Effect of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation

The effects of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XR...

Full description

Saved in:
Bibliographic Details
Published inFood hydrocolloids Vol. 91; pp. 136 - 142
Main Authors Zhang, Yifu, Chen, Cheng, Chen, Yue, Chen, Ye
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effects of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The addition of rice protein limited the migration of water in rice starch gels and delayed the decrease of the spin-spin relaxation time during storage. The nuclear magnetic imaging showed that the gel without rice protein shrank when it was stored for 7 days, while the gel with rice protein did not change significantly. The SEM indicated that the gel with rice protein had a tighter and more uniform structure than the gel without rice protein. Microstructure analysis proved that adding rice protein could inhibit starch recrystallization, and the inhibitory effect was dependent on the concentration of rice protein. The inhibitory effect of rice protein on the retrogradation of rice starch was hypothesized to be mainly due to the addition of rice protein imported the space restriction, which reduced the cross-linking of starch molecules to form an ordered structure, inhibited the moisture migration in the gel, and enhanced the water-holding capacity of starch gels. [Display omitted] •Rice protein reduced the value of the spin-spin relaxation time of rice starch gels.•Rice protein weakened the transformation of the bound water into the free water in gels.•Rice protein enhanced the water holding capacity of rice starch gels.•Rice protein could hinder the water migration of rice starch gels.•Rice protein blocked the cross-linking of the starch molecules during retrogradation.
AbstractList The effects of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The addition of rice protein limited the migration of water in rice starch gels and delayed the decrease of the spin-spin relaxation time during storage. The nuclear magnetic imaging showed that the gel without rice protein shrank when it was stored for 7 days, while the gel with rice protein did not change significantly. The SEM indicated that the gel with rice protein had a tighter and more uniform structure than the gel without rice protein. Microstructure analysis proved that adding rice protein could inhibit starch recrystallization, and the inhibitory effect was dependent on the concentration of rice protein. The inhibitory effect of rice protein on the retrogradation of rice starch was hypothesized to be mainly due to the addition of rice protein imported the space restriction, which reduced the cross-linking of starch molecules to form an ordered structure, inhibited the moisture migration in the gel, and enhanced the water-holding capacity of starch gels.
The effects of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation were investigated by low field-nuclear magnetic resonance (LF-NMR), scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The addition of rice protein limited the migration of water in rice starch gels and delayed the decrease of the spin-spin relaxation time during storage. The nuclear magnetic imaging showed that the gel without rice protein shrank when it was stored for 7 days, while the gel with rice protein did not change significantly. The SEM indicated that the gel with rice protein had a tighter and more uniform structure than the gel without rice protein. Microstructure analysis proved that adding rice protein could inhibit starch recrystallization, and the inhibitory effect was dependent on the concentration of rice protein. The inhibitory effect of rice protein on the retrogradation of rice starch was hypothesized to be mainly due to the addition of rice protein imported the space restriction, which reduced the cross-linking of starch molecules to form an ordered structure, inhibited the moisture migration in the gel, and enhanced the water-holding capacity of starch gels. [Display omitted] •Rice protein reduced the value of the spin-spin relaxation time of rice starch gels.•Rice protein weakened the transformation of the bound water into the free water in gels.•Rice protein enhanced the water holding capacity of rice starch gels.•Rice protein could hinder the water migration of rice starch gels.•Rice protein blocked the cross-linking of the starch molecules during retrogradation.
Author Chen, Ye
Chen, Yue
Chen, Cheng
Zhang, Yifu
Author_xml – sequence: 1
  givenname: Yifu
  surname: Zhang
  fullname: Zhang, Yifu
– sequence: 2
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
– sequence: 3
  givenname: Yue
  surname: Chen
  fullname: Chen, Yue
– sequence: 4
  givenname: Ye
  surname: Chen
  fullname: Chen, Ye
  email: chenye@tust.edu.cn
BookMark eNqFkU9rGzEQxUVJoU7aj1DQsYesM1p5_4gcQghuGwjk0kJvQpZGscx6lY60Cf72lWOnh1wCA8PA-z1m3pyykzGOyNhXAXMBor3YzH2Mbr1z8xqEmoMo1XxgM9F3suqE7E7YDOq2rwCaP5_YaUobANGBEDM2Lb1Hm3n0nIJF_kgxYxh5HHleI382GYlv4yoMIe_OX-fwQCaHojGjK5OlmDJNNk-E_51SNmTX3E0UxgdOmCkWyr1wn9lHb4aEX479jP3-vvx187O6u_9xe3N9V9kF9LlCb7AF34Mw1gjVeom9alwrOw9dWysh637llJQKjEHvhKlXC_CgoGmVsl6esW8H33LW3wlT1tuQLA6DGTFOSde17BpQfaOK9PIg3R-TCL22Ib8sm8mEQQvQ-7D1Rh_D1vuwNYhSTaGbN_Qjha2h3bvc1YHDksJTQNLJBhwtukDlLdrF8I7DPyWsoWc
CitedBy_id crossref_primary_10_1016_j_foodhyd_2021_106996
crossref_primary_10_1016_j_ijbiomac_2024_130343
crossref_primary_10_1016_j_foodchem_2021_131433
crossref_primary_10_1016_j_ijbiomac_2024_132765
crossref_primary_10_1016_j_ijbiomac_2024_129918
crossref_primary_10_1016_j_ijbiomac_2024_135513
crossref_primary_10_1016_j_ijbiomac_2024_135237
crossref_primary_10_1002_star_202200002
crossref_primary_10_1016_j_ijbiomac_2023_124909
crossref_primary_10_3389_fpls_2023_1074148
crossref_primary_10_1016_j_jcs_2021_103323
crossref_primary_10_1186_s40538_024_00632_7
crossref_primary_10_1016_j_ijbiomac_2021_07_050
crossref_primary_10_1016_j_ijbiomac_2021_06_117
crossref_primary_10_1111_ijfs_15037
crossref_primary_10_1016_j_foodhyd_2024_109877
crossref_primary_10_1016_j_tifs_2021_05_033
crossref_primary_10_1016_j_foodhyd_2024_110060
crossref_primary_10_1016_j_foodhyd_2022_107716
crossref_primary_10_1016_j_jcs_2022_103605
crossref_primary_10_1016_j_foodchem_2024_141113
crossref_primary_10_1111_ijfs_15716
crossref_primary_10_1016_j_foodres_2024_115122
crossref_primary_10_1186_s40494_024_01531_8
crossref_primary_10_1016_j_jcs_2022_103561
crossref_primary_10_1016_j_ijbiomac_2024_134379
crossref_primary_10_1016_j_jspr_2025_102581
crossref_primary_10_1016_j_foodchem_2024_142310
crossref_primary_10_1016_j_ijbiomac_2019_09_174
crossref_primary_10_1016_j_ijbiomac_2024_133174
crossref_primary_10_3390_polym14153012
crossref_primary_10_1016_j_foodchem_2025_143544
crossref_primary_10_1111_jfpe_13951
crossref_primary_10_9724_kfcs_2024_40_3_173
crossref_primary_10_1016_j_ijbiomac_2024_129992
crossref_primary_10_1016_j_jcs_2024_104006
crossref_primary_10_1016_j_foodchem_2020_126240
crossref_primary_10_1016_j_ijbiomac_2023_123996
crossref_primary_10_1016_j_jcs_2025_104149
crossref_primary_10_1016_j_foodchem_2019_125517
crossref_primary_10_1016_j_jcs_2024_104005
crossref_primary_10_1016_j_lwt_2023_114860
crossref_primary_10_1111_ijfs_15945
crossref_primary_10_3390_molecules29061211
crossref_primary_10_1002_star_202400008
crossref_primary_10_1016_j_fochx_2024_102088
crossref_primary_10_1016_j_ijbiomac_2025_141363
crossref_primary_10_1038_s41598_024_71978_z
crossref_primary_10_3390_molecules28083522
crossref_primary_10_1016_j_ijbiomac_2022_12_253
crossref_primary_10_1016_j_foodchem_2022_133516
crossref_primary_10_1016_j_foodhyd_2024_110830
crossref_primary_10_1016_j_ijbiomac_2024_135334
crossref_primary_10_1016_j_fochx_2023_100907
crossref_primary_10_1016_j_ijbiomac_2020_03_252
crossref_primary_10_1016_j_ijbiomac_2025_141978
crossref_primary_10_1002_star_202200268
crossref_primary_10_1016_j_foodhyd_2024_110322
crossref_primary_10_1016_j_jfoodeng_2022_111053
crossref_primary_10_1111_ijfs_14760
crossref_primary_10_1016_j_ijbiomac_2020_01_048
crossref_primary_10_1016_j_ijbiomac_2023_125061
crossref_primary_10_1016_j_foodhyd_2023_109657
crossref_primary_10_1016_j_fbio_2024_103989
crossref_primary_10_1016_j_foodchem_2024_140641
crossref_primary_10_1016_j_foodchem_2019_125226
crossref_primary_10_1016_j_foodchem_2025_143113
crossref_primary_10_1590_fst_106521
crossref_primary_10_1016_j_foodhyd_2020_105652
crossref_primary_10_1016_j_ijbiomac_2023_128976
crossref_primary_10_1016_j_foodchem_2022_133064
crossref_primary_10_1016_j_ijbiomac_2023_125107
crossref_primary_10_1016_j_foodhyd_2020_106064
crossref_primary_10_1016_j_foodhyd_2024_110268
crossref_primary_10_1021_acs_jafc_3c09327
crossref_primary_10_1016_j_ifset_2024_103689
crossref_primary_10_1016_j_carbpol_2022_120513
crossref_primary_10_3390_foods13040541
crossref_primary_10_1016_j_ijbiomac_2024_132183
crossref_primary_10_1016_j_lwt_2022_114180
crossref_primary_10_1016_j_ijbiomac_2024_132060
crossref_primary_10_1016_j_carbpol_2021_118264
crossref_primary_10_3390_foods11111601
crossref_primary_10_32604_phyton_2021_014637
crossref_primary_10_1016_j_fochx_2025_102281
crossref_primary_10_1111_1750_3841_16405
crossref_primary_10_1016_j_foodchem_2024_138829
crossref_primary_10_3390_foods11172617
crossref_primary_10_1002_jsfa_11718
crossref_primary_10_1016_j_foodhyd_2024_110654
crossref_primary_10_1016_j_foodhyd_2024_110775
crossref_primary_10_1016_j_ijrefrig_2024_05_022
crossref_primary_10_1016_j_jcs_2022_103525
crossref_primary_10_1016_j_foodchem_2025_143577
crossref_primary_10_3390_foods12234313
crossref_primary_10_1016_j_colsurfa_2025_136287
crossref_primary_10_1016_j_jcs_2020_103089
crossref_primary_10_1016_j_foodhyd_2024_110384
crossref_primary_10_1080_10408398_2021_1903383
crossref_primary_10_1016_j_foodhyd_2023_109159
crossref_primary_10_3390_ijerph19073923
crossref_primary_10_1016_j_gaost_2025_01_001
crossref_primary_10_1016_j_fbio_2024_103802
crossref_primary_10_1016_j_ijbiomac_2019_07_118
crossref_primary_10_1016_j_jcs_2020_102952
crossref_primary_10_1016_j_foodhyd_2020_106547
crossref_primary_10_1016_j_jfca_2024_106172
crossref_primary_10_1111_ijfs_14704
crossref_primary_10_1016_j_foostr_2023_100316
crossref_primary_10_1016_j_fbio_2024_104752
crossref_primary_10_1515_ijfe_2023_0072
crossref_primary_10_1016_j_jfca_2024_106565
crossref_primary_10_1016_j_foodhyd_2024_110649
crossref_primary_10_1016_j_fochx_2024_101915
crossref_primary_10_1016_j_jcs_2024_104050
crossref_primary_10_1016_j_scitotenv_2019_136230
crossref_primary_10_1016_j_foodhyd_2023_109160
crossref_primary_10_1016_j_foodres_2024_115336
crossref_primary_10_1155_2023_8566804
crossref_primary_10_1016_j_carbpol_2021_118367
crossref_primary_10_1002_fob2_12016
crossref_primary_10_1016_j_jcs_2021_103255
crossref_primary_10_1016_j_foodhyd_2023_108995
crossref_primary_10_1002_star_202100205
crossref_primary_10_1016_j_lwt_2024_116863
crossref_primary_10_1002_fsn3_4713
crossref_primary_10_1016_j_foodres_2025_115674
crossref_primary_10_1002_star_202100168
crossref_primary_10_1016_j_fochx_2024_102045
crossref_primary_10_1016_j_ijbiomac_2023_127431
crossref_primary_10_1016_j_foodhyd_2023_109608
crossref_primary_10_1080_07373937_2022_2155972
crossref_primary_10_1111_ijfs_14848
crossref_primary_10_1016_j_foodhyd_2020_105961
crossref_primary_10_3390_agronomy12061431
crossref_primary_10_1002_star_202200061
crossref_primary_10_1016_j_ijbiomac_2024_134047
crossref_primary_10_1016_j_jcs_2021_103190
crossref_primary_10_1007_s11694_022_01348_8
crossref_primary_10_1016_j_ifset_2025_103957
crossref_primary_10_1016_j_foodhyd_2023_109057
crossref_primary_10_3390_foods12244509
crossref_primary_10_1111_1541_4337_13029
crossref_primary_10_3390_foods13233734
crossref_primary_10_1016_j_ijbiomac_2025_140563
crossref_primary_10_1016_j_foodhyd_2023_109612
crossref_primary_10_1016_j_jcs_2024_103863
crossref_primary_10_1002_jsfa_12553
crossref_primary_10_1016_j_tifs_2020_11_009
crossref_primary_10_1111_1541_4337_13141
crossref_primary_10_1016_j_fochx_2022_100360
crossref_primary_10_1016_j_ijbiomac_2025_141390
crossref_primary_10_1080_08941920_2021_1953201
crossref_primary_10_1016_j_carbpol_2022_119187
crossref_primary_10_1016_j_foodcont_2025_111177
crossref_primary_10_1016_j_foodres_2024_114904
crossref_primary_10_1016_j_foodchem_2023_136396
crossref_primary_10_1016_j_ijbiomac_2024_138762
crossref_primary_10_1016_j_foodchem_2025_143204
crossref_primary_10_1016_j_foodhyd_2023_109462
crossref_primary_10_1016_j_foodhyd_2024_110354
crossref_primary_10_1016_j_ijbiomac_2024_138756
crossref_primary_10_1016_j_jcs_2021_103234
crossref_primary_10_1371_journal_pone_0255694
crossref_primary_10_1016_j_carpta_2021_100039
crossref_primary_10_1111_ijfs_15762
crossref_primary_10_1111_ijfs_16613
crossref_primary_10_1111_ijfs_16974
crossref_primary_10_3389_fnut_2022_934209
crossref_primary_10_1016_j_foodchem_2024_140796
crossref_primary_10_3390_foods11192933
crossref_primary_10_1111_ijfs_14957
Cites_doi 10.1016/j.foodhyd.2017.06.016
10.1021/jf503203r
10.1016/j.foodhyd.2018.02.041
10.1016/S0008-6215(98)00068-8
10.1016/j.lwt.2017.04.077
10.1016/j.jcs.2016.06.014
10.1016/S0141-8130(02)00067-3
10.1016/j.carbpol.2017.07.070
10.1016/j.foodchem.2016.07.122
10.1016/0008-6215(95)00270-7
10.1016/S0308-8146(00)00130-8
10.1016/j.foodhyd.2018.05.028
10.1016/j.foodchem.2009.02.003
10.1016/j.foodhyd.2018.02.024
10.1016/j.foodhyd.2012.09.005
10.1016/j.carbpol.2013.05.021
10.1016/j.foodchem.2018.06.086
10.1016/j.carbpol.2014.09.006
10.1016/j.foodres.2010.04.011
10.1016/j.lwt.2014.02.037
10.1016/j.foodhyd.2016.10.032
10.1016/j.foodchem.2014.02.072
10.1111/1541-4337.12143
10.1016/j.tifs.2017.01.008
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.foodhyd.2019.01.015
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7137
EndPage 142
ExternalDocumentID 10_1016_j_foodhyd_2019_01_015
S0268005X18316308
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLY
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCE
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSZ
T5K
UHS
UNMZH
WH7
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c408t-efae60f801aca196f3e895d637f076291328bd93390aaefd1a2b40f0905699cf3
IEDL.DBID .~1
ISSN 0268-005X
IngestDate Thu Jul 10 22:38:37 EDT 2025
Tue Jul 01 02:19:46 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
Fri Feb 23 02:48:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Rice protein
Rice starch
Retrogradation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c408t-efae60f801aca196f3e895d637f076291328bd93390aaefd1a2b40f0905699cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2237509859
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2237509859
crossref_citationtrail_10_1016_j_foodhyd_2019_01_015
crossref_primary_10_1016_j_foodhyd_2019_01_015
elsevier_sciencedirect_doi_10_1016_j_foodhyd_2019_01_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2019
2019-06-00
20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationTitle Food hydrocolloids
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Amagliani, O'Regan, Kelly, O'Mahony (bib4) 2016; 70
Ozel, Dag, Kilercioglu, Sumnu, Oztop (bib15) 2017; 83
Zhang, Liu, Liu, Luo, Li, Liu (bib25) 2014; 158
Likitwattanasade, Hongsprabhas (bib12) 2010; 43
Ai, Witt, Cowin, Dhital, Turner, Stokes (bib2) 2018; 83
Amagliani, O'Regan, Kelly, O'Mahony (bib3) 2017; 64
Besbes, Jury, Monteau, Le Bail (bib5) 2014; 58
Chen, Tian, Tong, Zhang, Jin (bib7) 2017; 214
Tian, Zhan, Zhao, Xie, Xu, Jin (bib21) 2013; 31
Ye, Yang, Liu, Luo, Chen, Hu (bib23) 2018; 268
Yu, Wang, Chen, Li, Wang (bib24) 2018; 81
Shujun, Caili, Les, Qing, Shuo (bib17) 2015; 14
Hedayati, Niakousari (bib9) 2018; 81
Sevenou, Hill, Farhat, Mitchell (bib16) 2002; 31
Skorbiansky, Childs, Childs (bib18) 2018
Chen, Ren, Zhang, Tong, Rashed (bib6) 2015; 115
Fan, Ma, Wang, Zhao, Zhao, Zhang (bib8) 2013; 97
Le Botlan, Rugraff, Martin, Colonna (bib10) 1998; 308
Matignon, Tecante (bib13) 2017; 68
Niu, Wu, Xiao (bib14) 2017; 175
van Soest, Tournois, de Wit, Vliegenthart (bib19) 1995; 279
Tian, Li, Manthey, Xu, Jin, Deng (bib20) 2009; 116
Abd Karim, Norziah, Seow (bib1) 2000; 71
Xiao, Zhong (bib22) 2017; 72
Lian, Kang, Sun, Liu, Li (bib11) 2015; 63
Ai (10.1016/j.foodhyd.2019.01.015_bib2) 2018; 83
Xiao (10.1016/j.foodhyd.2019.01.015_bib22) 2017; 72
Tian (10.1016/j.foodhyd.2019.01.015_bib20) 2009; 116
van Soest (10.1016/j.foodhyd.2019.01.015_bib19) 1995; 279
Hedayati (10.1016/j.foodhyd.2019.01.015_bib9) 2018; 81
Amagliani (10.1016/j.foodhyd.2019.01.015_bib4) 2016; 70
Shujun (10.1016/j.foodhyd.2019.01.015_bib17) 2015; 14
Chen (10.1016/j.foodhyd.2019.01.015_bib6) 2015; 115
Chen (10.1016/j.foodhyd.2019.01.015_bib7) 2017; 214
Lian (10.1016/j.foodhyd.2019.01.015_bib11) 2015; 63
Besbes (10.1016/j.foodhyd.2019.01.015_bib5) 2014; 58
Ye (10.1016/j.foodhyd.2019.01.015_bib23) 2018; 268
Tian (10.1016/j.foodhyd.2019.01.015_bib21) 2013; 31
Le Botlan (10.1016/j.foodhyd.2019.01.015_bib10) 1998; 308
Ozel (10.1016/j.foodhyd.2019.01.015_bib15) 2017; 83
Skorbiansky (10.1016/j.foodhyd.2019.01.015_bib18) 2018
Yu (10.1016/j.foodhyd.2019.01.015_bib24) 2018; 81
Likitwattanasade (10.1016/j.foodhyd.2019.01.015_bib12) 2010; 43
Abd Karim (10.1016/j.foodhyd.2019.01.015_bib1) 2000; 71
Fan (10.1016/j.foodhyd.2019.01.015_bib8) 2013; 97
Niu (10.1016/j.foodhyd.2019.01.015_bib14) 2017; 175
Zhang (10.1016/j.foodhyd.2019.01.015_bib25) 2014; 158
Sevenou (10.1016/j.foodhyd.2019.01.015_bib16) 2002; 31
Matignon (10.1016/j.foodhyd.2019.01.015_bib13) 2017; 68
Amagliani (10.1016/j.foodhyd.2019.01.015_bib3) 2017; 64
References_xml – volume: 115
  start-page: 415
  year: 2015
  end-page: 421
  ident: bib6
  article-title: Effect of pullulan on the short-term and long-term retrogradation of rice starch
  publication-title: Carbohydrate Polymers
– year: 2018
  ident: bib18
  article-title: Rice outlook
– volume: 63
  start-page: 1562
  year: 2015
  end-page: 1572
  ident: bib11
  article-title: Identification of the main retrogradation-related properties of rice starch
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 83
  start-page: 454
  year: 2018
  end-page: 464
  ident: bib2
  article-title: Anti-staling of high-moisture starchy food: Effect of hydrocolloids, emulsifiers and enzymes on mechanics of steamed-rice cakes
  publication-title: Food Hydrocolloids
– volume: 31
  start-page: 79
  year: 2002
  end-page: 85
  ident: bib16
  article-title: Organisation of the external region of the starch granule as determined by infrared spectroscopy
  publication-title: International Journal of Biological Macromolecules
– volume: 308
  start-page: 29
  year: 1998
  end-page: 36
  ident: bib10
  article-title: Quantitative determination of bound water in wheat starch by time domain NMR spectroscopy
  publication-title: Carbohydrate Research
– volume: 43
  start-page: 1402
  year: 2010
  end-page: 1409
  ident: bib12
  article-title: Effect of storage proteins on pasting properties and microstructure of Thai rice
  publication-title: Food Research International
– volume: 81
  start-page: 77
  year: 2018
  end-page: 86
  ident: bib24
  article-title: The gelatinization and retrogradation properties of wheat starch with the addition of stearic acid and sodium alginate
  publication-title: Food Hydrocolloids
– volume: 81
  start-page: 1
  year: 2018
  end-page: 5
  ident: bib9
  article-title: Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites
  publication-title: Food Hydrocolloids
– volume: 14
  start-page: 568
  year: 2015
  end-page: 585
  ident: bib17
  article-title: Starch retrogradation: A comprehensive review
  publication-title: Comprehensive Reviews in Food Science and Food Safety
– volume: 116
  start-page: 54
  year: 2009
  end-page: 58
  ident: bib20
  article-title: Influence of β-cyclodextrin on the short-term retrogradation of rice starch
  publication-title: Food Chemistry
– volume: 71
  start-page: 9
  year: 2000
  end-page: 36
  ident: bib1
  article-title: Methods for the study of starch retrogradation
  publication-title: Food Chemistry
– volume: 64
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib3
  article-title: The composition, extraction, functionality and applications of rice proteins: A review
  publication-title: Trends in Food Science & Technology
– volume: 268
  start-page: 324
  year: 2018
  end-page: 333
  ident: bib23
  article-title: Improvement in freeze-thaw stability of rice starch gel by inulin and its mechanism
  publication-title: Food Chemistry
– volume: 31
  start-page: 1
  year: 2013
  end-page: 4
  ident: bib21
  article-title: Preparation of products rich in slowly digestible starch (SDS) from rice starch by a dual-retrogradation treatment
  publication-title: Food Hydrocolloids
– volume: 72
  start-page: 338
  year: 2017
  end-page: 345
  ident: bib22
  article-title: Suppression of retrogradation of gelatinized rice starch by anti-listerial grass carp protein hydrolysate
  publication-title: Food Hydrocolloids
– volume: 175
  start-page: 311
  year: 2017
  end-page: 319
  ident: bib14
  article-title: Inhibition of gelatinized rice starch retrogradation by rice bran protein hydrolysates
  publication-title: Carbohydrate Polymers
– volume: 70
  start-page: 291
  year: 2016
  end-page: 300
  ident: bib4
  article-title: Chemistry, structure, functionality and applications of rice starch
  publication-title: Journal of Cereal Science
– volume: 58
  start-page: 658
  year: 2014
  end-page: 666
  ident: bib5
  article-title: Effect of baking conditions and storage with crust on the moisture profile, local textural properties and staling kinetics of pan bread
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
– volume: 279
  start-page: 201
  year: 1995
  end-page: 214
  ident: bib19
  article-title: Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy
  publication-title: Carbohydrate Research
– volume: 158
  start-page: 255
  year: 2014
  end-page: 261
  ident: bib25
  article-title: Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology
  publication-title: Food Chemistry
– volume: 83
  start-page: 10
  year: 2017
  end-page: 17
  ident: bib15
  article-title: NMR relaxometry as a tool to understand the effect of microwave heating on starch-water interactions and gelatinization behavior
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
– volume: 97
  start-page: 406
  year: 2013
  end-page: 412
  ident: bib8
  article-title: (1)H NMR studies of starch-water interactions during microwave heating
  publication-title: Carbohydrate Polymers
– volume: 68
  start-page: 43
  year: 2017
  end-page: 52
  ident: bib13
  article-title: Starch retrogradation: From starch components to cereal products
  publication-title: Food Hydrocolloids
– volume: 214
  start-page: 702
  year: 2017
  end-page: 709
  ident: bib7
  article-title: Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage
  publication-title: Food Chemistry
– volume: 72
  start-page: 338
  year: 2017
  ident: 10.1016/j.foodhyd.2019.01.015_bib22
  article-title: Suppression of retrogradation of gelatinized rice starch by anti-listerial grass carp protein hydrolysate
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2017.06.016
– volume: 63
  start-page: 1562
  issue: 5
  year: 2015
  ident: 10.1016/j.foodhyd.2019.01.015_bib11
  article-title: Identification of the main retrogradation-related properties of rice starch
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf503203r
– volume: 81
  start-page: 77
  year: 2018
  ident: 10.1016/j.foodhyd.2019.01.015_bib24
  article-title: The gelatinization and retrogradation properties of wheat starch with the addition of stearic acid and sodium alginate
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.02.041
– volume: 308
  start-page: 29
  issue: 1
  year: 1998
  ident: 10.1016/j.foodhyd.2019.01.015_bib10
  article-title: Quantitative determination of bound water in wheat starch by time domain NMR spectroscopy
  publication-title: Carbohydrate Research
  doi: 10.1016/S0008-6215(98)00068-8
– volume: 83
  start-page: 10
  year: 2017
  ident: 10.1016/j.foodhyd.2019.01.015_bib15
  article-title: NMR relaxometry as a tool to understand the effect of microwave heating on starch-water interactions and gelatinization behavior
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
  doi: 10.1016/j.lwt.2017.04.077
– year: 2018
  ident: 10.1016/j.foodhyd.2019.01.015_bib18
– volume: 70
  start-page: 291
  year: 2016
  ident: 10.1016/j.foodhyd.2019.01.015_bib4
  article-title: Chemistry, structure, functionality and applications of rice starch
  publication-title: Journal of Cereal Science
  doi: 10.1016/j.jcs.2016.06.014
– volume: 31
  start-page: 79
  issue: 1
  year: 2002
  ident: 10.1016/j.foodhyd.2019.01.015_bib16
  article-title: Organisation of the external region of the starch granule as determined by infrared spectroscopy
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/S0141-8130(02)00067-3
– volume: 175
  start-page: 311
  year: 2017
  ident: 10.1016/j.foodhyd.2019.01.015_bib14
  article-title: Inhibition of gelatinized rice starch retrogradation by rice bran protein hydrolysates
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2017.07.070
– volume: 214
  start-page: 702
  year: 2017
  ident: 10.1016/j.foodhyd.2019.01.015_bib7
  article-title: Effect of pullulan on the water distribution, microstructure and textural properties of rice starch gels during cold storage
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2016.07.122
– volume: 279
  start-page: 201
  year: 1995
  ident: 10.1016/j.foodhyd.2019.01.015_bib19
  article-title: Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy
  publication-title: Carbohydrate Research
  doi: 10.1016/0008-6215(95)00270-7
– volume: 71
  start-page: 9
  issue: 1
  year: 2000
  ident: 10.1016/j.foodhyd.2019.01.015_bib1
  article-title: Methods for the study of starch retrogradation
  publication-title: Food Chemistry
  doi: 10.1016/S0308-8146(00)00130-8
– volume: 83
  start-page: 454
  year: 2018
  ident: 10.1016/j.foodhyd.2019.01.015_bib2
  article-title: Anti-staling of high-moisture starchy food: Effect of hydrocolloids, emulsifiers and enzymes on mechanics of steamed-rice cakes
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.05.028
– volume: 116
  start-page: 54
  issue: 1
  year: 2009
  ident: 10.1016/j.foodhyd.2019.01.015_bib20
  article-title: Influence of β-cyclodextrin on the short-term retrogradation of rice starch
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2009.02.003
– volume: 81
  start-page: 1
  year: 2018
  ident: 10.1016/j.foodhyd.2019.01.015_bib9
  article-title: Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.02.024
– volume: 31
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.foodhyd.2019.01.015_bib21
  article-title: Preparation of products rich in slowly digestible starch (SDS) from rice starch by a dual-retrogradation treatment
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2012.09.005
– volume: 97
  start-page: 406
  issue: 2
  year: 2013
  ident: 10.1016/j.foodhyd.2019.01.015_bib8
  article-title: (1)H NMR studies of starch-water interactions during microwave heating
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2013.05.021
– volume: 268
  start-page: 324
  year: 2018
  ident: 10.1016/j.foodhyd.2019.01.015_bib23
  article-title: Improvement in freeze-thaw stability of rice starch gel by inulin and its mechanism
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.06.086
– volume: 115
  start-page: 415
  year: 2015
  ident: 10.1016/j.foodhyd.2019.01.015_bib6
  article-title: Effect of pullulan on the short-term and long-term retrogradation of rice starch
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2014.09.006
– volume: 43
  start-page: 1402
  issue: 5
  year: 2010
  ident: 10.1016/j.foodhyd.2019.01.015_bib12
  article-title: Effect of storage proteins on pasting properties and microstructure of Thai rice
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2010.04.011
– volume: 58
  start-page: 658
  issue: 2
  year: 2014
  ident: 10.1016/j.foodhyd.2019.01.015_bib5
  article-title: Effect of baking conditions and storage with crust on the moisture profile, local textural properties and staling kinetics of pan bread
  publication-title: Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology
  doi: 10.1016/j.lwt.2014.02.037
– volume: 68
  start-page: 43
  year: 2017
  ident: 10.1016/j.foodhyd.2019.01.015_bib13
  article-title: Starch retrogradation: From starch components to cereal products
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.10.032
– volume: 158
  start-page: 255
  year: 2014
  ident: 10.1016/j.foodhyd.2019.01.015_bib25
  article-title: Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2014.02.072
– volume: 14
  start-page: 568
  issue: 5
  year: 2015
  ident: 10.1016/j.foodhyd.2019.01.015_bib17
  article-title: Starch retrogradation: A comprehensive review
  publication-title: Comprehensive Reviews in Food Science and Food Safety
  doi: 10.1111/1541-4337.12143
– volume: 64
  start-page: 1
  year: 2017
  ident: 10.1016/j.foodhyd.2019.01.015_bib3
  article-title: The composition, extraction, functionality and applications of rice proteins: A review
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2017.01.008
SSID ssj0017011
Score 2.6200688
Snippet The effects of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation were investigated by low...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 136
SubjectTerms crosslinking
crystallization
Fourier transform infrared spectroscopy
hydrocolloids
image analysis
magnetism
microstructure
Retrogradation
Rice protein
Rice starch
scanning electron microscopes
scanning electron microscopy
starch
starch gels
water holding capacity
X-ray diffraction
Title Effect of rice protein on the water mobility, water migration and microstructure of rice starch during retrogradation
URI https://dx.doi.org/10.1016/j.foodhyd.2019.01.015
https://www.proquest.com/docview/2237509859
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA6iL_ognngTwUe72yPtNo-yKOuJeMC-haRJdEVbWXcRX_ztziTteiAIQqGkJCVkJjNf2plvCNnLcwVONyuCLGNZgKmdgbKxCjqSSx3p2HY4JgqfX2S9W3bST_tTpNvkwmBYZW37vU131rp-0q5Xs_08GLSv4fQAaCftg1ICqHAJv4x1UMtb75MwD6Qbj_x3ljzA3p9ZPO2Hlq0qff-GhKERd-ydWB33d__0w1I793O0QOZr3EgP_NQWyZQpl8jcFzbBZTL2TMS0shSZgqijYBiUtCopoDz6CqhySJ8qFw37tt-0B3deB6gsNbRwVo5Sdjw0kzcBgoTtQH1KIx2akQvq8tWYVsjt0eFNtxfUVRWCgoX5KDBWmiy04JlkIWH_2cTkPNVZ0rEhWEYOx9NcaZ4kPJTSWB3JWLHQhhygEueFTVbJdFmVZo3QNCmMkmGSSBsz7MliK2NdaGsyFSu5TlizlqKoKcex8sWjaGLLHkQtAoEiEGEEV7pOWpNhz55z468BeSMo8U15BPiFv4buNoIVsLHwb4ksTTV-EYCbEE3lKd_4_-s3ySy2fGzZFpkGAZptQDEjtePUdIfMHHSvzi7xfnzau_gAAdb3hA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB7xOBQOCGgRr1Ij0Vs32fU-Yh96qHgolMelIOVm7LUNiWAXhUQoF_4Uf7Dj9W4KVSWkSki5bBJb1szszDe7M98A7DGmMOhmeZBlSRa41s5AWaqCjuRSR5raDneNwmfnWfcy-dlLezPw3PTCuLLK2vd7n1556_qbdi3N9n2_3_6F2QOinbSHRomgImR1ZeWJmTxi3vbw_fgAlfyV0qPDi_1uUI8WCPIkZKPAWGmy0KJ7lrlEI7SxYTzVWdyxmNhTjjkaUxqTfR5KaayOJFVJaEOOeIHz3Ma47yzMJ-gu3NiE1tO0rsTxm0f-wQ4L3PH-tA21By1blvpm4hhKI17RhbpxvP8OiH-FhireHS3DUg1UyQ8vixWYMcUqLL6gL_wIY099TEpLHDURqTgf-gUpC4KwkjwijB2Su7Iqv518a677197oiCw0XrlTVRy246GZ7oSQFWVMfA8lGZpRVUXmxz99gst3kfUazBVlYdaBpHFulAzjWFqauH8m1Eqqc21NpqiSG5A0shR5zXHuRm3ciqaYbSBqFQinAhFG-Ek3oDVddu9JPt5awBpFiVfWKjAQvbV0t1GswDvZvZ6RhSnHDwKBmoNvLOWb_7_9F_jQvTg7FafH5ydbsOB-8YVt2zCHyjSfEUKN1E5lsgSu3vse-Q1vTjF0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+rice+protein+on+the+water+mobility%2C+water+migration+and+microstructure+of+rice+starch+during+retrogradation&rft.jtitle=Food+hydrocolloids&rft.au=Zhang%2C+Yifu&rft.au=Chen%2C+Cheng&rft.au=Chen%2C+Yue&rft.au=Chen%2C+Ye&rft.date=2019-06-01&rft.issn=0268-005X&rft.volume=91+p.136-142&rft.spage=136&rft.epage=142&rft_id=info:doi/10.1016%2Fj.foodhyd.2019.01.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon