A Novel Convolutional Neural Network Based Indoor Localization Framework With WiFi Fingerprinting

With the ubiquitous deployment of wireless systems and pervasive availability of smart devices, indoor localization is empowering numerous location-based services. With the established radio maps, WiFi fingerprinting has become one of the most practical approaches to localize mobile users. However,...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 110698 - 110709
Main Authors Song, Xudong, Fan, Xiaochen, Xiang, Chaocan, Ye, Qianwen, Liu, Leyu, Wang, Zumin, He, Xiangjian, Yang, Ning, Fang, Gengfa
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2933921

Cover

Loading…
Abstract With the ubiquitous deployment of wireless systems and pervasive availability of smart devices, indoor localization is empowering numerous location-based services. With the established radio maps, WiFi fingerprinting has become one of the most practical approaches to localize mobile users. However, most fingerprint-based localization algorithms are computation-intensive, with heavy dependence on both offline training phase and online localization phase. In this paper, we propose CNNLoc, a Convolutional Neural Network (CNN) based indoor localization system with WiFi fingerprints for multi-building and multi-floor localization. Specifically, we devise a novel classification model and a novel positioning model by combining a Stacked Auto-Encoder (SAE) with a one-dimensional CNN. The SAE is utilized to precisely extract key features from sparse Received Signal Strength (RSS) data while the CNN is trained to effectively achieve high accuracy in the positioning phase. We evaluate the proposed system on the UJIIndoorLoc dataset and Tampere dataset and compare the performance with several state-of-the-art methods. Moreover, we further propose a newly collected WiFi fingerprinting dataset UTSIndoorLoc and test the positioning model of CNNLoc on it. The results show CNNLoc outperforms the existing solutions with 100% and 95% success rates on building-level localization and floor-level localization, respectively.
AbstractList With the ubiquitous deployment of wireless systems and pervasive availability of smart devices, indoor localization is empowering numerous location-based services. With the established radio maps, WiFi fingerprinting has become one of the most practical approaches to localize mobile users. However, most fingerprint-based localization algorithms are computation-intensive, with heavy dependence on both offline training phase and online localization phase. In this paper, we propose CNNLoc, a Convolutional Neural Network (CNN) based indoor localization system with WiFi fingerprints for multi-building and multi-floor localization. Specifically, we devise a novel classification model and a novel positioning model by combining a Stacked Auto-Encoder (SAE) with a one-dimensional CNN. The SAE is utilized to precisely extract key features from sparse Received Signal Strength (RSS) data while the CNN is trained to effectively achieve high accuracy in the positioning phase. We evaluate the proposed system on the UJIIndoorLoc dataset and Tampere dataset and compare the performance with several state-of-the-art methods. Moreover, we further propose a newly collected WiFi fingerprinting dataset UTSIndoorLoc and test the positioning model of CNNLoc on it. The results show CNNLoc outperforms the existing solutions with 100% and 95% success rates on building-level localization and floor-level localization, respectively.
Author Liu, Leyu
Fang, Gengfa
Song, Xudong
Wang, Zumin
Fan, Xiaochen
Xiang, Chaocan
He, Xiangjian
Ye, Qianwen
Yang, Ning
Author_xml – sequence: 1
  givenname: Xudong
  orcidid: 0000-0002-0095-5726
  surname: Song
  fullname: Song, Xudong
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 2
  givenname: Xiaochen
  orcidid: 0000-0001-8945-3046
  surname: Fan
  fullname: Fan, Xiaochen
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 3
  givenname: Chaocan
  surname: Xiang
  fullname: Xiang, Chaocan
  organization: College of Computer Science, Chongqing University, Chongqing, China
– sequence: 4
  givenname: Qianwen
  surname: Ye
  fullname: Ye, Qianwen
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 5
  givenname: Leyu
  surname: Liu
  fullname: Liu, Leyu
  organization: College of Information Engineering, Dalian University, Dalian, China
– sequence: 6
  givenname: Zumin
  surname: Wang
  fullname: Wang, Zumin
  email: wangzumin@163.com
  organization: College of Information Engineering, Dalian University, Dalian, China
– sequence: 7
  givenname: Xiangjian
  surname: He
  fullname: He, Xiangjian
  email: xiangjian.he@uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia
– sequence: 8
  givenname: Ning
  surname: Yang
  fullname: Yang, Ning
  email: ningyang@nwpu.edu.cn
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, China
– sequence: 9
  givenname: Gengfa
  surname: Fang
  fullname: Fang, Gengfa
  email: Gengfa.Fang@uts.edu.au
  organization: School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW, Australia
BookMark eNp9UcFu1DAQtVCRKKVf0EskzrvYHsexj0vUhZVW5dBWPVoTxy5e0rg43iL4erybghCH-uAZjd97Y733lpyMcXSEXDC6ZIzqD6u2vby-XnLK9JJrAM3ZK3LKmdQLqEGe_NO_IefTtKPlqDKqm1OCq-oqPrmhauP4FId9DnHEobpy-3Qs-UdM36qPOLm-2ox9jKnaRotD-IUHaLVO-OCOmLuQv5ZrHap1GO9dekxhzKV7R157HCZ3_lzPyO368qb9vNh--bRpV9uFFVTlhWddh8C6XisP0kul-p6DVKhVY6Wy1nZWCGiQUoaSam-1E7rXXHCrNHVwRjazbh9xZ8r2B0w_TcRgjoOY7g2mHOzgTI1ga4-9KGYJ6GsFneQeleDOQgO-aL2ftR5T_L53Uza7uE_FmMlwUdcSuABdUHpG2RSnKTlvbMhHW3LCMBhGzSEgMwdkDgGZ54AKF_7j_vnxy6yLmRWcc38ZqilvWsJvy4ieeA
CODEN IAECCG
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3111083
crossref_primary_10_1109_LES_2021_3094965
crossref_primary_10_1109_OJCOMS_2023_3324952
crossref_primary_10_1109_JIOT_2023_3298603
crossref_primary_10_1109_TNSE_2022_3174674
crossref_primary_10_1109_JIOT_2022_3230913
crossref_primary_10_1016_j_pmcj_2022_101681
crossref_primary_10_1109_JSEN_2024_3432154
crossref_primary_10_1007_s11036_021_01849_8
crossref_primary_10_3390_ijgi10100706
crossref_primary_10_1109_TIM_2021_3107010
crossref_primary_10_1109_JIOT_2021_3079151
crossref_primary_10_1016_j_micpro_2024_105041
crossref_primary_10_1109_JIOT_2024_3420122
crossref_primary_10_3390_electronics13081518
crossref_primary_10_3390_electronics13224448
crossref_primary_10_3390_s23156992
crossref_primary_10_1109_JSEN_2021_3070098
crossref_primary_10_1109_ACCESS_2022_3156579
crossref_primary_10_1109_ACCESS_2024_3384625
crossref_primary_10_1109_TCCN_2023_3261300
crossref_primary_10_1109_JIOT_2020_3041204
crossref_primary_10_1109_TMC_2023_3277333
crossref_primary_10_32604_cmes_2023_031534
crossref_primary_10_1016_j_asoc_2022_108624
crossref_primary_10_1016_j_icte_2023_01_009
crossref_primary_10_1109_ACCESS_2022_3226816
crossref_primary_10_1109_LSENS_2021_3125911
crossref_primary_10_1109_ACCESS_2024_3496561
crossref_primary_10_1109_JIOT_2021_3106902
crossref_primary_10_1109_ACCESS_2020_3041773
crossref_primary_10_1016_j_adhoc_2023_103244
crossref_primary_10_1145_3678878
crossref_primary_10_1155_2021_6660990
crossref_primary_10_3390_s24051398
crossref_primary_10_3390_s22010309
crossref_primary_10_1080_24751839_2021_1975425
crossref_primary_10_1109_ACCESS_2023_3263583
crossref_primary_10_1109_ACCESS_2021_3083662
crossref_primary_10_1109_ACCESS_2024_3412676
crossref_primary_10_1109_ACCESS_2020_3034114
crossref_primary_10_1109_JSEN_2021_3087954
crossref_primary_10_32604_cmc_2024_044890
crossref_primary_10_1109_JSEN_2022_3153362
crossref_primary_10_1016_j_measurement_2023_113719
crossref_primary_10_3390_s23031542
crossref_primary_10_1109_ACCESS_2023_3341972
crossref_primary_10_12677_SEA_2023_124060
crossref_primary_10_1186_s43020_021_00058_8
crossref_primary_10_1109_JIOT_2022_3208367
crossref_primary_10_1109_ACCESS_2025_3535948
crossref_primary_10_1016_j_dsp_2023_103980
crossref_primary_10_3390_machines13010037
crossref_primary_10_1016_j_future_2023_02_017
crossref_primary_10_3390_s23208598
crossref_primary_10_1109_JSEN_2024_3457780
crossref_primary_10_1109_TITS_2023_3309963
crossref_primary_10_1109_JIOT_2022_3199814
crossref_primary_10_3390_s23010188
crossref_primary_10_1109_TMLCN_2023_3319282
crossref_primary_10_3390_s20236795
crossref_primary_10_1109_JIOT_2022_3232740
crossref_primary_10_1016_j_neucom_2020_12_131
crossref_primary_10_1016_j_asoc_2024_112032
crossref_primary_10_3390_electronics9060982
crossref_primary_10_1109_ACCESS_2024_3509516
crossref_primary_10_7717_peerj_cs_1406
crossref_primary_10_1109_TCOMM_2022_3145408
crossref_primary_10_3390_ijgi10090613
crossref_primary_10_3390_s21082722
crossref_primary_10_3390_electronics10010002
crossref_primary_10_3390_s21134349
crossref_primary_10_3390_s23010153
crossref_primary_10_1109_JIOT_2021_3101368
crossref_primary_10_1109_ACCESS_2022_3218301
crossref_primary_10_1016_j_sigpro_2024_109756
crossref_primary_10_12677_mos_2024_133356
crossref_primary_10_1109_TCOMM_2024_3459848
crossref_primary_10_1109_JSEN_2024_3374415
crossref_primary_10_1109_JIOT_2024_3440175
crossref_primary_10_3390_s22124622
crossref_primary_10_1002_navi_343
crossref_primary_10_1016_j_future_2023_10_003
crossref_primary_10_1049_ell2_12142
crossref_primary_10_1016_j_pmcj_2024_101912
crossref_primary_10_3390_s21062000
crossref_primary_10_3390_app11178170
crossref_primary_10_1049_cmu2_12386
crossref_primary_10_1109_JIOT_2024_3430087
crossref_primary_10_3390_ijgi9110627
crossref_primary_10_3390_s22176629
crossref_primary_10_1016_j_engappai_2022_105509
crossref_primary_10_1109_TIM_2020_2998645
crossref_primary_10_3390_rs14020297
crossref_primary_10_1109_JIOT_2023_3325948
crossref_primary_10_1109_JISPIN_2024_3385356
crossref_primary_10_1109_JSTSP_2024_3388930
crossref_primary_10_1016_j_eswa_2021_116455
crossref_primary_10_32397_tesea_vol5_n1_542
crossref_primary_10_1016_j_eswa_2023_120679
crossref_primary_10_1016_j_pmcj_2022_101742
crossref_primary_10_1088_1402_4896_ad351a
crossref_primary_10_1007_s00607_024_01391_x
crossref_primary_10_1109_ACCESS_2024_3360228
crossref_primary_10_1016_j_watres_2024_122600
crossref_primary_10_1109_JIOT_2022_3149549
crossref_primary_10_3390_s24123827
crossref_primary_10_1016_j_icte_2020_05_012
crossref_primary_10_1109_TMC_2022_3162612
crossref_primary_10_3390_electronics10243112
crossref_primary_10_1109_TII_2024_3485769
crossref_primary_10_3390_computers12030059
crossref_primary_10_1109_JIOT_2024_3361253
crossref_primary_10_1109_OJCOMS_2024_3520005
crossref_primary_10_1109_TIM_2021_3132075
crossref_primary_10_1109_ACCESS_2024_3493889
crossref_primary_10_1109_JSEN_2023_3243621
crossref_primary_10_1109_JSEN_2024_3462759
crossref_primary_10_3390_s22093593
crossref_primary_10_32604_cmc_2022_018707
crossref_primary_10_2139_ssrn_4057935
crossref_primary_10_1109_JIOT_2022_3214211
crossref_primary_10_1145_3614095
crossref_primary_10_1109_JIOT_2024_3386889
crossref_primary_10_1109_LCOMM_2020_3043974
crossref_primary_10_1587_transinf_2022EDL8081
Cites_doi 10.1109/COMST.2015.2464084
10.1109/ICMLA.2017.0-185
10.1109/ACCESS.2018.2887308
10.1007/978-3-319-54042-9_57
10.1109/COMST.2018.2855063
10.1109/TVT.2019.2900460
10.1109/SAHCN.2018.8397121
10.1109/TVT.2018.2848294
10.1186/s41044-018-0031-2
10.1109/IPIN.2015.7346969
10.1109/IPIN.2014.7275492
10.1109/TVT.2019.2893928
10.1109/COMST.2019.2904897
10.1016/j.eswa.2015.08.013
10.1109/TITS.2017.2771231
10.1109/TNET.2018.2852754
10.1016/j.cosrev.2017.03.002
10.1109/TPDS.2014.2308212
10.1109/COMST.2016.2632427
10.1109/TNET.2017.2766526
10.1109/TMC.2018.2876841
10.1109/TMC.2019.2921959
10.1109/COMST.2019.2911558
10.1109/ICUFN.2018.8436598
10.1109/TITS.2019.2910591
10.1109/IPIN.2017.8115940
10.1109/INFOCOM.2015.7218637
10.3390/data2040032
10.1016/j.neucom.2016.02.055
10.1109/TVT.2016.2545523
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2933921
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 110709
ExternalDocumentID oai_doaj_org_article_5a3c5fad433943d583b62fa842ec373f
10_1109_ACCESS_2019_2933921
8792196
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Liao Ning Province of China
  grantid: 20180551247
– fundername: University of Technology Sydney
  funderid: 10.13039/501100001775
– fundername: Liao Ning Provincial Ph.D. Startup Foundation of China
  grantid: 20170520438
– fundername: Liao Ning Science Public Welfare Research Fund of China
  grantid: 20170053
– fundername: Key Research and Development Program of Liao Ning Province of China
  grantid: 2017104014
– fundername: Science and Technology Innovation Fund Project of Dalian of China
  grantid: 2018J12GX049; 2018J13SN088
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c408t-f1bba31bd98f36f688dd2368a987c68cccbc4437a001a609fc9e49d9242c890e3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:23:11 EDT 2025
Mon Jun 30 02:37:34 EDT 2025
Tue Jul 01 02:41:48 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
Wed Aug 27 02:41:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-f1bba31bd98f36f688dd2368a987c68cccbc4437a001a609fc9e49d9242c890e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8945-3046
0000-0002-0095-5726
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8792196
PQID 2455632439
PQPubID 4845423
PageCount 12
ParticipantIDs ieee_primary_8792196
doaj_primary_oai_doaj_org_article_5a3c5fad433943d583b62fa842ec373f
crossref_citationtrail_10_1109_ACCESS_2019_2933921
crossref_primary_10_1109_ACCESS_2019_2933921
proquest_journals_2455632439
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
chen (ref13) 2017; 18
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
goodfellow (ref29) 2016; 1
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ruder (ref32) 2016
ref9
ref4
ref3
ref6
ref5
References_xml – volume: 18
  start-page: 1478
  year: 2017
  ident: ref13
  article-title: Crowddeliver: Planning city-wide package delivery paths leveraging the crowd of taxis
  publication-title: IEEE Trans Intell Transp Syst
– ident: ref5
  doi: 10.1109/COMST.2015.2464084
– ident: ref26
  doi: 10.1109/ICMLA.2017.0-185
– volume: 1
  year: 2016
  ident: ref29
  publication-title: Deep Learning
– ident: ref22
  doi: 10.1109/ACCESS.2018.2887308
– ident: ref25
  doi: 10.1007/978-3-319-54042-9_57
– ident: ref2
  doi: 10.1109/COMST.2018.2855063
– ident: ref19
  doi: 10.1109/TVT.2019.2900460
– ident: ref27
  doi: 10.1109/SAHCN.2018.8397121
– ident: ref20
  doi: 10.1109/TVT.2018.2848294
– ident: ref10
  doi: 10.1186/s41044-018-0031-2
– ident: ref33
  doi: 10.1109/IPIN.2015.7346969
– ident: ref7
  doi: 10.1109/IPIN.2014.7275492
– ident: ref21
  doi: 10.1109/TVT.2019.2893928
– ident: ref11
  doi: 10.1109/COMST.2019.2904897
– ident: ref31
  doi: 10.1016/j.eswa.2015.08.013
– ident: ref14
  doi: 10.1109/TITS.2017.2771231
– ident: ref16
  doi: 10.1109/TNET.2018.2852754
– ident: ref1
  doi: 10.1016/j.cosrev.2017.03.002
– year: 2016
  ident: ref32
  article-title: An overview of gradient descent optimization algorithms
  publication-title: arXiv 1609 04747
– ident: ref30
  doi: 10.1109/TPDS.2014.2308212
– ident: ref3
  doi: 10.1109/COMST.2016.2632427
– ident: ref17
  doi: 10.1109/TNET.2017.2766526
– ident: ref18
  doi: 10.1109/TMC.2018.2876841
– ident: ref15
  doi: 10.1109/TMC.2019.2921959
– ident: ref23
  doi: 10.1109/COMST.2019.2911558
– ident: ref28
  doi: 10.1109/ICUFN.2018.8436598
– ident: ref12
  doi: 10.1109/TITS.2019.2910591
– ident: ref8
  doi: 10.1109/IPIN.2017.8115940
– ident: ref6
  doi: 10.1109/INFOCOM.2015.7218637
– ident: ref4
  doi: 10.3390/data2040032
– ident: ref9
  doi: 10.1016/j.neucom.2016.02.055
– ident: ref24
  doi: 10.1109/TVT.2016.2545523
SSID ssj0000816957
Score 2.561136
Snippet With the ubiquitous deployment of wireless systems and pervasive availability of smart devices, indoor localization is empowering numerous location-based...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110698
SubjectTerms Algorithms
Artificial neural networks
Buildings
Coders
convolutional neural network
Convolutional neural networks
Datasets
deep learning
Electronic devices
Feature extraction
Fingerprint recognition
Fingerprinting
Fingerprints
Floors
Indoor localization
Localization
Location based services
Model testing
Neural networks
Signal strength
Training
WiFi fingerprinting
Wireless communication
Wireless fidelity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQT3BAQFltoSAfOBKaxI5jH7sV0YKgJyp6s_yKtlKVrHaz_f3MOG7V1Upw4ZJIke3YM2PPQ-NvCPlkfCE8aOqs9IFjtMpkVliVSSsL4yRXRYV3h3-uxfWGf99W27NSX5gTNsIDj4RbVIa5qjWeM6Y485VkVpStkbwMjtWsxdMXdN6ZMxXPYFkIVdUJZqjI1WK5WsGKMJdLfQEVB2ZB8UgVRcT-VGLlybkclU3zirxMViJdjrN7TZ6F7g15cYYdOCVmSdf9Iezpqu8OSX6gC4JtxFfM7qZXoKQ8_db5vr-jP1BvpXuXtDlmZdHfu-EGHs2ONjHGh6E-TIZ-SzbN11-r6yzVS8gcz-WQtYW1hhXWK9ky0QopPbBBSKNk7YR0zlnHOasNqCYjctU6Fbjy4IGVTqo8sAsy6fouXBIKdpStFezuFi_CgVfGBSKTGRPqvA5ezEh5JJ12CUwca1rsdXQqcqVHemukt070npHPp063I5bG35tfIU9OTREIO34A8dBJPPS_xGNGpsjR0yCyhpEVzH9-5LBOm_ZelxzR0kow0d79j1-_J89xOWO8Zk4mw91D-AAWzGA_RmH9A3sU6g8
  priority: 102
  providerName: Directory of Open Access Journals
Title A Novel Convolutional Neural Network Based Indoor Localization Framework With WiFi Fingerprinting
URI https://ieeexplore.ieee.org/document/8792196
https://www.proquest.com/docview/2455632439
https://doaj.org/article/5a3c5fad433943d583b62fa842ec373f
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBV0EsLZUPHJttHo5jH7crooJoT1T0ZvkVUVElVcn2wK_vjOONeAlxSaLIEzn6xplHZj4DvDO-EB4tdVb6wClbZTIrrMqklYVxkquipt7h8wtxdsk_XtVXO3A898KEEGLxWVjSZfyX7we3oVTZiWwULjCxC7sYuE29WnM-hTaQUHWTiIWKXJ2s1mt8B6reUks0augIFL8Yn8jRnzZV-eNLHM1L-xTOtxObqkq-LTejXbofv3E2_u_Mn8GT5Gey1aQYz2En9C_g8U_sg_tgVuxiuA83bD3090kDUYToOuIp1oezUzRznn3o_TDcsU9k-VLnJmu3dV3sy_X4FQ_tNWtjlpCShVRO_RIu2_ef12dZ2nEhczyXY9YV1pqqsF7JrhKdkNIjkEIaJRsnpHPOOs6rxqBxMyJXnVOBK48xXOmkykP1Cvb6oQ-vgaEnZhuF34eOWukwruOCuM2MCU3eBC8WUG6h0C7RkdOuGDc6hiW50hN-mvDTCb8FHM9CtxMbx7-HnxLG81Ci0o43EBudVqauTeXqzniOIrzytaysKDsjeRlc1VTdAvYJz_khCcoFHG41Rqdl_12XnPjWSnTy3vxd6gAe0QSnHM4h7I13m_AWvZrRHsVswFFU6gclpPSF
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvApioS0-cGy2eTiOfdyuiLawu6dW9Gb5FVFRJajN9tBfz9jxRi0gxCWJIk_k6BtnxpOZbwA-KZsxi5Y6ya2jPlqlEs20SLjmmTKciqz0tcOrNVuc0y8X5cUOHI21MM65kHzmpv4y_Mu3ndn4UNkxrwQuMPYIHqPdL7OhWmuMqPgWEqKsIrVQlorj2XyOb-Hzt8QUzRq6AtkD8xNY-mNblT--xcHA1C9gtZ3akFfyY7rp9dTc_cba-L9zfwnPo6dJZoNqvIId176GZ_f4B_dAzci6u3VXZN61t1EHUcQTdoRTyBAnJ2joLDltbdddk6W3fbF2k9TbzC7y7bL_jof6ktQhTujDhT6h-g2c15_P5osk9lxIDE15nzSZ1qrItBW8KVjDOLcIJeNK8MowbozRhtKiUmjeFEtFY4SjwuIuLjdcpK54C7tt17p3QBAhXQn8QjS-mA53dpR5djOlXJVWzrIJ5FsopImE5L4vxpUMG5NUyAE_6fGTEb8JHI1CPwc-jn8PP_EYj0M9mXa4gdjIuDZlqQpTNspSFKGFLXmhWd4oTnNniqpoJrDn8RwfEqGcwP5WY2Rc-Dcyp55xLUc37_3fpT7Ck8XZaimXp-uvH-Cpn-wQ0dmH3f564w7Qx-n1YVDtX0V_9tk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Convolutional+Neural+Network+Based+Indoor+Localization+Framework+With+WiFi+Fingerprinting&rft.jtitle=IEEE+access&rft.au=Song%2C+Xudong&rft.au=Fan%2C+Xiaochen&rft.au=Xiang%2C+Chaocan&rft.au=Ye%2C+Qianwen&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=110698&rft.epage=110709&rft_id=info:doi/10.1109%2FACCESS.2019.2933921&rft.externalDocID=8792196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon