Mei-Xian surname: Song fullname: Song, Mei-Xian organization: School of Computer, Liaocheng University, Liaocheng, China – sequence: 5 givenname: Peng surname: Duan fullname: Duan, Peng organization: School of Computer, Liaocheng University, Liaocheng, China – sequence: 6 givenname: Ying-Yu surname: Zhang fullname: Zhang, Ying-Yu organization: School of Computer, Liaocheng University, Liaocheng, China |
BookMark | eNqFUU1vEzEUtFCRKKW_oBdLnJOu7fXXMYSWVqpUpIWz5a9NHO2ug-2Awq_H6bYV4oIvz3qamffezHtwNsXJA3CFmiVCjbxerdc3XbfEDZJLLBHHnLwB5xgxuSCUsLO__u_AZc67pj5RW5Sfg76Lw88wbeDnkEsK5lC8g3dHk4KDt0P8lbdxDzu79e4wnGBfUzSDHzM0R6hfgJ-SDhPsSkwjfNyXMIbfuoQ4wdWwiSmU7fgBvO31kP3lc70A329vvq3vFg-PX-7Xq4eFbRtRFj221HiCdS-85Y71glojZD3Tetlg0gphHaOmRcwhYpzHlrTEUCYajTgy5ALcz7ou6p3apzDqdFRRB_XUiGmjdCrBDl5ZLtrqiWXM6ZZKLpjDHKNeC0-kkLhqfZy19in-OPhc1C4e0lTXV7illDUIU1JRZEbZFHNOvn-dihp1ykfN-ahTPuo5n8qS_7BsKE-elerl8B_u1cwN3vvXaYIjxlpO_gAuEJ_M |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1080_03081079_2024_2326424 crossref_primary_10_3390_sym15040836 crossref_primary_10_1007_s10489_021_02766_9 crossref_primary_10_1016_j_eswa_2025_126523 crossref_primary_10_1016_j_eswa_2021_115827 crossref_primary_10_32604_cmc_2024_055244 crossref_primary_10_1007_s40747_021_00400_2 crossref_primary_10_1016_j_cie_2022_107961 crossref_primary_10_1016_j_eswa_2022_119151 crossref_primary_10_1080_0951192X_2025_2478005 crossref_primary_10_1007_s00521_022_07714_3 crossref_primary_10_1109_ACCESS_2020_3041369 crossref_primary_10_2478_jaiscr_2024_0006 crossref_primary_10_1016_j_eswa_2022_117555 crossref_primary_10_1016_j_jmsy_2023_09_017 crossref_primary_10_23919_CSMS_2022_0025 crossref_primary_10_1016_j_ejor_2022_08_009 crossref_primary_10_1080_0305215X_2023_2241372 crossref_primary_10_1016_j_swevo_2020_100747 crossref_primary_10_1080_00207543_2024_2427344 crossref_primary_10_1016_j_asoc_2024_111508 crossref_primary_10_1016_j_swevo_2024_101777 crossref_primary_10_1016_j_eswa_2023_121570 crossref_primary_10_1016_j_swevo_2022_101058 crossref_primary_10_3390_math11204306 crossref_primary_10_1080_00207543_2024_2383781 crossref_primary_10_1016_j_knosys_2023_110309 crossref_primary_10_1016_j_cie_2022_108921 crossref_primary_10_1016_j_compag_2022_107221 crossref_primary_10_2139_ssrn_4118112 crossref_primary_10_3390_sym15112005 crossref_primary_10_1080_00207543_2020_1753897 crossref_primary_10_3233_JIFS_191175 crossref_primary_10_1016_j_eswa_2021_115453 crossref_primary_10_1080_00207543_2022_2031331 crossref_primary_10_1016_j_cie_2020_106638 crossref_primary_10_1016_j_swevo_2021_100874 crossref_primary_10_1016_j_eswa_2023_119805 crossref_primary_10_1080_00207543_2023_2262616 crossref_primary_10_1016_j_knosys_2020_105527 crossref_primary_10_1080_00207543_2020_1780333 crossref_primary_10_1016_j_cie_2020_106998 crossref_primary_10_1007_s10479_022_04537_2 crossref_primary_10_1109_ACCESS_2020_2979892 crossref_primary_10_1016_j_heliyon_2024_e36318 crossref_primary_10_1109_ACCESS_2020_3035899 crossref_primary_10_3934_mbe_2023117 |
Cites_doi | 10.1109/ACCESS.2018.2852640 10.1016/j.swevo.2016.06.002 10.1007/s10586-018-1957-x 10.1016/0305-0483(83)90088-9 10.1016/j.asoc.2009.06.010 10.1016/j.ins.2018.11.018 10.1016/j.eswa.2017.09.032 10.1080/0305215X.2014.928817 10.1109/ACCESS.2018.2840512 10.1016/j.cie.2016.05.005 10.1016/j.asoc.2012.01.011 10.1016/j.cor.2018.07.025 10.1016/j.cie.2018.03.014 10.1016/j.cor.2016.11.021 10.1109/TASE.2015.2425404 10.1016/j.asoc.2015.01.022 10.1016/j.cor.2011.11.011 10.1109/ACCESS.2015.2388486 10.1016/j.swevo.2018.01.012 10.1016/j.asoc.2017.01.033 10.1007/s12293-018-0250-0 10.1080/00207543.2019.1571687 10.1016/j.asoc.2015.11.034 10.1016/j.enbuild.2017.12.020 10.1007/s40092-017-0203-0 10.1016/j.matcom.2018.04.013 10.1080/00207543.2012.754549 10.1007/s10845-015-1084-y 10.1155/2014/630529 10.1016/j.cie.2017.06.025 10.1177/0142331215583324 10.1080/00207543.2013.807955 10.1016/j.cie.2016.07.027 10.1016/j.asoc.2010.04.001 10.1109/TCYB.2015.2444383 10.1016/j.ijpe.2013.05.004 10.1007/978-3-642-80784-8_7 10.1007/s10845-015-1182-x 10.1109/TMAG.2013.2262296 10.1007/978-3-642-21515-5_36 10.1016/j.engappai.2014.09.015 10.1016/j.omega.2018.03.004 10.1080/18756891.2011.9727808 10.1016/S0167-5060(08)70356-X 10.1007/s10489-018-1183-5 10.1177/0142331214522287 10.1007/s00170-010-2743-y 10.1007/s00170-010-3140-2 10.1016/j.ins.2018.01.023 10.1016/j.eswa.2010.08.111 10.1109/MCI.2013.2279560 10.1007/s10489-015-0681-y 10.1080/00207543.2014.948578 10.1016/j.amc.2006.06.107 10.1016/j.apm.2013.07.038 10.1057/jors.1988.63 10.1007/978-3-319-20466-6_38 10.1016/j.jclepro.2018.02.004 10.1080/00207543.2018.1504251 10.1016/j.knosys.2014.02.021 10.1007/s00170-012-4493-5 10.1007/s00170-011-3665-z 10.1109/TCYB.2014.2334692 10.1007/s12293-017-0247-0 10.1109/ACCESS.2018.2873401 10.1109/ACCESS.2017.2789198 10.1016/j.cie.2018.09.007 10.1016/j.ejor.2012.04.034 10.1016/j.cie.2017.07.020 10.1007/s00500-016-2114-1 10.1080/00207543.2011.644819 10.1007/s10489-013-0471-3 10.1007/s10489-016-0787-x 10.1007/s10489-015-0676-8 10.1002/oca.2334 10.1504/IJBIC.2016.076326 10.1016/j.cor.2009.06.019 10.1109/TCOMM.2017.2775239 10.1016/j.swevo.2017.04.007 10.1016/j.swevo.2017.06.003 10.1016/j.ejor.2014.05.024 10.1016/j.eswa.2010.09.104 10.4018/ijsir.2013070101 10.1007/s10489-014-0640-z 10.1016/j.swevo.2017.05.001 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2917273 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 66894 |
ExternalDocumentID | oai_doaj_org_article_c784353c66da459786d2721fa8e39892 10_1109_ACCESS_2019_2917273 8716647 |
Genre | orig-research |
GrantInformation_xml | – fundername: Major Basic Research Projects in Shandong grantid: ZR2018ZB0419 – fundername: Shandong Province Higher Educational Science and Technology Program grantid: J17KZ005 – fundername: National Natural Science Foundation of China grantid: 61773192; 61803192 funderid: 10.13039/501100001809 – fundername: State Key Laboratory of Synthetical Automation for Process Industries grantid: PAL-N201602 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-f2c5be32af8ec7d6f85cb89110ce9023488cd65b416d13bde2c343b5680a171b3 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:00:08 EDT 2025 Mon Jun 30 02:35:35 EDT 2025 Tue Jul 01 02:41:31 EDT 2025 Thu Apr 24 22:51:56 EDT 2025 Wed Aug 27 06:00:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-f2c5be32af8ec7d6f85cb89110ce9023488cd65b416d13bde2c343b5680a171b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1042-876X 0000-0002-3617-6708 |
OpenAccessLink | https://doaj.org/article/c784353c66da459786d2721fa8e39892 |
PQID | 2455601253 |
PQPubID | 4845423 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2019_2917273 proquest_journals_2455601253 doaj_primary_oai_doaj_org_article_c784353c66da459786d2721fa8e39892 ieee_primary_8716647 crossref_citationtrail_10_1109_ACCESS_2019_2917273 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref86 ref42 ref85 ref41 ref44 ref87 ref43 ref8 ref7 ref9 ref4 ref3 ref6 zhao (ref49) 2010; 10 ref5 ref82 ref81 ref40 ref84 ref80 ref79 ref35 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 jiang (ref24) 2017 ref2 ref1 ref39 ref38 li (ref83) 2019 ref71 ref70 ref73 ref72 ref68 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref76 doi: 10.1109/ACCESS.2018.2852640 – ident: ref23 doi: 10.1016/j.swevo.2016.06.002 – ident: ref38 doi: 10.1007/s10586-018-1957-x – ident: ref84 doi: 10.1016/0305-0483(83)90088-9 – volume: 10 start-page: 119 year: 2010 ident: ref49 article-title: A perturbed particle swarm algorithm for numerical optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.06.010 – ident: ref68 doi: 10.1016/j.ins.2018.11.018 – ident: ref8 doi: 10.1016/j.eswa.2017.09.032 – start-page: 1 year: 2017 ident: ref24 article-title: Modified multi-objective evolutionary algorithm based on decomposition for low-carbon scheduling of distributed permutation flow-shop publication-title: Comput Intell – ident: ref34 doi: 10.1080/0305215X.2014.928817 – ident: ref29 doi: 10.1109/ACCESS.2018.2840512 – ident: ref19 doi: 10.1016/j.cie.2016.05.005 – ident: ref2 doi: 10.1016/j.asoc.2012.01.011 – ident: ref85 doi: 10.1016/j.cor.2018.07.025 – ident: ref15 doi: 10.1016/j.cie.2018.03.014 – ident: ref18 doi: 10.1016/j.cor.2016.11.021 – ident: ref52 doi: 10.1109/TASE.2015.2425404 – ident: ref56 doi: 10.1016/j.asoc.2015.01.022 – ident: ref59 doi: 10.1016/j.cor.2011.11.011 – ident: ref6 doi: 10.1109/ACCESS.2015.2388486 – ident: ref51 doi: 10.1016/j.swevo.2018.01.012 – ident: ref80 doi: 10.1016/j.asoc.2017.01.033 – ident: ref81 doi: 10.1007/s12293-018-0250-0 – ident: ref27 doi: 10.1080/00207543.2019.1571687 – ident: ref9 doi: 10.1016/j.asoc.2015.11.034 – ident: ref46 doi: 10.1016/j.enbuild.2017.12.020 – ident: ref42 doi: 10.1007/s40092-017-0203-0 – ident: ref57 doi: 10.1016/j.matcom.2018.04.013 – ident: ref36 doi: 10.1080/00207543.2012.754549 – ident: ref3 doi: 10.1007/s10845-015-1084-y – ident: ref47 doi: 10.1155/2014/630529 – ident: ref22 doi: 10.1016/j.cie.2017.06.025 – ident: ref67 doi: 10.1177/0142331215583324 – ident: ref5 doi: 10.1080/00207543.2013.807955 – ident: ref7 doi: 10.1016/j.cie.2016.07.027 – ident: ref43 doi: 10.1016/j.asoc.2010.04.001 – ident: ref35 doi: 10.1109/TCYB.2015.2444383 – ident: ref12 doi: 10.1016/j.ijpe.2013.05.004 – ident: ref1 doi: 10.1007/978-3-642-80784-8_7 – ident: ref48 doi: 10.1007/s10845-015-1182-x – ident: ref78 doi: 10.1109/TMAG.2013.2262296 – ident: ref71 doi: 10.1007/978-3-642-21515-5_36 – ident: ref45 doi: 10.1016/j.engappai.2014.09.015 – ident: ref17 doi: 10.1016/j.omega.2018.03.004 – ident: ref11 doi: 10.1080/18756891.2011.9727808 – ident: ref82 doi: 10.1016/S0167-5060(08)70356-X – ident: ref58 doi: 10.1007/s10489-018-1183-5 – ident: ref70 doi: 10.1177/0142331214522287 – ident: ref39 doi: 10.1007/s00170-010-2743-y – ident: ref33 doi: 10.1007/s00170-010-3140-2 – ident: ref86 doi: 10.1016/j.ins.2018.01.023 – ident: ref41 doi: 10.1016/j.eswa.2010.08.111 – ident: ref79 doi: 10.1109/MCI.2013.2279560 – ident: ref66 doi: 10.1007/s10489-015-0681-y – ident: ref14 doi: 10.1080/00207543.2014.948578 – ident: ref63 doi: 10.1016/j.amc.2006.06.107 – ident: ref31 doi: 10.1016/j.apm.2013.07.038 – ident: ref26 doi: 10.1057/jors.1988.63 – start-page: 1 year: 2019 ident: ref83 article-title: A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud computing system publication-title: Cluster Comput – ident: ref72 doi: 10.1007/978-3-319-20466-6_38 – ident: ref61 doi: 10.1016/j.jclepro.2018.02.004 – ident: ref25 doi: 10.1080/00207543.2018.1504251 – ident: ref54 doi: 10.1016/j.knosys.2014.02.021 – ident: ref32 doi: 10.1007/s00170-012-4493-5 – ident: ref30 doi: 10.1007/s00170-011-3665-z – ident: ref62 doi: 10.1109/TCYB.2014.2334692 – ident: ref74 doi: 10.1007/s12293-017-0247-0 – ident: ref37 doi: 10.1109/ACCESS.2018.2873401 – ident: ref60 doi: 10.1109/ACCESS.2017.2789198 – ident: ref21 doi: 10.1016/j.cie.2018.09.007 – ident: ref40 doi: 10.1016/j.ejor.2012.04.034 – ident: ref16 doi: 10.1016/j.cie.2017.07.020 – ident: ref53 doi: 10.1007/s00500-016-2114-1 – ident: ref10 doi: 10.1080/00207543.2011.644819 – ident: ref64 doi: 10.1007/s10489-013-0471-3 – ident: ref28 doi: 10.1007/s10489-016-0787-x – ident: ref69 doi: 10.1007/s10489-015-0676-8 – ident: ref44 doi: 10.1002/oca.2334 – ident: ref73 doi: 10.1504/IJBIC.2016.076326 – ident: ref4 doi: 10.1016/j.cor.2009.06.019 – ident: ref87 doi: 10.1109/TCOMM.2017.2775239 – ident: ref20 doi: 10.1016/j.swevo.2017.04.007 – ident: ref55 doi: 10.1016/j.swevo.2017.06.003 – ident: ref13 doi: 10.1016/j.ejor.2014.05.024 – ident: ref50 doi: 10.1016/j.eswa.2010.09.104 – ident: ref77 doi: 10.4018/ijsir.2013070101 – ident: ref65 doi: 10.1007/s10489-014-0640-z – ident: ref75 doi: 10.1016/j.swevo.2017.05.001 |
SSID | ssj0000816957 |
Score | 2.3776834 |
Snippet | With the trend of manufacturing globalization, distributed production has attracted wide attention from the industry and academia. Nevertheless, there has been... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 66879 |
SubjectTerms | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">K -means method Algorithms Clustering Distributed hybrid flowshop distributed Nawaz-Enscore-Ham Factories Globalization Hafnium hybrid brain storm optimization Industrial plants Job shop scheduling Job shops Optimization Production facilities Schedules Scheduling Storms |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5te4IHxhiIsjH5gcelS23HsR-7QlUhDZDKpL1F8Y9siLaZ1lTT9tdzl7gRv4R4iyIncvLZvvvOvu8A3pFXXGopkZZ4lUhdpUnpNBJXYYJXtPWTUzbyxSc1u5Qfr7KrHTjtc2FCCO3hszCky3Yv39duQ6GyM3Lulcx3YReJW5er1cdTqICEyfIoLDRKzdl4MsFvoNNbZshNa6h_MT6tRn8sqvLHStyal-k-XGw71p0q-T7cNHboHn_TbPzfnj-HZ9HPZONuYBzATli9gKc_qQ8eQjWvFxROYO9JPJfqXgXPZg-UwsWmi_p-fVPfsjmC6um0-jX70tWeWTP7wMptw3MqMcHmyNyX7DMuP8uY18nGi-v67ltzs3wJl9MPXyezJJZdSJxMdZNU3GU2CF5WOrjcq0pnzmpcFFMXDJp4nPLOq8yiK-dHwvrAnZDCZkqn5SgfWfEK9lb1KrwGJh3S78pxWSkvS2OsyB0aQ_wbQXkj_QD4Fo_CRU1yKo2xKFpukpqiA7EgEIsI4gBO-4duO0mOfzc_J6D7pqSn3d5AgIo4PQuXa_QbhVPKlxI5llaeIzeuSh2E0YYP4JBA7V8S8RzA8XbYFHHurwsuM6K5PBNv_v7UETyhDnaBnGPYa-424S26No09acf0D56k9Oo priority: 102 providerName: IEEE |
Title | Solving Distributed Hybrid Flowshop Scheduling Problems by a Hybrid Brain Storm Optimization Algorithm |
URI | https://ieeexplore.ieee.org/document/8716647 https://www.proquest.com/docview/2455601253 https://doaj.org/article/c784353c66da459786d2721fa8e39892 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxsxELYqTvRQFWjVFIh84MiWXdvrtY9JIIqQoJVSJG7W-rFQKckiEoT498x4nSioUnvhuvI-PDOemc_r-YaQE8yKayUEwBIvM6GaPKudAuDKdfASf_1UWI18dS0nN-LytrzdavWFZ8I6euBOcGeuUhDRuZPS1wKyXyU9A9TS1CpwrXT0vhDztsBU9MGqkLqsEs1QkeuzwWgEM8KzXPoH0zFsvwlFkbE_tVj5yy_HYDP-TD6lLJEOuq_bIx_CYp983OIOPCDNtJ3hZgA9R-pb7FoVPJ28YAEWHc_a5-V9-0CnoBKPZ83v6K-uc8yS2hdarwcOsUEEnQLuntOf4DzmqSqTDmZ37eOf1f38C7kZX_weTbLUNCFzIlerrGGutIGzulHBVV42qnRWgUvLXdAQoGHBOi9LC4mYL7j1gTkuuC2lyuuiKiz_SnYW7SJ8I1Q4AM-NY6KRXtRaW145CGUAsYL0WvgeYWv5GZcYxbGxxcxEZJFr0wndoNBNEnqPnG5ueugINf49fIiK2QxFNux4AWzEJBsx_7ORHjlAtW4egiBRiqpHjtZqNmnlLg0TJYJUVvLv7_HqQ7KL0-k2bY7IzurxKRxDGrOy_Wix_Vhx-Ao5J-sp |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKOQAHXgWxUMAHjs02sR3HPm4XVgt0C9K2Um9W_EiL2N1U3axQ-fXMJN6IlxC3KHIiJ9_YM994HoS8Qau4VEIALfEyEapKk9IpIK5cBy_x6KfAbOTZiZyeiQ_n-fkOOehzYUIIbfBZGOJle5bva7dBV9khGvdSFLfIbdD7edZla_UeFWwhofMilhbKUn04Go_hKzB-Sw-ZblX1L-qnrdIf26r8sRe3CmbygMy2U-viSr4ON40duu-_VW3837k_JPejpUlHnWg8Ijth9Zjc-6n-4B6p5vUCHQr0LZbPxc5XwdPpDSZx0cmi_ra-rK_oHGD1GK9-QT933WfW1N7QcjvwCJtM0Dlw9yX9BBvQMmZ20tHior7-0lwun5CzybvT8TSJjRcSJ1LVJBVzuQ2clZUKrvCyUrmzCrbF1AUNSh4WvfMyt2DM-YxbH5jjgttcqrTMiszyp2R3Va_CM0KFAwJeOSYq6UWpteWFA3UIfyNIr4UfELbFw7hYlRybYyxMy05SbToQDYJoIogDctA_dNUV5fj38CMEuh-KFbXbGwCQiQvUuEKB5cidlL4UwLKU9AzYcVWqwLXSbED2ENT-JRHPAdnfio2Jq39tGEgnEF2W8-d_f-o1uTM9nR2b4_cnH1-QuzjZzq2zT3ab6014CYZOY1-18v0Dhw34Mw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Distributed+Hybrid+Flowshop+Scheduling+Problems+by+a+Hybrid+Brain+Storm+Optimization+Algorithm&rft.jtitle=IEEE+access&rft.au=Hao%2C+Jian-Hua&rft.au=Li%2C+Jun-Qing&rft.au=Du%2C+Yu&rft.au=Song%2C+Mei-Xian&rft.date=2019&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=7&rft.spage=66879&rft.epage=66894&rft_id=info:doi/10.1109%2FACCESS.2019.2917273&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2019_2917273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |