Effect of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation
The effects of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XR...
Saved in:
Published in | Food hydrocolloids Vol. 91; pp. 136 - 142 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effects of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The addition of rice protein limited the migration of water in rice starch gels and delayed the decrease of the spin-spin relaxation time during storage. The nuclear magnetic imaging showed that the gel without rice protein shrank when it was stored for 7 days, while the gel with rice protein did not change significantly. The SEM indicated that the gel with rice protein had a tighter and more uniform structure than the gel without rice protein. Microstructure analysis proved that adding rice protein could inhibit starch recrystallization, and the inhibitory effect was dependent on the concentration of rice protein. The inhibitory effect of rice protein on the retrogradation of rice starch was hypothesized to be mainly due to the addition of rice protein imported the space restriction, which reduced the cross-linking of starch molecules to form an ordered structure, inhibited the moisture migration in the gel, and enhanced the water-holding capacity of starch gels.
[Display omitted]
•Rice protein reduced the value of the spin-spin relaxation time of rice starch gels.•Rice protein weakened the transformation of the bound water into the free water in gels.•Rice protein enhanced the water holding capacity of rice starch gels.•Rice protein could hinder the water migration of rice starch gels.•Rice protein blocked the cross-linking of the starch molecules during retrogradation. |
---|---|
AbstractList | The effects of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The addition of rice protein limited the migration of water in rice starch gels and delayed the decrease of the spin-spin relaxation time during storage. The nuclear magnetic imaging showed that the gel without rice protein shrank when it was stored for 7 days, while the gel with rice protein did not change significantly. The SEM indicated that the gel with rice protein had a tighter and more uniform structure than the gel without rice protein. Microstructure analysis proved that adding rice protein could inhibit starch recrystallization, and the inhibitory effect was dependent on the concentration of rice protein. The inhibitory effect of rice protein on the retrogradation of rice starch was hypothesized to be mainly due to the addition of rice protein imported the space restriction, which reduced the cross-linking of starch molecules to form an ordered structure, inhibited the moisture migration in the gel, and enhanced the water-holding capacity of starch gels. The effects of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The addition of rice protein limited the migration of water in rice starch gels and delayed the decrease of the spin-spin relaxation time during storage. The nuclear magnetic imaging showed that the gel without rice protein shrank when it was stored for 7 days, while the gel with rice protein did not change significantly. The SEM indicated that the gel with rice protein had a tighter and more uniform structure than the gel without rice protein. Microstructure analysis proved that adding rice protein could inhibit starch recrystallization, and the inhibitory effect was dependent on the concentration of rice protein. The inhibitory effect of rice protein on the retrogradation of rice starch was hypothesized to be mainly due to the addition of rice protein imported the space restriction, which reduced the cross-linking of starch molecules to form an ordered structure, inhibited the moisture migration in the gel, and enhanced the water-holding capacity of starch gels. [Display omitted] •Rice protein reduced the value of the spin-spin relaxation time of rice starch gels.•Rice protein weakened the transformation of the bound water into the free water in gels.•Rice protein enhanced the water holding capacity of rice starch gels.•Rice protein could hinder the water migration of rice starch gels.•Rice protein blocked the cross-linking of the starch molecules during retrogradation. |
Author | Chen, Ye Chen, Yue Chen, Cheng Zhang, Yifu |
Author_xml | – sequence: 1 givenname: Yifu surname: Zhang fullname: Zhang, Yifu – sequence: 2 givenname: Cheng surname: Chen fullname: Chen, Cheng – sequence: 3 givenname: Yue surname: Chen fullname: Chen, Yue – sequence: 4 givenname: Ye surname: Chen fullname: Chen, Ye email: chenye@tust.edu.cn |
BookMark | eNqFkU9rGzEQxUVJoU7aj1DQsYesM1p5_4gcQghuGwjk0kJvQpZGscx6lY60Cf72lWOnh1wCA8PA-z1m3pyykzGOyNhXAXMBor3YzH2Mbr1z8xqEmoMo1XxgM9F3suqE7E7YDOq2rwCaP5_YaUobANGBEDM2Lb1Hm3n0nIJF_kgxYxh5HHleI382GYlv4yoMIe_OX-fwQCaHojGjK5OlmDJNNk-E_51SNmTX3E0UxgdOmCkWyr1wn9lHb4aEX479jP3-vvx187O6u_9xe3N9V9kF9LlCb7AF34Mw1gjVeom9alwrOw9dWysh637llJQKjEHvhKlXC_CgoGmVsl6esW8H33LW3wlT1tuQLA6DGTFOSde17BpQfaOK9PIg3R-TCL22Ib8sm8mEQQvQ-7D1Rh_D1vuwNYhSTaGbN_Qjha2h3bvc1YHDksJTQNLJBhwtukDlLdrF8I7DPyWsoWc |
CitedBy_id | crossref_primary_10_1016_j_foodhyd_2021_106996 crossref_primary_10_1016_j_ijbiomac_2024_130343 crossref_primary_10_1016_j_foodchem_2021_131433 crossref_primary_10_1016_j_ijbiomac_2024_132765 crossref_primary_10_1016_j_ijbiomac_2024_129918 crossref_primary_10_1016_j_ijbiomac_2024_135513 crossref_primary_10_1016_j_ijbiomac_2024_135237 crossref_primary_10_1002_star_202200002 crossref_primary_10_1016_j_ijbiomac_2023_124909 crossref_primary_10_3389_fpls_2023_1074148 crossref_primary_10_1016_j_jcs_2021_103323 crossref_primary_10_1186_s40538_024_00632_7 crossref_primary_10_1016_j_ijbiomac_2021_07_050 crossref_primary_10_1016_j_ijbiomac_2021_06_117 crossref_primary_10_1111_ijfs_15037 crossref_primary_10_1016_j_foodhyd_2024_109877 crossref_primary_10_1016_j_tifs_2021_05_033 crossref_primary_10_1016_j_foodhyd_2024_110060 crossref_primary_10_1016_j_foodhyd_2022_107716 crossref_primary_10_1016_j_jcs_2022_103605 crossref_primary_10_1016_j_foodchem_2024_141113 crossref_primary_10_1111_ijfs_15716 crossref_primary_10_1016_j_foodres_2024_115122 crossref_primary_10_1186_s40494_024_01531_8 crossref_primary_10_1016_j_jcs_2022_103561 crossref_primary_10_1016_j_ijbiomac_2024_134379 crossref_primary_10_1016_j_jspr_2025_102581 crossref_primary_10_1016_j_foodchem_2024_142310 crossref_primary_10_1016_j_ijbiomac_2019_09_174 crossref_primary_10_1016_j_ijbiomac_2024_133174 crossref_primary_10_3390_polym14153012 crossref_primary_10_1016_j_foodchem_2025_143544 crossref_primary_10_1111_jfpe_13951 crossref_primary_10_9724_kfcs_2024_40_3_173 crossref_primary_10_1016_j_ijbiomac_2024_129992 crossref_primary_10_1016_j_jcs_2024_104006 crossref_primary_10_1016_j_foodchem_2020_126240 crossref_primary_10_1016_j_ijbiomac_2023_123996 crossref_primary_10_1016_j_jcs_2025_104149 crossref_primary_10_1016_j_foodchem_2019_125517 crossref_primary_10_1016_j_jcs_2024_104005 crossref_primary_10_1016_j_lwt_2023_114860 crossref_primary_10_1111_ijfs_15945 crossref_primary_10_3390_molecules29061211 crossref_primary_10_1002_star_202400008 crossref_primary_10_1016_j_fochx_2024_102088 crossref_primary_10_1016_j_ijbiomac_2025_141363 crossref_primary_10_1038_s41598_024_71978_z crossref_primary_10_3390_molecules28083522 crossref_primary_10_1016_j_ijbiomac_2022_12_253 crossref_primary_10_1016_j_foodchem_2022_133516 crossref_primary_10_1016_j_foodhyd_2024_110830 crossref_primary_10_1016_j_ijbiomac_2024_135334 crossref_primary_10_1016_j_fochx_2023_100907 crossref_primary_10_1016_j_ijbiomac_2020_03_252 crossref_primary_10_1016_j_ijbiomac_2025_141978 crossref_primary_10_1002_star_202200268 crossref_primary_10_1016_j_foodhyd_2024_110322 crossref_primary_10_1016_j_jfoodeng_2022_111053 crossref_primary_10_1111_ijfs_14760 crossref_primary_10_1016_j_ijbiomac_2020_01_048 crossref_primary_10_1016_j_ijbiomac_2023_125061 crossref_primary_10_1016_j_foodhyd_2023_109657 crossref_primary_10_1016_j_fbio_2024_103989 crossref_primary_10_1016_j_foodchem_2024_140641 crossref_primary_10_1016_j_foodchem_2019_125226 crossref_primary_10_1016_j_foodchem_2025_143113 crossref_primary_10_1590_fst_106521 crossref_primary_10_1016_j_foodhyd_2020_105652 crossref_primary_10_1016_j_ijbiomac_2023_128976 crossref_primary_10_1016_j_foodchem_2022_133064 crossref_primary_10_1016_j_ijbiomac_2023_125107 crossref_primary_10_1016_j_foodhyd_2020_106064 crossref_primary_10_1016_j_foodhyd_2024_110268 crossref_primary_10_1021_acs_jafc_3c09327 crossref_primary_10_1016_j_ifset_2024_103689 crossref_primary_10_1016_j_carbpol_2022_120513 crossref_primary_10_3390_foods13040541 crossref_primary_10_1016_j_ijbiomac_2024_132183 crossref_primary_10_1016_j_lwt_2022_114180 crossref_primary_10_1016_j_ijbiomac_2024_132060 crossref_primary_10_1016_j_carbpol_2021_118264 crossref_primary_10_3390_foods11111601 crossref_primary_10_32604_phyton_2021_014637 crossref_primary_10_1016_j_fochx_2025_102281 crossref_primary_10_1111_1750_3841_16405 crossref_primary_10_1016_j_foodchem_2024_138829 crossref_primary_10_3390_foods11172617 crossref_primary_10_1002_jsfa_11718 crossref_primary_10_1016_j_foodhyd_2024_110654 crossref_primary_10_1016_j_foodhyd_2024_110775 crossref_primary_10_1016_j_ijrefrig_2024_05_022 crossref_primary_10_1016_j_jcs_2022_103525 crossref_primary_10_1016_j_foodchem_2025_143577 crossref_primary_10_3390_foods12234313 crossref_primary_10_1016_j_colsurfa_2025_136287 crossref_primary_10_1016_j_jcs_2020_103089 crossref_primary_10_1016_j_foodhyd_2024_110384 crossref_primary_10_1080_10408398_2021_1903383 crossref_primary_10_1016_j_foodhyd_2023_109159 crossref_primary_10_3390_ijerph19073923 crossref_primary_10_1016_j_gaost_2025_01_001 crossref_primary_10_1016_j_fbio_2024_103802 crossref_primary_10_1016_j_ijbiomac_2019_07_118 crossref_primary_10_1016_j_jcs_2020_102952 crossref_primary_10_1016_j_foodhyd_2020_106547 crossref_primary_10_1016_j_jfca_2024_106172 crossref_primary_10_1111_ijfs_14704 crossref_primary_10_1016_j_foostr_2023_100316 crossref_primary_10_1016_j_fbio_2024_104752 crossref_primary_10_1515_ijfe_2023_0072 crossref_primary_10_1016_j_jfca_2024_106565 crossref_primary_10_1016_j_foodhyd_2024_110649 crossref_primary_10_1016_j_fochx_2024_101915 crossref_primary_10_1016_j_jcs_2024_104050 crossref_primary_10_1016_j_scitotenv_2019_136230 crossref_primary_10_1016_j_foodhyd_2023_109160 crossref_primary_10_1016_j_foodres_2024_115336 crossref_primary_10_1155_2023_8566804 crossref_primary_10_1016_j_carbpol_2021_118367 crossref_primary_10_1002_fob2_12016 crossref_primary_10_1016_j_jcs_2021_103255 crossref_primary_10_1016_j_foodhyd_2023_108995 crossref_primary_10_1002_star_202100205 crossref_primary_10_1016_j_lwt_2024_116863 crossref_primary_10_1002_fsn3_4713 crossref_primary_10_1016_j_foodres_2025_115674 crossref_primary_10_1002_star_202100168 crossref_primary_10_1016_j_fochx_2024_102045 crossref_primary_10_1016_j_ijbiomac_2023_127431 crossref_primary_10_1016_j_foodhyd_2023_109608 crossref_primary_10_1080_07373937_2022_2155972 crossref_primary_10_1111_ijfs_14848 crossref_primary_10_1016_j_foodhyd_2020_105961 crossref_primary_10_3390_agronomy12061431 crossref_primary_10_1002_star_202200061 crossref_primary_10_1016_j_ijbiomac_2024_134047 crossref_primary_10_1016_j_jcs_2021_103190 crossref_primary_10_1007_s11694_022_01348_8 crossref_primary_10_1016_j_ifset_2025_103957 crossref_primary_10_1016_j_foodhyd_2023_109057 crossref_primary_10_3390_foods12244509 crossref_primary_10_1111_1541_4337_13029 crossref_primary_10_3390_foods13233734 crossref_primary_10_1016_j_ijbiomac_2025_140563 crossref_primary_10_1016_j_foodhyd_2023_109612 crossref_primary_10_1016_j_jcs_2024_103863 crossref_primary_10_1002_jsfa_12553 crossref_primary_10_1016_j_tifs_2020_11_009 crossref_primary_10_1111_1541_4337_13141 crossref_primary_10_1016_j_fochx_2022_100360 crossref_primary_10_1016_j_ijbiomac_2025_141390 crossref_primary_10_1080_08941920_2021_1953201 crossref_primary_10_1016_j_carbpol_2022_119187 crossref_primary_10_1016_j_foodcont_2025_111177 crossref_primary_10_1016_j_foodres_2024_114904 crossref_primary_10_1016_j_foodchem_2023_136396 crossref_primary_10_1016_j_ijbiomac_2024_138762 crossref_primary_10_1016_j_foodchem_2025_143204 crossref_primary_10_1016_j_foodhyd_2023_109462 crossref_primary_10_1016_j_foodhyd_2024_110354 crossref_primary_10_1016_j_ijbiomac_2024_138756 crossref_primary_10_1016_j_jcs_2021_103234 crossref_primary_10_1371_journal_pone_0255694 crossref_primary_10_1016_j_carpta_2021_100039 crossref_primary_10_1111_ijfs_15762 crossref_primary_10_1111_ijfs_16613 crossref_primary_10_1111_ijfs_16974 crossref_primary_10_3389_fnut_2022_934209 crossref_primary_10_1016_j_foodchem_2024_140796 crossref_primary_10_3390_foods11192933 crossref_primary_10_1111_ijfs_14957 |
Cites_doi | 10.1016/j.foodhyd.2017.06.016 10.1021/jf503203r 10.1016/j.foodhyd.2018.02.041 10.1016/S0008-6215(98)00068-8 10.1016/j.lwt.2017.04.077 10.1016/j.jcs.2016.06.014 10.1016/S0141-8130(02)00067-3 10.1016/j.carbpol.2017.07.070 10.1016/j.foodchem.2016.07.122 10.1016/0008-6215(95)00270-7 10.1016/S0308-8146(00)00130-8 10.1016/j.foodhyd.2018.05.028 10.1016/j.foodchem.2009.02.003 10.1016/j.foodhyd.2018.02.024 10.1016/j.foodhyd.2012.09.005 10.1016/j.carbpol.2013.05.021 10.1016/j.foodchem.2018.06.086 10.1016/j.carbpol.2014.09.006 10.1016/j.foodres.2010.04.011 10.1016/j.lwt.2014.02.037 10.1016/j.foodhyd.2016.10.032 10.1016/j.foodchem.2014.02.072 10.1111/1541-4337.12143 10.1016/j.tifs.2017.01.008 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.foodhyd.2019.01.015 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7137 |
EndPage | 142 |
ExternalDocumentID | 10_1016_j_foodhyd_2019_01_015 S0268005X18316308 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLY HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCE SDF SDG SES SEW SPC SPCBC SSA SSG SSZ T5K UHS UNMZH WH7 Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c408t-efae60f801aca196f3e895d637f076291328bd93390aaefd1a2b40f0905699cf3 |
IEDL.DBID | .~1 |
ISSN | 0268-005X |
IngestDate | Thu Jul 10 22:38:37 EDT 2025 Tue Jul 01 02:19:46 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Fri Feb 23 02:48:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Rice protein Rice starch Retrogradation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c408t-efae60f801aca196f3e895d637f076291328bd93390aaefd1a2b40f0905699cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2237509859 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2237509859 crossref_citationtrail_10_1016_j_foodhyd_2019_01_015 crossref_primary_10_1016_j_foodhyd_2019_01_015 elsevier_sciencedirect_doi_10_1016_j_foodhyd_2019_01_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2019 2019-06-00 20190601 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
PublicationDecade | 2010 |
PublicationTitle | Food hydrocolloids |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Amagliani, O'Regan, Kelly, O'Mahony (bib4) 2016; 70 Ozel, Dag, Kilercioglu, Sumnu, Oztop (bib15) 2017; 83 Zhang, Liu, Liu, Luo, Li, Liu (bib25) 2014; 158 Likitwattanasade, Hongsprabhas (bib12) 2010; 43 Ai, Witt, Cowin, Dhital, Turner, Stokes (bib2) 2018; 83 Amagliani, O'Regan, Kelly, O'Mahony (bib3) 2017; 64 Besbes, Jury, Monteau, Le Bail (bib5) 2014; 58 Chen, Tian, Tong, Zhang, Jin (bib7) 2017; 214 Tian, Zhan, Zhao, Xie, Xu, Jin (bib21) 2013; 31 Ye, Yang, Liu, Luo, Chen, Hu (bib23) 2018; 268 Yu, Wang, Chen, Li, Wang (bib24) 2018; 81 Shujun, Caili, Les, Qing, Shuo (bib17) 2015; 14 Hedayati, Niakousari (bib9) 2018; 81 Sevenou, Hill, Farhat, Mitchell (bib16) 2002; 31 Skorbiansky, Childs, Childs (bib18) 2018 Chen, Ren, Zhang, Tong, Rashed (bib6) 2015; 115 Fan, Ma, Wang, Zhao, Zhao, Zhang (bib8) 2013; 97 Le Botlan, Rugraff, Martin, Colonna (bib10) 1998; 308 Matignon, Tecante (bib13) 2017; 68 Niu, Wu, Xiao (bib14) 2017; 175 van Soest, Tournois, de Wit, Vliegenthart (bib19) 1995; 279 Tian, Li, Manthey, Xu, Jin, Deng (bib20) 2009; 116 Abd Karim, Norziah, Seow (bib1) 2000; 71 Xiao, Zhong (bib22) 2017; 72 Lian, Kang, Sun, Liu, Li (bib11) 2015; 63 Ai (10.1016/j.foodhyd.2019.01.015_bib2) 2018; 83 Xiao (10.1016/j.foodhyd.2019.01.015_bib22) 2017; 72 Tian (10.1016/j.foodhyd.2019.01.015_bib20) 2009; 116 van Soest (10.1016/j.foodhyd.2019.01.015_bib19) 1995; 279 Hedayati (10.1016/j.foodhyd.2019.01.015_bib9) 2018; 81 Amagliani (10.1016/j.foodhyd.2019.01.015_bib4) 2016; 70 Shujun (10.1016/j.foodhyd.2019.01.015_bib17) 2015; 14 Chen (10.1016/j.foodhyd.2019.01.015_bib6) 2015; 115 Chen (10.1016/j.foodhyd.2019.01.015_bib7) 2017; 214 Lian (10.1016/j.foodhyd.2019.01.015_bib11) 2015; 63 Besbes (10.1016/j.foodhyd.2019.01.015_bib5) 2014; 58 Ye (10.1016/j.foodhyd.2019.01.015_bib23) 2018; 268 Tian (10.1016/j.foodhyd.2019.01.015_bib21) 2013; 31 Le Botlan (10.1016/j.foodhyd.2019.01.015_bib10) 1998; 308 Ozel (10.1016/j.foodhyd.2019.01.015_bib15) 2017; 83 Skorbiansky (10.1016/j.foodhyd.2019.01.015_bib18) 2018 Yu (10.1016/j.foodhyd.2019.01.015_bib24) 2018; 81 Likitwattanasade (10.1016/j.foodhyd.2019.01.015_bib12) 2010; 43 Abd Karim (10.1016/j.foodhyd.2019.01.015_bib1) 2000; 71 Fan (10.1016/j.foodhyd.2019.01.015_bib8) 2013; 97 Niu (10.1016/j.foodhyd.2019.01.015_bib14) 2017; 175 Zhang (10.1016/j.foodhyd.2019.01.015_bib25) 2014; 158 Sevenou (10.1016/j.foodhyd.2019.01.015_bib16) 2002; 31 Matignon (10.1016/j.foodhyd.2019.01.015_bib13) 2017; 68 Amagliani (10.1016/j.foodhyd.2019.01.015_bib3) 2017; 64 |
References_xml | – volume: 115 start-page: 415 year: 2015 end-page: 421 ident: bib6 article-title: Effect of pullulan on the short-term and long-term retrogradation of rice starch publication-title: Carbohydrate Polymers – year: 2018 ident: bib18 article-title: Rice outlook – volume: 63 start-page: 1562 year: 2015 end-page: 1572 ident: bib11 article-title: Identification of the main retrogradation-related properties of rice starch publication-title: Journal of Agricultural and Food Chemistry – volume: 83 start-page: 454 year: 2018 end-page: 464 ident: bib2 article-title: Anti-staling of high-moisture starchy food: Effect of hydrocolloids, emulsifiers and enzymes on mechanics of steamed-rice cakes publication-title: Food Hydrocolloids – volume: 31 start-page: 79 year: 2002 end-page: 85 ident: bib16 article-title: Organisation of the external region of the starch granule as determined by infrared spectroscopy publication-title: International Journal of Biological Macromolecules – volume: 308 start-page: 29 year: 1998 end-page: 36 ident: bib10 article-title: Quantitative determination of bound water in wheat starch by time domain NMR spectroscopy publication-title: Carbohydrate Research – volume: 43 start-page: 1402 year: 2010 end-page: 1409 ident: bib12 article-title: Effect of storage proteins on pasting properties and microstructure of Thai rice publication-title: Food Research International – volume: 81 start-page: 77 year: 2018 end-page: 86 ident: bib24 article-title: The gelatinization and retrogradation properties of wheat starch with the addition of stearic acid and sodium alginate publication-title: Food Hydrocolloids – volume: 81 start-page: 1 year: 2018 end-page: 5 ident: bib9 article-title: Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites publication-title: Food Hydrocolloids – volume: 14 start-page: 568 year: 2015 end-page: 585 ident: bib17 article-title: Starch retrogradation: A comprehensive review publication-title: Comprehensive Reviews in Food Science and Food Safety – volume: 116 start-page: 54 year: 2009 end-page: 58 ident: bib20 article-title: Influence of β-cyclodextrin on the short-term retrogradation of rice starch publication-title: Food Chemistry – volume: 71 start-page: 9 year: 2000 end-page: 36 ident: bib1 article-title: Methods for the study of starch retrogradation publication-title: Food Chemistry – volume: 64 start-page: 1 year: 2017 end-page: 12 ident: bib3 article-title: The composition, extraction, functionality and applications of rice proteins: A review publication-title: Trends in Food Science & Technology – volume: 268 start-page: 324 year: 2018 end-page: 333 ident: bib23 article-title: Improvement in freeze-thaw stability of rice starch gel by inulin and its mechanism publication-title: Food Chemistry – volume: 31 start-page: 1 year: 2013 end-page: 4 ident: bib21 article-title: Preparation of products rich in slowly digestible starch (SDS) from rice starch by a dual-retrogradation treatment publication-title: Food Hydrocolloids – volume: 72 start-page: 338 year: 2017 end-page: 345 ident: bib22 article-title: Suppression of retrogradation of gelatinized rice starch by anti-listerial grass carp protein hydrolysate publication-title: Food Hydrocolloids – volume: 175 start-page: 311 year: 2017 end-page: 319 ident: bib14 article-title: Inhibition of gelatinized rice starch retrogradation by rice bran protein hydrolysates publication-title: Carbohydrate Polymers – volume: 70 start-page: 291 year: 2016 end-page: 300 ident: bib4 article-title: Chemistry, structure, functionality and applications of rice starch publication-title: Journal of Cereal Science – volume: 58 start-page: 658 year: 2014 end-page: 666 ident: bib5 article-title: Effect of baking conditions and storage with crust on the moisture profile, local textural properties and staling kinetics of pan bread publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology – volume: 279 start-page: 201 year: 1995 end-page: 214 ident: bib19 article-title: Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy publication-title: Carbohydrate Research – volume: 158 start-page: 255 year: 2014 end-page: 261 ident: bib25 article-title: Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology publication-title: Food Chemistry – volume: 83 start-page: 10 year: 2017 end-page: 17 ident: bib15 article-title: NMR relaxometry as a tool to understand the effect of microwave heating on starch-water interactions and gelatinization behavior publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology – volume: 97 start-page: 406 year: 2013 end-page: 412 ident: bib8 article-title: (1)H NMR studies of starch-water interactions during microwave heating publication-title: Carbohydrate Polymers – volume: 68 start-page: 43 year: 2017 end-page: 52 ident: bib13 article-title: Starch retrogradation: From starch components to cereal products publication-title: Food Hydrocolloids – volume: 214 start-page: 702 year: 2017 end-page: 709 ident: bib7 article-title: Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage publication-title: Food Chemistry – volume: 72 start-page: 338 year: 2017 ident: 10.1016/j.foodhyd.2019.01.015_bib22 article-title: Suppression of retrogradation of gelatinized rice starch by anti-listerial grass carp protein hydrolysate publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2017.06.016 – volume: 63 start-page: 1562 issue: 5 year: 2015 ident: 10.1016/j.foodhyd.2019.01.015_bib11 article-title: Identification of the main retrogradation-related properties of rice starch publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf503203r – volume: 81 start-page: 77 year: 2018 ident: 10.1016/j.foodhyd.2019.01.015_bib24 article-title: The gelatinization and retrogradation properties of wheat starch with the addition of stearic acid and sodium alginate publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.02.041 – volume: 308 start-page: 29 issue: 1 year: 1998 ident: 10.1016/j.foodhyd.2019.01.015_bib10 article-title: Quantitative determination of bound water in wheat starch by time domain NMR spectroscopy publication-title: Carbohydrate Research doi: 10.1016/S0008-6215(98)00068-8 – volume: 83 start-page: 10 year: 2017 ident: 10.1016/j.foodhyd.2019.01.015_bib15 article-title: NMR relaxometry as a tool to understand the effect of microwave heating on starch-water interactions and gelatinization behavior publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology doi: 10.1016/j.lwt.2017.04.077 – year: 2018 ident: 10.1016/j.foodhyd.2019.01.015_bib18 – volume: 70 start-page: 291 year: 2016 ident: 10.1016/j.foodhyd.2019.01.015_bib4 article-title: Chemistry, structure, functionality and applications of rice starch publication-title: Journal of Cereal Science doi: 10.1016/j.jcs.2016.06.014 – volume: 31 start-page: 79 issue: 1 year: 2002 ident: 10.1016/j.foodhyd.2019.01.015_bib16 article-title: Organisation of the external region of the starch granule as determined by infrared spectroscopy publication-title: International Journal of Biological Macromolecules doi: 10.1016/S0141-8130(02)00067-3 – volume: 175 start-page: 311 year: 2017 ident: 10.1016/j.foodhyd.2019.01.015_bib14 article-title: Inhibition of gelatinized rice starch retrogradation by rice bran protein hydrolysates publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.07.070 – volume: 214 start-page: 702 year: 2017 ident: 10.1016/j.foodhyd.2019.01.015_bib7 article-title: Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage publication-title: Food Chemistry doi: 10.1016/j.foodchem.2016.07.122 – volume: 279 start-page: 201 year: 1995 ident: 10.1016/j.foodhyd.2019.01.015_bib19 article-title: Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy publication-title: Carbohydrate Research doi: 10.1016/0008-6215(95)00270-7 – volume: 71 start-page: 9 issue: 1 year: 2000 ident: 10.1016/j.foodhyd.2019.01.015_bib1 article-title: Methods for the study of starch retrogradation publication-title: Food Chemistry doi: 10.1016/S0308-8146(00)00130-8 – volume: 83 start-page: 454 year: 2018 ident: 10.1016/j.foodhyd.2019.01.015_bib2 article-title: Anti-staling of high-moisture starchy food: Effect of hydrocolloids, emulsifiers and enzymes on mechanics of steamed-rice cakes publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.05.028 – volume: 116 start-page: 54 issue: 1 year: 2009 ident: 10.1016/j.foodhyd.2019.01.015_bib20 article-title: Influence of β-cyclodextrin on the short-term retrogradation of rice starch publication-title: Food Chemistry doi: 10.1016/j.foodchem.2009.02.003 – volume: 81 start-page: 1 year: 2018 ident: 10.1016/j.foodhyd.2019.01.015_bib9 article-title: Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.02.024 – volume: 31 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.foodhyd.2019.01.015_bib21 article-title: Preparation of products rich in slowly digestible starch (SDS) from rice starch by a dual-retrogradation treatment publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2012.09.005 – volume: 97 start-page: 406 issue: 2 year: 2013 ident: 10.1016/j.foodhyd.2019.01.015_bib8 article-title: (1)H NMR studies of starch-water interactions during microwave heating publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2013.05.021 – volume: 268 start-page: 324 year: 2018 ident: 10.1016/j.foodhyd.2019.01.015_bib23 article-title: Improvement in freeze-thaw stability of rice starch gel by inulin and its mechanism publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.06.086 – volume: 115 start-page: 415 year: 2015 ident: 10.1016/j.foodhyd.2019.01.015_bib6 article-title: Effect of pullulan on the short-term and long-term retrogradation of rice starch publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2014.09.006 – volume: 43 start-page: 1402 issue: 5 year: 2010 ident: 10.1016/j.foodhyd.2019.01.015_bib12 article-title: Effect of storage proteins on pasting properties and microstructure of Thai rice publication-title: Food Research International doi: 10.1016/j.foodres.2010.04.011 – volume: 58 start-page: 658 issue: 2 year: 2014 ident: 10.1016/j.foodhyd.2019.01.015_bib5 article-title: Effect of baking conditions and storage with crust on the moisture profile, local textural properties and staling kinetics of pan bread publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology doi: 10.1016/j.lwt.2014.02.037 – volume: 68 start-page: 43 year: 2017 ident: 10.1016/j.foodhyd.2019.01.015_bib13 article-title: Starch retrogradation: From starch components to cereal products publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.10.032 – volume: 158 start-page: 255 year: 2014 ident: 10.1016/j.foodhyd.2019.01.015_bib25 article-title: Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology publication-title: Food Chemistry doi: 10.1016/j.foodchem.2014.02.072 – volume: 14 start-page: 568 issue: 5 year: 2015 ident: 10.1016/j.foodhyd.2019.01.015_bib17 article-title: Starch retrogradation: A comprehensive review publication-title: Comprehensive Reviews in Food Science and Food Safety doi: 10.1111/1541-4337.12143 – volume: 64 start-page: 1 year: 2017 ident: 10.1016/j.foodhyd.2019.01.015_bib3 article-title: The composition, extraction, functionality and applications of rice proteins: A review publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2017.01.008 |
SSID | ssj0017011 |
Score | 2.6200688 |
Snippet | The effects of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation were investigated by low... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 136 |
SubjectTerms | crosslinking crystallization Fourier transform infrared spectroscopy hydrocolloids image analysis magnetism microstructure Retrogradation Rice protein Rice starch scanning electron microscopes scanning electron microscopy starch starch gels water holding capacity X-ray diffraction |
Title | Effect of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation |
URI | https://dx.doi.org/10.1016/j.foodhyd.2019.01.015 https://www.proquest.com/docview/2237509859 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6iL_ognngTwUe72yPtNo-yKOuJeMC-haRJdEVbWXcRX_ztziTteiAIQqGkJCVkJjNf2plvCNnLcwVONyuCLGNZgKmdgbKxCjqSSx3p2HY4JgqfX2S9W3bST_tTpNvkwmBYZW37vU131rp-0q5Xs_08GLSv4fQAaCftg1ICqHAJv4x1UMtb75MwD6Qbj_x3ljzA3p9ZPO2Hlq0qff-GhKERd-ydWB33d__0w1I793O0QOZr3EgP_NQWyZQpl8jcFzbBZTL2TMS0shSZgqijYBiUtCopoDz6CqhySJ8qFw37tt-0B3deB6gsNbRwVo5Sdjw0kzcBgoTtQH1KIx2akQvq8tWYVsjt0eFNtxfUVRWCgoX5KDBWmiy04JlkIWH_2cTkPNVZ0rEhWEYOx9NcaZ4kPJTSWB3JWLHQhhygEueFTVbJdFmVZo3QNCmMkmGSSBsz7MliK2NdaGsyFSu5TlizlqKoKcex8sWjaGLLHkQtAoEiEGEEV7pOWpNhz55z468BeSMo8U15BPiFv4buNoIVsLHwb4ksTTV-EYCbEE3lKd_4_-s3ySy2fGzZFpkGAZptQDEjtePUdIfMHHSvzi7xfnzau_gAAdb3hA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOBQOCGgRr1Ij0Vs32fU-Yh96qHgolMelIOVm7LUNiWAXhUQoF_4Uf7Dj9W4KVSWkSki5bBJb1szszDe7M98A7DGmMOhmeZBlSRa41s5AWaqCjuRSR5raDneNwmfnWfcy-dlLezPw3PTCuLLK2vd7n1556_qbdi3N9n2_3_6F2QOinbSHRomgImR1ZeWJmTxi3vbw_fgAlfyV0qPDi_1uUI8WCPIkZKPAWGmy0KJ7lrlEI7SxYTzVWdyxmNhTjjkaUxqTfR5KaayOJFVJaEOOeIHz3Ma47yzMJ-gu3NiE1tO0rsTxm0f-wQ4L3PH-tA21By1blvpm4hhKI17RhbpxvP8OiH-FhireHS3DUg1UyQ8vixWYMcUqLL6gL_wIY099TEpLHDURqTgf-gUpC4KwkjwijB2Su7Iqv518a677197oiCw0XrlTVRy246GZ7oSQFWVMfA8lGZpRVUXmxz99gst3kfUazBVlYdaBpHFulAzjWFqauH8m1Eqqc21NpqiSG5A0shR5zXHuRm3ciqaYbSBqFQinAhFG-Ek3oDVddu9JPt5awBpFiVfWKjAQvbV0t1GswDvZvZ6RhSnHDwKBmoNvLOWb_7_9F_jQvTg7FafH5ydbsOB-8YVt2zCHyjSfEUKN1E5lsgSu3vse-Q1vTjF0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+rice+protein+on+the+water+mobility%2C+water+migration+and+microstructure+of+rice+starch+during+retrogradation&rft.jtitle=Food+hydrocolloids&rft.au=Zhang%2C+Yifu&rft.au=Chen%2C+Cheng&rft.au=Chen%2C+Yue&rft.au=Chen%2C+Ye&rft.date=2019-06-01&rft.issn=0268-005X&rft.volume=91+p.136-142&rft.spage=136&rft.epage=142&rft_id=info:doi/10.1016%2Fj.foodhyd.2019.01.015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon |