A Novel Convolutional Neural Network Based Indoor Localization Framework With WiFi Fingerprinting
With the ubiquitous deployment of wireless systems and pervasive availability of smart devices, indoor localization is empowering numerous location-based services. With the established radio maps, WiFi fingerprinting has become one of the most practical approaches to localize mobile users. However,...
Saved in:
Published in | IEEE access Vol. 7; pp. 110698 - 110709 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2019.2933921 |
Cover
Loading…
Abstract | With the ubiquitous deployment of wireless systems and pervasive availability of smart devices, indoor localization is empowering numerous location-based services. With the established radio maps, WiFi fingerprinting has become one of the most practical approaches to localize mobile users. However, most fingerprint-based localization algorithms are computation-intensive, with heavy dependence on both offline training phase and online localization phase. In this paper, we propose CNNLoc, a Convolutional Neural Network (CNN) based indoor localization system with WiFi fingerprints for multi-building and multi-floor localization. Specifically, we devise a novel classification model and a novel positioning model by combining a Stacked Auto-Encoder (SAE) with a one-dimensional CNN. The SAE is utilized to precisely extract key features from sparse Received Signal Strength (RSS) data while the CNN is trained to effectively achieve high accuracy in the positioning phase. We evaluate the proposed system on the UJIIndoorLoc dataset and Tampere dataset and compare the performance with several state-of-the-art methods. Moreover, we further propose a newly collected WiFi fingerprinting dataset UTSIndoorLoc and test the positioning model of CNNLoc on it. The results show CNNLoc outperforms the existing solutions with 100% and 95% success rates on building-level localization and floor-level localization, respectively. |
---|---|
AbstractList | With the ubiquitous deployment of wireless systems and pervasive availability of smart devices, indoor localization is empowering numerous location-based services. With the established radio maps, WiFi fingerprinting has become one of the most practical approaches to localize mobile users. However, most fingerprint-based localization algorithms are computation-intensive, with heavy dependence on both offline training phase and online localization phase. In this paper, we propose CNNLoc, a Convolutional Neural Network (CNN) based indoor localization system with WiFi fingerprints for multi-building and multi-floor localization. Specifically, we devise a novel classification model and a novel positioning model by combining a Stacked Auto-Encoder (SAE) with a one-dimensional CNN. The SAE is utilized to precisely extract key features from sparse Received Signal Strength (RSS) data while the CNN is trained to effectively achieve high accuracy in the positioning phase. We evaluate the proposed system on the UJIIndoorLoc dataset and Tampere dataset and compare the performance with several state-of-the-art methods. Moreover, we further propose a newly collected WiFi fingerprinting dataset UTSIndoorLoc and test the positioning model of CNNLoc on it. The results show CNNLoc outperforms the existing solutions with 100% and 95% success rates on building-level localization and floor-level localization, respectively. |
Author | Liu, Leyu Fang, Gengfa Song, Xudong Wang, Zumin Fan, Xiaochen Xiang, Chaocan He, Xiangjian Ye, Qianwen Yang, Ning |
Author_xml | – sequence: 1 givenname: Xudong orcidid: 0000-0002-0095-5726 surname: Song fullname: Song, Xudong organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 2 givenname: Xiaochen orcidid: 0000-0001-8945-3046 surname: Fan fullname: Fan, Xiaochen organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 3 givenname: Chaocan surname: Xiang fullname: Xiang, Chaocan organization: College of Computer Science, Chongqing University, Chongqing, China – sequence: 4 givenname: Qianwen surname: Ye fullname: Ye, Qianwen organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 5 givenname: Leyu surname: Liu fullname: Liu, Leyu organization: College of Information Engineering, Dalian University, Dalian, China – sequence: 6 givenname: Zumin surname: Wang fullname: Wang, Zumin email: wangzumin@163.com organization: College of Information Engineering, Dalian University, Dalian, China – sequence: 7 givenname: Xiangjian surname: He fullname: He, Xiangjian email: xiangjian.he@uts.edu.au organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia – sequence: 8 givenname: Ning surname: Yang fullname: Yang, Ning email: ningyang@nwpu.edu.cn organization: School of Automation, Northwestern Polytechnical University, Xi'an, China – sequence: 9 givenname: Gengfa surname: Fang fullname: Fang, Gengfa email: Gengfa.Fang@uts.edu.au organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia |
BookMark | eNp9UcFu1DAQtVCRKKVf0EskzrvYHsexj0vUhZVW5dBWPVoTxy5e0rg43iL4erybghCH-uAZjd97Y733lpyMcXSEXDC6ZIzqD6u2vby-XnLK9JJrAM3ZK3LKmdQLqEGe_NO_IefTtKPlqDKqm1OCq-oqPrmhauP4FId9DnHEobpy-3Qs-UdM36qPOLm-2ox9jKnaRotD-IUHaLVO-OCOmLuQv5ZrHap1GO9dekxhzKV7R157HCZ3_lzPyO368qb9vNh--bRpV9uFFVTlhWddh8C6XisP0kul-p6DVKhVY6Wy1nZWCGiQUoaSam-1E7rXXHCrNHVwRjazbh9xZ8r2B0w_TcRgjoOY7g2mHOzgTI1ga4-9KGYJ6GsFneQeleDOQgO-aL2ftR5T_L53Uza7uE_FmMlwUdcSuABdUHpG2RSnKTlvbMhHW3LCMBhGzSEgMwdkDgGZ54AKF_7j_vnxy6yLmRWcc38ZqilvWsJvy4ieeA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3111083 crossref_primary_10_1109_LES_2021_3094965 crossref_primary_10_1109_OJCOMS_2023_3324952 crossref_primary_10_1109_JIOT_2023_3298603 crossref_primary_10_1109_TNSE_2022_3174674 crossref_primary_10_1109_JIOT_2022_3230913 crossref_primary_10_1016_j_pmcj_2022_101681 crossref_primary_10_1109_JSEN_2024_3432154 crossref_primary_10_1007_s11036_021_01849_8 crossref_primary_10_3390_ijgi10100706 crossref_primary_10_1109_TIM_2021_3107010 crossref_primary_10_1109_JIOT_2021_3079151 crossref_primary_10_1016_j_micpro_2024_105041 crossref_primary_10_1109_JIOT_2024_3420122 crossref_primary_10_3390_electronics13081518 crossref_primary_10_3390_electronics13224448 crossref_primary_10_3390_s23156992 crossref_primary_10_1109_JSEN_2021_3070098 crossref_primary_10_1109_ACCESS_2022_3156579 crossref_primary_10_1109_ACCESS_2024_3384625 crossref_primary_10_1109_TCCN_2023_3261300 crossref_primary_10_1109_JIOT_2020_3041204 crossref_primary_10_1109_TMC_2023_3277333 crossref_primary_10_32604_cmes_2023_031534 crossref_primary_10_1016_j_asoc_2022_108624 crossref_primary_10_1016_j_icte_2023_01_009 crossref_primary_10_1109_ACCESS_2022_3226816 crossref_primary_10_1109_LSENS_2021_3125911 crossref_primary_10_1109_ACCESS_2024_3496561 crossref_primary_10_1109_JIOT_2021_3106902 crossref_primary_10_1109_ACCESS_2020_3041773 crossref_primary_10_1016_j_adhoc_2023_103244 crossref_primary_10_1145_3678878 crossref_primary_10_1155_2021_6660990 crossref_primary_10_3390_s24051398 crossref_primary_10_3390_s22010309 crossref_primary_10_1080_24751839_2021_1975425 crossref_primary_10_1109_ACCESS_2023_3263583 crossref_primary_10_1109_ACCESS_2021_3083662 crossref_primary_10_1109_ACCESS_2024_3412676 crossref_primary_10_1109_ACCESS_2020_3034114 crossref_primary_10_1109_JSEN_2021_3087954 crossref_primary_10_32604_cmc_2024_044890 crossref_primary_10_1109_JSEN_2022_3153362 crossref_primary_10_1016_j_measurement_2023_113719 crossref_primary_10_3390_s23031542 crossref_primary_10_1109_ACCESS_2023_3341972 crossref_primary_10_12677_SEA_2023_124060 crossref_primary_10_1186_s43020_021_00058_8 crossref_primary_10_1109_JIOT_2022_3208367 crossref_primary_10_1109_ACCESS_2025_3535948 crossref_primary_10_1016_j_dsp_2023_103980 crossref_primary_10_3390_machines13010037 crossref_primary_10_1016_j_future_2023_02_017 crossref_primary_10_3390_s23208598 crossref_primary_10_1109_JSEN_2024_3457780 crossref_primary_10_1109_TITS_2023_3309963 crossref_primary_10_1109_JIOT_2022_3199814 crossref_primary_10_3390_s23010188 crossref_primary_10_1109_TMLCN_2023_3319282 crossref_primary_10_3390_s20236795 crossref_primary_10_1109_JIOT_2022_3232740 crossref_primary_10_1016_j_neucom_2020_12_131 crossref_primary_10_1016_j_asoc_2024_112032 crossref_primary_10_3390_electronics9060982 crossref_primary_10_1109_ACCESS_2024_3509516 crossref_primary_10_7717_peerj_cs_1406 crossref_primary_10_1109_TCOMM_2022_3145408 crossref_primary_10_3390_ijgi10090613 crossref_primary_10_3390_s21082722 crossref_primary_10_3390_electronics10010002 crossref_primary_10_3390_s21134349 crossref_primary_10_3390_s23010153 crossref_primary_10_1109_JIOT_2021_3101368 crossref_primary_10_1109_ACCESS_2022_3218301 crossref_primary_10_1016_j_sigpro_2024_109756 crossref_primary_10_12677_mos_2024_133356 crossref_primary_10_1109_TCOMM_2024_3459848 crossref_primary_10_1109_JSEN_2024_3374415 crossref_primary_10_1109_JIOT_2024_3440175 crossref_primary_10_3390_s22124622 crossref_primary_10_1002_navi_343 crossref_primary_10_1016_j_future_2023_10_003 crossref_primary_10_1049_ell2_12142 crossref_primary_10_1016_j_pmcj_2024_101912 crossref_primary_10_3390_s21062000 crossref_primary_10_3390_app11178170 crossref_primary_10_1049_cmu2_12386 crossref_primary_10_1109_JIOT_2024_3430087 crossref_primary_10_3390_ijgi9110627 crossref_primary_10_3390_s22176629 crossref_primary_10_1016_j_engappai_2022_105509 crossref_primary_10_1109_TIM_2020_2998645 crossref_primary_10_3390_rs14020297 crossref_primary_10_1109_JIOT_2023_3325948 crossref_primary_10_1109_JISPIN_2024_3385356 crossref_primary_10_1109_JSTSP_2024_3388930 crossref_primary_10_1016_j_eswa_2021_116455 crossref_primary_10_32397_tesea_vol5_n1_542 crossref_primary_10_1016_j_eswa_2023_120679 crossref_primary_10_1016_j_pmcj_2022_101742 crossref_primary_10_1088_1402_4896_ad351a crossref_primary_10_1007_s00607_024_01391_x crossref_primary_10_1109_ACCESS_2024_3360228 crossref_primary_10_1016_j_watres_2024_122600 crossref_primary_10_1109_JIOT_2022_3149549 crossref_primary_10_3390_s24123827 crossref_primary_10_1016_j_icte_2020_05_012 crossref_primary_10_1109_TMC_2022_3162612 crossref_primary_10_3390_electronics10243112 crossref_primary_10_1109_TII_2024_3485769 crossref_primary_10_3390_computers12030059 crossref_primary_10_1109_JIOT_2024_3361253 crossref_primary_10_1109_OJCOMS_2024_3520005 crossref_primary_10_1109_TIM_2021_3132075 crossref_primary_10_1109_ACCESS_2024_3493889 crossref_primary_10_1109_JSEN_2023_3243621 crossref_primary_10_1109_JSEN_2024_3462759 crossref_primary_10_3390_s22093593 crossref_primary_10_32604_cmc_2022_018707 crossref_primary_10_2139_ssrn_4057935 crossref_primary_10_1109_JIOT_2022_3214211 crossref_primary_10_1145_3614095 crossref_primary_10_1109_JIOT_2024_3386889 crossref_primary_10_1109_LCOMM_2020_3043974 crossref_primary_10_1587_transinf_2022EDL8081 |
Cites_doi | 10.1109/COMST.2015.2464084 10.1109/ICMLA.2017.0-185 10.1109/ACCESS.2018.2887308 10.1007/978-3-319-54042-9_57 10.1109/COMST.2018.2855063 10.1109/TVT.2019.2900460 10.1109/SAHCN.2018.8397121 10.1109/TVT.2018.2848294 10.1186/s41044-018-0031-2 10.1109/IPIN.2015.7346969 10.1109/IPIN.2014.7275492 10.1109/TVT.2019.2893928 10.1109/COMST.2019.2904897 10.1016/j.eswa.2015.08.013 10.1109/TITS.2017.2771231 10.1109/TNET.2018.2852754 10.1016/j.cosrev.2017.03.002 10.1109/TPDS.2014.2308212 10.1109/COMST.2016.2632427 10.1109/TNET.2017.2766526 10.1109/TMC.2018.2876841 10.1109/TMC.2019.2921959 10.1109/COMST.2019.2911558 10.1109/ICUFN.2018.8436598 10.1109/TITS.2019.2910591 10.1109/IPIN.2017.8115940 10.1109/INFOCOM.2015.7218637 10.3390/data2040032 10.1016/j.neucom.2016.02.055 10.1109/TVT.2016.2545523 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2933921 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 110709 |
ExternalDocumentID | oai_doaj_org_article_5a3c5fad433943d583b62fa842ec373f 10_1109_ACCESS_2019_2933921 8792196 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Liao Ning Province of China grantid: 20180551247 – fundername: University of Technology Sydney funderid: 10.13039/501100001775 – fundername: Liao Ning Provincial Ph.D. Startup Foundation of China grantid: 20170520438 – fundername: Liao Ning Science Public Welfare Research Fund of China grantid: 20170053 – fundername: Key Research and Development Program of Liao Ning Province of China grantid: 2017104014 – fundername: Science and Technology Innovation Fund Project of Dalian of China grantid: 2018J12GX049; 2018J13SN088 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c408t-f1bba31bd98f36f688dd2368a987c68cccbc4437a001a609fc9e49d9242c890e3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:23:11 EDT 2025 Mon Jun 30 02:37:34 EDT 2025 Tue Jul 01 02:41:48 EDT 2025 Thu Apr 24 22:52:48 EDT 2025 Wed Aug 27 02:41:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-f1bba31bd98f36f688dd2368a987c68cccbc4437a001a609fc9e49d9242c890e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8945-3046 0000-0002-0095-5726 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8792196 |
PQID | 2455632439 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | ieee_primary_8792196 doaj_primary_oai_doaj_org_article_5a3c5fad433943d583b62fa842ec373f crossref_citationtrail_10_1109_ACCESS_2019_2933921 crossref_primary_10_1109_ACCESS_2019_2933921 proquest_journals_2455632439 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 chen (ref13) 2017; 18 ref14 ref31 ref30 ref33 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 goodfellow (ref29) 2016; 1 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ruder (ref32) 2016 ref9 ref4 ref3 ref6 ref5 |
References_xml | – volume: 18 start-page: 1478 year: 2017 ident: ref13 article-title: Crowddeliver: Planning city-wide package delivery paths leveraging the crowd of taxis publication-title: IEEE Trans Intell Transp Syst – ident: ref5 doi: 10.1109/COMST.2015.2464084 – ident: ref26 doi: 10.1109/ICMLA.2017.0-185 – volume: 1 year: 2016 ident: ref29 publication-title: Deep Learning – ident: ref22 doi: 10.1109/ACCESS.2018.2887308 – ident: ref25 doi: 10.1007/978-3-319-54042-9_57 – ident: ref2 doi: 10.1109/COMST.2018.2855063 – ident: ref19 doi: 10.1109/TVT.2019.2900460 – ident: ref27 doi: 10.1109/SAHCN.2018.8397121 – ident: ref20 doi: 10.1109/TVT.2018.2848294 – ident: ref10 doi: 10.1186/s41044-018-0031-2 – ident: ref33 doi: 10.1109/IPIN.2015.7346969 – ident: ref7 doi: 10.1109/IPIN.2014.7275492 – ident: ref21 doi: 10.1109/TVT.2019.2893928 – ident: ref11 doi: 10.1109/COMST.2019.2904897 – ident: ref31 doi: 10.1016/j.eswa.2015.08.013 – ident: ref14 doi: 10.1109/TITS.2017.2771231 – ident: ref16 doi: 10.1109/TNET.2018.2852754 – ident: ref1 doi: 10.1016/j.cosrev.2017.03.002 – year: 2016 ident: ref32 article-title: An overview of gradient descent optimization algorithms publication-title: arXiv 1609 04747 – ident: ref30 doi: 10.1109/TPDS.2014.2308212 – ident: ref3 doi: 10.1109/COMST.2016.2632427 – ident: ref17 doi: 10.1109/TNET.2017.2766526 – ident: ref18 doi: 10.1109/TMC.2018.2876841 – ident: ref15 doi: 10.1109/TMC.2019.2921959 – ident: ref23 doi: 10.1109/COMST.2019.2911558 – ident: ref28 doi: 10.1109/ICUFN.2018.8436598 – ident: ref12 doi: 10.1109/TITS.2019.2910591 – ident: ref8 doi: 10.1109/IPIN.2017.8115940 – ident: ref6 doi: 10.1109/INFOCOM.2015.7218637 – ident: ref4 doi: 10.3390/data2040032 – ident: ref9 doi: 10.1016/j.neucom.2016.02.055 – ident: ref24 doi: 10.1109/TVT.2016.2545523 |
SSID | ssj0000816957 |
Score | 2.561136 |
Snippet | With the ubiquitous deployment of wireless systems and pervasive availability of smart devices, indoor localization is empowering numerous location-based... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110698 |
SubjectTerms | Algorithms Artificial neural networks Buildings Coders convolutional neural network Convolutional neural networks Datasets deep learning Electronic devices Feature extraction Fingerprint recognition Fingerprinting Fingerprints Floors Indoor localization Localization Location based services Model testing Neural networks Signal strength Training WiFi fingerprinting Wireless communication Wireless fidelity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQT3BAQFltoSAfOBKaxI5jH7sV0YKgJyp6s_yKtlKVrHaz_f3MOG7V1Upw4ZJIke3YM2PPQ-NvCPlkfCE8aOqs9IFjtMpkVliVSSsL4yRXRYV3h3-uxfWGf99W27NSX5gTNsIDj4RbVIa5qjWeM6Y485VkVpStkbwMjtWsxdMXdN6ZMxXPYFkIVdUJZqjI1WK5WsGKMJdLfQEVB2ZB8UgVRcT-VGLlybkclU3zirxMViJdjrN7TZ6F7g15cYYdOCVmSdf9Iezpqu8OSX6gC4JtxFfM7qZXoKQ8_db5vr-jP1BvpXuXtDlmZdHfu-EGHs2ONjHGh6E-TIZ-SzbN11-r6yzVS8gcz-WQtYW1hhXWK9ky0QopPbBBSKNk7YR0zlnHOasNqCYjctU6Fbjy4IGVTqo8sAsy6fouXBIKdpStFezuFi_CgVfGBSKTGRPqvA5ezEh5JJ12CUwca1rsdXQqcqVHemukt070npHPp063I5bG35tfIU9OTREIO34A8dBJPPS_xGNGpsjR0yCyhpEVzH9-5LBOm_ZelxzR0kow0d79j1-_J89xOWO8Zk4mw91D-AAWzGA_RmH9A3sU6g8 priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel Convolutional Neural Network Based Indoor Localization Framework With WiFi Fingerprinting |
URI | https://ieeexplore.ieee.org/document/8792196 https://www.proquest.com/docview/2455632439 https://doaj.org/article/5a3c5fad433943d583b62fa842ec373f |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBV0EsLZUPHJttHo5jH7crooJoT1T0ZvkVUVElVcn2wK_vjOONeAlxSaLIEzn6xplHZj4DvDO-EB4tdVb6wClbZTIrrMqklYVxkquipt7h8wtxdsk_XtVXO3A898KEEGLxWVjSZfyX7we3oVTZiWwULjCxC7sYuE29WnM-hTaQUHWTiIWKXJ2s1mt8B6reUks0augIFL8Yn8jRnzZV-eNLHM1L-xTOtxObqkq-LTejXbofv3E2_u_Mn8GT5Gey1aQYz2En9C_g8U_sg_tgVuxiuA83bD3090kDUYToOuIp1oezUzRznn3o_TDcsU9k-VLnJmu3dV3sy_X4FQ_tNWtjlpCShVRO_RIu2_ef12dZ2nEhczyXY9YV1pqqsF7JrhKdkNIjkEIaJRsnpHPOOs6rxqBxMyJXnVOBK48xXOmkykP1Cvb6oQ-vgaEnZhuF34eOWukwruOCuM2MCU3eBC8WUG6h0C7RkdOuGDc6hiW50hN-mvDTCb8FHM9CtxMbx7-HnxLG81Ci0o43EBudVqauTeXqzniOIrzytaysKDsjeRlc1VTdAvYJz_khCcoFHG41Rqdl_12XnPjWSnTy3vxd6gAe0QSnHM4h7I13m_AWvZrRHsVswFFU6gclpPSF |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioS0-cGy2eTiOfdyuiLawu6dW9Gb5FVFRJajN9tBfz9jxRi0gxCWJIk_k6BtnxpOZbwA-KZsxi5Y6ya2jPlqlEs20SLjmmTKciqz0tcOrNVuc0y8X5cUOHI21MM65kHzmpv4y_Mu3ndn4UNkxrwQuMPYIHqPdL7OhWmuMqPgWEqKsIrVQlorj2XyOb-Hzt8QUzRq6AtkD8xNY-mNblT--xcHA1C9gtZ3akFfyY7rp9dTc_cba-L9zfwnPo6dJZoNqvIId176GZ_f4B_dAzci6u3VXZN61t1EHUcQTdoRTyBAnJ2joLDltbdddk6W3fbF2k9TbzC7y7bL_jof6ktQhTujDhT6h-g2c15_P5osk9lxIDE15nzSZ1qrItBW8KVjDOLcIJeNK8MowbozRhtKiUmjeFEtFY4SjwuIuLjdcpK54C7tt17p3QBAhXQn8QjS-mA53dpR5djOlXJVWzrIJ5FsopImE5L4vxpUMG5NUyAE_6fGTEb8JHI1CPwc-jn8PP_EYj0M9mXa4gdjIuDZlqQpTNspSFKGFLXmhWd4oTnNniqpoJrDn8RwfEqGcwP5WY2Rc-Dcyp55xLUc37_3fpT7Ck8XZaimXp-uvH-Cpn-wQ0dmH3f564w7Qx-n1YVDtX0V_9tk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Convolutional+Neural+Network+Based+Indoor+Localization+Framework+With+WiFi+Fingerprinting&rft.jtitle=IEEE+access&rft.au=Song%2C+Xudong&rft.au=Fan%2C+Xiaochen&rft.au=Xiang%2C+Chaocan&rft.au=Ye%2C+Qianwen&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=110698&rft.epage=110709&rft_id=info:doi/10.1109%2FACCESS.2019.2933921&rft.externalDocID=8792196 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |